Data augmentation based estimation for the censored quantile regression neural network model

Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will l...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 214; p. 119097
Main Authors Hao, Ruiting, Weng, Chengwei, Liu, Xinyu, Yang, Xiaorong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2023
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2022.119097

Cover

Abstract Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will lead to unbelievable results. Thus, new method for QRNN model with censored data is appealing. In this paper, we propose an iterative approach based on the data augmentation method for censored QRNN model estimation. Firstly the censored data are imputed through a data augmentation process, then the QRNN model is updated with the imputed data, finally we make predictions through the updated QRNN model. It is worth mentioning that simulation studies and real data illustrations show the superiority of our proposed method. Using the results based on full uncensored data as the benchmark, we compare the estimation efficiency of the proposed method with the existing ones. Our method outperforms others in terms of quantile loss and prediction interval width, yielding prediction results that are much closer to the benchmark. The proposed estimation method for censored QRNN model can be easily adapted to deal with different censoring types including left censoring, right censoring and interval censoring, remedying the defect that existing method is only suitable for right censoring type. •A novel iterative estimation method for the censored QRNN model is developed.•The proposed method works for any censoring type.•The proposed method can be generally prompted to a universality class.
AbstractList Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses yi are subject to censoring (left censoring, right censoring and interval censoring might occur), predictions by using observed data, will lead to unbelievable results. Thus, new method for QRNN model with censored data is appealing. In this paper, we propose an iterative approach based on the data augmentation method for censored QRNN model estimation. Firstly the censored data are imputed through a data augmentation process, then the QRNN model is updated with the imputed data, finally we make predictions through the updated QRNN model. It is worth mentioning that simulation studies and real data illustrations show the superiority of our proposed method. Using the results based on full uncensored data as the benchmark, we compare the estimation efficiency of the proposed method with the existing ones. Our method outperforms others in terms of quantile loss and prediction interval width, yielding prediction results that are much closer to the benchmark. The proposed estimation method for censored QRNN model can be easily adapted to deal with different censoring types including left censoring, right censoring and interval censoring, remedying the defect that existing method is only suitable for right censoring type. •A novel iterative estimation method for the censored QRNN model is developed.•The proposed method works for any censoring type.•The proposed method can be generally prompted to a universality class.
ArticleNumber 119097
Author Hao, Ruiting
Liu, Xinyu
Weng, Chengwei
Yang, Xiaorong
Author_xml – sequence: 1
  givenname: Ruiting
  surname: Hao
  fullname: Hao, Ruiting
  email: ruitinghao@yeah.net
– sequence: 2
  givenname: Chengwei
  surname: Weng
  fullname: Weng, Chengwei
  email: weng_chengwei@163.com
– sequence: 3
  givenname: Xinyu
  surname: Liu
  fullname: Liu, Xinyu
  email: 18256096319@163.com
– sequence: 4
  givenname: Xiaorong
  orcidid: 0000-0003-2841-7310
  surname: Yang
  fullname: Yang, Xiaorong
  email: yangxr110@126.com
BookMark eNp9kMtOwzAQRb0oEm3hB1jlBxLGjpMQiQ0qT6kSG9ghWY49Li6pDbZLxd-TKKxYdHWlmTkj3bMgM-cdEnJBoaBA68ttgfEgCwaMFZS20DYzMoe2anJOG35KFjFuAWgD0MzJ261MMpP7zQ5dksl6l3Uyos4wJrubBsaHLL1jptBFH4bd1166ZHvMAm4CxjgeOdwH2Q-RDj58ZDuvsT8jJ0b2Ec__ckle7-9eVo_5-vnhaXWzzlUJkPKyY6xEWmlTt1yyFiQHw6tWdUh5h6BrZmpuTFVCayrW1bprKlpx1TFsNDTlklxNf1XwMQY0QtmpTArS9oKCGM2IrRjNiNGMmMwMKPuHfoahd_g5Dl1PEA6lvi0GEZVFp1DbgCoJ7e0x_Bf9rYM9
CitedBy_id crossref_primary_10_1002_sim_10221
crossref_primary_10_1109_TII_2024_3476550
crossref_primary_10_1007_s10489_024_05308_1
crossref_primary_10_1051_e3sconf_202338906030
crossref_primary_10_3390_math12121782
crossref_primary_10_1016_j_jobe_2023_107772
crossref_primary_10_3390_math13020192
crossref_primary_10_1007_s13369_024_08794_0
Cites_doi 10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.eswa.2018.05.011
10.1198/016214502388618663
10.1198/016214503000000954
10.1016/j.compeleceng.2021.107383
10.1016/j.csda.2008.10.037
10.1016/j.cageo.2010.07.005
10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2
10.1155/2021/6682793
10.1016/0304-4076(84)90004-6
10.1016/j.asoc.2017.04.014
10.1016/0304-4076(86)90016-3
10.1002/sim.4780111409
10.1016/j.heliyon.2018.e00938
10.1016/j.eswa.2017.01.054
10.1111/j.2517-6161.1995.tb02042.x
10.1002/bimj.200900111
10.3150/11-BEJ388
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1109/TSG.2018.2859749
10.1016/j.enconman.2018.03.010
10.1016/S1352-2310(97)00447-0
10.1016/j.apenergy.2018.10.061
10.1016/j.csda.2021.107323
10.1016/j.chaos.2021.111445
10.1111/j.2517-6161.1977.tb01600.x
10.2307/1913643
10.1198/016214508000000355
10.1080/01621459.1987.10478458
10.1093/biomet/asn034
10.1016/j.eswa.2015.03.003
10.1080/10618600.2017.1385469
10.1016/j.eswa.2020.114155
10.1016/j.energy.2016.08.023
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119097
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2022_119097
S0957417422021157
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFXIZ
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-3b223e15df694a290a40f459cbe14be0d62f64ff5309f52b6db75154cb2e7d073
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Thu Jul 31 00:40:22 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Sat Aug 23 17:11:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Censored data
Quantile regression neural network
Data augmentation
Imputation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3b223e15df694a290a40f459cbe14be0d62f64ff5309f52b6db75154cb2e7d073
ORCID 0000-0003-2841-7310
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_119097
crossref_primary_10_1016_j_eswa_2022_119097
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119097
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Albahri, Alnoor, Zaidan, Albahri, Hameed, Zaidan (b4) 2021
Buchinsky, Hahn (b6) 1998; 65
He, Xu, Wan, Yang (b16) 2016; 114
Jia, Jeong (b18) 2022; 165
Chernozhukov, Hong (b10) 2002; 97
Albahri, Alnoor, Zaidan, Albahri, Hameed, Zaidan (b3) 2021; 153
Yang, Narisetty, He (b39) 2018; 27
Jin, Zhao (b19) 2021; 2021
Li, Bradic (b25) 2020
Cannon (b7) 2011; 37
White (b36) 1992
Zhang, Quan, Srinivasan (b40) 2018; 10
Powell (b28) 1984; 25
Peng, Huang (b26) 2008; 103
Wei (b34) 1992; 11
Alamoodi, Zaidan, Zaidan, Albahri, Mohammed, Malik (b2) 2021; 167
Cox (b11) 1972; 34
Hsieh, Tang (b17) 1998; 79
Taylor (b33) 2000; 19
Xu, Zhang, Jiang, Huang, He (b38) 2015; 42
Portnoy (b27) 2003; 98
Dempster, Laird, Rubin (b12) 1977; 39
Gardner, Dorling (b13) 1998; 32
Alrubayi, Ahmed, Zaidan, Albahri, Zaidan, Albahri (b5) 2021; 95
He, Qin, Wang, Wang, Wang (b15) 2019; 233
He, Li (b14) 2018; 164
Kristjanpoller, Minutolo (b23) 2018; 109
Wei, Tanner (b35) 1991; 129
Kareem, Zaidan, Ahmed, Zaidan, Albahri, Alamoodi (b20) 2021
Powell (b29) 1986; 32
Xu, Deng, Jiang, Sun, Huang (b37) 2017; 76
Tanner, Wong (b32) 1987; 82
Chen, Chen (b9) 2008; 95
Leng, Tong (b24) 2013; 19
Shim, Hwang (b31) 2009; 53
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b1) 2018; 4
Kim, Cho, Kim, Jhun (b21) 2010; 52
Carlin, Chib (b8) 1995; 57
Pradeepkumar, Ravi (b30) 2017; 58
Koenker, Bassett Jr (b22) 1978; 46
Dempster (10.1016/j.eswa.2022.119097_b12) 1977; 39
He (10.1016/j.eswa.2022.119097_b14) 2018; 164
Chen (10.1016/j.eswa.2022.119097_b9) 2008; 95
Cox (10.1016/j.eswa.2022.119097_b11) 1972; 34
He (10.1016/j.eswa.2022.119097_b15) 2019; 233
White (10.1016/j.eswa.2022.119097_b36) 1992
Zhang (10.1016/j.eswa.2022.119097_b40) 2018; 10
Carlin (10.1016/j.eswa.2022.119097_b8) 1995; 57
Pradeepkumar (10.1016/j.eswa.2022.119097_b30) 2017; 58
Li (10.1016/j.eswa.2022.119097_b25) 2020
Yang (10.1016/j.eswa.2022.119097_b39) 2018; 27
Chernozhukov (10.1016/j.eswa.2022.119097_b10) 2002; 97
Powell (10.1016/j.eswa.2022.119097_b28) 1984; 25
Wei (10.1016/j.eswa.2022.119097_b35) 1991; 129
Xu (10.1016/j.eswa.2022.119097_b37) 2017; 76
Hsieh (10.1016/j.eswa.2022.119097_b17) 1998; 79
Gardner (10.1016/j.eswa.2022.119097_b13) 1998; 32
Leng (10.1016/j.eswa.2022.119097_b24) 2013; 19
Albahri (10.1016/j.eswa.2022.119097_b4) 2021
Kareem (10.1016/j.eswa.2022.119097_b20) 2021
Alamoodi (10.1016/j.eswa.2022.119097_b2) 2021; 167
Jin (10.1016/j.eswa.2022.119097_b19) 2021; 2021
Peng (10.1016/j.eswa.2022.119097_b26) 2008; 103
Powell (10.1016/j.eswa.2022.119097_b29) 1986; 32
He (10.1016/j.eswa.2022.119097_b16) 2016; 114
Alrubayi (10.1016/j.eswa.2022.119097_b5) 2021; 95
Koenker (10.1016/j.eswa.2022.119097_b22) 1978; 46
Kim (10.1016/j.eswa.2022.119097_b21) 2010; 52
Cannon (10.1016/j.eswa.2022.119097_b7) 2011; 37
Wei (10.1016/j.eswa.2022.119097_b34) 1992; 11
Jia (10.1016/j.eswa.2022.119097_b18) 2022; 165
Xu (10.1016/j.eswa.2022.119097_b38) 2015; 42
Taylor (10.1016/j.eswa.2022.119097_b33) 2000; 19
Kristjanpoller (10.1016/j.eswa.2022.119097_b23) 2018; 109
Shim (10.1016/j.eswa.2022.119097_b31) 2009; 53
Abiodun (10.1016/j.eswa.2022.119097_b1) 2018; 4
Tanner (10.1016/j.eswa.2022.119097_b32) 1987; 82
Portnoy (10.1016/j.eswa.2022.119097_b27) 2003; 98
Buchinsky (10.1016/j.eswa.2022.119097_b6) 1998; 65
Albahri (10.1016/j.eswa.2022.119097_b3) 2021; 153
References_xml – volume: 52
  start-page: 201
  year: 2010
  end-page: 208
  ident: b21
  article-title: Median regression model with interval censored data
  publication-title: Biometrical Journal: Journal of Mathematical Methods in Biosciences
– start-page: 2109
  year: 2020
  end-page: 2119
  ident: b25
  article-title: Censored quantile regression forest
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 27
  start-page: 417
  year: 2018
  end-page: 425
  ident: b39
  article-title: A new approach to censored quantile regression estimation
  publication-title: Journal of Computational and Graphical Statistics
– start-page: 1
  year: 2021
  end-page: 23
  ident: b20
  article-title: An approach to pedestrian walking behaviour classification in wireless communication and network failure contexts
  publication-title: Complex & Intelligent Systems
– volume: 34
  start-page: 187
  year: 1972
  end-page: 202
  ident: b11
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 2021
  year: 2021
  ident: b19
  article-title: Composite quantile regression neural network for massive datasets
  publication-title: Mathematical Problems in Engineering
– volume: 153
  year: 2021
  ident: b3
  article-title: Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review
  publication-title: Chaos, Solitons & Fractals
– volume: 97
  start-page: 872
  year: 2002
  end-page: 882
  ident: b10
  article-title: Three-step censored quantile regression and extramarital affairs
  publication-title: Journal of the American Statistical Association
– volume: 58
  start-page: 35
  year: 2017
  end-page: 52
  ident: b30
  article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network
  publication-title: Applied Soft Computing
– volume: 103
  start-page: 637
  year: 2008
  end-page: 649
  ident: b26
  article-title: Survival analysis with quantile regression models
  publication-title: Journal of the American Statistical Association
– volume: 32
  start-page: 143
  year: 1986
  end-page: 155
  ident: b29
  article-title: Censored regression quantiles
  publication-title: Journal of Econometrics
– volume: 19
  start-page: 299
  year: 2000
  end-page: 311
  ident: b33
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: Journal of Forecasting
– start-page: 190
  year: 1992
  end-page: 199
  ident: b36
  article-title: Nonparametric estimation of conditional quantiles using neural networks
  publication-title: Computing science and statistics
– volume: 95
  year: 2021
  ident: b5
  article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques
  publication-title: Computers and Electrical Engineering
– volume: 167
  year: 2021
  ident: b2
  article-title: Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2021
  end-page: 21
  ident: b4
  article-title: Hybrid artificial neural network and structural equation modelling techniques: A survey
  publication-title: Complex & Intelligent Systems
– volume: 65
  year: 1998
  ident: b6
  article-title: An alternative estimator for the censored quantile regression model
  publication-title: Econometrica
– volume: 76
  start-page: 129
  year: 2017
  end-page: 139
  ident: b37
  article-title: Composite quantile regression neural network with applications
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 2627
  year: 1998
  end-page: 2636
  ident: b13
  article-title: Artificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciences
  publication-title: Atmospheric Enviroment
– volume: 25
  start-page: 303
  year: 1984
  end-page: 325
  ident: b28
  article-title: Least absolute deviations estimation for the censored regression model
  publication-title: Journal of Econometrics
– volume: 42
  start-page: 5441
  year: 2015
  end-page: 5451
  ident: b38
  article-title: Weighted quantile regression via support vector machine
  publication-title: Expert Systems with Applications
– volume: 98
  start-page: 1001
  year: 2003
  end-page: 1012
  ident: b27
  article-title: Censored regression quantiles
  publication-title: Journal of the American Statistical Association
– volume: 164
  start-page: 374
  year: 2018
  end-page: 384
  ident: b14
  article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
  publication-title: Energy Conversion and Management
– volume: 129
  start-page: 7
  year: 1991
  end-page: 1309
  ident: b35
  article-title: Applications of multiple imputation to the analysis of censored regression data
  publication-title: Biometrics
– volume: 10
  start-page: 4425
  year: 2018
  end-page: 4434
  ident: b40
  article-title: An improved quantile regression neural network for probabilistic load forecasting
  publication-title: IEEE Transactions on Smart Grid
– volume: 57
  start-page: 473
  year: 1995
  end-page: 484
  ident: b8
  article-title: Bayesian model choice via Markov chain Monte Carlo methods
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 233
  start-page: 565
  year: 2019
  end-page: 575
  ident: b15
  article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile regression neural network
  publication-title: Applied Energy
– volume: 95
  start-page: 759
  year: 2008
  end-page: 771
  ident: b9
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
– volume: 4
  year: 2018
  ident: b1
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
– volume: 114
  start-page: 498
  year: 2016
  end-page: 512
  ident: b16
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
– volume: 82
  start-page: 528
  year: 1987
  end-page: 540
  ident: b32
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: Journal of the American Statistical Association
– volume: 37
  start-page: 1277
  year: 2011
  end-page: 1284
  ident: b7
  article-title: Quantile regression neural networks: Implementation R and application to precipitation downscaling
  publication-title: Computers & Geosciences
– volume: 19
  start-page: 344
  year: 2013
  end-page: 361
  ident: b24
  article-title: A quantile regression estimator for censored data
  publication-title: Bernoulli
– volume: 53
  start-page: 912
  year: 2009
  end-page: 919
  ident: b31
  article-title: Support vector censored quantile regression under random censoring
  publication-title: Computational Statistics & Data Analysis
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  ident: b22
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 79
  start-page: 1855
  year: 1998
  end-page: 1870
  ident: b17
  article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography
  publication-title: Bulletin of the American Meteorological Society
– volume: 109
  start-page: 1
  year: 2018
  end-page: 11
  ident: b23
  article-title: A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b12
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 165
  year: 2022
  ident: b18
  article-title: Deep learning for quantile regression under right censoring: DeepQuantreg
  publication-title: Computational Statistics & Data Analysis
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  ident: b34
  article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis
  publication-title: Statistics in Medicine
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.eswa.2022.119097_b11
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 129
  start-page: 7
  year: 1991
  ident: 10.1016/j.eswa.2022.119097_b35
  article-title: Applications of multiple imputation to the analysis of censored regression data
  publication-title: Biometrics
– volume: 109
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.119097_b23
  article-title: A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.05.011
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b4
  article-title: Hybrid artificial neural network and structural equation modelling techniques: A survey
  publication-title: Complex & Intelligent Systems
– volume: 97
  start-page: 872
  issue: 459
  year: 2002
  ident: 10.1016/j.eswa.2022.119097_b10
  article-title: Three-step censored quantile regression and extramarital affairs
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502388618663
– volume: 98
  start-page: 1001
  issue: 464
  year: 2003
  ident: 10.1016/j.eswa.2022.119097_b27
  article-title: Censored regression quantiles
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000000954
– volume: 95
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b5
  article-title: A pattern recognition model for static gestures in Malaysian sign language based on machine learning techniques
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2021.107383
– volume: 53
  start-page: 912
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2022.119097_b31
  article-title: Support vector censored quantile regression under random censoring
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2008.10.037
– volume: 37
  start-page: 1277
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2022.119097_b7
  article-title: Quantile regression neural networks: Implementation R and application to precipitation downscaling
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.07.005
– volume: 65
  year: 1998
  ident: 10.1016/j.eswa.2022.119097_b6
  article-title: An alternative estimator for the censored quantile regression model
  publication-title: Econometrica
– volume: 79
  start-page: 1855
  issue: 9
  year: 1998
  ident: 10.1016/j.eswa.2022.119097_b17
  article-title: Applying neural network models to prediction and data analysis in meteorology and oceanography
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2
– volume: 2021
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b19
  article-title: Composite quantile regression neural network for massive datasets
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/6682793
– volume: 25
  start-page: 303
  issue: 3
  year: 1984
  ident: 10.1016/j.eswa.2022.119097_b28
  article-title: Least absolute deviations estimation for the censored regression model
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(84)90004-6
– volume: 58
  start-page: 35
  year: 2017
  ident: 10.1016/j.eswa.2022.119097_b30
  article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.04.014
– volume: 32
  start-page: 143
  issue: 1
  year: 1986
  ident: 10.1016/j.eswa.2022.119097_b29
  article-title: Censored regression quantiles
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(86)90016-3
– volume: 11
  start-page: 1871
  issue: 14–15
  year: 1992
  ident: 10.1016/j.eswa.2022.119097_b34
  article-title: The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780111409
– volume: 4
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2022.119097_b1
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 76
  start-page: 129
  year: 2017
  ident: 10.1016/j.eswa.2022.119097_b37
  article-title: Composite quantile regression neural network with applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.054
– volume: 57
  start-page: 473
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2022.119097_b8
  article-title: Bayesian model choice via Markov chain Monte Carlo methods
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1995.tb02042.x
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b20
  article-title: An approach to pedestrian walking behaviour classification in wireless communication and network failure contexts
  publication-title: Complex & Intelligent Systems
– volume: 52
  start-page: 201
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2022.119097_b21
  article-title: Median regression model with interval censored data
  publication-title: Biometrical Journal: Journal of Mathematical Methods in Biosciences
  doi: 10.1002/bimj.200900111
– volume: 19
  start-page: 344
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2022.119097_b24
  article-title: A quantile regression estimator for censored data
  publication-title: Bernoulli
  doi: 10.3150/11-BEJ388
– volume: 19
  start-page: 299
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2022.119097_b33
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: Journal of Forecasting
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
– volume: 10
  start-page: 4425
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2022.119097_b40
  article-title: An improved quantile regression neural network for probabilistic load forecasting
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2859749
– volume: 164
  start-page: 374
  year: 2018
  ident: 10.1016/j.eswa.2022.119097_b14
  article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.03.010
– start-page: 190
  year: 1992
  ident: 10.1016/j.eswa.2022.119097_b36
  article-title: Nonparametric estimation of conditional quantiles using neural networks
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 10.1016/j.eswa.2022.119097_b13
  article-title: Artificial neural networks (the multilayer perceptron) — A review of applications in the atmospheric sciences
  publication-title: Atmospheric Enviroment
  doi: 10.1016/S1352-2310(97)00447-0
– volume: 233
  start-page: 565
  year: 2019
  ident: 10.1016/j.eswa.2022.119097_b15
  article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile regression neural network
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.10.061
– volume: 165
  year: 2022
  ident: 10.1016/j.eswa.2022.119097_b18
  article-title: Deep learning for quantile regression under right censoring: DeepQuantreg
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2021.107323
– volume: 153
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b3
  article-title: Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2021.111445
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.eswa.2022.119097_b12
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2022.119097_b22
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
– volume: 103
  start-page: 637
  issue: 482
  year: 2008
  ident: 10.1016/j.eswa.2022.119097_b26
  article-title: Survival analysis with quantile regression models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214508000000355
– volume: 82
  start-page: 528
  issue: 398
  year: 1987
  ident: 10.1016/j.eswa.2022.119097_b32
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478458
– volume: 95
  start-page: 759
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2022.119097_b9
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
  doi: 10.1093/biomet/asn034
– volume: 42
  start-page: 5441
  issue: 13
  year: 2015
  ident: 10.1016/j.eswa.2022.119097_b38
  article-title: Weighted quantile regression via support vector machine
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.003
– start-page: 2109
  year: 2020
  ident: 10.1016/j.eswa.2022.119097_b25
  article-title: Censored quantile regression forest
– volume: 27
  start-page: 417
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2022.119097_b39
  article-title: A new approach to censored quantile regression estimation
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2017.1385469
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2022.119097_b2
  article-title: Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114155
– volume: 114
  start-page: 498
  year: 2016
  ident: 10.1016/j.eswa.2022.119097_b16
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.023
SSID ssj0017007
Score 2.4306586
Snippet Quantile regression neural network (QRNN) model has received wide attentions in recent years to explore complex nonlinear problems. However, when the responses...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119097
SubjectTerms Censored data
Data augmentation
Imputation
Quantile regression neural network
Title Data augmentation based estimation for the censored quantile regression neural network model
URI https://dx.doi.org/10.1016/j.eswa.2022.119097
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdmHhG1G-5IENhTqJncQjAqoCogtUYkCK7NhBIEhLScXGb-dcOwgk1IE18SnRxX73HN-9AzhSItaxsb_AqDABEyFDHBQ6QOpQRIkqOTe2OPlmmAxG7Oqe3y_BWVMLY9MqPfY7TJ-jtb_S897sTZ6eerdIDjAc4tYO9-9WMqYFnSgWCW9D5_TyejD8PkxIqauaxvGBNfC1My7Ny7x_WPmhKELwEHPtp7_i04-Y01-DFU8Wyal7n3VYMtUGrDaNGIhfl5vwcC5rSeTs8dVXElXERidNrISGq00kSE4Jkj1S4L51PMV7bzN0KmICmZpHlwxbEatuiQ-sXG44mbfJ2YJR_-LubBD4tglBEVNaB7HCkG9CrstEMBkJKhktGReFMiFThuokKhNWljymouSRSrRKkdWwQkUm1bjkt6FdjSuzAySTKk65DHlWpEwxLVMdJhmTJSsyrRjtQtg4Ky-8prhtbfGSN8ljz7l1cG4dnDsHd-H422biFDUWjubNN8h_zYscIX-B3e4_7fZg2TaUt1lmId-Hdj2dmQOkHbU6hNbJZ3joJ9cXJavXjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCh0HzYSTyiQlWg7UIrdUCK7NipiiAtJRUbv51z7FQgoQ6sia1EL_bdc_TuHUKXggUyUPoXmMuUQ5hHIA4y6QB1SP1QZJQqXZzc64edIXkY0VENtapaGC2rtLHfxPQyWtsrTYtmczaZNJ-AHEA6hKMdnN-1ZcwaWic0iLSu7_prqfPQ_nORMdyLHD3cVs4YkZf6-NTmQ74PoYOVzk9_ZacfGae9g7YsVcQ35m12UU3le2i7asOA7a7cR8-3vOCYL8Zvto4oxzo3SawNNExlIgZqioHq4RROrdM53HtfAKQQEfBcjY0UNsfa2xIemBtlOC6b5BygYftu0Oo4tmmCkwauWziBgISvPCqzkBHuM5cTNyOUpUJ5RChXhn4Wkiyjgcsy6otQigg4DUmFryIJG_4Q1fNpro4QjrkAOLlH4zQigkgeSS-MCc9IGktB3AbyKrCS1DqK68YWr0klHXtJNMCJBjgxADfQ1XLOzPhprBxNq2-Q_FoVCQT8FfOO_znvAm10Br1u0r3vP56gTd1aXuvNPHqK6sV8oc6AgBTivFxg3_YQ2Fo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+augmentation+based+estimation+for+the+censored+quantile+regression+neural+network+model&rft.jtitle=Expert+systems+with+applications&rft.au=Hao%2C+Ruiting&rft.au=Weng%2C+Chengwei&rft.au=Liu%2C+Xinyu&rft.au=Yang%2C+Xiaorong&rft.date=2023-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=214&rft_id=info:doi/10.1016%2Fj.eswa.2022.119097&rft.externalDocID=S0957417422021157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon