Data augmentation based estimation for the censored quantile regression neural network model
Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will l...
Saved in:
Published in | Expert systems with applications Vol. 214; p. 119097 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 |
DOI | 10.1016/j.eswa.2022.119097 |
Cover
Abstract | Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will lead to unbelievable results. Thus, new method for QRNN model with censored data is appealing. In this paper, we propose an iterative approach based on the data augmentation method for censored QRNN model estimation. Firstly the censored data are imputed through a data augmentation process, then the QRNN model is updated with the imputed data, finally we make predictions through the updated QRNN model. It is worth mentioning that simulation studies and real data illustrations show the superiority of our proposed method. Using the results based on full uncensored data as the benchmark, we compare the estimation efficiency of the proposed method with the existing ones. Our method outperforms others in terms of quantile loss and prediction interval width, yielding prediction results that are much closer to the benchmark. The proposed estimation method for censored QRNN model can be easily adapted to deal with different censoring types including left censoring, right censoring and interval censoring, remedying the defect that existing method is only suitable for right censoring type.
•A novel iterative estimation method for the censored QRNN model is developed.•The proposed method works for any censoring type.•The proposed method can be generally prompted to a universality class. |
---|---|
AbstractList | Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will lead to unbelievable results. Thus, new method for QRNN model with censored data is appealing. In this paper, we propose an iterative approach based on the data augmentation method for censored QRNN model estimation. Firstly the censored data are imputed through a data augmentation process, then the QRNN model is updated with the imputed data, finally we make predictions through the updated QRNN model. It is worth mentioning that simulation studies and real data illustrations show the superiority of our proposed method. Using the results based on full uncensored data as the benchmark, we compare the estimation efficiency of the proposed method with the existing ones. Our method outperforms others in terms of quantile loss and prediction interval width, yielding prediction results that are much closer to the benchmark. The proposed estimation method for censored QRNN model can be easily adapted to deal with different censoring types including left censoring, right censoring and interval censoring, remedying the defect that existing method is only suitable for right censoring type.
•A novel iterative estimation method for the censored QRNN model is developed.•The proposed method works for any censoring type.•The proposed method can be generally prompted to a universality class. |
ArticleNumber | 119097 |
Author | Hao, Ruiting Liu, Xinyu Weng, Chengwei Yang, Xiaorong |
Author_xml | – sequence: 1 givenname: Ruiting surname: Hao fullname: Hao, Ruiting email: ruitinghao@yeah.net – sequence: 2 givenname: Chengwei surname: Weng fullname: Weng, Chengwei email: weng_chengwei@163.com – sequence: 3 givenname: Xinyu surname: Liu fullname: Liu, Xinyu email: 18256096319@163.com – sequence: 4 givenname: Xiaorong orcidid: 0000-0003-2841-7310 surname: Yang fullname: Yang, Xiaorong email: yangxr110@126.com |
BookMark | eNp9kMtOwzAQRb0oEm3hB1jlBxLGjpMQiQ0qT6kSG9ghWY49Li6pDbZLxd-TKKxYdHWlmTkj3bMgM-cdEnJBoaBA68ttgfEgCwaMFZS20DYzMoe2anJOG35KFjFuAWgD0MzJ261MMpP7zQ5dksl6l3Uyos4wJrubBsaHLL1jptBFH4bd1166ZHvMAm4CxjgeOdwH2Q-RDj58ZDuvsT8jJ0b2Ec__ckle7-9eVo_5-vnhaXWzzlUJkPKyY6xEWmlTt1yyFiQHw6tWdUh5h6BrZmpuTFVCayrW1bprKlpx1TFsNDTlklxNf1XwMQY0QtmpTArS9oKCGM2IrRjNiNGMmMwMKPuHfoahd_g5Dl1PEA6lvi0GEZVFp1DbgCoJ7e0x_Bf9rYM9 |
CitedBy_id | crossref_primary_10_1002_sim_10221 crossref_primary_10_1109_TII_2024_3476550 crossref_primary_10_1007_s10489_024_05308_1 crossref_primary_10_1051_e3sconf_202338906030 crossref_primary_10_3390_math12121782 crossref_primary_10_1016_j_jobe_2023_107772 crossref_primary_10_3390_math13020192 crossref_primary_10_1007_s13369_024_08794_0 |
Cites_doi | 10.1111/j.2517-6161.1972.tb00899.x 10.1016/j.eswa.2018.05.011 10.1198/016214502388618663 10.1198/016214503000000954 10.1016/j.compeleceng.2021.107383 10.1016/j.csda.2008.10.037 10.1016/j.cageo.2010.07.005 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2 10.1155/2021/6682793 10.1016/0304-4076(84)90004-6 10.1016/j.asoc.2017.04.014 10.1016/0304-4076(86)90016-3 10.1002/sim.4780111409 10.1016/j.heliyon.2018.e00938 10.1016/j.eswa.2017.01.054 10.1111/j.2517-6161.1995.tb02042.x 10.1002/bimj.200900111 10.3150/11-BEJ388 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V 10.1109/TSG.2018.2859749 10.1016/j.enconman.2018.03.010 10.1016/S1352-2310(97)00447-0 10.1016/j.apenergy.2018.10.061 10.1016/j.csda.2021.107323 10.1016/j.chaos.2021.111445 10.1111/j.2517-6161.1977.tb01600.x 10.2307/1913643 10.1198/016214508000000355 10.1080/01621459.1987.10478458 10.1093/biomet/asn034 10.1016/j.eswa.2015.03.003 10.1080/10618600.2017.1385469 10.1016/j.eswa.2020.114155 10.1016/j.energy.2016.08.023 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.119097 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2022_119097 S0957417422021157 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFXIZ AGQPQ AGRNS ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-3b223e15df694a290a40f459cbe14be0d62f64ff5309f52b6db75154cb2e7d073 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Thu Jul 31 00:40:22 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Sat Aug 23 17:11:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Censored data Quantile regression neural network Data augmentation Imputation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3b223e15df694a290a40f459cbe14be0d62f64ff5309f52b6db75154cb2e7d073 |
ORCID | 0000-0003-2841-7310 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_119097 crossref_primary_10_1016_j_eswa_2022_119097 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119097 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Albahri, Alnoor, Zaidan, Albahri, Hameed, Zaidan (b4) 2021 Buchinsky, Hahn (b6) 1998; 65 He, Xu, Wan, Yang (b16) 2016; 114 Jia, Jeong (b18) 2022; 165 Chernozhukov, Hong (b10) 2002; 97 Albahri, Alnoor, Zaidan, Albahri, Hameed, Zaidan (b3) 2021; 153 Yang, Narisetty, He (b39) 2018; 27 Jin, Zhao (b19) 2021; 2021 Li, Bradic (b25) 2020 Cannon (b7) 2011; 37 White (b36) 1992 Zhang, Quan, Srinivasan (b40) 2018; 10 Powell (b28) 1984; 25 Peng, Huang (b26) 2008; 103 Wei (b34) 1992; 11 Alamoodi, Zaidan, Zaidan, Albahri, Mohammed, Malik (b2) 2021; 167 Cox (b11) 1972; 34 Hsieh, Tang (b17) 1998; 79 Taylor (b33) 2000; 19 Xu, Zhang, Jiang, Huang, He (b38) 2015; 42 Portnoy (b27) 2003; 98 Dempster, Laird, Rubin (b12) 1977; 39 Gardner, Dorling (b13) 1998; 32 Alrubayi, Ahmed, Zaidan, Albahri, Zaidan, Albahri (b5) 2021; 95 He, Qin, Wang, Wang, Wang (b15) 2019; 233 He, Li (b14) 2018; 164 Kristjanpoller, Minutolo (b23) 2018; 109 Wei, Tanner (b35) 1991; 129 Kareem, Zaidan, Ahmed, Zaidan, Albahri, Alamoodi (b20) 2021 Powell (b29) 1986; 32 Xu, Deng, Jiang, Sun, Huang (b37) 2017; 76 Tanner, Wong (b32) 1987; 82 Chen, Chen (b9) 2008; 95 Leng, Tong (b24) 2013; 19 Shim, Hwang (b31) 2009; 53 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b1) 2018; 4 Kim, Cho, Kim, Jhun (b21) 2010; 52 Carlin, Chib (b8) 1995; 57 Pradeepkumar, Ravi (b30) 2017; 58 Koenker, Bassett Jr (b22) 1978; 46 Dempster (10.1016/j.eswa.2022.119097_b12) 1977; 39 He (10.1016/j.eswa.2022.119097_b14) 2018; 164 Chen (10.1016/j.eswa.2022.119097_b9) 2008; 95 Cox (10.1016/j.eswa.2022.119097_b11) 1972; 34 He (10.1016/j.eswa.2022.119097_b15) 2019; 233 White (10.1016/j.eswa.2022.119097_b36) 1992 Zhang (10.1016/j.eswa.2022.119097_b40) 2018; 10 Carlin (10.1016/j.eswa.2022.119097_b8) 1995; 57 Pradeepkumar (10.1016/j.eswa.2022.119097_b30) 2017; 58 Li (10.1016/j.eswa.2022.119097_b25) 2020 Yang (10.1016/j.eswa.2022.119097_b39) 2018; 27 Chernozhukov (10.1016/j.eswa.2022.119097_b10) 2002; 97 Powell (10.1016/j.eswa.2022.119097_b28) 1984; 25 Wei (10.1016/j.eswa.2022.119097_b35) 1991; 129 Xu (10.1016/j.eswa.2022.119097_b37) 2017; 76 Hsieh (10.1016/j.eswa.2022.119097_b17) 1998; 79 Gardner (10.1016/j.eswa.2022.119097_b13) 1998; 32 Leng (10.1016/j.eswa.2022.119097_b24) 2013; 19 Albahri (10.1016/j.eswa.2022.119097_b4) 2021 Kareem (10.1016/j.eswa.2022.119097_b20) 2021 Alamoodi (10.1016/j.eswa.2022.119097_b2) 2021; 167 Jin (10.1016/j.eswa.2022.119097_b19) 2021; 2021 Peng (10.1016/j.eswa.2022.119097_b26) 2008; 103 Powell (10.1016/j.eswa.2022.119097_b29) 1986; 32 He (10.1016/j.eswa.2022.119097_b16) 2016; 114 Alrubayi (10.1016/j.eswa.2022.119097_b5) 2021; 95 Koenker (10.1016/j.eswa.2022.119097_b22) 1978; 46 Kim (10.1016/j.eswa.2022.119097_b21) 2010; 52 Cannon (10.1016/j.eswa.2022.119097_b7) 2011; 37 Wei (10.1016/j.eswa.2022.119097_b34) 1992; 11 Jia (10.1016/j.eswa.2022.119097_b18) 2022; 165 Xu (10.1016/j.eswa.2022.119097_b38) 2015; 42 Taylor (10.1016/j.eswa.2022.119097_b33) 2000; 19 Kristjanpoller (10.1016/j.eswa.2022.119097_b23) 2018; 109 Shim (10.1016/j.eswa.2022.119097_b31) 2009; 53 Abiodun (10.1016/j.eswa.2022.119097_b1) 2018; 4 Tanner (10.1016/j.eswa.2022.119097_b32) 1987; 82 Portnoy (10.1016/j.eswa.2022.119097_b27) 2003; 98 Buchinsky (10.1016/j.eswa.2022.119097_b6) 1998; 65 Albahri (10.1016/j.eswa.2022.119097_b3) 2021; 153 |
References_xml | – volume: 52 start-page: 201 year: 2010 end-page: 208 ident: b21 article-title: Median regression model with interval censored data publication-title: Biometrical Journal: Journal of Mathematical Methods in Biosciences – start-page: 2109 year: 2020 end-page: 2119 ident: b25 article-title: Censored quantile regression forest publication-title: International Conference on Artificial Intelligence and Statistics – volume: 27 start-page: 417 year: 2018 end-page: 425 ident: b39 article-title: A new approach to censored quantile regression estimation publication-title: Journal of Computational and Graphical Statistics – start-page: 1 year: 2021 end-page: 23 ident: b20 article-title: An approach to pedestrian walking behaviour classification in wireless communication and network failure contexts publication-title: Complex & Intelligent Systems – volume: 34 start-page: 187 year: 1972 end-page: 202 ident: b11 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – volume: 2021 year: 2021 ident: b19 article-title: Composite quantile regression neural network for massive datasets publication-title: Mathematical Problems in Engineering – volume: 153 year: 2021 ident: b3 article-title: Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review publication-title: Chaos, Solitons & Fractals – volume: 97 start-page: 872 year: 2002 end-page: 882 ident: b10 article-title: Three-step censored quantile regression and extramarital affairs publication-title: Journal of the American Statistical Association – volume: 58 start-page: 35 year: 2017 end-page: 52 ident: b30 article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network publication-title: Applied Soft Computing – volume: 103 start-page: 637 year: 2008 end-page: 649 ident: b26 article-title: Survival analysis with quantile regression models publication-title: Journal of the American Statistical Association – volume: 32 start-page: 143 year: 1986 end-page: 155 ident: b29 article-title: Censored regression quantiles publication-title: Journal of Econometrics – volume: 19 start-page: 299 year: 2000 end-page: 311 ident: b33 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: Journal of Forecasting – start-page: 190 year: 1992 end-page: 199 ident: b36 article-title: Nonparametric estimation of conditional quantiles using neural networks publication-title: Computing science and statistics – volume: 95 year: 2021 ident: b5 article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques publication-title: Computers and Electrical Engineering – volume: 167 year: 2021 ident: b2 article-title: Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review publication-title: Expert Systems with Applications – start-page: 1 year: 2021 end-page: 21 ident: b4 article-title: Hybrid artificial neural network and structural equation modelling techniques: A survey publication-title: Complex & Intelligent Systems – volume: 65 year: 1998 ident: b6 article-title: An alternative estimator for the censored quantile regression model publication-title: Econometrica – volume: 76 start-page: 129 year: 2017 end-page: 139 ident: b37 article-title: Composite quantile regression neural network with applications publication-title: Expert Systems with Applications – volume: 32 start-page: 2627 year: 1998 end-page: 2636 ident: b13 article-title: Artificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciences publication-title: Atmospheric Enviroment – volume: 25 start-page: 303 year: 1984 end-page: 325 ident: b28 article-title: Least absolute deviations estimation for the censored regression model publication-title: Journal of Econometrics – volume: 42 start-page: 5441 year: 2015 end-page: 5451 ident: b38 article-title: Weighted quantile regression via support vector machine publication-title: Expert Systems with Applications – volume: 98 start-page: 1001 year: 2003 end-page: 1012 ident: b27 article-title: Censored regression quantiles publication-title: Journal of the American Statistical Association – volume: 164 start-page: 374 year: 2018 end-page: 384 ident: b14 article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation publication-title: Energy Conversion and Management – volume: 129 start-page: 7 year: 1991 end-page: 1309 ident: b35 article-title: Applications of multiple imputation to the analysis of censored regression data publication-title: Biometrics – volume: 10 start-page: 4425 year: 2018 end-page: 4434 ident: b40 article-title: An improved quantile regression neural network for probabilistic load forecasting publication-title: IEEE Transactions on Smart Grid – volume: 57 start-page: 473 year: 1995 end-page: 484 ident: b8 article-title: Bayesian model choice via Markov chain Monte Carlo methods publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – volume: 233 start-page: 565 year: 2019 end-page: 575 ident: b15 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile regression neural network publication-title: Applied Energy – volume: 95 start-page: 759 year: 2008 end-page: 771 ident: b9 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika – volume: 4 year: 2018 ident: b1 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon – volume: 114 start-page: 498 year: 2016 end-page: 512 ident: b16 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy – volume: 82 start-page: 528 year: 1987 end-page: 540 ident: b32 article-title: The calculation of posterior distributions by data augmentation publication-title: Journal of the American Statistical Association – volume: 37 start-page: 1277 year: 2011 end-page: 1284 ident: b7 article-title: Quantile regression neural networks: Implementation R and application to precipitation downscaling publication-title: Computers & Geosciences – volume: 19 start-page: 344 year: 2013 end-page: 361 ident: b24 article-title: A quantile regression estimator for censored data publication-title: Bernoulli – volume: 53 start-page: 912 year: 2009 end-page: 919 ident: b31 article-title: Support vector censored quantile regression under random censoring publication-title: Computational Statistics & Data Analysis – volume: 46 start-page: 33 year: 1978 end-page: 50 ident: b22 article-title: Regression quantiles publication-title: Econometrica – volume: 79 start-page: 1855 year: 1998 end-page: 1870 ident: b17 article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography publication-title: Bulletin of the American Meteorological Society – volume: 109 start-page: 1 year: 2018 end-page: 11 ident: b23 article-title: A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis publication-title: Expert Systems with Applications – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b12 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – volume: 165 year: 2022 ident: b18 article-title: Deep learning for quantile regression under right censoring: DeepQuantreg publication-title: Computational Statistics & Data Analysis – volume: 11 start-page: 1871 year: 1992 end-page: 1879 ident: b34 article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis publication-title: Statistics in Medicine – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 10.1016/j.eswa.2022.119097_b11 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 129 start-page: 7 year: 1991 ident: 10.1016/j.eswa.2022.119097_b35 article-title: Applications of multiple imputation to the analysis of censored regression data publication-title: Biometrics – volume: 109 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2022.119097_b23 article-title: A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.05.011 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.119097_b4 article-title: Hybrid artificial neural network and structural equation modelling techniques: A survey publication-title: Complex & Intelligent Systems – volume: 97 start-page: 872 issue: 459 year: 2002 ident: 10.1016/j.eswa.2022.119097_b10 article-title: Three-step censored quantile regression and extramarital affairs publication-title: Journal of the American Statistical Association doi: 10.1198/016214502388618663 – volume: 98 start-page: 1001 issue: 464 year: 2003 ident: 10.1016/j.eswa.2022.119097_b27 article-title: Censored regression quantiles publication-title: Journal of the American Statistical Association doi: 10.1198/016214503000000954 – volume: 95 year: 2021 ident: 10.1016/j.eswa.2022.119097_b5 article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2021.107383 – volume: 53 start-page: 912 issue: 4 year: 2009 ident: 10.1016/j.eswa.2022.119097_b31 article-title: Support vector censored quantile regression under random censoring publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2008.10.037 – volume: 37 start-page: 1277 issue: 9 year: 2011 ident: 10.1016/j.eswa.2022.119097_b7 article-title: Quantile regression neural networks: Implementation R and application to precipitation downscaling publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2010.07.005 – volume: 65 year: 1998 ident: 10.1016/j.eswa.2022.119097_b6 article-title: An alternative estimator for the censored quantile regression model publication-title: Econometrica – volume: 79 start-page: 1855 issue: 9 year: 1998 ident: 10.1016/j.eswa.2022.119097_b17 article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography publication-title: Bulletin of the American Meteorological Society doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2 – volume: 2021 year: 2021 ident: 10.1016/j.eswa.2022.119097_b19 article-title: Composite quantile regression neural network for massive datasets publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/6682793 – volume: 25 start-page: 303 issue: 3 year: 1984 ident: 10.1016/j.eswa.2022.119097_b28 article-title: Least absolute deviations estimation for the censored regression model publication-title: Journal of Econometrics doi: 10.1016/0304-4076(84)90004-6 – volume: 58 start-page: 35 year: 2017 ident: 10.1016/j.eswa.2022.119097_b30 article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.04.014 – volume: 32 start-page: 143 issue: 1 year: 1986 ident: 10.1016/j.eswa.2022.119097_b29 article-title: Censored regression quantiles publication-title: Journal of Econometrics doi: 10.1016/0304-4076(86)90016-3 – volume: 11 start-page: 1871 issue: 14–15 year: 1992 ident: 10.1016/j.eswa.2022.119097_b34 article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis publication-title: Statistics in Medicine doi: 10.1002/sim.4780111409 – volume: 4 issue: 11 year: 2018 ident: 10.1016/j.eswa.2022.119097_b1 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 76 start-page: 129 year: 2017 ident: 10.1016/j.eswa.2022.119097_b37 article-title: Composite quantile regression neural network with applications publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.054 – volume: 57 start-page: 473 issue: 3 year: 1995 ident: 10.1016/j.eswa.2022.119097_b8 article-title: Bayesian model choice via Markov chain Monte Carlo methods publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1995.tb02042.x – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.119097_b20 article-title: An approach to pedestrian walking behaviour classification in wireless communication and network failure contexts publication-title: Complex & Intelligent Systems – volume: 52 start-page: 201 issue: 2 year: 2010 ident: 10.1016/j.eswa.2022.119097_b21 article-title: Median regression model with interval censored data publication-title: Biometrical Journal: Journal of Mathematical Methods in Biosciences doi: 10.1002/bimj.200900111 – volume: 19 start-page: 344 issue: 1 year: 2013 ident: 10.1016/j.eswa.2022.119097_b24 article-title: A quantile regression estimator for censored data publication-title: Bernoulli doi: 10.3150/11-BEJ388 – volume: 19 start-page: 299 issue: 4 year: 2000 ident: 10.1016/j.eswa.2022.119097_b33 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: Journal of Forecasting doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V – volume: 10 start-page: 4425 issue: 4 year: 2018 ident: 10.1016/j.eswa.2022.119097_b40 article-title: An improved quantile regression neural network for probabilistic load forecasting publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2859749 – volume: 164 start-page: 374 year: 2018 ident: 10.1016/j.eswa.2022.119097_b14 article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.03.010 – start-page: 190 year: 1992 ident: 10.1016/j.eswa.2022.119097_b36 article-title: Nonparametric estimation of conditional quantiles using neural networks – volume: 32 start-page: 2627 issue: 14–15 year: 1998 ident: 10.1016/j.eswa.2022.119097_b13 article-title: Artificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciences publication-title: Atmospheric Enviroment doi: 10.1016/S1352-2310(97)00447-0 – volume: 233 start-page: 565 year: 2019 ident: 10.1016/j.eswa.2022.119097_b15 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile regression neural network publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.10.061 – volume: 165 year: 2022 ident: 10.1016/j.eswa.2022.119097_b18 article-title: Deep learning for quantile regression under right censoring: DeepQuantreg publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2021.107323 – volume: 153 year: 2021 ident: 10.1016/j.eswa.2022.119097_b3 article-title: Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2021.111445 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.eswa.2022.119097_b12 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 46 start-page: 33 issue: 1 year: 1978 ident: 10.1016/j.eswa.2022.119097_b22 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 103 start-page: 637 issue: 482 year: 2008 ident: 10.1016/j.eswa.2022.119097_b26 article-title: Survival analysis with quantile regression models publication-title: Journal of the American Statistical Association doi: 10.1198/016214508000000355 – volume: 82 start-page: 528 issue: 398 year: 1987 ident: 10.1016/j.eswa.2022.119097_b32 article-title: The calculation of posterior distributions by data augmentation publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478458 – volume: 95 start-page: 759 issue: 3 year: 2008 ident: 10.1016/j.eswa.2022.119097_b9 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika doi: 10.1093/biomet/asn034 – volume: 42 start-page: 5441 issue: 13 year: 2015 ident: 10.1016/j.eswa.2022.119097_b38 article-title: Weighted quantile regression via support vector machine publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.03.003 – start-page: 2109 year: 2020 ident: 10.1016/j.eswa.2022.119097_b25 article-title: Censored quantile regression forest – volume: 27 start-page: 417 issue: 2 year: 2018 ident: 10.1016/j.eswa.2022.119097_b39 article-title: A new approach to censored quantile regression estimation publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2017.1385469 – volume: 167 year: 2021 ident: 10.1016/j.eswa.2022.119097_b2 article-title: Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114155 – volume: 114 start-page: 498 year: 2016 ident: 10.1016/j.eswa.2022.119097_b16 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy doi: 10.1016/j.energy.2016.08.023 |
SSID | ssj0017007 |
Score | 2.4306586 |
Snippet | Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119097 |
SubjectTerms | Censored data Data augmentation Imputation Quantile regression neural network |
Title | Data augmentation based estimation for the censored quantile regression neural network model |
URI | https://dx.doi.org/10.1016/j.eswa.2022.119097 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdmHhG1G-5IENhTqJncQjAqoCogtUYkCK7NhBIEhLScXGb-dcOwgk1IE18SnRxX73HN-9AzhSItaxsb_AqDABEyFDHBQ6QOpQRIkqOTe2OPlmmAxG7Oqe3y_BWVMLY9MqPfY7TJ-jtb_S897sTZ6eerdIDjAc4tYO9-9WMqYFnSgWCW9D5_TyejD8PkxIqauaxvGBNfC1My7Ny7x_WPmhKELwEHPtp7_i04-Y01-DFU8Wyal7n3VYMtUGrDaNGIhfl5vwcC5rSeTs8dVXElXERidNrISGq00kSE4Jkj1S4L51PMV7bzN0KmICmZpHlwxbEatuiQ-sXG44mbfJ2YJR_-LubBD4tglBEVNaB7HCkG9CrstEMBkJKhktGReFMiFThuokKhNWljymouSRSrRKkdWwQkUm1bjkt6FdjSuzAySTKk65DHlWpEwxLVMdJhmTJSsyrRjtQtg4Ky-8prhtbfGSN8ljz7l1cG4dnDsHd-H422biFDUWjubNN8h_zYscIX-B3e4_7fZg2TaUt1lmId-Hdj2dmQOkHbU6hNbJZ3joJ9cXJavXjw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCh0HzYSTyiQlWg7UIrdUCK7NipiiAtJRUbv51z7FQgoQ6sia1EL_bdc_TuHUKXggUyUPoXmMuUQ5hHIA4y6QB1SP1QZJQqXZzc64edIXkY0VENtapaGC2rtLHfxPQyWtsrTYtmczaZNJ-AHEA6hKMdnN-1ZcwaWic0iLSu7_prqfPQ_nORMdyLHD3cVs4YkZf6-NTmQ74PoYOVzk9_ZacfGae9g7YsVcQ35m12UU3le2i7asOA7a7cR8-3vOCYL8Zvto4oxzo3SawNNExlIgZqioHq4RROrdM53HtfAKQQEfBcjY0UNsfa2xIemBtlOC6b5BygYftu0Oo4tmmCkwauWziBgISvPCqzkBHuM5cTNyOUpUJ5RChXhn4Wkiyjgcsy6otQigg4DUmFryIJG_4Q1fNpro4QjrkAOLlH4zQigkgeSS-MCc9IGktB3AbyKrCS1DqK68YWr0klHXtJNMCJBjgxADfQ1XLOzPhprBxNq2-Q_FoVCQT8FfOO_znvAm10Br1u0r3vP56gTd1aXuvNPHqK6sV8oc6AgBTivFxg3_YQ2Fo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+augmentation+based+estimation+for+the+censored+quantile+regression+neural+network+model&rft.jtitle=Expert+systems+with+applications&rft.au=Hao%2C+Ruiting&rft.au=Weng%2C+Chengwei&rft.au=Liu%2C+Xinyu&rft.au=Yang%2C+Xiaorong&rft.date=2023-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=214&rft_id=info:doi/10.1016%2Fj.eswa.2022.119097&rft.externalDocID=S0957417422021157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |