Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation
In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. O...
Saved in:
Published in | Superlattices and microstructures Vol. 125; pp. 205 - 213 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. Our results demonstrates that except for the underestimated band gap like other GGA calculation, the remain properties like dielectric function, the reflectivity, absorption and loss energy are close to experiment. The valence band is constructed by mainly sulfur s/p-states and the lower portion of zirconium s/p/d-states. The conduction band is mostly donated by zirconium d-state. In contrast with bulk structure, the valence band maximum in monolayer has the triple peak at Γ point, making its monolayer be more sensitive to light absorption. The dielectric function has the highest peak at about 1.5–2.5 eV with remarkable anisotropy, beyond this level to the ultraviolet region the anisotropy decreases and almost disappears at energy larger than 10 eV. The absorption is at 106 x 104cm-1 for energy range 5–10 eV, while the reflectivity is at its highest value of 30 %–50 % in the energy range from 0 to 8 eV. The energy loss of monolayer is higher than those of bulk. For optical and electronic properties, the monolayer show sharper peaks and their clear separation indicate the progressive application of monolayer zirconium sulfide.
•Monolayer ZrS2 has new interband transitions at energy levels of 4-7 eV and 7-10 eV.•For energy ranging from -14 eV to 6 eV, the dielectric constants, energy loss, and reflectance are close to experimental values.•ZrS2 is highly anisotropic to the parallel and perpendicular components of electric field at energy lower than 10 eV.•The energy loss L(ω) in monolayer is higher than in bulk.•Our results give an explanation on perspective optical properties of monolayer ZrS2, which can be helpful for further design and application of this material. |
---|---|
AbstractList | In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. Our results demonstrates that except for the underestimated band gap like other GGA calculation, the remain properties like dielectric function, the reflectivity, absorption and loss energy are close to experiment. The valence band is constructed by mainly sulfur s/p-states and the lower portion of zirconium s/p/d-states. The conduction band is mostly donated by zirconium d-state. In contrast with bulk structure, the valence band maximum in monolayer has the triple peak at Γ point, making its monolayer be more sensitive to light absorption. The dielectric function has the highest peak at about 1.5–2.5 eV with remarkable anisotropy, beyond this level to the ultraviolet region the anisotropy decreases and almost disappears at energy larger than 10 eV. The absorption is at 106 x 104cm-1 for energy range 5–10 eV, while the reflectivity is at its highest value of 30 %–50 % in the energy range from 0 to 8 eV. The energy loss of monolayer is higher than those of bulk. For optical and electronic properties, the monolayer show sharper peaks and their clear separation indicate the progressive application of monolayer zirconium sulfide.
•Monolayer ZrS2 has new interband transitions at energy levels of 4-7 eV and 7-10 eV.•For energy ranging from -14 eV to 6 eV, the dielectric constants, energy loss, and reflectance are close to experimental values.•ZrS2 is highly anisotropic to the parallel and perpendicular components of electric field at energy lower than 10 eV.•The energy loss L(ω) in monolayer is higher than in bulk.•Our results give an explanation on perspective optical properties of monolayer ZrS2, which can be helpful for further design and application of this material. |
Author | Lavrentyev, A.A. Nguyen, Chuong V. Luong, Hai L. Tung, Pham D. Thuan, Doan V. Vo, Dat D. Tran, Khanh C. Gabrelian, B.V. Khyzhun, O.Y. Dang, Phuc Toan Vu, Tuan V. Pham, Khang D. |
Author_xml | – sequence: 1 givenname: Tuan V. orcidid: 0000-0003-3872-8323 surname: Vu fullname: Vu, Tuan V. email: vuvantuan@tdtu.edu.vn organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam – sequence: 2 givenname: A.A. surname: Lavrentyev fullname: Lavrentyev, A.A. organization: Department of Electrical Engineering and Electronics, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don, Russian Federation – sequence: 3 givenname: Doan V. surname: Thuan fullname: Thuan, Doan V. organization: NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam – sequence: 4 givenname: Chuong V. orcidid: 0000-0003-4109-7630 surname: Nguyen fullname: Nguyen, Chuong V. email: chuongnguyen11@gmail.com organization: Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi, Vietnam – sequence: 5 givenname: O.Y. surname: Khyzhun fullname: Khyzhun, O.Y. email: khyzhun@ipms.kiev.ua organization: Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, UA-03232 Kyiv, Ukraine – sequence: 6 givenname: B.V. surname: Gabrelian fullname: Gabrelian, B.V. organization: Department of Computational Technique and Automated System Software, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don, Russian Federation – sequence: 7 givenname: Khanh C. surname: Tran fullname: Tran, Khanh C. organization: Faculty of Materials Science and Technology, University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam – sequence: 8 givenname: Hai L. surname: Luong fullname: Luong, Hai L. organization: Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam – sequence: 9 givenname: Pham D. surname: Tung fullname: Tung, Pham D. organization: Department of Aerospace Technology and Equipment, Le Quy Don Technical University, Ha Noi, Vietnam – sequence: 10 givenname: Khang D. surname: Pham fullname: Pham, Khang D. organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam – sequence: 11 givenname: Phuc Toan surname: Dang fullname: Dang, Phuc Toan organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam – sequence: 12 givenname: Dat D. surname: Vo fullname: Vo, Dat D. email: voduydat@tdtu.edu.vn organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
BookMark | eNp90L1OwzAQwHELFYm28AJMfoGEs5M4CWKpqvIhVWIAFhbLcS7UJbUj21Tq29MPJoZOHk6_0_k_ISPrLBJyyyBlwMTdOg3DxqQcWJUylgJUF2TMoBZJJspyRMZQ5nUiIBNXZBLCGgDqnJVjohc96uidNZoO3g3oo8FAlW2pG6LRqqcNrtTWOB-o62jz038fpxtnXa926Omnf-P3dEbjCp3HkzF2iyGaLxWNs9fkslN9wJu_d0o-Hhfv8-dk-fr0Mp8tE50BxCRrkXHVNrzJc9HpOheooKsLXgFHyHSpc9HWQtei1Dyrioo3pW6EYFBkBRaQTUl12qu9C8FjJ7WJxwuiV6aXDOQhllzLQyx5iCUZk_tYe8r_0cGbjfK78-jhhHD_qa1BL4M2aDW2xu-jytaZc_wXjoqHBQ |
CitedBy_id | crossref_primary_10_1016_j_jssc_2021_122189 crossref_primary_10_1007_s11224_023_02241_w crossref_primary_10_1038_s41598_023_31553_4 crossref_primary_10_1016_j_optlastec_2022_108104 crossref_primary_10_1016_j_apsusc_2024_160651 crossref_primary_10_1039_D3SE00632H crossref_primary_10_1134_S0036024423110353 crossref_primary_10_1016_j_chemphys_2020_110679 crossref_primary_10_1016_j_ijhydene_2024_11_284 crossref_primary_10_1016_j_physe_2019_113857 crossref_primary_10_1002_pssb_202400389 crossref_primary_10_1007_s10948_024_06868_6 crossref_primary_10_1134_S0036024424040277 crossref_primary_10_1016_j_mssp_2024_109144 crossref_primary_10_1016_j_physleta_2020_126909 crossref_primary_10_1016_j_chemphys_2024_112518 crossref_primary_10_1016_j_chemphys_2020_110762 crossref_primary_10_1103_PhysRevMaterials_3_074001 crossref_primary_10_1007_s12648_019_01677_3 crossref_primary_10_1016_j_ijleo_2023_171594 crossref_primary_10_1016_j_comptc_2023_114207 crossref_primary_10_1016_j_mtcomm_2025_111633 crossref_primary_10_1021_acs_inorgchem_4c03305 crossref_primary_10_1039_C9RA08605F crossref_primary_10_1088_1361_648X_aca738 crossref_primary_10_1088_1361_6463_ac6401 crossref_primary_10_3390_ma15165578 crossref_primary_10_1002_adts_202401253 crossref_primary_10_1016_j_matlet_2024_137661 crossref_primary_10_4028_p_775o97 crossref_primary_10_1002_smll_202400216 crossref_primary_10_1007_s10853_022_07131_w crossref_primary_10_1016_j_molstruc_2022_132667 crossref_primary_10_1016_j_physb_2024_416493 crossref_primary_10_1016_j_matchemphys_2022_126979 crossref_primary_10_1140_epjp_s13360_024_05598_x crossref_primary_10_1142_S0217984924502026 crossref_primary_10_1016_j_ijleo_2019_163631 crossref_primary_10_1088_1361_6641_acac4d crossref_primary_10_1016_j_solidstatesciences_2022_106988 crossref_primary_10_1016_j_spmi_2020_106454 crossref_primary_10_1016_j_surfin_2021_101036 crossref_primary_10_1016_j_jpcs_2021_110309 crossref_primary_10_1016_j_spmi_2020_106519 crossref_primary_10_12693_APhysPolA_145_215 |
Cites_doi | 10.1002/adfm.201602404 10.1103/PhysRevB.80.035206 10.1038/srep17578 10.1016/j.seppur.2014.05.018 10.1038/nmat1849 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.81.085212 10.1039/C5CP01445J 10.1039/c3ra46090h 10.1016/j.cpc.2006.03.005 10.1016/0378-4363(81)90236-9 10.1039/C5CS00275C 10.1021/nn301320r 10.1016/j.mattod.2016.10.002 10.1039/C4CS00276H 10.1103/RevModPhys.81.109 10.1039/C8CP03508C 10.1038/nnano.2014.207 10.1103/PhysRevB.49.16223 10.1063/1.4982690 10.1016/j.physb.2018.06.024 10.1021/acsnano.6b01149 10.1039/C5NR01052G 10.1039/C4CS00287C 10.1016/j.spmi.2017.08.007 10.1016/S0009-2614(01)00616-9 10.1016/j.pnsc.2013.06.002 10.1038/nnano.2010.279 10.1088/0031-8949/24/2/025 10.1016/j.jallcom.2017.10.198 10.1039/C7TC03131A 10.1103/PhysRevB.88.085318 10.1016/j.saa.2017.10.038 10.1002/adma.201001413 10.1016/j.spmi.2017.12.052 10.1007/BF03028209 10.1080/00018737600101362 10.1002/anie.201106004 10.1039/C6CP02206E 10.1088/0953-8984/21/9/095404 10.1021/jp405808a 10.1186/s11671-016-1719-8 10.1063/1.4892798 10.1039/C6TC01135G 10.1016/j.physe.2017.05.021 10.1063/1.4774090 10.1016/j.ijhydene.2015.08.110 10.1088/0022-3727/49/44/445305 10.1039/C5RA12412C 10.1039/C8CP04271C 10.1063/1.4903408 10.1007/s10853-018-2047-4 10.1016/0022-3697(65)90043-0 10.1016/j.carbon.2017.04.060 10.1039/c1ee01286j 10.1002/pssb.201700033 10.1039/C5EE03490F |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2018.11.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 213 |
ExternalDocumentID | 10_1016_j_spmi_2018_11_008 S0749603618319712 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-3de12adb2b446fc946ea0f952802e03c7c46d96c967c238582b7cb6610535e503 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:12 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Fri Feb 23 02:43:13 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Band structure Optical properties Monolayer ZrS2 First-principles Strain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3de12adb2b446fc946ea0f952802e03c7c46d96c967c238582b7cb6610535e503 |
ORCID | 0000-0003-4109-7630 0000-0003-3872-8323 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2018_11_008 crossref_primary_10_1016_j_spmi_2018_11_008 elsevier_sciencedirect_doi_10_1016_j_spmi_2018_11_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Meng, Rao, Wang, Shi, Liu, Wu, Deng, Liu, Lu (bib34) 2016; 9 Perdew, Burke, Ernzerhof (bib46) 1996; 77 Isomäki, Boehm (bib58) 1981; 24 Castro Neto, Guinea, Peres, Novoselov, Geim (bib1) 2009; 81 Sun, Ren, Zhao, Chou, Yu, Tang (bib3) 2017; 120 Zhao, Chen, Yang, Zhang, Wei (bib43) 2018; 53 Geim, Novoselov (bib2) 2007; 6 Liu, Zhou, Zhu, Liu (bib21) 2016; 27 Jimin, Le, Zhongming (bib39) 2017; 38 Krishnakumar, Imae, Miras, Esquena (bib41) 2014; 132 Mochalov, Kudryashov, Logunov, Zelentsov, Nezhdanov, Mashin, Gogova, Chidichimo, De Filpo (bib6) 2017; 111 Kumar, He, Pandey, Ahluwalia, Tankeshwar (bib48) 2015; 1665 Choi, Choudhary, Han, Park, Akinwande, Lee (bib7) 2017; 20 Da Silva, Ganduglia-Pirovano, Sauer, Bayer, Kresse (bib52) 2007; 75 Zhuang, Hennig (bib27) 2013; 117 Muscat, Wander, Harrison (bib54) 2001; 342 Vu, Lavrentyev, Gabrelian, Parasyuk, Ocheretova, Khyzhun (bib63) 2018; 732 Li, Fang, Zhai, Liao, Gautam, Wu, Koide, Bando, Golberg (bib24) 2010; 22 Wooten (bib61) 1972 Sun, Chou, Ren, Zhao, Yu, Tang (bib13) 2017; 110 Khachai, Khenata, Bouhemadou, Haddou, Ali, Amrani, Rached, Soudini (bib57) 2009; 21 Li, Wang, Qiu (bib38) 2015; 40 Ambrosch-Draxl, Sofo (bib60) 2006; 175 Johari, Shenoy (bib15) 2012; 6 Blöchl, Jepsen, Andersen (bib47) 1994; 49 Jaekwang, Jingsong, Bobby, Mina (bib14) 2017; 4 Sun, Chou, Yu, Tang (bib10) 2017; 5 Kim, Ko, Park (bib59) 2000; 6 Zeng, Yin, Huang, Li, He, Lu, Boey, Zhang (bib23) 2011; 50 Schwierz, Pezoldt, Granzner (bib12) 2015; 7 Khoa, Nguyen, Phuc, Ilyasov, Vu, Cuong, Hoi, Lu, Feddi, El-Yadri, Farkous, Hieu (bib56) 2018; 545 Li, Wang, Fang, Zhai, Bando, Golberg (bib25) 2011; 4 Wang, Yuan, Sae Hong, Li, Cui (bib18) 2015; 44 Zhai, Qin, Sun, Wang, Liu, Min, Li (bib19) 2018; 20 Schmidt, Giustiniano, Eda (bib11) 2015; 44 Moustafa, Zandt, Janowitz, Manzke (bib30) 2009; 80 Mochalov, Nezhdanov, Logunov, Kudryashov, Krivenkov, Vorotyntsev, Gogova, Mashin (bib5) 2018; 114 Isomäki, von Boehm (bib62) 1981; 105 Si, Wu, Yang, Huang, Yang, Peng, Huang (bib42) 2016; 11 Janotti, Varley, Rinke, Umezawa, Kresse, Van de Walle (bib53) 2010; 81 J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18). Kumar, He, Pandey, Ahluwalia, Tankeshwar (bib50) 2015; 17 Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (bib28) 2014; 9 Xin, Zhao, Ma, Wu, Liu, Wei (bib51) 2017; 93 Kuc, Heine (bib20) 2015; 44 Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowski, Tran, Marks (bib44) 2018 Mochalov, Dorosz, Nezhdanov, Kudryashov, Zelentsov, Usanov, Logunov, Mashin, Gogova (bib4) 2018; 191 Bagayoko (bib55) 2014; 4 Ao, Pham, Xiao, Zu, Li (bib40) 2016; 18 Wei, Dai, Niu, Huang (bib17) 2015; 5 Kang, Tongay, Zhou, Li, Wu (bib33) 2013; 102 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (bib32) 2011; 6 Zhao, Guo, Si, Ren, Bai, Xu (bib49) 2017; 254 Bell, Liang (bib64) 1976; 25 Komsa, Krasheninnikov (bib29) 2013; 88 Li, Kang, Li (bib35) 2014; 4 Sharma, Kumar, Ahluwalia, Pandey (bib22) 2014; 116 Lv, Lu, Shao, Lu, Sun (bib36) 2016; 4 Greenaway, Nitsche (bib37) 1965; 26 Wen, Zhu, Zhang (bib26) 2015; 5 Li, Sun, Chou, Wei, Xing, Hu (bib8) 2018; 20 Yan, Wang, Yao, Yao (bib31) 2013; 23 Sun, Ren, Wang, Yu, Tang (bib9) 2016; 49 Shen, Penumatcha, Appenzeller (bib16) 2016; 10 Muscat (10.1016/j.spmi.2018.11.008_bib54) 2001; 342 Mochalov (10.1016/j.spmi.2018.11.008_bib6) 2017; 111 Blöchl (10.1016/j.spmi.2018.11.008_bib47) 1994; 49 Ao (10.1016/j.spmi.2018.11.008_bib40) 2016; 18 Geim (10.1016/j.spmi.2018.11.008_bib2) 2007; 6 Krishnakumar (10.1016/j.spmi.2018.11.008_bib41) 2014; 132 Li (10.1016/j.spmi.2018.11.008_bib25) 2011; 4 Kang (10.1016/j.spmi.2018.11.008_bib33) 2013; 102 Li (10.1016/j.spmi.2018.11.008_bib38) 2015; 40 Mochalov (10.1016/j.spmi.2018.11.008_bib4) 2018; 191 Khoa (10.1016/j.spmi.2018.11.008_bib56) 2018; 545 Liu (10.1016/j.spmi.2018.11.008_bib21) 2016; 27 Wei (10.1016/j.spmi.2018.11.008_bib17) 2015; 5 Xin (10.1016/j.spmi.2018.11.008_bib51) 2017; 93 Wooten (10.1016/j.spmi.2018.11.008_bib61) 1972 Wang (10.1016/j.spmi.2018.11.008_bib18) 2015; 44 Yan (10.1016/j.spmi.2018.11.008_bib31) 2013; 23 Choi (10.1016/j.spmi.2018.11.008_bib7) 2017; 20 Sun (10.1016/j.spmi.2018.11.008_bib9) 2016; 49 Johari (10.1016/j.spmi.2018.11.008_bib15) 2012; 6 Jimin (10.1016/j.spmi.2018.11.008_bib39) 2017; 38 Blaha (10.1016/j.spmi.2018.11.008_bib44) 2018 Li (10.1016/j.spmi.2018.11.008_bib24) 2010; 22 Ambrosch-Draxl (10.1016/j.spmi.2018.11.008_bib60) 2006; 175 Bell (10.1016/j.spmi.2018.11.008_bib64) 1976; 25 Isomäki (10.1016/j.spmi.2018.11.008_bib62) 1981; 105 Li (10.1016/j.spmi.2018.11.008_bib8) 2018; 20 Zeng (10.1016/j.spmi.2018.11.008_bib23) 2011; 50 Kumar (10.1016/j.spmi.2018.11.008_bib50) 2015; 17 Khachai (10.1016/j.spmi.2018.11.008_bib57) 2009; 21 Bagayoko (10.1016/j.spmi.2018.11.008_bib55) 2014; 4 Vu (10.1016/j.spmi.2018.11.008_bib63) 2018; 732 Si (10.1016/j.spmi.2018.11.008_bib42) 2016; 11 Castro Neto (10.1016/j.spmi.2018.11.008_bib1) 2009; 81 Radisavljevic (10.1016/j.spmi.2018.11.008_bib32) 2011; 6 Da Silva (10.1016/j.spmi.2018.11.008_bib52) 2007; 75 Mochalov (10.1016/j.spmi.2018.11.008_bib5) 2018; 114 Kumar (10.1016/j.spmi.2018.11.008_bib48) 2015; 1665 Komsa (10.1016/j.spmi.2018.11.008_bib29) 2013; 88 Sun (10.1016/j.spmi.2018.11.008_bib13) 2017; 110 Zhai (10.1016/j.spmi.2018.11.008_bib19) 2018; 20 Zhao (10.1016/j.spmi.2018.11.008_bib43) 2018; 53 Shen (10.1016/j.spmi.2018.11.008_bib16) 2016; 10 Greenaway (10.1016/j.spmi.2018.11.008_bib37) 1965; 26 Sun (10.1016/j.spmi.2018.11.008_bib3) 2017; 120 Kuc (10.1016/j.spmi.2018.11.008_bib20) 2015; 44 Moustafa (10.1016/j.spmi.2018.11.008_bib30) 2009; 80 Zhao (10.1016/j.spmi.2018.11.008_bib49) 2017; 254 Fiori (10.1016/j.spmi.2018.11.008_bib28) 2014; 9 Isomäki (10.1016/j.spmi.2018.11.008_bib58) 1981; 24 10.1016/j.spmi.2018.11.008_bib45 Sun (10.1016/j.spmi.2018.11.008_bib10) 2017; 5 Schmidt (10.1016/j.spmi.2018.11.008_bib11) 2015; 44 Sharma (10.1016/j.spmi.2018.11.008_bib22) 2014; 116 Lv (10.1016/j.spmi.2018.11.008_bib36) 2016; 4 Wen (10.1016/j.spmi.2018.11.008_bib26) 2015; 5 Jaekwang (10.1016/j.spmi.2018.11.008_bib14) 2017; 4 Zhang (10.1016/j.spmi.2018.11.008_bib34) 2016; 9 Schwierz (10.1016/j.spmi.2018.11.008_bib12) 2015; 7 Li (10.1016/j.spmi.2018.11.008_bib35) 2014; 4 Kim (10.1016/j.spmi.2018.11.008_bib59) 2000; 6 Zhuang (10.1016/j.spmi.2018.11.008_bib27) 2013; 117 Perdew (10.1016/j.spmi.2018.11.008_bib46) 1996; 77 Janotti (10.1016/j.spmi.2018.11.008_bib53) 2010; 81 |
References_xml | – volume: 20 start-page: 116 year: 2017 end-page: 130 ident: bib7 article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications publication-title: Mater. Today – volume: 4 start-page: 127104 year: 2014 ident: bib55 article-title: Understanding density functional theory (DFT) and completing it in practice publication-title: AIP Adv. – volume: 21 year: 2009 ident: bib57 article-title: Fp-apw+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure publication-title: J. Phys. Condens. Matter – volume: 4 year: 2017 ident: bib14 article-title: Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures publication-title: 2D Mater. – volume: 105 start-page: 156 year: 1981 end-page: 158 ident: bib62 article-title: Optical properties of ZrS publication-title: Phys. B+C – volume: 77 year: 1996 ident: bib46 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 4 start-page: 4538 year: 2016 end-page: 4545 ident: bib36 article-title: Strain-induced enhancement in the thermoelectric performance of a ZrS publication-title: J. Mater. Chem. C – year: 2018 ident: bib44 article-title: WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties – volume: 38 year: 2017 ident: bib39 article-title: Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS publication-title: J. Semiconduct. – volume: 111 start-page: 1104 year: 2017 end-page: 1112 ident: bib6 article-title: Structural and optical properties of arsenic sulfide films synthesized by a novel pecvd-based approach publication-title: Superlattice. Microst. – volume: 732 start-page: 372 year: 2018 end-page: 384 ident: bib63 article-title: Electronic structure and optical properties of Ag publication-title: J. Alloy. Comp. – volume: 9 start-page: 768 year: 2014 ident: bib28 article-title: Electronics based on two-dimensional materials publication-title: Nat. Nanotechnol. – volume: 44 start-page: 2603 year: 2015 end-page: 2614 ident: bib20 article-title: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields publication-title: Chem. Soc. Rev. – volume: 49 start-page: 445305 year: 2016 ident: bib9 article-title: Electronic properties of janus silicene: new direct band gap semiconductors publication-title: J. Phys. D Appl. Phys. – volume: 17 start-page: 19215 year: 2015 end-page: 19221 ident: bib50 article-title: Pressure and electric field-induced metallization in the phase-engineered ZrX publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 465 year: 1981 ident: bib58 article-title: Bonding and band structure of ZrS publication-title: Phys. Scripta – volume: 4 start-page: 7396 year: 2014 end-page: 7401 ident: bib35 article-title: Indirect-to-direct band gap transition of the ZrS publication-title: RSC Adv. – volume: 9 start-page: 841 year: 2016 end-page: 849 ident: bib34 article-title: Efficient band structure tuning, charge separation, and visible-light response in ZrS publication-title: Energy Environ. Sci. – volume: 5 start-page: 66082 year: 2015 end-page: 66085 ident: bib26 article-title: Low temperature synthesis of ZrS publication-title: RSC Adv. – volume: 10 start-page: 4712 year: 2016 end-page: 4718 ident: bib16 article-title: Strain engineering for transition metal dichalcogenides based field effect transistors publication-title: ACS Nano – volume: 114 start-page: 305 year: 2018 end-page: 313 ident: bib5 article-title: Optical emission of two-dimensional arsenic sulfide prepared by plasma publication-title: Superlattice. Microst. – volume: 44 start-page: 2664 year: 2015 end-page: 2680 ident: bib18 article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides publication-title: Chem. Soc. Rev. – volume: 23 start-page: 402 year: 2013 end-page: 407 ident: bib31 article-title: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 6 start-page: 147 year: 2011 ident: bib32 article-title: Single-layer MoS publication-title: Nat. Nanotechnol. – volume: 342 start-page: 397 year: 2001 end-page: 401 ident: bib54 article-title: On the prediction of band gaps from hybrid functional theory publication-title: Chem. Phys. Lett. – volume: 116 year: 2014 ident: bib22 article-title: Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides publication-title: J. Appl. Phys. – volume: 18 start-page: 25151 year: 2016 end-page: 25160 ident: bib40 article-title: Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d0 dichalcogenide single layers SnS publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 177 year: 2000 end-page: 180 ident: bib59 article-title: Electronic structure and chemical bonding of zirconium disulfide publication-title: Met. Mater. – volume: 20 start-page: 24726 year: 2018 end-page: 24734 ident: bib8 article-title: First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures publication-title: Phys. Chem. Chem. Phys. – volume: 545 start-page: 255 year: 2018 end-page: 261 ident: bib56 article-title: Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study publication-title: Phys. B Condens. Matter – volume: 5 start-page: 10383 year: 2017 end-page: 10390 ident: bib10 article-title: Effects of structural imperfection on the electronic properties of graphene/WSe publication-title: J. Mater. Chem. C – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18). – volume: 93 start-page: 87 year: 2017 end-page: 91 ident: bib51 article-title: Electronic structure in 1T-ZrS publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 110 start-page: 173105 year: 2017 ident: bib13 article-title: Tunable Schottky barrier in van der waals heterostructures of graphene and g-GaN publication-title: Appl. Phys. Lett. – volume: 44 start-page: 7715 year: 2015 end-page: 7736 ident: bib11 article-title: Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects publication-title: Chem. Soc. Rev. – year: 1972 ident: bib61 article-title: Optical Properties of Solids – volume: 50 start-page: 11093 year: 2011 end-page: 11097 ident: bib23 article-title: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication publication-title: Angew. Chem. Int. Ed. – volume: 88 year: 2013 ident: bib29 article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles publication-title: Phys. Rev. B – volume: 80 year: 2009 ident: bib30 article-title: Growth and band gap determination of the ZrS publication-title: Phys. Rev. B – volume: 6 start-page: 5449 year: 2012 end-page: 5456 ident: bib15 article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains publication-title: ACS Nano – volume: 27 start-page: 1602404 year: 2016 ident: bib21 article-title: Electric field effect in two-dimensional transition metal dichalcogenides publication-title: Adv. Funct. Mater. – volume: 7 start-page: 8261 year: 2015 end-page: 8283 ident: bib12 article-title: Two-dimensional materials and their prospects in transistor electronics publication-title: Nanoscale – volume: 81 year: 2010 ident: bib53 article-title: Hybrid functional studies of the oxygen vacancy in TiO publication-title: Phys. Rev. B – volume: 120 start-page: 265 year: 2017 end-page: 273 ident: bib3 article-title: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study publication-title: Carbon – volume: 117 start-page: 20440 year: 2013 end-page: 20445 ident: bib27 article-title: Computational search for single-layer transition-metal dichalcogenide photocatalysts publication-title: J. Phys. Chem. C – volume: 132 start-page: 281 year: 2014 end-page: 288 ident: bib41 article-title: Synthesis and azo dye photodegradation activity of ZrS publication-title: Separ. Purif. Technol. – volume: 49 start-page: 16223 year: 1994 ident: bib47 article-title: Improved tetrahedron method for brillouin-zone integrations publication-title: Phys. Rev. B – volume: 5 start-page: 17578 year: 2015 ident: bib17 article-title: Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells publication-title: Sci. Rep. – volume: 20 start-page: 23656 year: 2018 end-page: 23663 ident: bib19 article-title: Pressure-induced phase transition, metallization and superconductivity in ZrS publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 2586 year: 2011 end-page: 2590 ident: bib25 article-title: High-performance Schottky solar cells using ZrS publication-title: Energy Environ. Sci. – volume: 75 year: 2007 ident: bib52 article-title: Hybrid functionals applied to rare-earth oxides: the example of ceria publication-title: Phys. Rev. B – volume: 53 start-page: 7466 year: 2018 end-page: 7474 ident: bib43 article-title: Electronic and magnetic properties of the n monodoping and (Mn, N)-codoped ZrS publication-title: J. Mater. Sci. – volume: 40 start-page: 15503 year: 2015 end-page: 15509 ident: bib38 article-title: Single- and few-layer ZrS publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: bib2 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 25 start-page: 53 year: 1976 end-page: 86 ident: bib64 article-title: Electron energy loss studies in solids; the transition metal dichalcogenides publication-title: Adv. Phys. – volume: 254 start-page: 1700033 year: 2017 ident: bib49 article-title: Elastic, electronic, and dielectric properties of bulk and monolayer ZrS publication-title: Phys. Status Solidi – volume: 1665 year: 2015 ident: bib48 article-title: Semiconductor to metal phase transition in monolayer ZrS publication-title: AIP Conf. Proc. – volume: 102 year: 2013 ident: bib33 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. – volume: 175 start-page: 1 year: 2006 end-page: 14 ident: bib60 article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method publication-title: Comput. Phys. Commun. – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: bib1 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. – volume: 22 start-page: 4151 year: 2010 end-page: 4156 ident: bib24 article-title: Electrical transport and high-performance photoconductivity in individual ZrS publication-title: Adv. Mater. – volume: 11 start-page: 495 year: 2016 ident: bib42 article-title: Dramatically enhanced visible light response of monolayer ZrS publication-title: Nanoscale Res. Lett. – volume: 191 start-page: 211 year: 2018 end-page: 216 ident: bib4 article-title: Investigation of the composition-structure-property relationship of As publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 26 start-page: 1445 year: 1965 end-page: 1458 ident: bib37 article-title: Preparation and optical properties of group IV-VI publication-title: J. Phys. Chem. Solid. – volume: 27 start-page: 1602404 issue: 19 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib21 article-title: Electric field effect in two-dimensional transition metal dichalcogenides publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602404 – volume: 80 issue: 3 year: 2009 ident: 10.1016/j.spmi.2018.11.008_bib30 article-title: Growth and band gap determination of the ZrSxSe2-x single crystal series publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.035206 – volume: 5 start-page: 17578 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib17 article-title: Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells publication-title: Sci. Rep. doi: 10.1038/srep17578 – volume: 77 issue: 3865 year: 1996 ident: 10.1016/j.spmi.2018.11.008_bib46 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib44 – volume: 132 start-page: 281 year: 2014 ident: 10.1016/j.spmi.2018.11.008_bib41 article-title: Synthesis and azo dye photodegradation activity of ZrS2ZnO nano-composites publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2014.05.018 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.spmi.2018.11.008_bib2 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – ident: 10.1016/j.spmi.2018.11.008_bib45 doi: 10.1103/PhysRevLett.77.3865 – volume: 81 year: 2010 ident: 10.1016/j.spmi.2018.11.008_bib53 article-title: Hybrid functional studies of the oxygen vacancy in TiO2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.085212 – volume: 17 start-page: 19215 issue: 29 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib50 article-title: Pressure and electric field-induced metallization in the phase-engineered ZrX2 (X = S, Se, Te) bilayers publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01445J – volume: 4 start-page: 7396 issue: 15 year: 2014 ident: 10.1016/j.spmi.2018.11.008_bib35 article-title: Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations publication-title: RSC Adv. doi: 10.1039/c3ra46090h – volume: 175 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.spmi.2018.11.008_bib60 article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.005 – volume: 105 start-page: 156 issue: 1 year: 1981 ident: 10.1016/j.spmi.2018.11.008_bib62 article-title: Optical properties of ZrS2 publication-title: Phys. B+C doi: 10.1016/0378-4363(81)90236-9 – volume: 44 start-page: 7715 issue: 21 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib11 article-title: Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00275C – volume: 6 start-page: 5449 issue: 6 year: 2012 ident: 10.1016/j.spmi.2018.11.008_bib15 article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains publication-title: ACS Nano doi: 10.1021/nn301320r – volume: 20 start-page: 116 issue: 3 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib7 article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications publication-title: Mater. Today doi: 10.1016/j.mattod.2016.10.002 – year: 1972 ident: 10.1016/j.spmi.2018.11.008_bib61 – volume: 44 start-page: 2603 issue: 9 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib20 article-title: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00276H – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib14 article-title: Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures publication-title: 2D Mater. – volume: 81 start-page: 109 issue: 1 year: 2009 ident: 10.1016/j.spmi.2018.11.008_bib1 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 20 start-page: 24726 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib8 article-title: First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03508C – volume: 9 start-page: 768 year: 2014 ident: 10.1016/j.spmi.2018.11.008_bib28 article-title: Electronics based on two-dimensional materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 49 start-page: 16223 issue: 23 year: 1994 ident: 10.1016/j.spmi.2018.11.008_bib47 article-title: Improved tetrahedron method for brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 110 start-page: 173105 issue: 17 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib13 article-title: Tunable Schottky barrier in van der waals heterostructures of graphene and g-GaN publication-title: Appl. Phys. Lett. doi: 10.1063/1.4982690 – volume: 545 start-page: 255 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib56 article-title: Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2018.06.024 – volume: 10 start-page: 4712 issue: 4 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib16 article-title: Strain engineering for transition metal dichalcogenides based field effect transistors publication-title: ACS Nano doi: 10.1021/acsnano.6b01149 – volume: 7 start-page: 8261 issue: 18 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib12 article-title: Two-dimensional materials and their prospects in transistor electronics publication-title: Nanoscale doi: 10.1039/C5NR01052G – volume: 44 start-page: 2664 issue: 9 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib18 article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00287C – volume: 111 start-page: 1104 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib6 article-title: Structural and optical properties of arsenic sulfide films synthesized by a novel pecvd-based approach publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.08.007 – volume: 342 start-page: 397 issue: 3 year: 2001 ident: 10.1016/j.spmi.2018.11.008_bib54 article-title: On the prediction of band gaps from hybrid functional theory publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00616-9 – volume: 23 start-page: 402 issue: 4 year: 2013 ident: 10.1016/j.spmi.2018.11.008_bib31 article-title: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2 publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2013.06.002 – volume: 6 start-page: 147 year: 2011 ident: 10.1016/j.spmi.2018.11.008_bib32 article-title: Single-layer MoS2 transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 24 start-page: 465 issue: 2 year: 1981 ident: 10.1016/j.spmi.2018.11.008_bib58 article-title: Bonding and band structure of ZrS2 and ZrSe2 publication-title: Phys. Scripta doi: 10.1088/0031-8949/24/2/025 – volume: 732 start-page: 372 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib63 article-title: Electronic structure and optical properties of Ag2HgSnSe4: first-principles dft calculations and x-ray spectroscopy studies publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.10.198 – volume: 5 start-page: 10383 issue: 39 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib10 article-title: Effects of structural imperfection on the electronic properties of graphene/WSe2 heterostructures publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03131A – volume: 88 issue: 8 year: 2013 ident: 10.1016/j.spmi.2018.11.008_bib29 article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085318 – volume: 191 start-page: 211 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib4 article-title: Investigation of the composition-structure-property relationship of AsxTe100-x films prepared by plasma deposition publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.10.038 – volume: 22 start-page: 4151 issue: 37 year: 2010 ident: 10.1016/j.spmi.2018.11.008_bib24 article-title: Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts publication-title: Adv. Mater. doi: 10.1002/adma.201001413 – volume: 114 start-page: 305 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib5 article-title: Optical emission of two-dimensional arsenic sulfide prepared by plasma publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.12.052 – volume: 6 start-page: 177 issue: 3 year: 2000 ident: 10.1016/j.spmi.2018.11.008_bib59 article-title: Electronic structure and chemical bonding of zirconium disulfide publication-title: Met. Mater. doi: 10.1007/BF03028209 – volume: 1665 issue: 1 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib48 article-title: Semiconductor to metal phase transition in monolayer ZrS2: GGA+U study publication-title: AIP Conf. Proc. – volume: 25 start-page: 53 issue: 1 year: 1976 ident: 10.1016/j.spmi.2018.11.008_bib64 article-title: Electron energy loss studies in solids; the transition metal dichalcogenides publication-title: Adv. Phys. doi: 10.1080/00018737600101362 – volume: 50 start-page: 11093 issue: 47 year: 2011 ident: 10.1016/j.spmi.2018.11.008_bib23 article-title: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106004 – volume: 18 start-page: 25151 issue: 36 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib40 article-title: Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d0 dichalcogenide single layers SnS2 and ZrS2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02206E – volume: 21 issue: 9 year: 2009 ident: 10.1016/j.spmi.2018.11.008_bib57 article-title: Fp-apw+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/9/095404 – volume: 117 start-page: 20440 issue: 40 year: 2013 ident: 10.1016/j.spmi.2018.11.008_bib27 article-title: Computational search for single-layer transition-metal dichalcogenide photocatalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp405808a – volume: 11 start-page: 495 issue: 1 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib42 article-title: Dramatically enhanced visible light response of monolayer ZrS2 via non-covalent modification by double-ring tubular B20 cluster publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1719-8 – volume: 116 issue: 6 year: 2014 ident: 10.1016/j.spmi.2018.11.008_bib22 article-title: Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides publication-title: J. Appl. Phys. doi: 10.1063/1.4892798 – volume: 4 start-page: 4538 issue: 20 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib36 article-title: Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01135G – volume: 93 start-page: 87 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib51 article-title: Electronic structure in 1T-ZrS2 monolayer by strain publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2017.05.021 – volume: 102 issue: 1 year: 2013 ident: 10.1016/j.spmi.2018.11.008_bib33 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4774090 – volume: 40 start-page: 15503 issue: 45 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib38 article-title: Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.110 – volume: 49 start-page: 445305 issue: 44 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib9 article-title: Electronic properties of janus silicene: new direct band gap semiconductors publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/49/44/445305 – volume: 5 start-page: 66082 issue: 81 year: 2015 ident: 10.1016/j.spmi.2018.11.008_bib26 article-title: Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity publication-title: RSC Adv. doi: 10.1039/C5RA12412C – volume: 20 start-page: 23656 issue: 36 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib19 article-title: Pressure-induced phase transition, metallization and superconductivity in ZrS2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04271C – volume: 38 issue: 3 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib39 article-title: Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2 publication-title: J. Semiconduct. – volume: 4 start-page: 127104 issue: 12 year: 2014 ident: 10.1016/j.spmi.2018.11.008_bib55 article-title: Understanding density functional theory (DFT) and completing it in practice publication-title: AIP Adv. doi: 10.1063/1.4903408 – volume: 53 start-page: 7466 issue: 10 year: 2018 ident: 10.1016/j.spmi.2018.11.008_bib43 article-title: Electronic and magnetic properties of the n monodoping and (Mn, N)-codoped ZrS2 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2047-4 – volume: 26 start-page: 1445 issue: 9 year: 1965 ident: 10.1016/j.spmi.2018.11.008_bib37 article-title: Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(65)90043-0 – volume: 120 start-page: 265 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib3 article-title: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study publication-title: Carbon doi: 10.1016/j.carbon.2017.04.060 – volume: 4 start-page: 2586 issue: 7 year: 2011 ident: 10.1016/j.spmi.2018.11.008_bib25 article-title: High-performance Schottky solar cells using ZrS2 nanobelt networks publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01286j – volume: 254 start-page: 1700033 issue: 9 year: 2017 ident: 10.1016/j.spmi.2018.11.008_bib49 article-title: Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der waals density-functional theory publication-title: Phys. Status Solidi doi: 10.1002/pssb.201700033 – volume: 75 year: 2007 ident: 10.1016/j.spmi.2018.11.008_bib52 article-title: Hybrid functionals applied to rare-earth oxides: the example of ceria publication-title: Phys. Rev. B – volume: 9 start-page: 841 issue: 3 year: 2016 ident: 10.1016/j.spmi.2018.11.008_bib34 article-title: Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der waals heterostructures publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03490F |
SSID | ssj0009417 |
Score | 2.0641572 |
Snippet | In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | Band structure First-principles Monolayer ZrS2 Optical properties Strain |
Title | Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation |
URI | https://dx.doi.org/10.1016/j.spmi.2018.11.008 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm6RNNptN1lspLVWhl1ooXsJmswvRmoQ-rv52Z_NoK4gHj0lmIUxm57H5Zj6E7iVhWjENO41TYkGEcCwRaB9KFWU7wvEVkwXaYsLGM_o89-YNNKh7YQyssvL9pU8vvHV1p1dps5cnSW8KwQ_Sb5eBUTrcL5iGKfWNlXe_djAPTgvWXSNsGemqcabEeK3yz8TAu4KumeRpKCZ_C057AWd0ik6qTBH3y5c5Qw2VttDRoCZoa6HDAr0pV-dIDrdkNjg3p-tLMyYVizTGWV4cVuO6HX-FM42jzeKjeAo2CKUtZN34bTklj7iP9xobcbKbwZGlF2g2Gr4OxlbFnmBJ17bXlhsrh4g4IhFUfFpyypSwNfdIYBNlu9KXlMWcSc58SczvQRL5MoJwbSa-KM92L1EzzVJ1hbBHhXACLbQL2ZMiLo8E7HNPsYBoxmnURk6ttlBWo8UNw8UirDFk76FRdWhUDTVHCKpuo4ftmrwcrPGntFd_jfCHeYTg-f9Yd_3PdTfoGK54edZyi5rr5UbdQfaxjjqFeXXQQf_pZTz5Br9J2RA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYqy-gAnFJo4iRMjcUBQ1LL0UpAQl-C4tlQoadRFiAs_xQ8yzkJBQj0gcY3jyBlPZnHezAPYl5RpxTR-adyjFnoIxxKhDjBVUbYjnEAxmaEtmqx-513e-_dT8FHWwhhYZWH7c5ueWeviSrWQZjXtdKotdH4YfrsMldLhgUMLZOWVenvFvG1w0jjHTT6g9KJ2e1a3CmoBS7q2PbTctnKoaMc0xnRIS-4xJWzNfRraVNmuDKTH2pxJzgJJzb8zGgcyRl9m2qEo33bxudMw66G5MLQJR-9jXAn3MppfszrLLK-o1MlBZYP0pWPwZOGRaR1qOC1_84bfPNzFEiwWoSk5zd9-GaZUsgLzZyUj3ArMZXBROVgFWftizyGpOc7vm76sRCRt0kuz03FS1v8PSE-TeNR9zkZR6TGXxjCfPPRb9Jickm-VlKQzbvrRS9bg7l9kug4zSS9RG0B8Twgn1EK7GK4p6vJYoGHxFQupZtyLK-CUYotk0cvcUGp0oxK09hQZUUdG1JjkRCjqChx-zUnzTh4T7_bL3Yh-6GOErmbCvM0_ztuD-frtzXV03WhebcECjvD8oGcbZob9kdrB0GcY72aqRuDxv3X7EyJoE1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+properties+and+optical+behaviors+of+bulk+and+monolayer+ZrS2%3A+A+theoretical+investigation&rft.jtitle=Superlattices+and+microstructures&rft.au=Vu%2C+Tuan+V.&rft.au=Lavrentyev%2C+A.A.&rft.au=Thuan%2C+Doan+V.&rft.au=Nguyen%2C+Chuong+V.&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=125&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1016%2Fj.spmi.2018.11.008&rft.externalDocID=S0749603618319712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |