On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function
The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound...
Saved in:
Published in | Applied soft computing Vol. 102; p. 107099 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound points. However, the effects of all data points must be distinct based on their distribution in the regression function. Recently, asymmetric ν-twin support vector regression (Asy-ν-TSVR) is encouraged on the same subject but still, the present matrices in the mathematical formulation have faced the problem of semi-definite. In order to handle this problem effectively, a new regressor model named as robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function (URALTSVR) proposes as a pair of the unconstrained minimization problem to handle not only the noise sensitivity and instability of re-sampling but also consist positive definite matrices. Here, we suggest the proposed model URALTSVR in such a way where the pinball loss function is playing a vital role to control the fitting error inside the asymmetric tube. One of the advantages is that unlike TSVR and Asy-ν-TSVR, it considers the concept of structural risk minimization principle through the inclusion of regularization term as well as change the one-norm of the vector of the slack variable by two-norm, which yields the dual problem to be strongly convex, stable and well-posed. Aforementioned, the proposed formulation has a continuous and piecewise quadratic problem that is solved by their gradients based iterative approaches. Specifically, we analyze the three implementations of URALTSVR with the baselines approaches support vector regression (SVR), TSVR and Asy-ν-TSVR, which discard the dependencies to solve a pair of quadratic programming problem (QPP) for obtaining the unique global solution. Overall, SRALTSVR1 based on smooth approximation function performs outstanding for artificial and real-world datasets.
[Display omitted]
•Proposed a novel approach as a pair of the unconstrained minimization problem.•Applied generalized derivative and smoothing approaches to find the Hessian matrix.•By using gradient based iterative schemes determine solution of the problem.•Improved the stability in the dual formulations and makes the model well-posed.•Performance results of URALTSVR are carried out on artificial & realworld datasets. |
---|---|
AbstractList | The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal influences on the regression function where all the data points have a different location above the up-bound points and below the down-bound points. However, the effects of all data points must be distinct based on their distribution in the regression function. Recently, asymmetric ν-twin support vector regression (Asy-ν-TSVR) is encouraged on the same subject but still, the present matrices in the mathematical formulation have faced the problem of semi-definite. In order to handle this problem effectively, a new regressor model named as robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function (URALTSVR) proposes as a pair of the unconstrained minimization problem to handle not only the noise sensitivity and instability of re-sampling but also consist positive definite matrices. Here, we suggest the proposed model URALTSVR in such a way where the pinball loss function is playing a vital role to control the fitting error inside the asymmetric tube. One of the advantages is that unlike TSVR and Asy-ν-TSVR, it considers the concept of structural risk minimization principle through the inclusion of regularization term as well as change the one-norm of the vector of the slack variable by two-norm, which yields the dual problem to be strongly convex, stable and well-posed. Aforementioned, the proposed formulation has a continuous and piecewise quadratic problem that is solved by their gradients based iterative approaches. Specifically, we analyze the three implementations of URALTSVR with the baselines approaches support vector regression (SVR), TSVR and Asy-ν-TSVR, which discard the dependencies to solve a pair of quadratic programming problem (QPP) for obtaining the unique global solution. Overall, SRALTSVR1 based on smooth approximation function performs outstanding for artificial and real-world datasets.
[Display omitted]
•Proposed a novel approach as a pair of the unconstrained minimization problem.•Applied generalized derivative and smoothing approaches to find the Hessian matrix.•By using gradient based iterative schemes determine solution of the problem.•Improved the stability in the dual formulations and makes the model well-posed.•Performance results of URALTSVR are carried out on artificial & realworld datasets. |
ArticleNumber | 107099 |
Author | Gupta, Umesh Gupta, Deepak |
Author_xml | – sequence: 1 givenname: Deepak orcidid: 0000-0002-6375-8615 surname: Gupta fullname: Gupta, Deepak email: deepak@nitap.ac.in – sequence: 2 givenname: Umesh orcidid: 0000-0002-1547-7974 surname: Gupta fullname: Gupta, Umesh email: er.umeshgupta@gmail.com |
BookMark | eNp9kEtqwzAQQEVJoWnaC3SlCziVZVuWoJsS-oNANu2yCEmWjIIjGUlJyeF6hZ6pMumqi6xmmOHN512DmfNOA3BXomWJSnK_XYro1RIjXOZCixi7APOStrhghJaznDeEFjWryRW4jnGLMsQwnYPPjYPBy31MUMTjbqdTsAquRR-E661w8Oe7SF_WwbgfRx8SPGiVfIBB90HHaL2D-2hdD0frpBgGOPgYodk7lXLvBlwaMUR9-xcX4OP56X31Wqw3L2-rx3WhKoRSUam2M6KtGSaolg2uDGGixUTTxoiKmg7VWtSUIUaQbEgjEW20RJJVXSUFNtUC4NNcFfL6oA0fg92JcOQl4pMgvuWTID4J4idBGaL_IGWTmM5OQdjhPPpwQnV-6mB14FFZ7ZTubMh-eOftOfwX35GGKA |
CitedBy_id | crossref_primary_10_1016_j_artmed_2023_102497 crossref_primary_10_1016_j_neucom_2024_128060 crossref_primary_10_1007_s10115_023_01924_4 crossref_primary_10_1155_2023_2201330 crossref_primary_10_1007_s11042_023_17315_4 crossref_primary_10_1007_s11063_023_11198_0 crossref_primary_10_1016_j_eswa_2023_121239 crossref_primary_10_1016_j_asoc_2023_110534 crossref_primary_10_1016_j_fss_2022_06_009 crossref_primary_10_1007_s11063_022_11043_w crossref_primary_10_1007_s11227_023_05082_w crossref_primary_10_1142_S0218488525500102 crossref_primary_10_1109_JBHI_2022_3172956 crossref_primary_10_1016_j_patcog_2024_110544 crossref_primary_10_1016_j_ejor_2023_04_025 crossref_primary_10_1016_j_inffus_2024_102463 crossref_primary_10_1016_j_asoc_2021_107816 crossref_primary_10_1016_j_knosys_2024_111713 crossref_primary_10_1007_s11356_022_22957_2 crossref_primary_10_1016_j_jhydrol_2022_128213 crossref_primary_10_3233_JIFS_230589 crossref_primary_10_3390_electronics11152324 crossref_primary_10_1016_j_asoc_2024_112005 crossref_primary_10_1007_s10489_022_04237_1 crossref_primary_10_1155_2022_4872230 crossref_primary_10_1109_TNNLS_2023_3335355 crossref_primary_10_1109_TNNLS_2023_3258464 crossref_primary_10_1007_s44163_023_00057_5 |
Cites_doi | 10.1109/TPAMI.2013.178 10.1109/TPAMI.2007.1068 10.1023/A:1011215321374 10.1007/s00521-010-0454-9 10.1007/s10489-019-01465-w 10.1007/s10489-014-0518-0 10.1007/s10489-017-0913-4 10.1007/s00521-012-0971-9 10.1007/s10489-015-0728-0 10.1016/j.neucom.2011.09.021 10.1016/j.csda.2014.03.016 10.1016/j.csda.2013.09.015 10.1016/j.eswa.2017.12.004 10.1109/TNN.2003.820830 10.1016/0005-1098(95)00120-8 10.1007/s10660-017-9272-9 10.1109/TKDE.2005.77 10.1198/016214508000000337 10.1016/j.knosys.2012.03.013 10.1016/j.jclepro.2018.07.164 10.1016/j.asoc.2020.106708 10.1016/j.chaos.2019.07.011 10.1162/089976600300015565 10.1007/s00500-014-1342-5 10.1016/j.knosys.2014.01.018 10.1016/j.neunet.2009.07.002 10.1016/j.neucom.2013.03.005 10.1016/j.neucom.2010.08.013 10.1016/S0925-2312(03)00379-5 10.1023/A:1018628609742 10.1016/j.neucom.2016.11.024 10.1016/j.asoc.2020.106446 10.1109/TNN.2004.824259 10.1016/j.neucom.2010.11.003 10.1007/s00521-012-0924-3 10.1016/j.neucom.2016.01.038 10.1016/j.energy.2020.118750 10.1109/TPAMI.2006.17 10.1016/j.neucom.2003.11.012 10.1007/BF00994018 10.1016/j.neunet.2015.10.007 10.1109/72.870050 10.1023/A:1009715923555 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107099 S1568494621000223 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-3c7dfa7492604b523f69a726e85fa38fd04ea4890960b565b085eb0b93d3ba2f3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:01:05 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Twin support vector regression Support vector regression Pinball loss Unconstrained convex minimization Asymmetric loss function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3c7dfa7492604b523f69a726e85fa38fd04ea4890960b565b085eb0b93d3ba2f3 |
ORCID | 0000-0002-1547-7974 0000-0002-6375-8615 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2021_107099 crossref_citationtrail_10_1016_j_asoc_2021_107099 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huang, Shi, Pelckmans, Suykens (b49) 2014; 77 Box, Jenkins (b67) 1976 Singh (b34) 2011; 74 Anand, Rastogi, Chandra (b4) 2020 Karasu, Altan, Bekiros, Ahmad (b29) 2020; 212 Sangyeol, Lee, Moon (b30) 2020; 89 Burges Christopher, Chen (b9) 1998; 2 Murphy, Aha (b66) 1992 DELVE (b70) 2005 Zendehboudi, Baseer, Saidur (b26) 2018; 199 Suykens, JoosVandewalle (b10) 1999; 9 Peng (b23) 2018; 97 Wei, SathiyaKeerthi, Ong (b17) 2004; 15 Cristianini, Shawe-Taylor (b52) 2000 Lee, Hsieh, Huang (b14) 2005; 17 Schölkopf (b12) 2000; 12 Musicant, Feinberg (b13) 2004; 15 Yitian (b51) 2017 Huang, Shi, Suykens (b50) 2014; 70 Altan, Karasu, Bekiros (b21) 2019; 126 Tseng (b19) 2018; 18 Fung, Mangasarian (b57) 2003; 55 Vapnik (b53) 1998 Gupta, Gupta (b3) 2019 Mangasarian, Wild (b32) 2006; 28 Mangasarian (b55) 1994 . Balasundaram, Gupta (b43) 2014; 59 Karasu, Altan, Saraç, Hacioğlu (b22) 2018 Chu Wei, S. SathiyaKeerthi, Chong Jin Ong, Bayesian inference in support vector regression, National University of Singapore: Technical Report Mangasarian, Musicant (b56) 2001; 1 Lee, Mangasarian (b58) 2001; 20 A. Gretton, A. Doucet, R. Herbrich, P.J.W. Rayner, B. Scholkopf, Support vector regression for black-box system identification, in: Proceedings of the 11th IEEE Workshop on Statistical Signal Processing, 2001. Altan, Karasu (b28) 2019; 4 Huang, Shi, Suykens (b48) 2014; 36 Demsar (b72) 2006; 7 Peng (b59) 2010; 73 Shao (b38) 2013; 23 Xu, Wang (b36) 2012; 33 Gupta, Gupta (b6) 2019; 49 Chen (b35) 2012; 21 Corinna, Vapnik (b1) 1995; 20 Sjoberg, Zhang, Ljung, Berveniste, Delyon, Glorennec, Hjalmarsson, Juditsky (b8) 1995; 31 Ye (b44) 2016; 197 Balasundaram, Tanveer (b40) 2013; 22 Shevade (b11) 2000; 11 Smpokos (b27) 2018 Gupta (b47) 2017; 47 Gupta, Meher (b61) 2020 Yitian, Wang (b41) 2014; 41 Peng (b33) 2010; 23 Tanveer, Shubham, MujahedAldhaifallah, Nisar (b54) 2016; 44 Jayadeva, Suresh Chandra (b31) 2007; 29 Gupta, Gupta, Mukesh (b2) 2018 Peng (b37) 2012; 79 Abdallah (b20) 2018; 27 Park, Casella (b18) 2008; 103 Chen, Yang, Chen (b42) 2014; 18 Balasundaram, Prasad (b5) 2020 Karasu, Altan, Sarac, Hacioglu (b24) 2017; 2 Karasu, Altan (b25) 2019 Khemchandani, KeshavGoyal, Suresh Chandra (b45) 2016; 74 Zhao, Zhao, Zhao (b39) 2013; 118 Hao (b46) 2017; 225 Drucker (b7) 1997 Wang, Zongben (b15) 2004; 61 Huang (10.1016/j.asoc.2021.107099_b50) 2014; 70 Mangasarian (10.1016/j.asoc.2021.107099_b56) 2001; 1 Abdallah (10.1016/j.asoc.2021.107099_b20) 2018; 27 Wang (10.1016/j.asoc.2021.107099_b15) 2004; 61 Karasu (10.1016/j.asoc.2021.107099_b25) 2019 Tanveer (10.1016/j.asoc.2021.107099_b54) 2016; 44 Peng (10.1016/j.asoc.2021.107099_b23) 2018; 97 Ye (10.1016/j.asoc.2021.107099_b44) 2016; 197 DELVE (10.1016/j.asoc.2021.107099_b70) 2005 Vapnik (10.1016/j.asoc.2021.107099_b53) 1998 10.1016/j.asoc.2021.107099_b68 10.1016/j.asoc.2021.107099_b69 Anand (10.1016/j.asoc.2021.107099_b4) 2020 10.1016/j.asoc.2021.107099_b62 10.1016/j.asoc.2021.107099_b63 10.1016/j.asoc.2021.107099_b64 Suykens (10.1016/j.asoc.2021.107099_b10) 1999; 9 10.1016/j.asoc.2021.107099_b65 Yitian (10.1016/j.asoc.2021.107099_b41) 2014; 41 Jayadeva (10.1016/j.asoc.2021.107099_b31) 2007; 29 10.1016/j.asoc.2021.107099_b71 Gupta (10.1016/j.asoc.2021.107099_b2) 2018 Wei (10.1016/j.asoc.2021.107099_b17) 2004; 15 Gupta (10.1016/j.asoc.2021.107099_b47) 2017; 47 Khemchandani (10.1016/j.asoc.2021.107099_b45) 2016; 74 Huang (10.1016/j.asoc.2021.107099_b49) 2014; 77 Shevade (10.1016/j.asoc.2021.107099_b11) 2000; 11 Balasundaram (10.1016/j.asoc.2021.107099_b43) 2014; 59 Musicant (10.1016/j.asoc.2021.107099_b13) 2004; 15 Xu (10.1016/j.asoc.2021.107099_b36) 2012; 33 Schölkopf (10.1016/j.asoc.2021.107099_b12) 2000; 12 Tseng (10.1016/j.asoc.2021.107099_b19) 2018; 18 Karasu (10.1016/j.asoc.2021.107099_b22) 2018 Altan (10.1016/j.asoc.2021.107099_b21) 2019; 126 Sjoberg (10.1016/j.asoc.2021.107099_b8) 1995; 31 Peng (10.1016/j.asoc.2021.107099_b59) 2010; 73 Zhao (10.1016/j.asoc.2021.107099_b39) 2013; 118 Mangasarian (10.1016/j.asoc.2021.107099_b55) 1994 Chen (10.1016/j.asoc.2021.107099_b35) 2012; 21 Lee (10.1016/j.asoc.2021.107099_b58) 2001; 20 Drucker (10.1016/j.asoc.2021.107099_b7) 1997 Park (10.1016/j.asoc.2021.107099_b18) 2008; 103 Huang (10.1016/j.asoc.2021.107099_b48) 2014; 36 Chen (10.1016/j.asoc.2021.107099_rg9b) 2012; 21 Peng (10.1016/j.asoc.2021.107099_b33) 2010; 23 Hao (10.1016/j.asoc.2021.107099_b46) 2017; 225 Zendehboudi (10.1016/j.asoc.2021.107099_b26) 2018; 199 Cristianini (10.1016/j.asoc.2021.107099_b52) 2000 Karasu (10.1016/j.asoc.2021.107099_b24) 2017; 2 Gupta (10.1016/j.asoc.2021.107099_b6) 2019; 49 Lee (10.1016/j.asoc.2021.107099_b14) 2005; 17 Mangasarian (10.1016/j.asoc.2021.107099_b32) 2006; 28 Chen (10.1016/j.asoc.2021.107099_b42) 2014; 18 Balasundaram (10.1016/j.asoc.2021.107099_b40) 2013; 22 Balasundaram (10.1016/j.asoc.2021.107099_b5) 2020 Smpokos (10.1016/j.asoc.2021.107099_b27) 2018 Demsar (10.1016/j.asoc.2021.107099_b72) 2006; 7 Fung (10.1016/j.asoc.2021.107099_b57) 2003; 55 Burges Christopher (10.1016/j.asoc.2021.107099_rg9a) 1998; 2 Karasu (10.1016/j.asoc.2021.107099_b29) 2020; 212 Gupta (10.1016/j.asoc.2021.107099_b61) 2020 Shao (10.1016/j.asoc.2021.107099_b38) 2013; 23 10.1016/j.asoc.2021.107099_b16 Corinna (10.1016/j.asoc.2021.107099_b1) 1995; 20 Sangyeol (10.1016/j.asoc.2021.107099_b30) 2020; 89 Altan (10.1016/j.asoc.2021.107099_b28) 2019; 4 Murphy (10.1016/j.asoc.2021.107099_b66) 1992 Yitian (10.1016/j.asoc.2021.107099_b51) 2017 10.1016/j.asoc.2021.107099_b60 Gupta (10.1016/j.asoc.2021.107099_b3) 2019 Singh (10.1016/j.asoc.2021.107099_b34) 2011; 74 Peng (10.1016/j.asoc.2021.107099_b37) 2012; 79 Box (10.1016/j.asoc.2021.107099_b67) 1976 |
References_xml | – volume: 79 start-page: 26 year: 2012 end-page: 38 ident: b37 article-title: Efficient twin parametric insensitive support vector regression model publication-title: Neurocomputing – volume: 73 start-page: 2846 year: 2010 end-page: 2858 ident: b59 article-title: Primal twin support vector regression and its sparse approximation publication-title: Neurocomputing – volume: 36 start-page: 984 year: 2014 end-page: 997 ident: b48 article-title: Support vector machine classifier with pinball loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 33 start-page: 92 year: 2012 end-page: 101 ident: b36 article-title: A weighted twin support vector regression publication-title: Knowl.-Based Syst. – volume: 1 start-page: 161 year: 2001 end-page: 177 ident: b56 article-title: Lagrangian Support vector machines publication-title: J. Mach. Learn. Res. – reference: ,. – volume: 225 start-page: 174 year: 2017 end-page: 187 ident: b46 article-title: Pairing support vector algorithm for data regression publication-title: Neurocomputing – reference: A. Gretton, A. Doucet, R. Herbrich, P.J.W. Rayner, B. Scholkopf, Support vector regression for black-box system identification, in: Proceedings of the 11th IEEE Workshop on Statistical Signal Processing, 2001. – volume: 89 year: 2020 ident: b30 article-title: Hybrid change point detection for time series via support vector regression and CUSUM method publication-title: Appl. Soft Comput. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b72 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 2020 ident: b4 article-title: A class of new support vector regression models publication-title: Appl. Soft Comput. – volume: 28 start-page: 69 year: 2006 end-page: 74 ident: b32 article-title: Wild multisurface proximal support vector machine classification via generalized eigenvalues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 268 year: 2004 end-page: 275 ident: b13 article-title: Feinberg active set support vector regression publication-title: IEEE Trans. Neural Netw. – volume: 47 start-page: 962 year: 2017 end-page: 991 ident: b47 article-title: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization publication-title: Appl. Intell. – volume: 44 start-page: 831 year: 2016 end-page: 848 ident: b54 article-title: An efficient implicit regularized Lagrangian twin support vector regression publication-title: Appl. Intell. – start-page: 228 year: 2018 end-page: 235 ident: b2 article-title: Kernel target alignment based fuzzy least square twin bounded support vector machine publication-title: 2018 IEEE Symposium Series on Computational Intelligence (SSCI) – volume: 97 start-page: 177 year: 2018 end-page: 192 ident: b23 article-title: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression publication-title: Expert Syst. Appl. – volume: 59 start-page: 85 year: 2014 end-page: 96 ident: b43 article-title: Training Lagrangian twin support vector regression via unconstrained convex minimization publication-title: Knowl.-Based Syst. – volume: 27 start-page: 183 year: 2018 end-page: 194 ident: b20 article-title: An intelligent system for identifying influential words in real-estate classifieds publication-title: J. Intell. Syst. – volume: 21 start-page: 505 year: 2012 end-page: 513 ident: b35 article-title: Smooth twin support vector regression publication-title: Neural Comput. Appl. – volume: 22 start-page: 257 year: 2013 end-page: 267 ident: b40 article-title: On Lagrangian twin support vector regression publication-title: Neural Comput. Appl. – volume: 197 start-page: 53 year: 2016 end-page: 68 ident: b44 article-title: Weighted Lagrange publication-title: Neurocomputing – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: b9 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. – volume: 77 start-page: 371 year: 2014 end-page: 382 ident: b49 article-title: Asymmetric v-tube support vector regression publication-title: Comput. Statist. Data Anal. – year: 2020 ident: b5 article-title: On pairing huber support vector regression publication-title: Appl. Soft Comput. – volume: 23 start-page: 365 year: 2010 end-page: 372 ident: b33 article-title: TSVR: an efficient twin support vector machine for regression publication-title: Neural Netw. – volume: 212 year: 2020 ident: b29 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy – volume: 11 start-page: 1188 year: 2000 end-page: 1193 ident: b11 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Netw. – start-page: 1 year: 2018 end-page: 4 ident: b22 article-title: Prediction of bitcoin prices with machine learning methods using time series data publication-title: 2018 26th Signal Processing and Communications Applications Conference (SIU) – volume: 18 start-page: 2335 year: 2014 end-page: 2348 ident: b42 article-title: An improved robust and sparse twin support vector regression via linear programming publication-title: Soft Comput. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b10 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 55 start-page: 39 year: 2003 end-page: 55 ident: b57 article-title: Finite Newton method for Lagrangian support vector machine publication-title: Neurocomputing – volume: 4 start-page: 17 year: 2019 end-page: 21 ident: b28 article-title: The effect of Kernel values in support vector machine to forecasting performance of financial time series publication-title: J. Cogn. Syst. – volume: 74 start-page: 1474 year: 2011 end-page: 1477 ident: b34 article-title: Reduced twin support vector regression publication-title: Neurocomputing – volume: 17 start-page: 678 year: 2005 end-page: 685 ident: b14 article-title: -SSVR: a smooth support vector machine for publication-title: IEEE Trans. Knowl. Data Eng. – volume: 29 start-page: 905 year: 2007 end-page: 910 ident: b31 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 61 start-page: 259 year: 2004 end-page: 275 ident: b15 article-title: A heuristic training for support vector regression publication-title: Neurocomputing – volume: 18 start-page: 65 year: 2018 end-page: 88 ident: b19 article-title: Price prediction of e-commerce products through internet sentiment analysis publication-title: Electron. Commerce Res. – volume: 23 start-page: 175 year: 2013 end-page: 185 ident: b38 article-title: An publication-title: Neural Comput. Appl. – volume: 15 start-page: 29 year: 2004 end-page: 44 ident: b17 article-title: Bayesian Support vector regression using a unified loss function publication-title: IEEE Trans. Neural Netw. – volume: 70 start-page: 395 year: 2014 end-page: 405 ident: b50 article-title: Asymmetric least squares support vector machine classifiers publication-title: Comput. Statist. Data Anal. – reference: Chu Wei, S. SathiyaKeerthi, Chong Jin Ong, Bayesian inference in support vector regression, National University of Singapore: Technical Report – volume: 49 start-page: 3606 year: 2019 end-page: 3627 ident: b6 article-title: An improved regularization based Lagrangian asymmetric publication-title: Appl. Intell. – year: 2018 ident: b27 article-title: On the energy consumption forecasting of data centers based on weather conditions: Remote sensing and machine learning approach – year: 1997 ident: b7 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 1207 year: 2000 end-page: 1245 ident: b12 article-title: New support vector algorithms publication-title: Neural Comput. – volume: 2 start-page: 16 year: 2017 end-page: 20 ident: b24 article-title: Prediction of solar radiation based on machine learning methods publication-title: J. Cogn. Syst. – year: 1976 ident: b67 publication-title: Time Series Analysis: Forecasting and Control – start-page: 635 year: 2020 end-page: 646 ident: b61 article-title: Statistical analysis of target tracking algorithms in thermal imagery publication-title: Cognitive Informatics and Soft Computing – year: 2017 ident: b51 article-title: Asymmetric publication-title: Neural Comput. Appl. – year: 2000 ident: b52 article-title: An Introduction To Support Vector Machines and Other Kernel Based Learning Methods – volume: 31 start-page: 1691 year: 1995 end-page: 1724 ident: b8 article-title: Nonlinear black-box modeling in system identification: a unified overview publication-title: Automatica – volume: 118 start-page: 225 year: 2013 end-page: 236 ident: b39 article-title: Twin least squares support vector regression publication-title: Neurocomputing – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b1 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: b26 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: J. Cleaner Prod. – volume: 41 start-page: 299 year: 2014 end-page: 309 ident: b41 article-title: K-nearest neighbor-based weighted twin support vector regression publication-title: Appl. Intell. – volume: 20 start-page: 5 year: 2001 end-page: 22 ident: b58 article-title: SSVM: A smooth support vector machine for classification publication-title: Comput. Optim. Appl. – year: 1994 ident: b55 article-title: Nonlinear Programming – reference: . – start-page: 431 year: 2019 end-page: 444 ident: b3 article-title: Lagrangian Twin-bounded support vector machine based on L2-norm publication-title: Recent Developments in Machine Learning and Data Analytics – year: 2005 ident: b70 article-title: Data for evaluating learning in valid experiments – start-page: 8 year: 2019 end-page: 11 ident: b25 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach publication-title: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) – volume: 74 start-page: 14 year: 2016 end-page: 21 ident: b45 article-title: TWSVR: regression via twin support vector machine publication-title: Neural Netw. – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: b18 article-title: The bayesian lasso publication-title: J. Amer. Statist. Assoc. – year: 1992 ident: b66 article-title: UCI Repository of Machine Learning Databases – volume: 126 start-page: 325 year: 2019 end-page: 336 ident: b21 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals – year: 1998 ident: b53 article-title: Statistical Learning Theory, vol. 3 – volume: 36 start-page: 984 year: 2014 ident: 10.1016/j.asoc.2021.107099_b48 article-title: Support vector machine classifier with pinball loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.178 – year: 2017 ident: 10.1016/j.asoc.2021.107099_b51 article-title: Asymmetric ν-twin support vector regression publication-title: Neural Comput. Appl. – volume: 89 year: 2020 ident: 10.1016/j.asoc.2021.107099_b30 article-title: Hybrid change point detection for time series via support vector regression and CUSUM method publication-title: Appl. Soft Comput. – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.asoc.2021.107099_b31 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 20 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2021.107099_b58 article-title: SSVM: A smooth support vector machine for classification publication-title: Comput. Optim. Appl. doi: 10.1023/A:1011215321374 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2021.107099_b72 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 505 issue: 3 year: 2012 ident: 10.1016/j.asoc.2021.107099_b35 article-title: Smooth twin support vector regression publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0454-9 – year: 1976 ident: 10.1016/j.asoc.2021.107099_b67 – start-page: 431 year: 2019 ident: 10.1016/j.asoc.2021.107099_b3 article-title: Lagrangian Twin-bounded support vector machine based on L2-norm – volume: 49 start-page: 3606 issue: 10 year: 2019 ident: 10.1016/j.asoc.2021.107099_b6 article-title: An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss function publication-title: Appl. Intell. doi: 10.1007/s10489-019-01465-w – volume: 41 start-page: 299 issue: 1 year: 2014 ident: 10.1016/j.asoc.2021.107099_b41 article-title: K-nearest neighbor-based weighted twin support vector regression publication-title: Appl. Intell. doi: 10.1007/s10489-014-0518-0 – volume: 47 start-page: 962 issue: 3 year: 2017 ident: 10.1016/j.asoc.2021.107099_b47 article-title: Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization publication-title: Appl. Intell. doi: 10.1007/s10489-017-0913-4 – ident: 10.1016/j.asoc.2021.107099_b71 – volume: 22 start-page: 257 issue: 1 year: 2013 ident: 10.1016/j.asoc.2021.107099_b40 article-title: On Lagrangian twin support vector regression publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0971-9 – year: 1992 ident: 10.1016/j.asoc.2021.107099_b66 – volume: 44 start-page: 831 issue: 4 year: 2016 ident: 10.1016/j.asoc.2021.107099_b54 article-title: An efficient implicit regularized Lagrangian twin support vector regression publication-title: Appl. Intell. doi: 10.1007/s10489-015-0728-0 – year: 2000 ident: 10.1016/j.asoc.2021.107099_b52 – volume: 79 start-page: 26 year: 2012 ident: 10.1016/j.asoc.2021.107099_b37 article-title: Efficient twin parametric insensitive support vector regression model publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.021 – volume: 77 start-page: 371 year: 2014 ident: 10.1016/j.asoc.2021.107099_b49 article-title: Asymmetric v-tube support vector regression publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2014.03.016 – volume: 70 start-page: 395 year: 2014 ident: 10.1016/j.asoc.2021.107099_b50 article-title: Asymmetric least squares support vector machine classifiers publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2013.09.015 – start-page: 228 year: 2018 ident: 10.1016/j.asoc.2021.107099_b2 article-title: Kernel target alignment based fuzzy least square twin bounded support vector machine – year: 1994 ident: 10.1016/j.asoc.2021.107099_b55 – ident: 10.1016/j.asoc.2021.107099_b62 – volume: 97 start-page: 177 year: 2018 ident: 10.1016/j.asoc.2021.107099_b23 article-title: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.12.004 – volume: 15 start-page: 29 issue: 1 year: 2004 ident: 10.1016/j.asoc.2021.107099_b17 article-title: Bayesian Support vector regression using a unified loss function publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.820830 – volume: 31 start-page: 1691 year: 1995 ident: 10.1016/j.asoc.2021.107099_b8 article-title: Nonlinear black-box modeling in system identification: a unified overview publication-title: Automatica doi: 10.1016/0005-1098(95)00120-8 – volume: 18 start-page: 65 issue: 1 year: 2018 ident: 10.1016/j.asoc.2021.107099_b19 article-title: Price prediction of e-commerce products through internet sentiment analysis publication-title: Electron. Commerce Res. doi: 10.1007/s10660-017-9272-9 – volume: 17 start-page: 678 issue: 5 year: 2005 ident: 10.1016/j.asoc.2021.107099_b14 article-title: ε-SSVR: a smooth support vector machine for ε-insensitive regression publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.77 – volume: 103 start-page: 681 issue: 482 year: 2008 ident: 10.1016/j.asoc.2021.107099_b18 article-title: The bayesian lasso publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214508000000337 – volume: 33 start-page: 92 year: 2012 ident: 10.1016/j.asoc.2021.107099_b36 article-title: A weighted twin support vector regression publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.03.013 – volume: 199 start-page: 272 year: 2018 ident: 10.1016/j.asoc.2021.107099_b26 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.07.164 – year: 2020 ident: 10.1016/j.asoc.2021.107099_b5 article-title: On pairing huber support vector regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106708 – volume: 126 start-page: 325 year: 2019 ident: 10.1016/j.asoc.2021.107099_b21 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.07.011 – volume: 12 start-page: 1207 issue: 5 year: 2000 ident: 10.1016/j.asoc.2021.107099_b12 article-title: New support vector algorithms publication-title: Neural Comput. doi: 10.1162/089976600300015565 – year: 2018 ident: 10.1016/j.asoc.2021.107099_b27 – ident: 10.1016/j.asoc.2021.107099_b63 – start-page: 8 year: 2019 ident: 10.1016/j.asoc.2021.107099_b25 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach – volume: 18 start-page: 2335 issue: 12 year: 2014 ident: 10.1016/j.asoc.2021.107099_b42 article-title: An improved robust and sparse twin support vector regression via linear programming publication-title: Soft Comput. doi: 10.1007/s00500-014-1342-5 – volume: 1 start-page: 161 year: 2001 ident: 10.1016/j.asoc.2021.107099_b56 article-title: Lagrangian Support vector machines publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 85 year: 2014 ident: 10.1016/j.asoc.2021.107099_b43 article-title: Training Lagrangian twin support vector regression via unconstrained convex minimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.01.018 – ident: 10.1016/j.asoc.2021.107099_b16 – volume: 4 start-page: 17 issue: 1 year: 2019 ident: 10.1016/j.asoc.2021.107099_b28 article-title: The effect of Kernel values in support vector machine to forecasting performance of financial time series publication-title: J. Cogn. Syst. – year: 1997 ident: 10.1016/j.asoc.2021.107099_b7 article-title: Support vector regression machines – volume: 23 start-page: 365 issue: 3 year: 2010 ident: 10.1016/j.asoc.2021.107099_b33 article-title: TSVR: an efficient twin support vector machine for regression publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.07.002 – volume: 27 start-page: 183 issue: 2 year: 2018 ident: 10.1016/j.asoc.2021.107099_b20 article-title: An intelligent system for identifying influential words in real-estate classifieds publication-title: J. Intell. Syst. – ident: 10.1016/j.asoc.2021.107099_b68 – volume: 2 start-page: 16 issue: 1 year: 2017 ident: 10.1016/j.asoc.2021.107099_b24 article-title: Prediction of solar radiation based on machine learning methods publication-title: J. Cogn. Syst. – volume: 118 start-page: 225 year: 2013 ident: 10.1016/j.asoc.2021.107099_b39 article-title: Twin least squares support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.005 – volume: 73 start-page: 2846 year: 2010 ident: 10.1016/j.asoc.2021.107099_b59 article-title: Primal twin support vector regression and its sparse approximation publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.08.013 – ident: 10.1016/j.asoc.2021.107099_b60 – volume: 55 start-page: 39 year: 2003 ident: 10.1016/j.asoc.2021.107099_b57 article-title: Finite Newton method for Lagrangian support vector machine publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00379-5 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.asoc.2021.107099_b10 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 225 start-page: 174 year: 2017 ident: 10.1016/j.asoc.2021.107099_b46 article-title: Pairing support vector algorithm for data regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.024 – ident: 10.1016/j.asoc.2021.107099_b64 – year: 2020 ident: 10.1016/j.asoc.2021.107099_b4 article-title: A class of new support vector regression models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106446 – volume: 15 start-page: 268 issue: 2 year: 2004 ident: 10.1016/j.asoc.2021.107099_b13 article-title: Feinberg active set support vector regression publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.824259 – year: 2005 ident: 10.1016/j.asoc.2021.107099_b70 – volume: 74 start-page: 1474 issue: 9 year: 2011 ident: 10.1016/j.asoc.2021.107099_b34 article-title: Reduced twin support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.003 – year: 1998 ident: 10.1016/j.asoc.2021.107099_b53 – volume: 23 start-page: 175 issue: 1 year: 2013 ident: 10.1016/j.asoc.2021.107099_b38 article-title: An ε-twin support vector machine for regression publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0924-3 – volume: 197 start-page: 53 year: 2016 ident: 10.1016/j.asoc.2021.107099_b44 article-title: Weighted Lagrange ε-twin support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.038 – volume: 212 year: 2020 ident: 10.1016/j.asoc.2021.107099_b29 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy doi: 10.1016/j.energy.2020.118750 – volume: 28 start-page: 69 issue: 1 year: 2006 ident: 10.1016/j.asoc.2021.107099_b32 article-title: Wild multisurface proximal support vector machine classification via generalized eigenvalues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.17 – volume: 61 start-page: 259 year: 2004 ident: 10.1016/j.asoc.2021.107099_b15 article-title: A heuristic training for support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.11.012 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2021.107099_b1 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 10.1016/j.asoc.2021.107099_b69 – volume: 74 start-page: 14 year: 2016 ident: 10.1016/j.asoc.2021.107099_b45 article-title: TWSVR: regression via twin support vector machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.10.007 – volume: 11 start-page: 1188 issue: 5 year: 2000 ident: 10.1016/j.asoc.2021.107099_b11 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870050 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.asoc.2021.107099_rg9a article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 21 start-page: 505-513 year: 2012 ident: 10.1016/j.asoc.2021.107099_rg9b article-title: Smooth twin support vector regression publication-title: Neural Computing and Applications – start-page: 635 year: 2020 ident: 10.1016/j.asoc.2021.107099_b61 article-title: Statistical analysis of target tracking algorithms in thermal imagery – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2021.107099_b22 article-title: Prediction of bitcoin prices with machine learning methods using time series data – ident: 10.1016/j.asoc.2021.107099_b65 |
SSID | ssj0016928 |
Score | 2.4438941 |
Snippet | The main objective of twin support vector regression (TSVR) is to find the optimum regression function based on the ε-insensitive up- and down-bound with equal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107099 |
SubjectTerms | Asymmetric loss function Pinball loss Support vector regression Twin support vector regression Unconstrained convex minimization |
Title | On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107099 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG2CXry4izt98CZtZunZjhKUqDGKC-QiQ1cvIZKMIZkoXvwzf8FvsmsWURAPnoZpqqF5VVPL8LqKkAMZeNIIJRkYkIyDApZYs2Hc54qbMI6kwkLxshu27_l5L-g1SKu-C4O0ysr3lz698NbVSrNCszkeDJq3tvKIecJDzy26uGDHT84jtPKjty-ahxsmxXxVFGYoXV2cKTlewiJga0TPtQuRU_R__SU4fQs4p8tkscoU6XF5mBXS0NkqWaqnMNDqo1wjD1cZnTzBbJpTMX0djXBElqQd0bdRqG-VTz_eWf4yyOh0NsZkmz4XP-rpRPdLDmxGkfzep-NBBmI4pEN7NIrxDnW2Tu5PT-5abVYNTWDSd5yc-TJSRkTYB9DhYMtMEyYi8kIdB0b4sVEO14LHCZYuYLM5sDmXBgcSX_kgPONvkLnsKdObhCpHRzqIBejI1hHGhcBmk8qViQHtQyC2iFujlcqqozgOthimNXXsMUWEU0Q4LRHeIodfe8ZlP40_pYNaCekPq0itw_9j3_Y_9-2QBXwrmTm7ZC6fzPSeTTpy2C-sap_MH7duOtf4PLtodz8B_4rbAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cBeeCyg5e3D3lZWk9h5HRECFSjlAEhcUOTxo-qqhKpNQfw4_gK_CTtx0CIhDlwdj2TNTGbmSz7PAPyRcSSNUJKiQUk5KqS5dRvKGVfcJFkqlQOKF4Okd8PPbuPbBThq78I4WqWP_U1Mr6O1X-l6bXYno1H3yiKPjOc8icK6iwv7AYuuO1XcgcXD0_Pe4P1nQpLXI1bdfuoE_N2ZhuYlrBIsTIxCu5AGdQvYT_LTfznnZBWWfbFIDpvzrMGCLn_BSjuIgfj3ch3uLksyfcD5rCJi9nx_76ZkSdIXQ5uIhtb-5PWFVk-jkszmE1dvk8f6Wz2Z6mFDgy2J478PyWRUohiPydgejbiU58y2ATcnx9dHPernJlDJgqCiTKbKiNS1Agw4WqRpklykUaKz2AiWGRVwLXiWO_SCtqBDW3ZpDDBniqGIDNuETvlQ6t9AVKBTHWcCdWqhhAkxtgWlCmVuUDOMxRaErbYK6ZuKu9kW46Jlj_0rnIYLp-Gi0fAW_H2XmTQtNb7cHbdGKD44RmFj_hdy29-UO4Cl3vVFv-ifDs534Kd70hB1dqFTTed6z9YgFe57H3sDqnbcHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+robust+asymmetric+Lagrangian+%CE%BD-twin+support+vector+regression+using+pinball+loss+function&rft.jtitle=Applied+soft+computing&rft.au=Gupta%2C+Deepak&rft.au=Gupta%2C+Umesh&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=102&rft_id=info:doi/10.1016%2Fj.asoc.2021.107099&rft.externalDocID=S1568494621000223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |