Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation

In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. O...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 125; pp. 205 - 213
Main Authors Vu, Tuan V., Lavrentyev, A.A., Thuan, Doan V., Nguyen, Chuong V., Khyzhun, O.Y., Gabrelian, B.V., Tran, Khanh C., Luong, Hai L., Tung, Pham D., Pham, Khang D., Dang, Phuc Toan, Vo, Dat D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. Our results demonstrates that except for the underestimated band gap like other GGA calculation, the remain properties like dielectric function, the reflectivity, absorption and loss energy are close to experiment. The valence band is constructed by mainly sulfur s/p-states and the lower portion of zirconium s/p/d-states. The conduction band is mostly donated by zirconium d-state. In contrast with bulk structure, the valence band maximum in monolayer has the triple peak at Γ point, making its monolayer be more sensitive to light absorption. The dielectric function has the highest peak at about 1.5–2.5 eV with remarkable anisotropy, beyond this level to the ultraviolet region the anisotropy decreases and almost disappears at energy larger than 10 eV. The absorption is at 106 x 104cm-1 for energy range 5–10 eV, while the reflectivity is at its highest value of 30 %–50 % in the energy range from 0 to 8 eV. The energy loss of monolayer is higher than those of bulk. For optical and electronic properties, the monolayer show sharper peaks and their clear separation indicate the progressive application of monolayer zirconium sulfide. •Monolayer ZrS2 has new interband transitions at energy levels of 4-7 eV and 7-10 eV.•For energy ranging from -14 eV to 6 eV, the dielectric constants, energy loss, and reflectance are close to experimental values.•ZrS2 is highly anisotropic to the parallel and perpendicular components of electric field at energy lower than 10 eV.•The energy loss L(ω) in monolayer is higher than in bulk.•Our results give an explanation on perspective optical properties of monolayer ZrS2, which can be helpful for further design and application of this material.
AbstractList In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. Our results demonstrates that except for the underestimated band gap like other GGA calculation, the remain properties like dielectric function, the reflectivity, absorption and loss energy are close to experiment. The valence band is constructed by mainly sulfur s/p-states and the lower portion of zirconium s/p/d-states. The conduction band is mostly donated by zirconium d-state. In contrast with bulk structure, the valence band maximum in monolayer has the triple peak at Γ point, making its monolayer be more sensitive to light absorption. The dielectric function has the highest peak at about 1.5–2.5 eV with remarkable anisotropy, beyond this level to the ultraviolet region the anisotropy decreases and almost disappears at energy larger than 10 eV. The absorption is at 106 x 104cm-1 for energy range 5–10 eV, while the reflectivity is at its highest value of 30 %–50 % in the energy range from 0 to 8 eV. The energy loss of monolayer is higher than those of bulk. For optical and electronic properties, the monolayer show sharper peaks and their clear separation indicate the progressive application of monolayer zirconium sulfide. •Monolayer ZrS2 has new interband transitions at energy levels of 4-7 eV and 7-10 eV.•For energy ranging from -14 eV to 6 eV, the dielectric constants, energy loss, and reflectance are close to experimental values.•ZrS2 is highly anisotropic to the parallel and perpendicular components of electric field at energy lower than 10 eV.•The energy loss L(ω) in monolayer is higher than in bulk.•Our results give an explanation on perspective optical properties of monolayer ZrS2, which can be helpful for further design and application of this material.
Author Lavrentyev, A.A.
Nguyen, Chuong V.
Luong, Hai L.
Tung, Pham D.
Thuan, Doan V.
Vo, Dat D.
Tran, Khanh C.
Gabrelian, B.V.
Khyzhun, O.Y.
Dang, Phuc Toan
Vu, Tuan V.
Pham, Khang D.
Author_xml – sequence: 1
  givenname: Tuan V.
  orcidid: 0000-0003-3872-8323
  surname: Vu
  fullname: Vu, Tuan V.
  email: vuvantuan@tdtu.edu.vn
  organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: A.A.
  surname: Lavrentyev
  fullname: Lavrentyev, A.A.
  organization: Department of Electrical Engineering and Electronics, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don, Russian Federation
– sequence: 3
  givenname: Doan V.
  surname: Thuan
  fullname: Thuan, Doan V.
  organization: NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Chuong V.
  orcidid: 0000-0003-4109-7630
  surname: Nguyen
  fullname: Nguyen, Chuong V.
  email: chuongnguyen11@gmail.com
  organization: Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi, Vietnam
– sequence: 5
  givenname: O.Y.
  surname: Khyzhun
  fullname: Khyzhun, O.Y.
  email: khyzhun@ipms.kiev.ua
  organization: Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, UA-03232 Kyiv, Ukraine
– sequence: 6
  givenname: B.V.
  surname: Gabrelian
  fullname: Gabrelian, B.V.
  organization: Department of Computational Technique and Automated System Software, Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don, Russian Federation
– sequence: 7
  givenname: Khanh C.
  surname: Tran
  fullname: Tran, Khanh C.
  organization: Faculty of Materials Science and Technology, University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam
– sequence: 8
  givenname: Hai L.
  surname: Luong
  fullname: Luong, Hai L.
  organization: Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
– sequence: 9
  givenname: Pham D.
  surname: Tung
  fullname: Tung, Pham D.
  organization: Department of Aerospace Technology and Equipment, Le Quy Don Technical University, Ha Noi, Vietnam
– sequence: 10
  givenname: Khang D.
  surname: Pham
  fullname: Pham, Khang D.
  organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 11
  givenname: Phuc Toan
  surname: Dang
  fullname: Dang, Phuc Toan
  organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 12
  givenname: Dat D.
  surname: Vo
  fullname: Vo, Dat D.
  email: voduydat@tdtu.edu.vn
  organization: Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
BookMark eNp90L1OwzAQwHELFYm28AJMfoGEs5M4CWKpqvIhVWIAFhbLcS7UJbUj21Tq29MPJoZOHk6_0_k_ISPrLBJyyyBlwMTdOg3DxqQcWJUylgJUF2TMoBZJJspyRMZQ5nUiIBNXZBLCGgDqnJVjohc96uidNZoO3g3oo8FAlW2pG6LRqqcNrtTWOB-o62jz038fpxtnXa926Omnf-P3dEbjCp3HkzF2iyGaLxWNs9fkslN9wJu_d0o-Hhfv8-dk-fr0Mp8tE50BxCRrkXHVNrzJc9HpOheooKsLXgFHyHSpc9HWQtei1Dyrioo3pW6EYFBkBRaQTUl12qu9C8FjJ7WJxwuiV6aXDOQhllzLQyx5iCUZk_tYe8r_0cGbjfK78-jhhHD_qa1BL4M2aDW2xu-jytaZc_wXjoqHBQ
CitedBy_id crossref_primary_10_1016_j_jssc_2021_122189
crossref_primary_10_1007_s11224_023_02241_w
crossref_primary_10_1038_s41598_023_31553_4
crossref_primary_10_1016_j_optlastec_2022_108104
crossref_primary_10_1016_j_apsusc_2024_160651
crossref_primary_10_1039_D3SE00632H
crossref_primary_10_1134_S0036024423110353
crossref_primary_10_1016_j_chemphys_2020_110679
crossref_primary_10_1016_j_ijhydene_2024_11_284
crossref_primary_10_1016_j_physe_2019_113857
crossref_primary_10_1002_pssb_202400389
crossref_primary_10_1007_s10948_024_06868_6
crossref_primary_10_1134_S0036024424040277
crossref_primary_10_1016_j_mssp_2024_109144
crossref_primary_10_1016_j_physleta_2020_126909
crossref_primary_10_1016_j_chemphys_2024_112518
crossref_primary_10_1016_j_chemphys_2020_110762
crossref_primary_10_1103_PhysRevMaterials_3_074001
crossref_primary_10_1007_s12648_019_01677_3
crossref_primary_10_1016_j_ijleo_2023_171594
crossref_primary_10_1016_j_comptc_2023_114207
crossref_primary_10_1016_j_mtcomm_2025_111633
crossref_primary_10_1021_acs_inorgchem_4c03305
crossref_primary_10_1039_C9RA08605F
crossref_primary_10_1088_1361_648X_aca738
crossref_primary_10_1088_1361_6463_ac6401
crossref_primary_10_3390_ma15165578
crossref_primary_10_1002_adts_202401253
crossref_primary_10_1016_j_matlet_2024_137661
crossref_primary_10_4028_p_775o97
crossref_primary_10_1002_smll_202400216
crossref_primary_10_1007_s10853_022_07131_w
crossref_primary_10_1016_j_molstruc_2022_132667
crossref_primary_10_1016_j_physb_2024_416493
crossref_primary_10_1016_j_matchemphys_2022_126979
crossref_primary_10_1140_epjp_s13360_024_05598_x
crossref_primary_10_1142_S0217984924502026
crossref_primary_10_1016_j_ijleo_2019_163631
crossref_primary_10_1088_1361_6641_acac4d
crossref_primary_10_1016_j_solidstatesciences_2022_106988
crossref_primary_10_1016_j_spmi_2020_106454
crossref_primary_10_1016_j_surfin_2021_101036
crossref_primary_10_1016_j_jpcs_2021_110309
crossref_primary_10_1016_j_spmi_2020_106519
crossref_primary_10_12693_APhysPolA_145_215
Cites_doi 10.1002/adfm.201602404
10.1103/PhysRevB.80.035206
10.1038/srep17578
10.1016/j.seppur.2014.05.018
10.1038/nmat1849
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.81.085212
10.1039/C5CP01445J
10.1039/c3ra46090h
10.1016/j.cpc.2006.03.005
10.1016/0378-4363(81)90236-9
10.1039/C5CS00275C
10.1021/nn301320r
10.1016/j.mattod.2016.10.002
10.1039/C4CS00276H
10.1103/RevModPhys.81.109
10.1039/C8CP03508C
10.1038/nnano.2014.207
10.1103/PhysRevB.49.16223
10.1063/1.4982690
10.1016/j.physb.2018.06.024
10.1021/acsnano.6b01149
10.1039/C5NR01052G
10.1039/C4CS00287C
10.1016/j.spmi.2017.08.007
10.1016/S0009-2614(01)00616-9
10.1016/j.pnsc.2013.06.002
10.1038/nnano.2010.279
10.1088/0031-8949/24/2/025
10.1016/j.jallcom.2017.10.198
10.1039/C7TC03131A
10.1103/PhysRevB.88.085318
10.1016/j.saa.2017.10.038
10.1002/adma.201001413
10.1016/j.spmi.2017.12.052
10.1007/BF03028209
10.1080/00018737600101362
10.1002/anie.201106004
10.1039/C6CP02206E
10.1088/0953-8984/21/9/095404
10.1021/jp405808a
10.1186/s11671-016-1719-8
10.1063/1.4892798
10.1039/C6TC01135G
10.1016/j.physe.2017.05.021
10.1063/1.4774090
10.1016/j.ijhydene.2015.08.110
10.1088/0022-3727/49/44/445305
10.1039/C5RA12412C
10.1039/C8CP04271C
10.1063/1.4903408
10.1007/s10853-018-2047-4
10.1016/0022-3697(65)90043-0
10.1016/j.carbon.2017.04.060
10.1039/c1ee01286j
10.1002/pssb.201700033
10.1039/C5EE03490F
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2018.11.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
EndPage 213
ExternalDocumentID 10_1016_j_spmi_2018_11_008
S0749603618319712
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-3de12adb2b446fc946ea0f952802e03c7c46d96c967c238582b7cb6610535e503
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:12 EDT 2025
Thu Apr 24 22:57:53 EDT 2025
Fri Feb 23 02:43:13 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Band structure
Optical properties
Monolayer ZrS2
First-principles
Strain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3de12adb2b446fc946ea0f952802e03c7c46d96c967c238582b7cb6610535e503
ORCID 0000-0003-4109-7630
0000-0003-3872-8323
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2018_11_008
crossref_primary_10_1016_j_spmi_2018_11_008
elsevier_sciencedirect_doi_10_1016_j_spmi_2018_11_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Meng, Rao, Wang, Shi, Liu, Wu, Deng, Liu, Lu (bib34) 2016; 9
Perdew, Burke, Ernzerhof (bib46) 1996; 77
Isomäki, Boehm (bib58) 1981; 24
Castro Neto, Guinea, Peres, Novoselov, Geim (bib1) 2009; 81
Sun, Ren, Zhao, Chou, Yu, Tang (bib3) 2017; 120
Zhao, Chen, Yang, Zhang, Wei (bib43) 2018; 53
Geim, Novoselov (bib2) 2007; 6
Liu, Zhou, Zhu, Liu (bib21) 2016; 27
Jimin, Le, Zhongming (bib39) 2017; 38
Krishnakumar, Imae, Miras, Esquena (bib41) 2014; 132
Mochalov, Kudryashov, Logunov, Zelentsov, Nezhdanov, Mashin, Gogova, Chidichimo, De Filpo (bib6) 2017; 111
Kumar, He, Pandey, Ahluwalia, Tankeshwar (bib48) 2015; 1665
Choi, Choudhary, Han, Park, Akinwande, Lee (bib7) 2017; 20
Da Silva, Ganduglia-Pirovano, Sauer, Bayer, Kresse (bib52) 2007; 75
Zhuang, Hennig (bib27) 2013; 117
Muscat, Wander, Harrison (bib54) 2001; 342
Vu, Lavrentyev, Gabrelian, Parasyuk, Ocheretova, Khyzhun (bib63) 2018; 732
Li, Fang, Zhai, Liao, Gautam, Wu, Koide, Bando, Golberg (bib24) 2010; 22
Wooten (bib61) 1972
Sun, Chou, Ren, Zhao, Yu, Tang (bib13) 2017; 110
Khachai, Khenata, Bouhemadou, Haddou, Ali, Amrani, Rached, Soudini (bib57) 2009; 21
Li, Wang, Qiu (bib38) 2015; 40
Ambrosch-Draxl, Sofo (bib60) 2006; 175
Johari, Shenoy (bib15) 2012; 6
Blöchl, Jepsen, Andersen (bib47) 1994; 49
Jaekwang, Jingsong, Bobby, Mina (bib14) 2017; 4
Sun, Chou, Yu, Tang (bib10) 2017; 5
Kim, Ko, Park (bib59) 2000; 6
Zeng, Yin, Huang, Li, He, Lu, Boey, Zhang (bib23) 2011; 50
Schwierz, Pezoldt, Granzner (bib12) 2015; 7
Khoa, Nguyen, Phuc, Ilyasov, Vu, Cuong, Hoi, Lu, Feddi, El-Yadri, Farkous, Hieu (bib56) 2018; 545
Li, Wang, Fang, Zhai, Bando, Golberg (bib25) 2011; 4
Wang, Yuan, Sae Hong, Li, Cui (bib18) 2015; 44
Zhai, Qin, Sun, Wang, Liu, Min, Li (bib19) 2018; 20
Schmidt, Giustiniano, Eda (bib11) 2015; 44
Moustafa, Zandt, Janowitz, Manzke (bib30) 2009; 80
Mochalov, Nezhdanov, Logunov, Kudryashov, Krivenkov, Vorotyntsev, Gogova, Mashin (bib5) 2018; 114
Isomäki, von Boehm (bib62) 1981; 105
Si, Wu, Yang, Huang, Yang, Peng, Huang (bib42) 2016; 11
Janotti, Varley, Rinke, Umezawa, Kresse, Van de Walle (bib53) 2010; 81
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18).
Kumar, He, Pandey, Ahluwalia, Tankeshwar (bib50) 2015; 17
Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (bib28) 2014; 9
Xin, Zhao, Ma, Wu, Liu, Wei (bib51) 2017; 93
Kuc, Heine (bib20) 2015; 44
Blaha, Schwarz, Madsen, Kvasnicka, Luitz, Laskowski, Tran, Marks (bib44) 2018
Mochalov, Dorosz, Nezhdanov, Kudryashov, Zelentsov, Usanov, Logunov, Mashin, Gogova (bib4) 2018; 191
Bagayoko (bib55) 2014; 4
Ao, Pham, Xiao, Zu, Li (bib40) 2016; 18
Wei, Dai, Niu, Huang (bib17) 2015; 5
Kang, Tongay, Zhou, Li, Wu (bib33) 2013; 102
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (bib32) 2011; 6
Zhao, Guo, Si, Ren, Bai, Xu (bib49) 2017; 254
Bell, Liang (bib64) 1976; 25
Komsa, Krasheninnikov (bib29) 2013; 88
Li, Kang, Li (bib35) 2014; 4
Sharma, Kumar, Ahluwalia, Pandey (bib22) 2014; 116
Lv, Lu, Shao, Lu, Sun (bib36) 2016; 4
Greenaway, Nitsche (bib37) 1965; 26
Wen, Zhu, Zhang (bib26) 2015; 5
Li, Sun, Chou, Wei, Xing, Hu (bib8) 2018; 20
Yan, Wang, Yao, Yao (bib31) 2013; 23
Sun, Ren, Wang, Yu, Tang (bib9) 2016; 49
Shen, Penumatcha, Appenzeller (bib16) 2016; 10
Muscat (10.1016/j.spmi.2018.11.008_bib54) 2001; 342
Mochalov (10.1016/j.spmi.2018.11.008_bib6) 2017; 111
Blöchl (10.1016/j.spmi.2018.11.008_bib47) 1994; 49
Ao (10.1016/j.spmi.2018.11.008_bib40) 2016; 18
Geim (10.1016/j.spmi.2018.11.008_bib2) 2007; 6
Krishnakumar (10.1016/j.spmi.2018.11.008_bib41) 2014; 132
Li (10.1016/j.spmi.2018.11.008_bib25) 2011; 4
Kang (10.1016/j.spmi.2018.11.008_bib33) 2013; 102
Li (10.1016/j.spmi.2018.11.008_bib38) 2015; 40
Mochalov (10.1016/j.spmi.2018.11.008_bib4) 2018; 191
Khoa (10.1016/j.spmi.2018.11.008_bib56) 2018; 545
Liu (10.1016/j.spmi.2018.11.008_bib21) 2016; 27
Wei (10.1016/j.spmi.2018.11.008_bib17) 2015; 5
Xin (10.1016/j.spmi.2018.11.008_bib51) 2017; 93
Wooten (10.1016/j.spmi.2018.11.008_bib61) 1972
Wang (10.1016/j.spmi.2018.11.008_bib18) 2015; 44
Yan (10.1016/j.spmi.2018.11.008_bib31) 2013; 23
Choi (10.1016/j.spmi.2018.11.008_bib7) 2017; 20
Sun (10.1016/j.spmi.2018.11.008_bib9) 2016; 49
Johari (10.1016/j.spmi.2018.11.008_bib15) 2012; 6
Jimin (10.1016/j.spmi.2018.11.008_bib39) 2017; 38
Blaha (10.1016/j.spmi.2018.11.008_bib44) 2018
Li (10.1016/j.spmi.2018.11.008_bib24) 2010; 22
Ambrosch-Draxl (10.1016/j.spmi.2018.11.008_bib60) 2006; 175
Bell (10.1016/j.spmi.2018.11.008_bib64) 1976; 25
Isomäki (10.1016/j.spmi.2018.11.008_bib62) 1981; 105
Li (10.1016/j.spmi.2018.11.008_bib8) 2018; 20
Zeng (10.1016/j.spmi.2018.11.008_bib23) 2011; 50
Kumar (10.1016/j.spmi.2018.11.008_bib50) 2015; 17
Khachai (10.1016/j.spmi.2018.11.008_bib57) 2009; 21
Bagayoko (10.1016/j.spmi.2018.11.008_bib55) 2014; 4
Vu (10.1016/j.spmi.2018.11.008_bib63) 2018; 732
Si (10.1016/j.spmi.2018.11.008_bib42) 2016; 11
Castro Neto (10.1016/j.spmi.2018.11.008_bib1) 2009; 81
Radisavljevic (10.1016/j.spmi.2018.11.008_bib32) 2011; 6
Da Silva (10.1016/j.spmi.2018.11.008_bib52) 2007; 75
Mochalov (10.1016/j.spmi.2018.11.008_bib5) 2018; 114
Kumar (10.1016/j.spmi.2018.11.008_bib48) 2015; 1665
Komsa (10.1016/j.spmi.2018.11.008_bib29) 2013; 88
Sun (10.1016/j.spmi.2018.11.008_bib13) 2017; 110
Zhai (10.1016/j.spmi.2018.11.008_bib19) 2018; 20
Zhao (10.1016/j.spmi.2018.11.008_bib43) 2018; 53
Shen (10.1016/j.spmi.2018.11.008_bib16) 2016; 10
Greenaway (10.1016/j.spmi.2018.11.008_bib37) 1965; 26
Sun (10.1016/j.spmi.2018.11.008_bib3) 2017; 120
Kuc (10.1016/j.spmi.2018.11.008_bib20) 2015; 44
Moustafa (10.1016/j.spmi.2018.11.008_bib30) 2009; 80
Zhao (10.1016/j.spmi.2018.11.008_bib49) 2017; 254
Fiori (10.1016/j.spmi.2018.11.008_bib28) 2014; 9
Isomäki (10.1016/j.spmi.2018.11.008_bib58) 1981; 24
10.1016/j.spmi.2018.11.008_bib45
Sun (10.1016/j.spmi.2018.11.008_bib10) 2017; 5
Schmidt (10.1016/j.spmi.2018.11.008_bib11) 2015; 44
Sharma (10.1016/j.spmi.2018.11.008_bib22) 2014; 116
Lv (10.1016/j.spmi.2018.11.008_bib36) 2016; 4
Wen (10.1016/j.spmi.2018.11.008_bib26) 2015; 5
Jaekwang (10.1016/j.spmi.2018.11.008_bib14) 2017; 4
Zhang (10.1016/j.spmi.2018.11.008_bib34) 2016; 9
Schwierz (10.1016/j.spmi.2018.11.008_bib12) 2015; 7
Li (10.1016/j.spmi.2018.11.008_bib35) 2014; 4
Kim (10.1016/j.spmi.2018.11.008_bib59) 2000; 6
Zhuang (10.1016/j.spmi.2018.11.008_bib27) 2013; 117
Perdew (10.1016/j.spmi.2018.11.008_bib46) 1996; 77
Janotti (10.1016/j.spmi.2018.11.008_bib53) 2010; 81
References_xml – volume: 20
  start-page: 116
  year: 2017
  end-page: 130
  ident: bib7
  article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications
  publication-title: Mater. Today
– volume: 4
  start-page: 127104
  year: 2014
  ident: bib55
  article-title: Understanding density functional theory (DFT) and completing it in practice
  publication-title: AIP Adv.
– volume: 21
  year: 2009
  ident: bib57
  article-title: Fp-apw+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure
  publication-title: J. Phys. Condens. Matter
– volume: 4
  year: 2017
  ident: bib14
  article-title: Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
  publication-title: 2D Mater.
– volume: 105
  start-page: 156
  year: 1981
  end-page: 158
  ident: bib62
  article-title: Optical properties of ZrS
  publication-title: Phys. B+C
– volume: 77
  year: 1996
  ident: bib46
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 4538
  year: 2016
  end-page: 4545
  ident: bib36
  article-title: Strain-induced enhancement in the thermoelectric performance of a ZrS
  publication-title: J. Mater. Chem. C
– year: 2018
  ident: bib44
  article-title: WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
– volume: 38
  year: 2017
  ident: bib39
  article-title: Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS
  publication-title: J. Semiconduct.
– volume: 111
  start-page: 1104
  year: 2017
  end-page: 1112
  ident: bib6
  article-title: Structural and optical properties of arsenic sulfide films synthesized by a novel pecvd-based approach
  publication-title: Superlattice. Microst.
– volume: 732
  start-page: 372
  year: 2018
  end-page: 384
  ident: bib63
  article-title: Electronic structure and optical properties of Ag
  publication-title: J. Alloy. Comp.
– volume: 9
  start-page: 768
  year: 2014
  ident: bib28
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 2603
  year: 2015
  end-page: 2614
  ident: bib20
  article-title: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 445305
  year: 2016
  ident: bib9
  article-title: Electronic properties of janus silicene: new direct band gap semiconductors
  publication-title: J. Phys. D Appl. Phys.
– volume: 17
  start-page: 19215
  year: 2015
  end-page: 19221
  ident: bib50
  article-title: Pressure and electric field-induced metallization in the phase-engineered ZrX
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 465
  year: 1981
  ident: bib58
  article-title: Bonding and band structure of ZrS
  publication-title: Phys. Scripta
– volume: 4
  start-page: 7396
  year: 2014
  end-page: 7401
  ident: bib35
  article-title: Indirect-to-direct band gap transition of the ZrS
  publication-title: RSC Adv.
– volume: 9
  start-page: 841
  year: 2016
  end-page: 849
  ident: bib34
  article-title: Efficient band structure tuning, charge separation, and visible-light response in ZrS
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 66082
  year: 2015
  end-page: 66085
  ident: bib26
  article-title: Low temperature synthesis of ZrS
  publication-title: RSC Adv.
– volume: 10
  start-page: 4712
  year: 2016
  end-page: 4718
  ident: bib16
  article-title: Strain engineering for transition metal dichalcogenides based field effect transistors
  publication-title: ACS Nano
– volume: 114
  start-page: 305
  year: 2018
  end-page: 313
  ident: bib5
  article-title: Optical emission of two-dimensional arsenic sulfide prepared by plasma
  publication-title: Superlattice. Microst.
– volume: 44
  start-page: 2664
  year: 2015
  end-page: 2680
  ident: bib18
  article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 402
  year: 2013
  end-page: 407
  ident: bib31
  article-title: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 6
  start-page: 147
  year: 2011
  ident: bib32
  article-title: Single-layer MoS
  publication-title: Nat. Nanotechnol.
– volume: 342
  start-page: 397
  year: 2001
  end-page: 401
  ident: bib54
  article-title: On the prediction of band gaps from hybrid functional theory
  publication-title: Chem. Phys. Lett.
– volume: 116
  year: 2014
  ident: bib22
  article-title: Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 25151
  year: 2016
  end-page: 25160
  ident: bib40
  article-title: Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d0 dichalcogenide single layers SnS
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 177
  year: 2000
  end-page: 180
  ident: bib59
  article-title: Electronic structure and chemical bonding of zirconium disulfide
  publication-title: Met. Mater.
– volume: 20
  start-page: 24726
  year: 2018
  end-page: 24734
  ident: bib8
  article-title: First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures
  publication-title: Phys. Chem. Chem. Phys.
– volume: 545
  start-page: 255
  year: 2018
  end-page: 261
  ident: bib56
  article-title: Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study
  publication-title: Phys. B Condens. Matter
– volume: 5
  start-page: 10383
  year: 2017
  end-page: 10390
  ident: bib10
  article-title: Effects of structural imperfection on the electronic properties of graphene/WSe
  publication-title: J. Mater. Chem. C
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18).
– volume: 93
  start-page: 87
  year: 2017
  end-page: 91
  ident: bib51
  article-title: Electronic structure in 1T-ZrS
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 110
  start-page: 173105
  year: 2017
  ident: bib13
  article-title: Tunable Schottky barrier in van der waals heterostructures of graphene and g-GaN
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 7715
  year: 2015
  end-page: 7736
  ident: bib11
  article-title: Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects
  publication-title: Chem. Soc. Rev.
– year: 1972
  ident: bib61
  article-title: Optical Properties of Solids
– volume: 50
  start-page: 11093
  year: 2011
  end-page: 11097
  ident: bib23
  article-title: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication
  publication-title: Angew. Chem. Int. Ed.
– volume: 88
  year: 2013
  ident: bib29
  article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
  publication-title: Phys. Rev. B
– volume: 80
  year: 2009
  ident: bib30
  article-title: Growth and band gap determination of the ZrS
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 5449
  year: 2012
  end-page: 5456
  ident: bib15
  article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains
  publication-title: ACS Nano
– volume: 27
  start-page: 1602404
  year: 2016
  ident: bib21
  article-title: Electric field effect in two-dimensional transition metal dichalcogenides
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 8261
  year: 2015
  end-page: 8283
  ident: bib12
  article-title: Two-dimensional materials and their prospects in transistor electronics
  publication-title: Nanoscale
– volume: 81
  year: 2010
  ident: bib53
  article-title: Hybrid functional studies of the oxygen vacancy in TiO
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 265
  year: 2017
  end-page: 273
  ident: bib3
  article-title: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study
  publication-title: Carbon
– volume: 117
  start-page: 20440
  year: 2013
  end-page: 20445
  ident: bib27
  article-title: Computational search for single-layer transition-metal dichalcogenide photocatalysts
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 281
  year: 2014
  end-page: 288
  ident: bib41
  article-title: Synthesis and azo dye photodegradation activity of ZrS
  publication-title: Separ. Purif. Technol.
– volume: 49
  start-page: 16223
  year: 1994
  ident: bib47
  article-title: Improved tetrahedron method for brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 17578
  year: 2015
  ident: bib17
  article-title: Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells
  publication-title: Sci. Rep.
– volume: 20
  start-page: 23656
  year: 2018
  end-page: 23663
  ident: bib19
  article-title: Pressure-induced phase transition, metallization and superconductivity in ZrS
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 2586
  year: 2011
  end-page: 2590
  ident: bib25
  article-title: High-performance Schottky solar cells using ZrS
  publication-title: Energy Environ. Sci.
– volume: 75
  year: 2007
  ident: bib52
  article-title: Hybrid functionals applied to rare-earth oxides: the example of ceria
  publication-title: Phys. Rev. B
– volume: 53
  start-page: 7466
  year: 2018
  end-page: 7474
  ident: bib43
  article-title: Electronic and magnetic properties of the n monodoping and (Mn, N)-codoped ZrS
  publication-title: J. Mater. Sci.
– volume: 40
  start-page: 15503
  year: 2015
  end-page: 15509
  ident: bib38
  article-title: Single- and few-layer ZrS
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: bib2
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 25
  start-page: 53
  year: 1976
  end-page: 86
  ident: bib64
  article-title: Electron energy loss studies in solids; the transition metal dichalcogenides
  publication-title: Adv. Phys.
– volume: 254
  start-page: 1700033
  year: 2017
  ident: bib49
  article-title: Elastic, electronic, and dielectric properties of bulk and monolayer ZrS
  publication-title: Phys. Status Solidi
– volume: 1665
  year: 2015
  ident: bib48
  article-title: Semiconductor to metal phase transition in monolayer ZrS
  publication-title: AIP Conf. Proc.
– volume: 102
  year: 2013
  ident: bib33
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
– volume: 175
  start-page: 1
  year: 2006
  end-page: 14
  ident: bib60
  article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method
  publication-title: Comput. Phys. Commun.
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: bib1
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
– volume: 22
  start-page: 4151
  year: 2010
  end-page: 4156
  ident: bib24
  article-title: Electrical transport and high-performance photoconductivity in individual ZrS
  publication-title: Adv. Mater.
– volume: 11
  start-page: 495
  year: 2016
  ident: bib42
  article-title: Dramatically enhanced visible light response of monolayer ZrS
  publication-title: Nanoscale Res. Lett.
– volume: 191
  start-page: 211
  year: 2018
  end-page: 216
  ident: bib4
  article-title: Investigation of the composition-structure-property relationship of As
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 26
  start-page: 1445
  year: 1965
  end-page: 1458
  ident: bib37
  article-title: Preparation and optical properties of group IV-VI
  publication-title: J. Phys. Chem. Solid.
– volume: 27
  start-page: 1602404
  issue: 19
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib21
  article-title: Electric field effect in two-dimensional transition metal dichalcogenides
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602404
– volume: 80
  issue: 3
  year: 2009
  ident: 10.1016/j.spmi.2018.11.008_bib30
  article-title: Growth and band gap determination of the ZrSxSe2-x single crystal series
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.035206
– volume: 5
  start-page: 17578
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib17
  article-title: Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells
  publication-title: Sci. Rep.
  doi: 10.1038/srep17578
– volume: 77
  issue: 3865
  year: 1996
  ident: 10.1016/j.spmi.2018.11.008_bib46
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib44
– volume: 132
  start-page: 281
  year: 2014
  ident: 10.1016/j.spmi.2018.11.008_bib41
  article-title: Synthesis and azo dye photodegradation activity of ZrS2ZnO nano-composites
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2014.05.018
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.spmi.2018.11.008_bib2
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– ident: 10.1016/j.spmi.2018.11.008_bib45
  doi: 10.1103/PhysRevLett.77.3865
– volume: 81
  year: 2010
  ident: 10.1016/j.spmi.2018.11.008_bib53
  article-title: Hybrid functional studies of the oxygen vacancy in TiO2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.085212
– volume: 17
  start-page: 19215
  issue: 29
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib50
  article-title: Pressure and electric field-induced metallization in the phase-engineered ZrX2 (X = S, Se, Te) bilayers
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01445J
– volume: 4
  start-page: 7396
  issue: 15
  year: 2014
  ident: 10.1016/j.spmi.2018.11.008_bib35
  article-title: Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations
  publication-title: RSC Adv.
  doi: 10.1039/c3ra46090h
– volume: 175
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.spmi.2018.11.008_bib60
  article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.005
– volume: 105
  start-page: 156
  issue: 1
  year: 1981
  ident: 10.1016/j.spmi.2018.11.008_bib62
  article-title: Optical properties of ZrS2
  publication-title: Phys. B+C
  doi: 10.1016/0378-4363(81)90236-9
– volume: 44
  start-page: 7715
  issue: 21
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib11
  article-title: Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00275C
– volume: 6
  start-page: 5449
  issue: 6
  year: 2012
  ident: 10.1016/j.spmi.2018.11.008_bib15
  article-title: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains
  publication-title: ACS Nano
  doi: 10.1021/nn301320r
– volume: 20
  start-page: 116
  issue: 3
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib7
  article-title: Recent development of two-dimensional transition metal dichalcogenides and their applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.10.002
– year: 1972
  ident: 10.1016/j.spmi.2018.11.008_bib61
– volume: 44
  start-page: 2603
  issue: 9
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib20
  article-title: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00276H
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib14
  article-title: Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
  publication-title: 2D Mater.
– volume: 81
  start-page: 109
  issue: 1
  year: 2009
  ident: 10.1016/j.spmi.2018.11.008_bib1
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 20
  start-page: 24726
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib8
  article-title: First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03508C
– volume: 9
  start-page: 768
  year: 2014
  ident: 10.1016/j.spmi.2018.11.008_bib28
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 49
  start-page: 16223
  issue: 23
  year: 1994
  ident: 10.1016/j.spmi.2018.11.008_bib47
  article-title: Improved tetrahedron method for brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16223
– volume: 110
  start-page: 173105
  issue: 17
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib13
  article-title: Tunable Schottky barrier in van der waals heterostructures of graphene and g-GaN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4982690
– volume: 545
  start-page: 255
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib56
  article-title: Effect of strains on electronic and optical properties of monolayer SnS: Ab-initio study
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2018.06.024
– volume: 10
  start-page: 4712
  issue: 4
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib16
  article-title: Strain engineering for transition metal dichalcogenides based field effect transistors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01149
– volume: 7
  start-page: 8261
  issue: 18
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib12
  article-title: Two-dimensional materials and their prospects in transistor electronics
  publication-title: Nanoscale
  doi: 10.1039/C5NR01052G
– volume: 44
  start-page: 2664
  issue: 9
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib18
  article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00287C
– volume: 111
  start-page: 1104
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib6
  article-title: Structural and optical properties of arsenic sulfide films synthesized by a novel pecvd-based approach
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.08.007
– volume: 342
  start-page: 397
  issue: 3
  year: 2001
  ident: 10.1016/j.spmi.2018.11.008_bib54
  article-title: On the prediction of band gaps from hybrid functional theory
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00616-9
– volume: 23
  start-page: 402
  issue: 4
  year: 2013
  ident: 10.1016/j.spmi.2018.11.008_bib31
  article-title: Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2013.06.002
– volume: 6
  start-page: 147
  year: 2011
  ident: 10.1016/j.spmi.2018.11.008_bib32
  article-title: Single-layer MoS2 transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 24
  start-page: 465
  issue: 2
  year: 1981
  ident: 10.1016/j.spmi.2018.11.008_bib58
  article-title: Bonding and band structure of ZrS2 and ZrSe2
  publication-title: Phys. Scripta
  doi: 10.1088/0031-8949/24/2/025
– volume: 732
  start-page: 372
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib63
  article-title: Electronic structure and optical properties of Ag2HgSnSe4: first-principles dft calculations and x-ray spectroscopy studies
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.10.198
– volume: 5
  start-page: 10383
  issue: 39
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib10
  article-title: Effects of structural imperfection on the electronic properties of graphene/WSe2 heterostructures
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03131A
– volume: 88
  issue: 8
  year: 2013
  ident: 10.1016/j.spmi.2018.11.008_bib29
  article-title: Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085318
– volume: 191
  start-page: 211
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib4
  article-title: Investigation of the composition-structure-property relationship of AsxTe100-x films prepared by plasma deposition
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.10.038
– volume: 22
  start-page: 4151
  issue: 37
  year: 2010
  ident: 10.1016/j.spmi.2018.11.008_bib24
  article-title: Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001413
– volume: 114
  start-page: 305
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib5
  article-title: Optical emission of two-dimensional arsenic sulfide prepared by plasma
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.12.052
– volume: 6
  start-page: 177
  issue: 3
  year: 2000
  ident: 10.1016/j.spmi.2018.11.008_bib59
  article-title: Electronic structure and chemical bonding of zirconium disulfide
  publication-title: Met. Mater.
  doi: 10.1007/BF03028209
– volume: 1665
  issue: 1
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib48
  article-title: Semiconductor to metal phase transition in monolayer ZrS2: GGA+U study
  publication-title: AIP Conf. Proc.
– volume: 25
  start-page: 53
  issue: 1
  year: 1976
  ident: 10.1016/j.spmi.2018.11.008_bib64
  article-title: Electron energy loss studies in solids; the transition metal dichalcogenides
  publication-title: Adv. Phys.
  doi: 10.1080/00018737600101362
– volume: 50
  start-page: 11093
  issue: 47
  year: 2011
  ident: 10.1016/j.spmi.2018.11.008_bib23
  article-title: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106004
– volume: 18
  start-page: 25151
  issue: 36
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib40
  article-title: Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d0 dichalcogenide single layers SnS2 and ZrS2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02206E
– volume: 21
  issue: 9
  year: 2009
  ident: 10.1016/j.spmi.2018.11.008_bib57
  article-title: Fp-apw+lo calculations of the electronic and optical properties of alkali metal sulfides under pressure
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/9/095404
– volume: 117
  start-page: 20440
  issue: 40
  year: 2013
  ident: 10.1016/j.spmi.2018.11.008_bib27
  article-title: Computational search for single-layer transition-metal dichalcogenide photocatalysts
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp405808a
– volume: 11
  start-page: 495
  issue: 1
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib42
  article-title: Dramatically enhanced visible light response of monolayer ZrS2 via non-covalent modification by double-ring tubular B20 cluster
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1719-8
– volume: 116
  issue: 6
  year: 2014
  ident: 10.1016/j.spmi.2018.11.008_bib22
  article-title: Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4892798
– volume: 4
  start-page: 4538
  issue: 20
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib36
  article-title: Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01135G
– volume: 93
  start-page: 87
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib51
  article-title: Electronic structure in 1T-ZrS2 monolayer by strain
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2017.05.021
– volume: 102
  issue: 1
  year: 2013
  ident: 10.1016/j.spmi.2018.11.008_bib33
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4774090
– volume: 40
  start-page: 15503
  issue: 45
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib38
  article-title: Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.110
– volume: 49
  start-page: 445305
  issue: 44
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib9
  article-title: Electronic properties of janus silicene: new direct band gap semiconductors
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/49/44/445305
– volume: 5
  start-page: 66082
  issue: 81
  year: 2015
  ident: 10.1016/j.spmi.2018.11.008_bib26
  article-title: Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12412C
– volume: 20
  start-page: 23656
  issue: 36
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib19
  article-title: Pressure-induced phase transition, metallization and superconductivity in ZrS2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04271C
– volume: 38
  issue: 3
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib39
  article-title: Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2
  publication-title: J. Semiconduct.
– volume: 4
  start-page: 127104
  issue: 12
  year: 2014
  ident: 10.1016/j.spmi.2018.11.008_bib55
  article-title: Understanding density functional theory (DFT) and completing it in practice
  publication-title: AIP Adv.
  doi: 10.1063/1.4903408
– volume: 53
  start-page: 7466
  issue: 10
  year: 2018
  ident: 10.1016/j.spmi.2018.11.008_bib43
  article-title: Electronic and magnetic properties of the n monodoping and (Mn, N)-codoped ZrS2
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2047-4
– volume: 26
  start-page: 1445
  issue: 9
  year: 1965
  ident: 10.1016/j.spmi.2018.11.008_bib37
  article-title: Preparation and optical properties of group IV-VI2 chalcogenides having the CdI2 structure
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(65)90043-0
– volume: 120
  start-page: 265
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib3
  article-title: Electronic and magnetic properties of 4d series transition metal substituted graphene: a first-principles study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.060
– volume: 4
  start-page: 2586
  issue: 7
  year: 2011
  ident: 10.1016/j.spmi.2018.11.008_bib25
  article-title: High-performance Schottky solar cells using ZrS2 nanobelt networks
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01286j
– volume: 254
  start-page: 1700033
  issue: 9
  year: 2017
  ident: 10.1016/j.spmi.2018.11.008_bib49
  article-title: Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der waals density-functional theory
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssb.201700033
– volume: 75
  year: 2007
  ident: 10.1016/j.spmi.2018.11.008_bib52
  article-title: Hybrid functionals applied to rare-earth oxides: the example of ceria
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 841
  issue: 3
  year: 2016
  ident: 10.1016/j.spmi.2018.11.008_bib34
  article-title: Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der waals heterostructures
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03490F
SSID ssj0009417
Score 2.0641572
Snippet In this paper, we study the difference in electronic and optical properties of bulk and monolayer zirconium sulfide by applying the APW + lo method in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Band structure
First-principles
Monolayer ZrS2
Optical properties
Strain
Title Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation
URI https://dx.doi.org/10.1016/j.spmi.2018.11.008
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm6RNNptN1lspLVWhl1ooXsJmswvRmoQ-rv52Z_NoK4gHj0lmIUxm57H5Zj6E7iVhWjENO41TYkGEcCwRaB9KFWU7wvEVkwXaYsLGM_o89-YNNKh7YQyssvL9pU8vvHV1p1dps5cnSW8KwQ_Sb5eBUTrcL5iGKfWNlXe_djAPTgvWXSNsGemqcabEeK3yz8TAu4KumeRpKCZ_C057AWd0ik6qTBH3y5c5Qw2VttDRoCZoa6HDAr0pV-dIDrdkNjg3p-tLMyYVizTGWV4cVuO6HX-FM42jzeKjeAo2CKUtZN34bTklj7iP9xobcbKbwZGlF2g2Gr4OxlbFnmBJ17bXlhsrh4g4IhFUfFpyypSwNfdIYBNlu9KXlMWcSc58SczvQRL5MoJwbSa-KM92L1EzzVJ1hbBHhXACLbQL2ZMiLo8E7HNPsYBoxmnURk6ttlBWo8UNw8UirDFk76FRdWhUDTVHCKpuo4ftmrwcrPGntFd_jfCHeYTg-f9Yd_3PdTfoGK54edZyi5rr5UbdQfaxjjqFeXXQQf_pZTz5Br9J2RA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYqy-gAnFJo4iRMjcUBQ1LL0UpAQl-C4tlQoadRFiAs_xQ8yzkJBQj0gcY3jyBlPZnHezAPYl5RpxTR-adyjFnoIxxKhDjBVUbYjnEAxmaEtmqx-513e-_dT8FHWwhhYZWH7c5ueWeviSrWQZjXtdKotdH4YfrsMldLhgUMLZOWVenvFvG1w0jjHTT6g9KJ2e1a3CmoBS7q2PbTctnKoaMc0xnRIS-4xJWzNfRraVNmuDKTH2pxJzgJJzb8zGgcyRl9m2qEo33bxudMw66G5MLQJR-9jXAn3MppfszrLLK-o1MlBZYP0pWPwZOGRaR1qOC1_84bfPNzFEiwWoSk5zd9-GaZUsgLzZyUj3ArMZXBROVgFWftizyGpOc7vm76sRCRt0kuz03FS1v8PSE-TeNR9zkZR6TGXxjCfPPRb9Jickm-VlKQzbvrRS9bg7l9kug4zSS9RG0B8Twgn1EK7GK4p6vJYoGHxFQupZtyLK-CUYotk0cvcUGp0oxK09hQZUUdG1JjkRCjqChx-zUnzTh4T7_bL3Yh-6GOErmbCvM0_ztuD-frtzXV03WhebcECjvD8oGcbZob9kdrB0GcY72aqRuDxv3X7EyJoE1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+properties+and+optical+behaviors+of+bulk+and+monolayer+ZrS2%3A+A+theoretical+investigation&rft.jtitle=Superlattices+and+microstructures&rft.au=Vu%2C+Tuan+V.&rft.au=Lavrentyev%2C+A.A.&rft.au=Thuan%2C+Doan+V.&rft.au=Nguyen%2C+Chuong+V.&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=125&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1016%2Fj.spmi.2018.11.008&rft.externalDocID=S0749603618319712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon