On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function

The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 102; p. 107099
Main Authors Gupta, Deepak, Gupta, Umesh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound points. However, the effects of all data points must be distinct based on their distribution in the regression function. Recently, asymmetric ν-twin support vector regression (Asy-ν-TSVR) is encouraged on the same subject but still, the present matrices in the mathematical formulation have faced the problem of semi-definite. In order to handle this problem effectively, a new regressor model named as robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function (URALTSVR) proposes as a pair of the unconstrained minimization problem to handle not only the noise sensitivity and instability of re-sampling but also consist positive definite matrices. Here, we suggest the proposed model URALTSVR in such a way where the pinball loss function is playing a vital role to control the fitting error inside the asymmetric tube. One of the advantages is that unlike TSVR and Asy-ν-TSVR, it considers the concept of structural risk minimization principle through the inclusion of regularization term as well as change the one-norm of the vector of the slack variable by two-norm, which yields the dual problem to be strongly convex, stable and well-posed. Aforementioned, the proposed formulation has a continuous and piecewise quadratic problem that is solved by their gradients based iterative approaches. Specifically, we analyze the three implementations of URALTSVR with the baselines approaches support vector regression (SVR), TSVR and Asy-ν-TSVR, which discard the dependencies to solve a pair of quadratic programming problem (QPP) for obtaining the unique global solution. Overall, SRALTSVR1 based on smooth approximation function performs outstanding for artificial and real-world datasets. [Display omitted] •Proposed a novel approach as a pair of the unconstrained minimization problem.•Applied generalized derivative and smoothing approaches to find the Hessian matrix.•By using gradient based iterative schemes determine solution of the problem.•Improved the stability in the dual formulations and makes the model well-posed.•Performance results of URALTSVR are carried out on artificial & realworld datasets.
AbstractList The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound points. However, the effects of all data points must be distinct based on their distribution in the regression function. Recently, asymmetric ν-twin support vector regression (Asy-ν-TSVR) is encouraged on the same subject but still, the present matrices in the mathematical formulation have faced the problem of semi-definite. In order to handle this problem effectively, a new regressor model named as robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function (URALTSVR) proposes as a pair of the unconstrained minimization problem to handle not only the noise sensitivity and instability of re-sampling but also consist positive definite matrices. Here, we suggest the proposed model URALTSVR in such a way where the pinball loss function is playing a vital role to control the fitting error inside the asymmetric tube. One of the advantages is that unlike TSVR and Asy-ν-TSVR, it considers the concept of structural risk minimization principle through the inclusion of regularization term as well as change the one-norm of the vector of the slack variable by two-norm, which yields the dual problem to be strongly convex, stable and well-posed. Aforementioned, the proposed formulation has a continuous and piecewise quadratic problem that is solved by their gradients based iterative approaches. Specifically, we analyze the three implementations of URALTSVR with the baselines approaches support vector regression (SVR), TSVR and Asy-ν-TSVR, which discard the dependencies to solve a pair of quadratic programming problem (QPP) for obtaining the unique global solution. Overall, SRALTSVR1 based on smooth approximation function performs outstanding for artificial and real-world datasets. [Display omitted] •Proposed a novel approach as a pair of the unconstrained minimization problem.•Applied generalized derivative and smoothing approaches to find the Hessian matrix.•By using gradient based iterative schemes determine solution of the problem.•Improved the stability in the dual formulations and makes the model well-posed.•Performance results of URALTSVR are carried out on artificial & realworld datasets.
ArticleNumber 107099
Author Gupta, Umesh
Gupta, Deepak
Author_xml – sequence: 1
  givenname: Deepak
  orcidid: 0000-0002-6375-8615
  surname: Gupta
  fullname: Gupta, Deepak
  email: deepak@nitap.ac.in
– sequence: 2
  givenname: Umesh
  orcidid: 0000-0002-1547-7974
  surname: Gupta
  fullname: Gupta, Umesh
  email: er.umeshgupta@gmail.com
BookMark eNp9kEtqwzAQQEVJoWnaC3SlCziVZVuWoJsS-oNANu2yCEmWjIIjGUlJyeF6hZ6pMumqi6xmmOHN512DmfNOA3BXomWJSnK_XYro1RIjXOZCixi7APOStrhghJaznDeEFjWryRW4jnGLMsQwnYPPjYPBy31MUMTjbqdTsAquRR-E661w8Oe7SF_WwbgfRx8SPGiVfIBB90HHaL2D-2hdD0frpBgGOPgYodk7lXLvBlwaMUR9-xcX4OP56X31Wqw3L2-rx3WhKoRSUam2M6KtGSaolg2uDGGixUTTxoiKmg7VWtSUIUaQbEgjEW20RJJVXSUFNtUC4NNcFfL6oA0fg92JcOQl4pMgvuWTID4J4idBGaL_IGWTmM5OQdjhPPpwQnV-6mB14FFZ7ZTubMh-eOftOfwX35GGKA
CitedBy_id crossref_primary_10_1016_j_artmed_2023_102497
crossref_primary_10_1016_j_neucom_2024_128060
crossref_primary_10_1007_s10115_023_01924_4
crossref_primary_10_1155_2023_2201330
crossref_primary_10_1007_s11042_023_17315_4
crossref_primary_10_1007_s11063_023_11198_0
crossref_primary_10_1016_j_eswa_2023_121239
crossref_primary_10_1016_j_asoc_2023_110534
crossref_primary_10_1016_j_fss_2022_06_009
crossref_primary_10_1007_s11063_022_11043_w
crossref_primary_10_1007_s11227_023_05082_w
crossref_primary_10_1142_S0218488525500102
crossref_primary_10_1109_JBHI_2022_3172956
crossref_primary_10_1016_j_patcog_2024_110544
crossref_primary_10_1016_j_ejor_2023_04_025
crossref_primary_10_1016_j_inffus_2024_102463
crossref_primary_10_1016_j_asoc_2021_107816
crossref_primary_10_1016_j_knosys_2024_111713
crossref_primary_10_1007_s11356_022_22957_2
crossref_primary_10_1016_j_jhydrol_2022_128213
crossref_primary_10_3233_JIFS_230589
crossref_primary_10_3390_electronics11152324
crossref_primary_10_1016_j_asoc_2024_112005
crossref_primary_10_1007_s10489_022_04237_1
crossref_primary_10_1155_2022_4872230
crossref_primary_10_1109_TNNLS_2023_3335355
crossref_primary_10_1109_TNNLS_2023_3258464
crossref_primary_10_1007_s44163_023_00057_5
Cites_doi 10.1109/TPAMI.2013.178
10.1109/TPAMI.2007.1068
10.1023/A:1011215321374
10.1007/s00521-010-0454-9
10.1007/s10489-019-01465-w
10.1007/s10489-014-0518-0
10.1007/s10489-017-0913-4
10.1007/s00521-012-0971-9
10.1007/s10489-015-0728-0
10.1016/j.neucom.2011.09.021
10.1016/j.csda.2014.03.016
10.1016/j.csda.2013.09.015
10.1016/j.eswa.2017.12.004
10.1109/TNN.2003.820830
10.1016/0005-1098(95)00120-8
10.1007/s10660-017-9272-9
10.1109/TKDE.2005.77
10.1198/016214508000000337
10.1016/j.knosys.2012.03.013
10.1016/j.jclepro.2018.07.164
10.1016/j.asoc.2020.106708
10.1016/j.chaos.2019.07.011
10.1162/089976600300015565
10.1007/s00500-014-1342-5
10.1016/j.knosys.2014.01.018
10.1016/j.neunet.2009.07.002
10.1016/j.neucom.2013.03.005
10.1016/j.neucom.2010.08.013
10.1016/S0925-2312(03)00379-5
10.1023/A:1018628609742
10.1016/j.neucom.2016.11.024
10.1016/j.asoc.2020.106446
10.1109/TNN.2004.824259
10.1016/j.neucom.2010.11.003
10.1007/s00521-012-0924-3
10.1016/j.neucom.2016.01.038
10.1016/j.energy.2020.118750
10.1109/TPAMI.2006.17
10.1016/j.neucom.2003.11.012
10.1007/BF00994018
10.1016/j.neunet.2015.10.007
10.1109/72.870050
10.1023/A:1009715923555
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107099
S1568494621000223
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-3c7dfa7492604b523f69a726e85fa38fd04ea4890960b565b085eb0b93d3ba2f3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:01:05 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Twin support vector regression
Support vector regression
Pinball loss
Unconstrained convex minimization
Asymmetric loss function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3c7dfa7492604b523f69a726e85fa38fd04ea4890960b565b085eb0b93d3ba2f3
ORCID 0000-0002-1547-7974
0000-0002-6375-8615
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107099
crossref_citationtrail_10_1016_j_asoc_2021_107099
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Shi, Pelckmans, Suykens (b49) 2014; 77
Box, Jenkins (b67) 1976
Singh (b34) 2011; 74
Anand, Rastogi, Chandra (b4) 2020
Karasu, Altan, Bekiros, Ahmad (b29) 2020; 212
Sangyeol, Lee, Moon (b30) 2020; 89
Burges Christopher, Chen (b9) 1998; 2
Murphy, Aha (b66) 1992
DELVE (b70) 2005
Zendehboudi, Baseer, Saidur (b26) 2018; 199
Suykens, JoosVandewalle (b10) 1999; 9
Peng (b23) 2018; 97
Wei, SathiyaKeerthi, Ong (b17) 2004; 15
Cristianini, Shawe-Taylor (b52) 2000
Lee, Hsieh, Huang (b14) 2005; 17
Schölkopf (b12) 2000; 12
Musicant, Feinberg (b13) 2004; 15
Yitian (b51) 2017
Huang, Shi, Suykens (b50) 2014; 70
Altan, Karasu, Bekiros (b21) 2019; 126
Tseng (b19) 2018; 18
Fung, Mangasarian (b57) 2003; 55
Vapnik (b53) 1998
Gupta, Gupta (b3) 2019
Mangasarian, Wild (b32) 2006; 28
Mangasarian (b55) 1994
.
Balasundaram, Gupta (b43) 2014; 59
Karasu, Altan, Saraç, Hacioğlu (b22) 2018
Chu Wei, S. SathiyaKeerthi, Chong Jin Ong, Bayesian inference in support vector regression, National University of Singapore: Technical Report
Mangasarian, Musicant (b56) 2001; 1
Lee, Mangasarian (b58) 2001; 20
A. Gretton, A. Doucet, R. Herbrich, P.J.W. Rayner, B. Scholkopf, Support vector regression for black-box system identification, in: Proceedings of the 11th IEEE Workshop on Statistical Signal Processing, 2001.
Altan, Karasu (b28) 2019; 4
Huang, Shi, Suykens (b48) 2014; 36
Demsar (b72) 2006; 7
Peng (b59) 2010; 73
Shao (b38) 2013; 23
Xu, Wang (b36) 2012; 33
Gupta, Gupta (b6) 2019; 49
Chen (b35) 2012; 21
Corinna, Vapnik (b1) 1995; 20
Sjoberg, Zhang, Ljung, Berveniste, Delyon, Glorennec, Hjalmarsson, Juditsky (b8) 1995; 31
Ye (b44) 2016; 197
Balasundaram, Tanveer (b40) 2013; 22
Shevade (b11) 2000; 11
Smpokos (b27) 2018
Gupta (b47) 2017; 47
Gupta, Meher (b61) 2020
Yitian, Wang (b41) 2014; 41
Peng (b33) 2010; 23
Tanveer, Shubham, MujahedAldhaifallah, Nisar (b54) 2016; 44
Jayadeva, Suresh Chandra (b31) 2007; 29
Gupta, Gupta, Mukesh (b2) 2018
Peng (b37) 2012; 79
Abdallah (b20) 2018; 27
Park, Casella (b18) 2008; 103
Chen, Yang, Chen (b42) 2014; 18
Balasundaram, Prasad (b5) 2020
Karasu, Altan, Sarac, Hacioglu (b24) 2017; 2
Karasu, Altan (b25) 2019
Khemchandani, KeshavGoyal, Suresh Chandra (b45) 2016; 74
Zhao, Zhao, Zhao (b39) 2013; 118
Hao (b46) 2017; 225
Drucker (b7) 1997
Wang, Zongben (b15) 2004; 61
Huang (10.1016/j.asoc.2021.107099_b50) 2014; 70
Mangasarian (10.1016/j.asoc.2021.107099_b56) 2001; 1
Abdallah (10.1016/j.asoc.2021.107099_b20) 2018; 27
Wang (10.1016/j.asoc.2021.107099_b15) 2004; 61
Karasu (10.1016/j.asoc.2021.107099_b25) 2019
Tanveer (10.1016/j.asoc.2021.107099_b54) 2016; 44
Peng (10.1016/j.asoc.2021.107099_b23) 2018; 97
Ye (10.1016/j.asoc.2021.107099_b44) 2016; 197
DELVE (10.1016/j.asoc.2021.107099_b70) 2005
Vapnik (10.1016/j.asoc.2021.107099_b53) 1998
10.1016/j.asoc.2021.107099_b68
10.1016/j.asoc.2021.107099_b69
Anand (10.1016/j.asoc.2021.107099_b4) 2020
10.1016/j.asoc.2021.107099_b62
10.1016/j.asoc.2021.107099_b63
10.1016/j.asoc.2021.107099_b64
Suykens (10.1016/j.asoc.2021.107099_b10) 1999; 9
10.1016/j.asoc.2021.107099_b65
Yitian (10.1016/j.asoc.2021.107099_b41) 2014; 41
Jayadeva (10.1016/j.asoc.2021.107099_b31) 2007; 29
10.1016/j.asoc.2021.107099_b71
Gupta (10.1016/j.asoc.2021.107099_b2) 2018
Wei (10.1016/j.asoc.2021.107099_b17) 2004; 15
Gupta (10.1016/j.asoc.2021.107099_b47) 2017; 47
Khemchandani (10.1016/j.asoc.2021.107099_b45) 2016; 74
Huang (10.1016/j.asoc.2021.107099_b49) 2014; 77
Shevade (10.1016/j.asoc.2021.107099_b11) 2000; 11
Balasundaram (10.1016/j.asoc.2021.107099_b43) 2014; 59
Musicant (10.1016/j.asoc.2021.107099_b13) 2004; 15
Xu (10.1016/j.asoc.2021.107099_b36) 2012; 33
Schölkopf (10.1016/j.asoc.2021.107099_b12) 2000; 12
Tseng (10.1016/j.asoc.2021.107099_b19) 2018; 18
Karasu (10.1016/j.asoc.2021.107099_b22) 2018
Altan (10.1016/j.asoc.2021.107099_b21) 2019; 126
Sjoberg (10.1016/j.asoc.2021.107099_b8) 1995; 31
Peng (10.1016/j.asoc.2021.107099_b59) 2010; 73
Zhao (10.1016/j.asoc.2021.107099_b39) 2013; 118
Mangasarian (10.1016/j.asoc.2021.107099_b55) 1994
Chen (10.1016/j.asoc.2021.107099_b35) 2012; 21
Lee (10.1016/j.asoc.2021.107099_b58) 2001; 20
Drucker (10.1016/j.asoc.2021.107099_b7) 1997
Park (10.1016/j.asoc.2021.107099_b18) 2008; 103
Huang (10.1016/j.asoc.2021.107099_b48) 2014; 36
Chen (10.1016/j.asoc.2021.107099_rg9b) 2012; 21
Peng (10.1016/j.asoc.2021.107099_b33) 2010; 23
Hao (10.1016/j.asoc.2021.107099_b46) 2017; 225
Zendehboudi (10.1016/j.asoc.2021.107099_b26) 2018; 199
Cristianini (10.1016/j.asoc.2021.107099_b52) 2000
Karasu (10.1016/j.asoc.2021.107099_b24) 2017; 2
Gupta (10.1016/j.asoc.2021.107099_b6) 2019; 49
Lee (10.1016/j.asoc.2021.107099_b14) 2005; 17
Mangasarian (10.1016/j.asoc.2021.107099_b32) 2006; 28
Chen (10.1016/j.asoc.2021.107099_b42) 2014; 18
Balasundaram (10.1016/j.asoc.2021.107099_b40) 2013; 22
Balasundaram (10.1016/j.asoc.2021.107099_b5) 2020
Smpokos (10.1016/j.asoc.2021.107099_b27) 2018
Demsar (10.1016/j.asoc.2021.107099_b72) 2006; 7
Fung (10.1016/j.asoc.2021.107099_b57) 2003; 55
Burges Christopher (10.1016/j.asoc.2021.107099_rg9a) 1998; 2
Karasu (10.1016/j.asoc.2021.107099_b29) 2020; 212
Gupta (10.1016/j.asoc.2021.107099_b61) 2020
Shao (10.1016/j.asoc.2021.107099_b38) 2013; 23
10.1016/j.asoc.2021.107099_b16
Corinna (10.1016/j.asoc.2021.107099_b1) 1995; 20
Sangyeol (10.1016/j.asoc.2021.107099_b30) 2020; 89
Altan (10.1016/j.asoc.2021.107099_b28) 2019; 4
Murphy (10.1016/j.asoc.2021.107099_b66) 1992
Yitian (10.1016/j.asoc.2021.107099_b51) 2017
10.1016/j.asoc.2021.107099_b60
Gupta (10.1016/j.asoc.2021.107099_b3) 2019
Singh (10.1016/j.asoc.2021.107099_b34) 2011; 74
Peng (10.1016/j.asoc.2021.107099_b37) 2012; 79
Box (10.1016/j.asoc.2021.107099_b67) 1976
References_xml – volume: 79
  start-page: 26
  year: 2012
  end-page: 38
  ident: b37
  article-title: Efficient twin parametric insensitive support vector regression model
  publication-title: Neurocomputing
– volume: 73
  start-page: 2846
  year: 2010
  end-page: 2858
  ident: b59
  article-title: Primal twin support vector regression and its sparse approximation
  publication-title: Neurocomputing
– volume: 36
  start-page: 984
  year: 2014
  end-page: 997
  ident: b48
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 92
  year: 2012
  end-page: 101
  ident: b36
  article-title: A weighted twin support vector regression
  publication-title: Knowl.-Based Syst.
– volume: 1
  start-page: 161
  year: 2001
  end-page: 177
  ident: b56
  article-title: Lagrangian Support vector machines
  publication-title: J. Mach. Learn. Res.
– reference: ,.
– volume: 225
  start-page: 174
  year: 2017
  end-page: 187
  ident: b46
  article-title: Pairing support vector algorithm for data regression
  publication-title: Neurocomputing
– reference: A. Gretton, A. Doucet, R. Herbrich, P.J.W. Rayner, B. Scholkopf, Support vector regression for black-box system identification, in: Proceedings of the 11th IEEE Workshop on Statistical Signal Processing, 2001.
– volume: 89
  year: 2020
  ident: b30
  article-title: Hybrid change point detection for time series via support vector regression and CUSUM method
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b72
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: b4
  article-title: A class of new support vector regression models
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 69
  year: 2006
  end-page: 74
  ident: b32
  article-title: Wild multisurface proximal support vector machine classification via generalized eigenvalues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 268
  year: 2004
  end-page: 275
  ident: b13
  article-title: Feinberg active set support vector regression
  publication-title: IEEE Trans. Neural Netw.
– volume: 47
  start-page: 962
  year: 2017
  end-page: 991
  ident: b47
  article-title: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization
  publication-title: Appl. Intell.
– volume: 44
  start-page: 831
  year: 2016
  end-page: 848
  ident: b54
  article-title: An efficient implicit regularized Lagrangian twin support vector regression
  publication-title: Appl. Intell.
– start-page: 228
  year: 2018
  end-page: 235
  ident: b2
  article-title: Kernel target alignment based fuzzy least square twin bounded support vector machine
  publication-title: 2018 IEEE Symposium Series on Computational Intelligence (SSCI)
– volume: 97
  start-page: 177
  year: 2018
  end-page: 192
  ident: b23
  article-title: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression
  publication-title: Expert Syst. Appl.
– volume: 59
  start-page: 85
  year: 2014
  end-page: 96
  ident: b43
  article-title: Training Lagrangian twin support vector regression via unconstrained convex minimization
  publication-title: Knowl.-Based Syst.
– volume: 27
  start-page: 183
  year: 2018
  end-page: 194
  ident: b20
  article-title: An intelligent system for identifying influential words in real-estate classifieds
  publication-title: J. Intell. Syst.
– volume: 21
  start-page: 505
  year: 2012
  end-page: 513
  ident: b35
  article-title: Smooth twin support vector regression
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 257
  year: 2013
  end-page: 267
  ident: b40
  article-title: On Lagrangian twin support vector regression
  publication-title: Neural Comput. Appl.
– volume: 197
  start-page: 53
  year: 2016
  end-page: 68
  ident: b44
  article-title: Weighted Lagrange
  publication-title: Neurocomputing
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: b9
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– volume: 77
  start-page: 371
  year: 2014
  end-page: 382
  ident: b49
  article-title: Asymmetric v-tube support vector regression
  publication-title: Comput. Statist. Data Anal.
– year: 2020
  ident: b5
  article-title: On pairing huber support vector regression
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 365
  year: 2010
  end-page: 372
  ident: b33
  article-title: TSVR: an efficient twin support vector machine for regression
  publication-title: Neural Netw.
– volume: 212
  year: 2020
  ident: b29
  article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series
  publication-title: Energy
– volume: 11
  start-page: 1188
  year: 2000
  end-page: 1193
  ident: b11
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1
  year: 2018
  end-page: 4
  ident: b22
  article-title: Prediction of bitcoin prices with machine learning methods using time series data
  publication-title: 2018 26th Signal Processing and Communications Applications Conference (SIU)
– volume: 18
  start-page: 2335
  year: 2014
  end-page: 2348
  ident: b42
  article-title: An improved robust and sparse twin support vector regression via linear programming
  publication-title: Soft Comput.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b10
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 55
  start-page: 39
  year: 2003
  end-page: 55
  ident: b57
  article-title: Finite Newton method for Lagrangian support vector machine
  publication-title: Neurocomputing
– volume: 4
  start-page: 17
  year: 2019
  end-page: 21
  ident: b28
  article-title: The effect of Kernel values in support vector machine to forecasting performance of financial time series
  publication-title: J. Cogn. Syst.
– volume: 74
  start-page: 1474
  year: 2011
  end-page: 1477
  ident: b34
  article-title: Reduced twin support vector regression
  publication-title: Neurocomputing
– volume: 17
  start-page: 678
  year: 2005
  end-page: 685
  ident: b14
  article-title: -SSVR: a smooth support vector machine for
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 29
  start-page: 905
  year: 2007
  end-page: 910
  ident: b31
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 259
  year: 2004
  end-page: 275
  ident: b15
  article-title: A heuristic training for support vector regression
  publication-title: Neurocomputing
– volume: 18
  start-page: 65
  year: 2018
  end-page: 88
  ident: b19
  article-title: Price prediction of e-commerce products through internet sentiment analysis
  publication-title: Electron. Commerce Res.
– volume: 23
  start-page: 175
  year: 2013
  end-page: 185
  ident: b38
  article-title: An
  publication-title: Neural Comput. Appl.
– volume: 15
  start-page: 29
  year: 2004
  end-page: 44
  ident: b17
  article-title: Bayesian Support vector regression using a unified loss function
  publication-title: IEEE Trans. Neural Netw.
– volume: 70
  start-page: 395
  year: 2014
  end-page: 405
  ident: b50
  article-title: Asymmetric least squares support vector machine classifiers
  publication-title: Comput. Statist. Data Anal.
– reference: Chu Wei, S. SathiyaKeerthi, Chong Jin Ong, Bayesian inference in support vector regression, National University of Singapore: Technical Report
– volume: 49
  start-page: 3606
  year: 2019
  end-page: 3627
  ident: b6
  article-title: An improved regularization based Lagrangian asymmetric
  publication-title: Appl. Intell.
– year: 2018
  ident: b27
  article-title: On the energy consumption forecasting of data centers based on weather conditions: Remote sensing and machine learning approach
– year: 1997
  ident: b7
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: b12
  article-title: New support vector algorithms
  publication-title: Neural Comput.
– volume: 2
  start-page: 16
  year: 2017
  end-page: 20
  ident: b24
  article-title: Prediction of solar radiation based on machine learning methods
  publication-title: J. Cogn. Syst.
– year: 1976
  ident: b67
  publication-title: Time Series Analysis: Forecasting and Control
– start-page: 635
  year: 2020
  end-page: 646
  ident: b61
  article-title: Statistical analysis of target tracking algorithms in thermal imagery
  publication-title: Cognitive Informatics and Soft Computing
– year: 2017
  ident: b51
  article-title: Asymmetric
  publication-title: Neural Comput. Appl.
– year: 2000
  ident: b52
  article-title: An Introduction To Support Vector Machines and Other Kernel Based Learning Methods
– volume: 31
  start-page: 1691
  year: 1995
  end-page: 1724
  ident: b8
  article-title: Nonlinear black-box modeling in system identification: a unified overview
  publication-title: Automatica
– volume: 118
  start-page: 225
  year: 2013
  end-page: 236
  ident: b39
  article-title: Twin least squares support vector regression
  publication-title: Neurocomputing
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: b26
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: J. Cleaner Prod.
– volume: 41
  start-page: 299
  year: 2014
  end-page: 309
  ident: b41
  article-title: K-nearest neighbor-based weighted twin support vector regression
  publication-title: Appl. Intell.
– volume: 20
  start-page: 5
  year: 2001
  end-page: 22
  ident: b58
  article-title: SSVM: A smooth support vector machine for classification
  publication-title: Comput. Optim. Appl.
– year: 1994
  ident: b55
  article-title: Nonlinear Programming
– reference: .
– start-page: 431
  year: 2019
  end-page: 444
  ident: b3
  article-title: Lagrangian Twin-bounded support vector machine based on L2-norm
  publication-title: Recent Developments in Machine Learning and Data Analytics
– year: 2005
  ident: b70
  article-title: Data for evaluating learning in valid experiments
– start-page: 8
  year: 2019
  end-page: 11
  ident: b25
  article-title: Recognition model for solar radiation time series based on random forest with feature selection approach
  publication-title: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO)
– volume: 74
  start-page: 14
  year: 2016
  end-page: 21
  ident: b45
  article-title: TWSVR: regression via twin support vector machine
  publication-title: Neural Netw.
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: b18
  article-title: The bayesian lasso
  publication-title: J. Amer. Statist. Assoc.
– year: 1992
  ident: b66
  article-title: UCI Repository of Machine Learning Databases
– volume: 126
  start-page: 325
  year: 2019
  end-page: 336
  ident: b21
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
– year: 1998
  ident: b53
  article-title: Statistical Learning Theory, vol. 3
– volume: 36
  start-page: 984
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b48
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.178
– year: 2017
  ident: 10.1016/j.asoc.2021.107099_b51
  article-title: Asymmetric ν-twin support vector regression
  publication-title: Neural Comput. Appl.
– volume: 89
  year: 2020
  ident: 10.1016/j.asoc.2021.107099_b30
  article-title: Hybrid change point detection for time series via support vector regression and CUSUM method
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.asoc.2021.107099_b31
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 20
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2021.107099_b58
  article-title: SSVM: A smooth support vector machine for classification
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1011215321374
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2021.107099_b72
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 505
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2021.107099_b35
  article-title: Smooth twin support vector regression
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0454-9
– year: 1976
  ident: 10.1016/j.asoc.2021.107099_b67
– start-page: 431
  year: 2019
  ident: 10.1016/j.asoc.2021.107099_b3
  article-title: Lagrangian Twin-bounded support vector machine based on L2-norm
– volume: 49
  start-page: 3606
  issue: 10
  year: 2019
  ident: 10.1016/j.asoc.2021.107099_b6
  article-title: An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss function
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01465-w
– volume: 41
  start-page: 299
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b41
  article-title: K-nearest neighbor-based weighted twin support vector regression
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0518-0
– volume: 47
  start-page: 962
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2021.107099_b47
  article-title: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0913-4
– ident: 10.1016/j.asoc.2021.107099_b71
– volume: 22
  start-page: 257
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107099_b40
  article-title: On Lagrangian twin support vector regression
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0971-9
– year: 1992
  ident: 10.1016/j.asoc.2021.107099_b66
– volume: 44
  start-page: 831
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2021.107099_b54
  article-title: An efficient implicit regularized Lagrangian twin support vector regression
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0728-0
– year: 2000
  ident: 10.1016/j.asoc.2021.107099_b52
– volume: 79
  start-page: 26
  year: 2012
  ident: 10.1016/j.asoc.2021.107099_b37
  article-title: Efficient twin parametric insensitive support vector regression model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.09.021
– volume: 77
  start-page: 371
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b49
  article-title: Asymmetric v-tube support vector regression
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2014.03.016
– volume: 70
  start-page: 395
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b50
  article-title: Asymmetric least squares support vector machine classifiers
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2013.09.015
– start-page: 228
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b2
  article-title: Kernel target alignment based fuzzy least square twin bounded support vector machine
– year: 1994
  ident: 10.1016/j.asoc.2021.107099_b55
– ident: 10.1016/j.asoc.2021.107099_b62
– volume: 97
  start-page: 177
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b23
  article-title: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.004
– volume: 15
  start-page: 29
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2021.107099_b17
  article-title: Bayesian Support vector regression using a unified loss function
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.820830
– volume: 31
  start-page: 1691
  year: 1995
  ident: 10.1016/j.asoc.2021.107099_b8
  article-title: Nonlinear black-box modeling in system identification: a unified overview
  publication-title: Automatica
  doi: 10.1016/0005-1098(95)00120-8
– volume: 18
  start-page: 65
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b19
  article-title: Price prediction of e-commerce products through internet sentiment analysis
  publication-title: Electron. Commerce Res.
  doi: 10.1007/s10660-017-9272-9
– volume: 17
  start-page: 678
  issue: 5
  year: 2005
  ident: 10.1016/j.asoc.2021.107099_b14
  article-title: ε-SSVR: a smooth support vector machine for ε-insensitive regression
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.77
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  ident: 10.1016/j.asoc.2021.107099_b18
  article-title: The bayesian lasso
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214508000000337
– volume: 33
  start-page: 92
  year: 2012
  ident: 10.1016/j.asoc.2021.107099_b36
  article-title: A weighted twin support vector regression
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.03.013
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b26
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.07.164
– year: 2020
  ident: 10.1016/j.asoc.2021.107099_b5
  article-title: On pairing huber support vector regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106708
– volume: 126
  start-page: 325
  year: 2019
  ident: 10.1016/j.asoc.2021.107099_b21
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.011
– volume: 12
  start-page: 1207
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2021.107099_b12
  article-title: New support vector algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015565
– year: 2018
  ident: 10.1016/j.asoc.2021.107099_b27
– ident: 10.1016/j.asoc.2021.107099_b63
– start-page: 8
  year: 2019
  ident: 10.1016/j.asoc.2021.107099_b25
  article-title: Recognition model for solar radiation time series based on random forest with feature selection approach
– volume: 18
  start-page: 2335
  issue: 12
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b42
  article-title: An improved robust and sparse twin support vector regression via linear programming
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1342-5
– volume: 1
  start-page: 161
  year: 2001
  ident: 10.1016/j.asoc.2021.107099_b56
  article-title: Lagrangian Support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 85
  year: 2014
  ident: 10.1016/j.asoc.2021.107099_b43
  article-title: Training Lagrangian twin support vector regression via unconstrained convex minimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.01.018
– ident: 10.1016/j.asoc.2021.107099_b16
– volume: 4
  start-page: 17
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107099_b28
  article-title: The effect of Kernel values in support vector machine to forecasting performance of financial time series
  publication-title: J. Cogn. Syst.
– year: 1997
  ident: 10.1016/j.asoc.2021.107099_b7
  article-title: Support vector regression machines
– volume: 23
  start-page: 365
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2021.107099_b33
  article-title: TSVR: an efficient twin support vector machine for regression
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.07.002
– volume: 27
  start-page: 183
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b20
  article-title: An intelligent system for identifying influential words in real-estate classifieds
  publication-title: J. Intell. Syst.
– ident: 10.1016/j.asoc.2021.107099_b68
– volume: 2
  start-page: 16
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107099_b24
  article-title: Prediction of solar radiation based on machine learning methods
  publication-title: J. Cogn. Syst.
– volume: 118
  start-page: 225
  year: 2013
  ident: 10.1016/j.asoc.2021.107099_b39
  article-title: Twin least squares support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.005
– volume: 73
  start-page: 2846
  year: 2010
  ident: 10.1016/j.asoc.2021.107099_b59
  article-title: Primal twin support vector regression and its sparse approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.08.013
– ident: 10.1016/j.asoc.2021.107099_b60
– volume: 55
  start-page: 39
  year: 2003
  ident: 10.1016/j.asoc.2021.107099_b57
  article-title: Finite Newton method for Lagrangian support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00379-5
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.asoc.2021.107099_b10
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 225
  start-page: 174
  year: 2017
  ident: 10.1016/j.asoc.2021.107099_b46
  article-title: Pairing support vector algorithm for data regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.024
– ident: 10.1016/j.asoc.2021.107099_b64
– year: 2020
  ident: 10.1016/j.asoc.2021.107099_b4
  article-title: A class of new support vector regression models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106446
– volume: 15
  start-page: 268
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2021.107099_b13
  article-title: Feinberg active set support vector regression
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824259
– year: 2005
  ident: 10.1016/j.asoc.2021.107099_b70
– volume: 74
  start-page: 1474
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2021.107099_b34
  article-title: Reduced twin support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.003
– year: 1998
  ident: 10.1016/j.asoc.2021.107099_b53
– volume: 23
  start-page: 175
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107099_b38
  article-title: An ε-twin support vector machine for regression
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0924-3
– volume: 197
  start-page: 53
  year: 2016
  ident: 10.1016/j.asoc.2021.107099_b44
  article-title: Weighted Lagrange ε-twin support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.038
– volume: 212
  year: 2020
  ident: 10.1016/j.asoc.2021.107099_b29
  article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118750
– volume: 28
  start-page: 69
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2021.107099_b32
  article-title: Wild multisurface proximal support vector machine classification via generalized eigenvalues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.17
– volume: 61
  start-page: 259
  year: 2004
  ident: 10.1016/j.asoc.2021.107099_b15
  article-title: A heuristic training for support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.11.012
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2021.107099_b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 10.1016/j.asoc.2021.107099_b69
– volume: 74
  start-page: 14
  year: 2016
  ident: 10.1016/j.asoc.2021.107099_b45
  article-title: TWSVR: regression via twin support vector machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.10.007
– volume: 11
  start-page: 1188
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2021.107099_b11
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870050
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.asoc.2021.107099_rg9a
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 21
  start-page: 505-513
  year: 2012
  ident: 10.1016/j.asoc.2021.107099_rg9b
  article-title: Smooth twin support vector regression
  publication-title: Neural Computing and Applications
– start-page: 635
  year: 2020
  ident: 10.1016/j.asoc.2021.107099_b61
  article-title: Statistical analysis of target tracking algorithms in thermal imagery
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107099_b22
  article-title: Prediction of bitcoin prices with machine learning methods using time series data
– ident: 10.1016/j.asoc.2021.107099_b65
SSID ssj0016928
Score 2.4438941
Snippet The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107099
SubjectTerms Asymmetric loss function
Pinball loss
Support vector regression
Twin support vector regression
Unconstrained convex minimization
Title On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function
URI https://dx.doi.org/10.1016/j.asoc.2021.107099
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG2CXry4izt98CZtZunZjhKUqDGKC-QiQ1cvIZKMIZkoXvwzf8FvsmsWURAPnoZpqqF5VVPL8LqKkAMZeNIIJRkYkIyDApZYs2Hc54qbMI6kwkLxshu27_l5L-g1SKu-C4O0ysr3lz698NbVSrNCszkeDJq3tvKIecJDzy26uGDHT84jtPKjty-ahxsmxXxVFGYoXV2cKTlewiJga0TPtQuRU_R__SU4fQs4p8tkscoU6XF5mBXS0NkqWaqnMNDqo1wjD1cZnTzBbJpTMX0djXBElqQd0bdRqG-VTz_eWf4yyOh0NsZkmz4XP-rpRPdLDmxGkfzep-NBBmI4pEN7NIrxDnW2Tu5PT-5abVYNTWDSd5yc-TJSRkTYB9DhYMtMEyYi8kIdB0b4sVEO14LHCZYuYLM5sDmXBgcSX_kgPONvkLnsKdObhCpHRzqIBejI1hHGhcBmk8qViQHtQyC2iFujlcqqozgOthimNXXsMUWEU0Q4LRHeIodfe8ZlP40_pYNaCekPq0itw_9j3_Y_9-2QBXwrmTm7ZC6fzPSeTTpy2C-sap_MH7duOtf4PLtodz8B_4rbAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBeeCyg5e3D3lZWk9h5HRECFSjlAEhcUOTxo-qqhKpNQfw4_gK_CTtx0CIhDlwdj2TNTGbmSz7PAPyRcSSNUJKiQUk5KqS5dRvKGVfcJFkqlQOKF4Okd8PPbuPbBThq78I4WqWP_U1Mr6O1X-l6bXYno1H3yiKPjOc8icK6iwv7AYuuO1XcgcXD0_Pe4P1nQpLXI1bdfuoE_N2ZhuYlrBIsTIxCu5AGdQvYT_LTfznnZBWWfbFIDpvzrMGCLn_BSjuIgfj3ch3uLksyfcD5rCJi9nx_76ZkSdIXQ5uIhtb-5PWFVk-jkszmE1dvk8f6Wz2Z6mFDgy2J478PyWRUohiPydgejbiU58y2ATcnx9dHPernJlDJgqCiTKbKiNS1Agw4WqRpklykUaKz2AiWGRVwLXiWO_SCtqBDW3ZpDDBniqGIDNuETvlQ6t9AVKBTHWcCdWqhhAkxtgWlCmVuUDOMxRaErbYK6ZuKu9kW46Jlj_0rnIYLp-Gi0fAW_H2XmTQtNb7cHbdGKD44RmFj_hdy29-UO4Cl3vVFv-ifDs534Kd70hB1dqFTTed6z9YgFe57H3sDqnbcHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+robust+asymmetric+Lagrangian+%CE%BD-twin+support+vector+regression+using+pinball+loss+function&rft.jtitle=Applied+soft+computing&rft.au=Gupta%2C+Deepak&rft.au=Gupta%2C+Umesh&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=102&rft_id=info:doi/10.1016%2Fj.asoc.2021.107099&rft.externalDocID=S1568494621000223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon