Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells

Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points. [Display omitted] •TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have be...

Full description

Saved in:
Bibliographic Details
Published inPolyhedron Vol. 199; p. 115089
Main Authors Wali, Qamar, Iftikhar, Faiza Jan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points. [Display omitted] •TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have been highlighted.•Sources of degradation in perovskite solar cells are reviewed. Perovskite solar cells (PSCs) constitute a class of devices with significantly high photovoltaic conversion efficiency (>25%) and cost-effective solution processability in which an organic–inorganic hybrid perovskite material is utilized for photovoltaic action. In PSCs, the organic–inorganic hybrid perovskite heterogeneously crystallizes either on a thin flat surface (~100 nm) or a few microns thick layer of mesoporous surface, which typically develop planar and mesoporous PSCs, respectively. Other PSC architectures are derived from the above two. This article reviews the device–property and materials–property correlations in the aforementioned two architectures. The charging mechanism and the role of each layer in these devices have been discussed to understand the basic characteristics of the employed perovskite materials, the charge transport behaviour in nanostructured metal oxide semiconductors, and the factors that affect charge mobility. Issues such as the influence of humidity, thermal stress, and hysteresis that influence the performance of these devices have been discussed, along with an insight into future directions in the subject area.
AbstractList Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points. [Display omitted] •TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have been highlighted.•Sources of degradation in perovskite solar cells are reviewed. Perovskite solar cells (PSCs) constitute a class of devices with significantly high photovoltaic conversion efficiency (>25%) and cost-effective solution processability in which an organic–inorganic hybrid perovskite material is utilized for photovoltaic action. In PSCs, the organic–inorganic hybrid perovskite heterogeneously crystallizes either on a thin flat surface (~100 nm) or a few microns thick layer of mesoporous surface, which typically develop planar and mesoporous PSCs, respectively. Other PSC architectures are derived from the above two. This article reviews the device–property and materials–property correlations in the aforementioned two architectures. The charging mechanism and the role of each layer in these devices have been discussed to understand the basic characteristics of the employed perovskite materials, the charge transport behaviour in nanostructured metal oxide semiconductors, and the factors that affect charge mobility. Issues such as the influence of humidity, thermal stress, and hysteresis that influence the performance of these devices have been discussed, along with an insight into future directions in the subject area.
ArticleNumber 115089
Author Wali, Qamar
Iftikhar, Faiza Jan
Author_xml – sequence: 1
  givenname: Qamar
  surname: Wali
  fullname: Wali, Qamar
– sequence: 2
  givenname: Faiza Jan
  surname: Iftikhar
  fullname: Iftikhar, Faiza Jan
  email: faizajiftikhar@nutech.edu.pk
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP2BX8ks2dFNC-oBAN9mrY3lElCqWkUTA_fraTVddBAZmc8-Fe1Zk0bseCXngLOWMV4_HdHB2TDOW8ZTzktXNgixZJkRS5rW4JasQjmwKFjxfks-t1qgidZoqP4YI1ppviMb1dLp4QDocXHRnZyMYRQfwcMKIPlDoOzrlW2NNHGd-QO_O4ctEpMFZ8FShteGO3GiwAe___prsX7b7zVuy-3h93zzvEpUzFpO8UV2ti45VJUIjGiigaToQkHeVaAvEttBVg12msC05ZCUUJeisrFFkTDT5mtSXWuVdCB61VCb-7ogejJWcyVmOPMpZjpzlyIucCc3-oYM3J_DjdejpAuG06WzQy6AM9go74yefsnPmGv4D5yyFlQ
CitedBy_id crossref_primary_10_1002_aenm_202201274
crossref_primary_10_1007_s10854_021_06880_9
crossref_primary_10_3390_ma16175839
crossref_primary_10_1016_j_jece_2021_106898
Cites_doi 10.1039/C4MH00237G
10.1038/nenergy.2016.142
10.1126/science.1228604
10.1038/353737a0
10.1021/ja068876e
10.1021/jz501392m
10.1021/acsenergylett.6b00499
10.1002/aenm.201600285
10.1021/acsami.6b09326
10.1016/j.jpowsour.2015.02.084
10.1039/C5TA04239A
10.1021/acs.chemrev.5b00715
10.1002/anie.201309361
10.1021/nn505723h
10.1126/science.1254050
10.1039/C5TA03169A
10.1039/c2ee03178g
10.1039/C5EE02608C
10.1126/science.1243982
10.1063/1.363401
10.1016/j.nanoen.2016.02.031
10.1038/srep00591
10.1021/am5025963
10.1039/C4TA05284F
10.1016/j.solmat.2015.12.025
10.1039/c3ee40810h
10.1126/science.aaa9272
10.1021/ja4132246
10.1039/C6CP06405A
10.1139/v76-493
10.1002/ange.201405334
10.1016/j.rser.2018.01.005
10.1063/1.4962143
10.1021/acsnano.5b03265
10.1021/jacs.5b01994
10.1126/science.1243167
10.1016/j.matdes.2017.04.010
10.1039/c2ee23073a
10.1021/acs.jpclett.5b02686
10.1002/aenm.201601733
10.1038/ncomms6784
10.1002/adma.201601715
10.1016/j.jallcom.2015.05.120
10.1021/acsami.5b12123
10.1002/pip.895
10.1038/srep44603
10.1039/C5NR05563F
10.1039/c3ee40388b
10.1039/C4EE02833C
10.1039/C6TA04503K
10.1002/ijch.201500002
10.1039/C1EE02703D
10.1021/jp411112k
10.1021/nl400353f
10.1021/acs.jpclett.5b02597
10.1021/nl403997a
10.1039/C6NR07076K
10.1021/acs.accounts.6b00492
10.1016/j.jechem.2015.10.017
10.1002/adma.201401137
10.1002/aenm.201400812
10.1021/acs.jpcc.5b01667
10.1002/adma.201500048
10.1039/C4CC04537H
10.1038/ncomms10379
10.1016/j.nanoen.2017.02.025
10.1063/1.1736034
10.1002/aenm.201601000
10.1039/C4NR01141D
10.1039/C7TA01764B
10.1021/acs.chemmater.6b02744
10.1039/C5NR08458J
10.1021/acs.chemmater.7b00126
10.1038/nphoton.2013.342
10.1109/PVSC.2013.6744311
10.1016/j.nanoen.2016.10.030
10.1016/j.synthmet.2016.03.030
10.1021/acsami.6b13410
10.1021/ja809598r
10.1021/jp412627n
10.1126/science.1230283
10.1039/C5NR07395B
10.1039/C7TA00027H
10.1038/nmat2548
10.1038/nature12340
10.1021/jp994365l
10.1039/C5EE03874J
10.1039/c1nr10867k
10.1039/C4EE01624F
10.1002/adfm.200305156
10.1038/nature14133
10.1016/j.jpowsour.2017.04.025
10.1016/j.solmat.2015.09.054
10.1246/cl.1980.663
10.1016/j.solener.2017.03.077
10.1016/j.solmat.2016.04.059
10.1038/nphoton.2014.82
10.1016/j.nanoen.2012.10.004
10.1039/C6TA06143E
10.1039/C3EE43707H
10.1021/acs.jpclett.5b01108
10.1002/aenm.201501066
10.1039/C5NR03476K
10.1016/j.nanoen.2016.03.020
10.1039/C5TA01207D
10.1039/C6TA00989A
10.1021/jz4020162
10.1246/cl.2012.397
10.1002/adma.200502256
10.1016/j.nanoen.2015.05.014
10.1038/ncomms4586
10.1039/C6TA04465D
10.1039/C4EE02465F
10.1016/j.rser.2017.04.003
10.1021/jacs.5b04930
10.1016/j.solmat.2017.04.018
10.1039/c2ee00056c
10.1021/acsnano.5b00447
10.1126/science.aaa5760
10.1021/acs.chemmater.7b00523
10.1063/1.4929435
10.1021/nl500390f
10.1016/j.solmat.2017.01.013
10.1039/c3ee41860j
10.1038/nnano.2014.181
10.1039/C5TA05989E
10.1016/j.jpowsour.2015.06.037
10.1063/1.4864638
10.1007/s12274-015-0711-4
10.1021/acsenergylett.7b00171
10.1039/C5CP03803K
10.1039/C5RA17129F
10.1021/acs.jpclett.5b02273
10.1039/C5TA08193A
10.1039/C5EE00120J
10.1039/C6TA09036B
10.1038/nphys3277
10.1021/jz402749f
10.1016/j.nanoen.2016.12.029
10.1021/cm402919x
10.1038/ncomms3885
10.1039/C6TA06879K
10.1038/nenergy.2016.48
10.1063/1.4974791
10.1021/ph5000067
10.1039/C6MH00519E
10.1016/j.electacta.2017.03.139
10.1021/nl404454h
10.1038/nmat4014
10.1039/C4TA03056G
10.1002/aenm.201601839
10.1021/jacs.5b06444
10.1002/adma.201401685
10.1002/adma.201403140
10.1002/adma.201502586
10.1016/j.jechem.2015.10.005
10.1002/anie.201503038
10.1126/science.aaa0472
10.1021/acsnano.6b01575
10.1038/ncomms10334
10.1021/acs.chemmater.6b03310
10.1016/j.nanoen.2015.08.009
10.1016/j.solmat.2018.02.007
10.1039/c3cp51383a
10.1039/C4EE01724B
10.1063/1.104839
10.1021/jp305150s
10.1002/aenm.201502087
10.1039/C6CP03600G
10.1038/nature12509
10.1039/c3ta10518k
10.1016/j.stam.2003.09.019
10.1039/C7CC00921F
10.1021/jz500113x
10.1021/nn502115k
10.1039/C6DT00900J
10.1002/adma.201500523
10.1016/j.jpowsour.2016.09.134
10.1021/jacs.5b03144
10.1039/C4EE03664F
10.1039/C6EE01037G
10.1038/nmat4572
10.1002/aenm.201700623
10.6023/A14090674
10.1021/acs.jpclett.5b01645
10.1002/ange.201405176
10.1021/jz400638x
10.1039/b310907k
10.1021/nn404323g
10.1039/C6TA06960F
10.1021/acs.jpcc.5b00541
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.poly.2021.115089
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_poly_2021_115089
S0277538721000711
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSU
SSZ
T5K
XPP
YK3
ZMT
~02
~G-
29O
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
MVM
NDZJH
NEJ
OHT
R2-
RIG
SCB
SEW
SIC
SSH
UQL
WUQ
XJT
XOL
ZCG
ID FETCH-LOGICAL-c300t-39cd8f4d065ea979a4a99da7a3d67b4eeb4f69ed2ceb51a25a45af258e720793
IEDL.DBID .~1
ISSN 0277-5387
IngestDate Tue Jul 01 01:46:33 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Fri Feb 23 02:45:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structure-Property Relationship
Device Physical Parameters
Renewable Energy
Multifunctional Photovoltaics
Ionic movements
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-39cd8f4d065ea979a4a99da7a3d67b4eeb4f69ed2ceb51a25a45af258e720793
ParticipantIDs crossref_citationtrail_10_1016_j_poly_2021_115089
crossref_primary_10_1016_j_poly_2021_115089
elsevier_sciencedirect_doi_10_1016_j_poly_2021_115089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Polyhedron
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bi, Xu, Gao, Sun, Grätzel, Hagfeldt (b0300) 2016; 23
He, Wu, Tu, Xie, Dong, Jia (b0435) 2016; 332
Carr, Chaudhary (b0685) 2013; 6
Song, Zheng, Bian, Wang, Tian, Sanehira (b0710) 2015; 3
Tsai, Wu, Narra, Chang, Mohanta, Wu (b0415) 2017; 5
Im, Lee, Lee, Park, Park (b0020) 2011; 3
Xu, Zhang, Li, Zhao (b0210) 2017
Zhang, Sun, Sheng, Zhai, Mielczarek, Zakhidov (b0035) 2015; 11
Park, Seo, Park, Shin, Kim, Jeon (b0785) 2015; 27
Correa Baena, Steier, Tress, Saliba, Neutzner, Matsui (b0730) 2015; 8
Zhu, Ma, Wang, Mu, Fan, Du (b0815) 2014; 136
Shi, Li, Yang, Zhang, Li, Li (b0570) 2013; 13
Fu, Hou, Wang, Liu, Wang, Li (b0195) 2017; 165
Chen, Wei, He, Zheng, Wong, Yang (b0455) 2016; 6
Walter, Herberholz, Müller, Schock (b0675) 1996; 80
Babayigit, Ethirajan, Muller, Conings (b0990) 2016; 15
Huang, Pascoe, Wu, Ku, Peng, Zhong (b0175) 2017; 29
Heo, Im (b0640) 2016; 8
Habisreutinger, Nicholas, Snaith (b0190) 2017; 7
Wojciechowski, Stranks, Abate, Sadoughi, Sadhanala, Kopidakis (b0515) 2014; 8
Harikesh, Mulmudi, Ghosh, Goh, Teng, Thirumal (b0120) 2016; 28
Gu, Wang, Wang, Zhou, Long, Tian (b0955) 2017; 5
Zhang, Song, Chen, Liu, Hao, Wang (b0800) 2016; 18
Yin, Xu, Guo, Xu, He (b0940) 2016; 8
Kranz, Abate, Feurer, Fu, Avancini, Löckinger (b0735) 2015; 6
Li, Chen, Liang, Gao, Huang (b0285) 2015; 5
Chen, Wu, Liu, Qin, Yang, Islam (b0810) 2015; 8
Wu, Chen, Li, Pascoe, Cheng, Caruso (b0950) 2017; 32
Song, Zheng, Wang, Tian, Miyasaka (b0750) 2016; 144
Xiao, Huang, Huang, Dkhissi, Zhu, Etheridge (b0760) 2014; 126
Fakharuddin, Jose, Brown, Fabregat-Santiago, Bisquert (b0005) 2014; 7
M, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than
Dong, Fang, Shao, Mulligan, Qiu, Cao (b0045) 2015; 347
Di Giacomo, Zardetto, Lucarelli, Cinà, Di Carlo, Creatore (b0275) 2016; 30
Chen, Cai, Yang, Song, Wang, Jiang (b0180) 2017; 355
Jeon, Noh, Kim, Yang, Ryu, Seok (b0350) 2014; 13
Li, Fan, Li, Mai, Wang (b0425) 2015; 137
Norris, Aydil (b0485) 2012; 338
Tress, Marinova, Inganäs, Nazeeruddin, Zakeeruddin, Graetzel (b0305) 2015; 5
Wang, Wright, Elumalai, Uddin (b0260) 2016; 147
Cao, Zuo, Cui, Shen, Moehl, Zakeeruddin (b0600) 2015; 17
21%. 2016;1:16142.
Kim, Park (b0885) 2014; 5
Jiang, Rebollar, Gong, Piacentino, Zheng, Xu (b0155) 2015; 54
Bisquert (b0545) 2003; 5
Collavini, Delgado (b0185) 2017; 7
Yang, Dyck, Poplawsky, Keum, Puretzky, Das (b0960) 2015; 137
Hao, Stoumpos, Cao, Chang, Kanatzidis (b0125) 2014; 8
Ahn, Son, Jang, Kang, Choi, Park (b0395) 2015; 137
Shao, Xiao, Bi, Yuan, Huang (b0670) 2014; 5
Melzer, Koop, Mihailetchi, Blom (b0680) 2004; 14
Heo, Song, Patil, Im (b0540) 2015; 55
Fakharuddin, Schmidt-Mende, Garcia-Belmonte, Jose, Mora-Sero (b0220) 2017; 7
Dong, Shi, Li, Luo, Meng (b0805) 2015; 107
Baikie, Fang, Kadro, Schreyer, Wei, Mhaisalkar (b0635) 2013; 1
Huiyin, Jiangjian, Juan, Xin, Yanhong, Dongmei (b0765) 2015; 24
Frost, Butler, Brivio, Hendon, van Schilfgaarde, Walsh (b0365) 2014; 14
Yoon, Kang, Lee, Choi (b0920) 2016; 9
B. Grew, J.W. Bowers, H.M. Upadhyaya. The optimization of optical properties for increased performance in a monolithic tandem dye-sensitized/Cu(In, Ga)Se 2 solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)2013. p. 1008-12.
Wali, Fakharuddin, Jose (b0480) 2015; 293
Snaith (b0510) 2013; 4
Liu, Chen, Hong, Zhou, Xu, De Marco (b0925) 2016; 8
Park, van de Lagemaat, Frank (b0505) 2000; 104
Yang, Noh, Jeon, Kim, Ryu, Seo (b0330) 2015; 348
Chen, Rao, Li, Xu, Chen, Kuang (b0820) 2016; 4
Bouclé, Herlin-Boime (b0620) 2016; 222
Heo, Im, Kim, Boix, Lee, Seok (b0525) 2012; 116
Pascoe, Yang, Kopidakis, Zhu, Reese, Rumbles (b0615) 2016; 22
Koh, Fu, Fang, Chen, Sum, Mathews (b0085) 2014; 118
Hamaguchi, Yoshizawa-Fujita, Miyasaka, Kunugita, Ema, Takeoka (b0980) 2017; 53
Lee, Teuscher, Miyasaka, Murakami, Snaith (b0090) 2012; 338
Xing, Mathews, Sun, Lim, Lam, Grätzel (b0040) 2013; 342
Wang, Zhao, Grice, Liao, Yu, Cimaroli (b0740) 2016; 4
Schwarzburg, Willig (b0660) 1991; 58
Giustino, Snaith (b0110) 2016; 1
Ueoka, Ohishi, Shirahata, Suzuki, Oku, Sandhu (b0135) 2017; 1807
Kojima, Teshima, Shirai, Miyasaka (b0015) 2009; 131
Han, Luo, Zhao, Wan, Wang, Jia (b0205) 2017; 236
Wharf, Gramstad, Makhija, Onyszchuk (b0400) 1976; 54
Kulbak, Gupta, Kedem, Levine, Bendikov, Hodes (b0105) 2016; 7
Xiao, Dong, Bi, Shao, Yuan, Huang (b0630) 2014; 26
Chen, Bae, Chang, Hong, Li, Chen (b0080) 2015; 2
Wang, Li, Zhang, Liu, Gu, Sarvari (b0445) 2016; 8
Hu, Peng, Wang, Xia, Yuan, Lu (b0390) 2014; 1
Kumar, Jose, Archana, Vijila, Yusoff, Ramakrishna (b0700) 2012; 5
D'Innocenzo, Grancini, Alcocer, Kandada, Stranks, Lee (b0595) 2014; 5
Wu, Islam, Yang, Qin, Liu, Zhang (b0385) 2014; 7
Wojciechowski, Saliba, Leijtens, Abate, Snaith (b0560) 2014; 7
Zhou, Chen, Li, Luo, Song, Duan (b0770) 2014; 345
Xu, Lu, Zhu, Kou, Liu, Li (b0780) 2016; 4
Savva, Burgués-Ceballos, Choulis (b0375) 2016; 6
Yin, Que, Xing, Que (b0380) 2015; 3
Tu, Wu, Zheng, Huo, Zhou, Lan (b0420) 2015; 7
Zheng, Ma, Chu, Wang, Qu, Xiao (b0280) 2014; 6
Yang, Fransishyn, Kelly (b0970) 2016; 28
Li, Ye, Sun, Yan, Li, Bian (b0245) 2015; 3
Li, Li, Li, Wang, Wang (b0580) 2015; 17
Fakharuddin, Di Giacomo, Ahmed, Wali, Brown, Jose (b0265) 2015; 283
Mali, Shim, Kim, Patil, Hong (b0450) 2016; 8
Wang, Yan, Wang, Chang, Wang, Wang (b0465) 2017; 167
Manshor, Wali, Wong, Muzakir, Fakharuddin, Schmidt-Mende (b0255) 2016; 18
Rong, Liu, Mei, Li, Han (b0535) 2015; 5
Tress, Marinova, Moehl, Zakeeruddin, Nazeeruddin, Gratzel (b0870) 2015; 8
Liu, Johnston, Snaith (b0270) 2013; 501
Xia, Li, Li, Liu, Liu (b0790) 2015; 24
Beiley, McGehee (b0495) 2012; 5
Shockley, Queisser (b0470) 1961; 32
Grätzel (b0055) 2017; 50
Ameri, Li, Brabec (b0475) 2013; 6
Kojima, Ikegami, Teshima, Miyasaka (b0520) 2012; 41
Qi, Wang (b0845) 2013; 15
Wang, Zeng, Huang, Zhang, Qiao, Hu (b0610) 2014; 6
Leijtens, Eperon, Pathak, Abate, Lee, Snaith (b0755) 2013; 4
Chen, Xu, Xiao, Zhang, Dai, Yao (b0945) 2017; 9
Marinova, Tress, Humphry-Baker, Dar, Bojinov, Zakeeruddin (b0310) 2015; 9
Leijtens, Stranks, Eperon, Lindblad, Johansson, McPherson (b0585) 2014; 8
Chao, Wei-Dong, Chong-Zhen, Song-Yang, Wen-Xiao, Ping (b0775) 2017; 26
Azhar, Alessandro, Francesco Di, Simone, Fabio, Qamar (b0215) 2015; 26
Toshniwal, Kheraj (b0140) 2017; 149
Forgacs, Sessolo, Bolink (b0370) 2015; 3
Philippe, Saliba, Correa-Baena, Cappel, Turren-Cruz, Grätzel (b0115) 2017; 29
Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens (b0050) 2013; 342
Unger, Hoke, Bailie, Nguyen, Bowring, Heumuller (b0875) 2014; 7
Meloni, Moehl, Tress, Franckevicius, Saliba, Lee (b0895) 2016; 7
Nie, Tsai, Asadpour, Blancon, Neukirch, Gupta (b0900) 2015; 347
Bag, Gunawan, Gokmen, Zhu, Todorov, Mitzi (b0850) 2012; 5
Bakr, Wali, Fakharuddin, Schmidt-Mende, Brown, Jose (b0025) 2017; 34
Zhu, Bao, Wang, Li, Zhou, Yang (b0910) 2016; 45
Wali, Elumalai, Iqbal, Uddin, Jose (b0065) 2018; 84
Kirchartz, Helbig, Reetz, Reuter, Werner, Rau (b0320) 2009; 17
Ogomi, Morita, Tsukamoto, Saitho, Shen, Toyoda (b0575) 2014; 118
Liu, Kelly (b0915) 2014; 8
Liu, Zong, Zhou, Yang, Li, Game (b0095) 2017; 29
Xiao, Meng, Wang, Mitzi, Yan (b0985) 2017; 4
Fakharuddin, Rossi, Watson, Schmidt-Mende, Jose (b0250) 2016; 4
Dong, Shi, Wang, Li, Wang, Zhang (b0720) 2015; 119
Y. Tu, J. Wu, Z. Lan, X. He, J. Dong, J. Jia, et al. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. 2017;7:44603.
Bi, Yang, Boschloo, Hagfeldt, Johansson (b0325) 2013; 4
Qifan, Chen, Zhicheng, Fei, Hin-Lap, Yong (b0795) 2015; 73
Nayak, Garcia-Belmonte, Kahn, Bisquert, Cahen (b0530) 2012; 5
Lindblad, Bi, Park, Oscarsson, Gorgoi, Siegbahn (b0590) 2014; 5
Misra, Aharon, Layani, Magdassi, Etgar (b0965) 2016; 4
Ding, Li, Huang, Chu, Li, Li (b0235) 2017; 5
Saparov, Mitzi (b0975) 2016; 116
Pellet, Gao, Gregori, Yang, Nazeeruddin, Maier (b0340) 2014; 53
Yin, Qu, Cao, Tai, Li, Zheng (b0460) 2016; 4
Yin, Guo, Xue, Xu, He, Liu (b0825) 2015; 8
Wali, Fakharuddin, Ahmed, Ab Rahim, Ismail, Jose (b0690) 2014; 2
Choi, Song, Hörantner, Snaith, Park (b0930) 2016; 10
Ong, Li, Li, Wu, Loutfy (b0490) 2007; 129
Weerasinghe, Huang, Cheng (b0500) 2013; 2
Saliba, Matsui, Seo, Domanski, Correa-Baena, Nazeeruddin (b0100) 2016; 9
Zhu, Bai, Zhang, Liu, Long, Wei (b0605) 2014; 126
Zhang, Shi, Xu, Zhu, Luo, Li (b0840) 2016; 4
Heo, You, Chang, Yin, Ahn, Lee (b0835) 2015; 15
Lee, Seol, Cho, Park (b0345) 2014; 26
Chai, Luo, Zhou, Daoud (b0200) 2017; 125
Jeon, Noh, Yang, Kim, Ryu, Seo (b0335) 2015; 517
Colella, Mosconi, Fedeli, Listorti, Gazza, Orlandi (b0645) 2013; 25
Miyamae, Numahata, Nagata (b0355) 1980; 9
Han, Chung, Kim, Kim, Lee, Park (b0715) 2015; 7
Park, Noh, Jin, Na (b0905) 2016; 155
Kim, Lee, Im, Lee, Moehl, Marchioro (b0030) 2012; 2
Shi, Dong, Lv, Xu, Zhu, Xiao (b0855) 2014; 104
Nagane, Bansode, Game, Chhatre, Ogale (b0160) 2014; 50
Kim, Jang, Ahn, Choi, Guerrero, Bisquert (b0880) 2015; 6
Wali, Fakharuddin, Yasin, Ab Rahim, Ismail, Jose (b0695) 2015; 646
Vandewal, Tvingstedt, Gadisa, Inganas, Manca (b0315) 2009; 8
Wali, Iqbal, Pal, Lowe, Jose (b0725) 2018; 179
Song, Yokoyama, Aramaki, Kanatzidis (b0130) 2017; 2
Ke, Fang, Liu, Xiong, Qin, Tao (b0745) 2015; 137
Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik
Heo, Song, Han, Kim, Kim, Kim (b0655) 2015; 27
Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, et al. Thermally Stable MAPbI3 Perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. n/a-n/a.
Ball, Lee, Hey, Snaith (b0550) 2013; 6
Edri, Kirmayer, Henning, Mukhopadhyay, Gartsman, Rosenwaks (b0650) 2014; 14
Xu, Zhang, Shi, Dong, Luo, Li (b0625) 2015; 3
Dualeh, Moehl, Tétreault, Teuscher, Gao, Nazeeruddin (b0665) 2014; 8
Cho, Trukhina, Roldán-Carmona, Ince, Gratia, Grancini (b0440) 2017; 7
Yang, Zhou, Zeng, Jiang, Padture, Zhu (b0935) 2015; 27
F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. 2016;7:10379.
Hendon, Yang, Burton, Walsh (b0145) 2015; 3
Snaith, Grätzel (b0295) 2006; 18
J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang. Low-temperature proc
Forgacs (10.1016/j.poly.2021.115089_b0370) 2015; 3
Norris (10.1016/j.poly.2021.115089_b0485) 2012; 338
Saparov (10.1016/j.poly.2021.115089_b0975) 2016; 116
Frost (10.1016/j.poly.2021.115089_b0365) 2014; 14
Cao (10.1016/j.poly.2021.115089_b0600) 2015; 17
Prajongtat (10.1016/j.poly.2021.115089_b0165) 2015; 119
Zhang (10.1016/j.poly.2021.115089_b0800) 2016; 18
Babayigit (10.1016/j.poly.2021.115089_b0990) 2016; 15
Pellet (10.1016/j.poly.2021.115089_b0340) 2014; 53
Yang (10.1016/j.poly.2021.115089_b0935) 2015; 27
Correa Baena (10.1016/j.poly.2021.115089_b0730) 2015; 8
Kumar (10.1016/j.poly.2021.115089_b0700) 2012; 5
Tress (10.1016/j.poly.2021.115089_b0305) 2015; 5
Meloni (10.1016/j.poly.2021.115089_b0895) 2016; 7
Stranks (10.1016/j.poly.2021.115089_b0050) 2013; 342
Ding (10.1016/j.poly.2021.115089_b0235) 2017; 5
Weerasinghe (10.1016/j.poly.2021.115089_b0500) 2013; 2
Pascoe (10.1016/j.poly.2021.115089_b0615) 2016; 22
Snaith (10.1016/j.poly.2021.115089_b0360) 2014; 5
Xiao (10.1016/j.poly.2021.115089_b0985) 2017; 4
Gu (10.1016/j.poly.2021.115089_b0955) 2017; 5
Fu (10.1016/j.poly.2021.115089_b0195) 2017; 165
Kulbak (10.1016/j.poly.2021.115089_b0105) 2016; 7
Wang (10.1016/j.poly.2021.115089_b0465) 2017; 167
10.1016/j.poly.2021.115089_b0830
Yoon (10.1016/j.poly.2021.115089_b0920) 2016; 9
Kirchartz (10.1016/j.poly.2021.115089_b0320) 2009; 17
Zhu (10.1016/j.poly.2021.115089_b0910) 2016; 45
Unger (10.1016/j.poly.2021.115089_b0875) 2014; 7
Xu (10.1016/j.poly.2021.115089_b0210) 2017
Bi (10.1016/j.poly.2021.115089_b0325) 2013; 4
Giustino (10.1016/j.poly.2021.115089_b0110) 2016; 1
Misra (10.1016/j.poly.2021.115089_b0965) 2016; 4
Bisquert (10.1016/j.poly.2021.115089_b0545) 2003; 5
Chao (10.1016/j.poly.2021.115089_b0775) 2017; 26
Fakharuddin (10.1016/j.poly.2021.115089_b0005) 2014; 7
Nie (10.1016/j.poly.2021.115089_b0900) 2015; 347
Koh (10.1016/j.poly.2021.115089_b0085) 2014; 118
Song (10.1016/j.poly.2021.115089_b0710) 2015; 3
Chen (10.1016/j.poly.2021.115089_b0080) 2015; 2
Asghar (10.1016/j.poly.2021.115089_b0170) 2017; 77
Wang (10.1016/j.poly.2021.115089_b0445) 2016; 8
Azhar (10.1016/j.poly.2021.115089_b0215) 2015; 26
Ahn (10.1016/j.poly.2021.115089_b0395) 2015; 137
He (10.1016/j.poly.2021.115089_b0435) 2016; 332
Bakr (10.1016/j.poly.2021.115089_b0025) 2017; 34
Wojciechowski (10.1016/j.poly.2021.115089_b0560) 2014; 7
Savva (10.1016/j.poly.2021.115089_b0375) 2016; 6
Li (10.1016/j.poly.2021.115089_b0245) 2015; 3
Di Giacomo (10.1016/j.poly.2021.115089_b0275) 2016; 30
Wang (10.1016/j.poly.2021.115089_b0610) 2014; 6
Bi (10.1016/j.poly.2021.115089_b0300) 2016; 23
Xu (10.1016/j.poly.2021.115089_b0780) 2016; 4
Snaith (10.1016/j.poly.2021.115089_b0510) 2013; 4
Li (10.1016/j.poly.2021.115089_b0425) 2015; 137
Tu (10.1016/j.poly.2021.115089_b0420) 2015; 7
Choi (10.1016/j.poly.2021.115089_b0930) 2016; 10
Shao (10.1016/j.poly.2021.115089_b0670) 2014; 5
Huiyin (10.1016/j.poly.2021.115089_b0765) 2015; 24
Shockley (10.1016/j.poly.2021.115089_b0470) 1961; 32
Yin (10.1016/j.poly.2021.115089_b0940) 2016; 8
Xiao (10.1016/j.poly.2021.115089_b0630) 2014; 26
Xu (10.1016/j.poly.2021.115089_b0625) 2015; 3
Song (10.1016/j.poly.2021.115089_b0750) 2016; 144
Kim (10.1016/j.poly.2021.115089_b0885) 2014; 5
Wali (10.1016/j.poly.2021.115089_b0065) 2018; 84
Collavini (10.1016/j.poly.2021.115089_b0185) 2017; 7
10.1016/j.poly.2021.115089_b0070
Tsai (10.1016/j.poly.2021.115089_b0415) 2017; 5
Ameri (10.1016/j.poly.2021.115089_b0475) 2013; 6
Kojima (10.1016/j.poly.2021.115089_b0015) 2009; 131
Miyamae (10.1016/j.poly.2021.115089_b0355) 1980; 9
Xiao (10.1016/j.poly.2021.115089_b0760) 2014; 126
Heo (10.1016/j.poly.2021.115089_b0150) 2014; 26
Tress (10.1016/j.poly.2021.115089_b0870) 2015; 8
Chen (10.1016/j.poly.2021.115089_b0180) 2017; 355
Yin (10.1016/j.poly.2021.115089_b0825) 2015; 8
Mali (10.1016/j.poly.2021.115089_b0450) 2016; 8
Lee (10.1016/j.poly.2021.115089_b0090) 2012; 338
Cho (10.1016/j.poly.2021.115089_b0440) 2017; 7
Shi (10.1016/j.poly.2021.115089_b0570) 2013; 13
Fakharuddin (10.1016/j.poly.2021.115089_b0220) 2017; 7
Heo (10.1016/j.poly.2021.115089_b0865) 2015; 8
Wharf (10.1016/j.poly.2021.115089_b0400) 1976; 54
Dong (10.1016/j.poly.2021.115089_b0045) 2015; 347
Heo (10.1016/j.poly.2021.115089_b0525) 2012; 116
Zhu (10.1016/j.poly.2021.115089_b0815) 2014; 136
Li (10.1016/j.poly.2021.115089_b0580) 2015; 17
Hendon (10.1016/j.poly.2021.115089_b0145) 2015; 3
Fakharuddin (10.1016/j.poly.2021.115089_b0265) 2015; 283
Rong (10.1016/j.poly.2021.115089_b0535) 2015; 5
Habisreutinger (10.1016/j.poly.2021.115089_b0190) 2017; 7
Colella (10.1016/j.poly.2021.115089_b0645) 2013; 25
Wali (10.1016/j.poly.2021.115089_b0695) 2015; 646
Xia (10.1016/j.poly.2021.115089_b0790) 2015; 24
Liu (10.1016/j.poly.2021.115089_b0270) 2013; 501
Heo (10.1016/j.poly.2021.115089_b0640) 2016; 8
Ong (10.1016/j.poly.2021.115089_b0490) 2007; 129
Dong (10.1016/j.poly.2021.115089_b0720) 2015; 119
Zhang (10.1016/j.poly.2021.115089_b0035) 2015; 11
Harikesh (10.1016/j.poly.2021.115089_b0120) 2016; 28
Fakharuddin (10.1016/j.poly.2021.115089_b0225) 2015; 9
Kenichiro (10.1016/j.poly.2021.115089_b0555) 2003; 4
Zhu (10.1016/j.poly.2021.115089_b0605) 2014; 126
Han (10.1016/j.poly.2021.115089_b0715) 2015; 7
Ball (10.1016/j.poly.2021.115089_b0550) 2013; 6
Dualeh (10.1016/j.poly.2021.115089_b0665) 2014; 8
Chen (10.1016/j.poly.2021.115089_b0810) 2015; 8
O'Regan (10.1016/j.poly.2021.115089_b0010) 1991; 353
Burschka (10.1016/j.poly.2021.115089_b0410) 2013; 499
Dong (10.1016/j.poly.2021.115089_b0805) 2015; 107
Park (10.1016/j.poly.2021.115089_b0505) 2000; 104
Xu (10.1016/j.poly.2021.115089_b0860) 2015; 6
D'Innocenzo (10.1016/j.poly.2021.115089_b0595) 2014; 5
Liu (10.1016/j.poly.2021.115089_b0095) 2017; 29
Ogomi (10.1016/j.poly.2021.115089_b0575) 2014; 118
Carr (10.1016/j.poly.2021.115089_b0685) 2013; 6
Wali (10.1016/j.poly.2021.115089_b0480) 2015; 293
Vandewal (10.1016/j.poly.2021.115089_b0315) 2009; 8
Chen (10.1016/j.poly.2021.115089_b0820) 2016; 4
Im (10.1016/j.poly.2021.115089_b0020) 2011; 3
Song (10.1016/j.poly.2021.115089_b0130) 2017; 2
Im (10.1016/j.poly.2021.115089_b0405) 2014; 9
Wang (10.1016/j.poly.2021.115089_b0565) 2014; 14
Melzer (10.1016/j.poly.2021.115089_b0680) 2004; 14
Wu (10.1016/j.poly.2021.115089_b0950) 2017; 32
Leijtens (10.1016/j.poly.2021.115089_b0585) 2014; 8
Walter (10.1016/j.poly.2021.115089_b0675) 1996; 80
Yin (10.1016/j.poly.2021.115089_b0460) 2016; 4
Zhang (10.1016/j.poly.2021.115089_b0060) 2016
Jeon (10.1016/j.poly.2021.115089_b0335) 2015; 517
Bag (10.1016/j.poly.2021.115089_b0850) 2012; 5
Wang (10.1016/j.poly.2021.115089_b0260) 2016; 147
Im (10.1016/j.poly.2021.115089_b0290) 2011; 3
Liu (10.1016/j.poly.2021.115089_b0925) 2016; 8
Fakharuddin (10.1016/j.poly.2021.115089_b0250) 2016; 4
Kranz (10.1016/j.poly.2021.115089_b0735) 2015; 6
Yin (10.1016/j.poly.2021.115089_b0380) 2015; 3
10.1016/j.poly.2021.115089_b0430
Heo (10.1016/j.poly.2021.115089_b0835) 2015; 15
Huang (10.1016/j.poly.2021.115089_b0175) 2017; 29
Wang (10.1016/j.poly.2021.115089_b0740) 2016; 4
van Reenen (10.1016/j.poly.2021.115089_b0890) 2015; 6
Yang (10.1016/j.poly.2021.115089_b0960) 2015; 137
Li (10.1016/j.poly.2021.115089_b0285) 2015; 5
Marinova (10.1016/j.poly.2021.115089_b0310) 2015; 9
Baikie (10.1016/j.poly.2021.115089_b0635) 2013; 1
Snaith (10.1016/j.poly.2021.115089_b0295) 2006; 18
Kim (10.1016/j.poly.2021.115089_b0030) 2012; 2
Zheng (10.1016/j.poly.2021.115089_b0280) 2014; 6
Qifan (10.1016/j.poly.2021.115089_b0795) 2015; 73
Saliba (10.1016/j.poly.2021.115089_b0100) 2016; 9
Manshor (10.1016/j.poly.2021.115089_b0255) 2016; 18
Wojciechowski (10.1016/j.poly.2021.115089_b0515) 2014; 8
Kim (10.1016/j.poly.2021.115089_b0880) 2015; 6
Lindblad (10.1016/j.poly.2021.115089_b0590) 2014; 5
Park (10.1016/j.poly.2021.115089_b0905) 2016; 155
Toshniwal (10.1016/j.poly.2021.115089_b0140) 2017; 149
Zhou (10.1016/j.poly.2021.115089_b0770) 2014; 345
Ke (10.1016/j.poly.2021.115089_b0745) 2015; 137
Zhang (10.1016/j.poly.2021.115089_b0840) 2016; 4
Edri (10.1016/j.poly.2021.115089_b0650) 2014; 14
Xing (10.1016/j.poly.2021.115089_b0040) 2013; 342
Heo (10.1016/j.poly.2021.115089_b0655) 2015; 27
Qi (10.1016/j.poly.2021.115089_b0845) 2013; 15
Han (10.1016/j.poly.2021.115089_b0205) 2017; 236
Jiang (10.1016/j.poly.2021.115089_b0155) 2015; 54
Lee (10.1016/j.poly.2021.115089_b0345) 2014; 26
10.1016/j.poly.2021.115089_b0705
Jeon (10.1016/j.poly.2021.115089_b0350) 2014; 13
Hu (10.1016/j.poly.2021.115089_b0390) 2014; 1
Wali (10.1016/j.poly.2021.115089_b0690) 2014; 2
Yang (10.1016/j.poly.2021.115089_b0970) 2016; 28
Yang (10.1016/j.poly.2021.115089_b0330) 2015; 348
Heo (10.1016/j.poly.2021.115089_b0540) 2015; 55
Schwarzburg (10.1016/j.poly.2021.115089_b0660) 1991; 58
Shi (10.1016/j.poly.2021.115089_b0855) 2014; 104
Liu (10.1016/j.poly.2021.115089_b0915) 2014; 8
Chen (10.1016/j.poly.2021.115089_b0455) 2016; 6
Nayak (10.1016/j.poly.2021.115089_b0530) 2012; 5
Bouclé (10.1016/j.poly.2021.115089_b0620) 2016; 222
10.1016/j.poly.2021.115089_b0230
Park (10.1016/j.poly.2021.115089_b0785) 2015; 27
Wu (10.1016/j.poly.2021.115089_b0385) 2014; 7
Grätzel (10.1016/j.poly.2021.115089_b0055) 2017; 50
Wali (10.1016/j.poly.2021.115089_b0725) 2018; 179
Chen (10.1016/j.poly.2021.115089_b0945) 2017; 9
Ueoka (10.1016/j.poly.2021.115089_b0135) 2017; 1807
Philippe (10.1016/j.poly.2021.115089_b0115) 2017; 29
Kojima (10.1016/j.poly.2021.115089_b0520) 2012; 41
Nagane (10.1016/j.poly.2021.115089_b0160) 2014; 50
Werner (10.1016/j.poly.2021.115089_b0075) 2016; 7
Leijtens (10.1016/j.poly.2021.115089_b0755) 2013; 4
Beiley (10.1016/j.poly.2021.115089_b0495) 2012; 5
Hamaguchi (10.1016/j.poly.2021.115089_b0980) 2017; 53
10.1016/j.poly.2021.115089_b0240
Hao (10.1016/j.poly.2021.115089_b0125) 2014; 8
Chai (10.1016/j.poly.2021.115089_b0200) 2017; 125
References_xml – volume: 3
  start-page: 14121
  year: 2015
  end-page: 14125
  ident: b0370
  article-title: Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis
  publication-title: J. Mater. Chem. A
– volume: 338
  start-page: 625
  year: 2012
  end-page: 626
  ident: b0485
  article-title: Getting moore from solar cells
  publication-title: Science
– volume: 8
  start-page: 1997
  year: 2015
  end-page: 2003
  ident: b0825
  article-title: Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer
  publication-title: Nano Res.
– volume: 28
  start-page: 7344
  year: 2016
  end-page: 7352
  ident: b0970
  article-title: Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films
  publication-title: Chem. Mater.
– volume: 7
  start-page: 161
  year: 2016
  end-page: 166
  ident: b0075
  article-title: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 7856
  year: 2016
  end-page: 7865
  ident: b0910
  article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
  publication-title: Dalton Trans.
– volume: 9
  start-page: 1989
  year: 2016
  end-page: 1997
  ident: b0100
  article-title: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
  publication-title: Energy Environ. Sci.
– volume: 104
  year: 2014
  ident: b0855
  article-title: Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 3589
  year: 2017
  end-page: 3596
  ident: b0115
  article-title: Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy
  publication-title: Chem. Mater.
– volume: 353
  start-page: 737
  year: 1991
  end-page: 740
  ident: b0010
  article-title: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
  publication-title: Nature
– volume: 26
  start-page: 6503
  year: 2014
  end-page: 6509
  ident: b0630
  article-title: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  ident: b0440
  article-title: Molecularly engineered phthalocyanines as hole-transporting materials in perovskite solar cells reaching power conversion efficiency of 17.5%
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 460
  year: 2016
  end-page: 469
  ident: b0275
  article-title: Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination
  publication-title: Nano Energy
– volume: 9
  start-page: 2262
  year: 2016
  end-page: 2266
  ident: b0920
  article-title: Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 4366
  year: 2017
  end-page: 4369
  ident: b0980
  article-title: Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers
  publication-title: Chem. Commun.
– volume: 129
  start-page: 2750
  year: 2007
  end-page: 2751
  ident: b0490
  article-title: Stable, solution-processed, high-mobility ZnO thin-film transistors
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2017
  ident: b0185
  article-title: Carbon nanoforms in perovskite-based solar cells
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 2584
  year: 2014
  end-page: 2590
  ident: b0365
  article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells
  publication-title: Nano Lett.
– volume: 4
  year: 2016
  ident: b0250
  article-title: Research update: behind the high efficiency of hybrid perovskite solar cells
  publication-title: APL Mater.
– volume: 17
  start-page: 24092
  year: 2015
  end-page: 24097
  ident: b0580
  article-title: Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process
  publication-title: PCCP
– volume: 7
  start-page: 20539
  year: 2015
  end-page: 20546
  ident: b0420
  article-title: TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%
  publication-title: Nanoscale
– volume: 1807
  year: 2017
  ident: b0135
  article-title: Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells
  publication-title: AIP Conf. Proc.
– reference: J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang. Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Appl. Surf. Sci.
– volume: 24
  start-page: 693
  year: 2015
  end-page: 697
  ident: b0790
  article-title: Improving the interfacial contact between CH3NH3PbI3–xClx and Au by LiTFSI solution treatment for efficient photoelectric devices
  publication-title: J. Energy Chem.
– volume: 136
  start-page: 3760
  year: 2014
  end-page: 3763
  ident: b0815
  article-title: Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots
  publication-title: J. Am. Chem. Soc.
– start-page: 16048
  year: 2016
  ident: b0060
  article-title: Metal halide perovskites for energy applications
  publication-title: Nature Energy
– volume: 3
  start-page: 24495
  year: 2015
  end-page: 24503
  ident: b0380
  article-title: High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 19654
  year: 2016
  end-page: 19661
  ident: b0445
  article-title: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%
  publication-title: Nanoscale
– volume: 5
  start-page: 739
  year: 2017
  end-page: 747
  ident: b0415
  article-title: Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 3690
  year: 2014
  end-page: 3698
  ident: b0875
  article-title: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells
  publication-title: Energy Environ. Sci.
– volume: 104
  start-page: 8989
  year: 2000
  end-page: 8994
  ident: b0505
  article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells
  publication-title: J. Phys. Chem. B
– volume: 137
  start-page: 9210
  year: 2015
  end-page: 9213
  ident: b0960
  article-title: Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions
  publication-title: J. Am. Chem. Soc.
– volume: 283
  start-page: 61
  year: 2015
  end-page: 67
  ident: b0265
  article-title: Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells
  publication-title: J. Power Sources
– volume: 9
  start-page: 4200
  year: 2015
  end-page: 4209
  ident: b0310
  article-title: Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation
  publication-title: ACS Nano
– volume: 4
  start-page: 13203
  year: 2016
  end-page: 13210
  ident: b0460
  article-title: Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 591
  year: 2012
  ident: b0030
  article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci. Rep.
– volume: 7
  year: 2016
  ident: b0895
  article-title: Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells
  publication-title: Nat. Commun.
– volume: 27
  start-page: 4013
  year: 2015
  end-page: 4019
  ident: b0785
  article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition
  publication-title: Adv. Mater.
– volume: 80
  start-page: 4411
  year: 1996
  end-page: 4420
  ident: b0675
  article-title: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 3952
  year: 2014
  end-page: 3981
  ident: b0005
  article-title: A perspective on the production of dye-sensitized solar modules
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 8420
  year: 2015
  end-page: 8429
  ident: b0225
  article-title: Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules
  publication-title: ACS Nano
– volume: 8
  start-page: 12701
  year: 2014
  end-page: 12709
  ident: b0515
  article-title: Heterojunction modification for highly efficient organic-inorganic perovskite solar cells
  publication-title: ACS Nano
– volume: 149
  start-page: 54
  year: 2017
  end-page: 59
  ident: b0140
  article-title: Development of organic-inorganic tin halide perovskites: a review
  publication-title: Sol. Energy
– volume: 28
  start-page: 7496
  year: 2016
  end-page: 7504
  ident: b0120
  article-title: Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics
  publication-title: Chem. Mater.
– volume: 9
  start-page: 927
  year: 2014
  end-page: 932
  ident: b0405
  article-title: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells
  publication-title: Nat. Nanotechnol.
– volume: 84
  start-page: 89
  year: 2018
  end-page: 110
  ident: b0065
  article-title: Tandem perovskite solar cells
  publication-title: Renew. Sustain. Energy Rev.
– volume: 144
  start-page: 623
  year: 2016
  end-page: 630
  ident: b0750
  article-title: Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 13
  start-page: 1776
  year: 2013
  end-page: 1781
  ident: b0570
  article-title: Colloidal antireflection coating improves graphene-silicon solar cells
  publication-title: Nano Lett.
– volume: 14
  start-page: 724
  year: 2014
  end-page: 730
  ident: b0565
  article-title: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells
  publication-title: Nano Lett.
– volume: 27
  start-page: 6363
  year: 2015
  end-page: 6370
  ident: b0935
  article-title: Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%
  publication-title: Adv. Mater.
– volume: 116
  start-page: 4558
  year: 2016
  end-page: 4596
  ident: b0975
  article-title: Organic-inorganic perovskites: structural versatility for functional materials design
  publication-title: Chem. Rev.
– volume: 8
  start-page: 489
  year: 2014
  end-page: 494
  ident: b0125
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photon.
– volume: 2
  start-page: 897
  year: 2017
  end-page: 903
  ident: b0130
  article-title: Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive
  publication-title: ACS Energy Lett.
– volume: 222
  start-page: 3
  year: 2016
  end-page: 16
  ident: b0620
  article-title: The benefits of graphene for hybrid perovskite solar cells
  publication-title: Synth. Met.
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: b0470
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
– volume: 26
  start-page: 4991
  year: 2014
  end-page: 4998
  ident: b0345
  article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3
  publication-title: Adv. Mater.
– volume: 118
  start-page: 16458
  year: 2014
  end-page: 16462
  ident: b0085
  article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 94290
  year: 2015
  end-page: 94295
  ident: b0285
  article-title: Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell
  publication-title: RSC Adv.
– reference: Y. Tu, J. Wu, Z. Lan, X. He, J. Dong, J. Jia, et al. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. 2017;7:44603.
– reference: Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik
– volume: 5
  start-page: 6022
  year: 2012
  end-page: 6039
  ident: b0530
  article-title: Photovoltaic efficiency limits and material disorder
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 865
  year: 2004
  end-page: 870
  ident: b0680
  article-title: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8171
  year: 2014
  end-page: 8176
  ident: b0280
  article-title: Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition
  publication-title: Nanoscale
– volume: 147
  start-page: 255
  year: 2016
  end-page: 275
  ident: b0260
  article-title: Stability of perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 646
  start-page: 32
  year: 2015
  end-page: 39
  ident: b0695
  article-title: One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells
  publication-title: J. Alloy. Compd.
– volume: 118
  start-page: 16651
  year: 2014
  end-page: 16659
  ident: b0575
  article-title: All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 3414
  year: 2013
  end-page: 3438
  ident: b0685
  article-title: The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 15383
  year: 2016
  end-page: 15389
  ident: b0840
  article-title: Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 487
  year: 2017
  end-page: 491
  ident: b0055
  article-title: The rise of highly efficient and stable perovskite solar cells
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 15284
  year: 2015
  end-page: 15290
  ident: b0715
  article-title: Epitaxial 1D electron transport layers for high-performance perovskite solar cells
  publication-title: Nanoscale
– volume: 342
  start-page: 344
  year: 2013
  ident: b0040
  article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3Pb3
  publication-title: Science
– volume: 8
  start-page: 2928
  year: 2015
  end-page: 2934
  ident: b0730
  article-title: Highly efficient planar perovskite solar cells through band alignment engineering
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1739
  year: 2013
  end-page: 1743
  ident: b0550
  article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 29580
  year: 2016
  end-page: 29587
  ident: b0940
  article-title: Ternary oxides in the TiO2–ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15%
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 17427
  year: 2014
  end-page: 17434
  ident: b0690
  article-title: Multiporous nanofibers of SnO 2 by electrospinning for high efficiency dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1602
  year: 2015
  end-page: 1608
  ident: b0865
  article-title: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1511
  year: 2014
  end-page: 1515
  ident: b0360
  article-title: Anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 126
  start-page: 10056
  year: 2014
  end-page: 10061
  ident: b0760
  article-title: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells
  publication-title: Angew. Chem.
– volume: 53
  start-page: 3151
  year: 2014
  end-page: 3157
  ident: b0340
  article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 14423
  year: 2016
  end-page: 14429
  ident: b0965
  article-title: A mesoporous-planar hybrid architecture of methylammonium lead iodide perovskite based solar cells
  publication-title: J. Mater. Chem. A
– volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  ident: b0090
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
– volume: 9
  start-page: 2449
  year: 2017
  end-page: 2458
  ident: b0945
  article-title: Mixed-organic-cation (FA)x(MA)1–xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 9067
  year: 2015
  end-page: 9070
  ident: b0145
  article-title: Assessment of polyanion (BF4- and PF6-) substitutions in hybrid halide perovskites
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2016
  ident: b0455
  article-title: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3586
  year: 2014
  ident: b0595
  article-title: Excitons versus free charges in organo-lead tri-halide perovskites
  publication-title: Nat. Commun.
– volume: 155
  start-page: 14
  year: 2016
  end-page: 19
  ident: b0905
  article-title: Efficient planar heterojunction perovskite solar cells fabricated via roller-coating
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 599
  year: 2003
  ident: b0555
  article-title: Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals
  publication-title: Sci. Technol. Adv. Mater.
– volume: 54
  start-page: 3430
  year: 1976
  end-page: 3438
  ident: b0400
  article-title: Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands
  publication-title: Can. J. Chem.
– volume: 17
  start-page: 171
  year: 2015
  end-page: 179
  ident: b0600
  article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture
  publication-title: Nano Energy
– volume: 4
  start-page: 5647
  year: 2016
  end-page: 5653
  ident: b0820
  article-title: Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction
  publication-title: J. Mater. Chem. A
– volume: 347
  start-page: 522
  year: 2015
  end-page: 525
  ident: b0900
  article-title: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
  publication-title: Science
– volume: 119
  start-page: 9926
  year: 2015
  end-page: 9933
  ident: b0165
  article-title: Precipitation of CH3NH3PbCl3 in CH3NH3PbI3 and its impact on modulated charge separation
  publication-title: J. Phys. Chem. C
– volume: 26
  year: 2017
  ident: b0775
  article-title: Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps
  publication-title: Chin. Phys. B
– volume: 29
  start-page: 3246
  year: 2017
  end-page: 3250
  ident: b0095
  article-title: High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation
  publication-title: Chem. Mater.
– volume: 7
  year: 2017
  ident: b0190
  article-title: Carbon nanotubes in perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1700623
  year: 2017
  ident: b0220
  article-title: Interfaces in perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 133
  year: 2014
  end-page: 138
  ident: b0915
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat Photon.
– volume: 22
  start-page: 439
  year: 2016
  end-page: 452
  ident: b0615
  article-title: Planar versus mesoscopic perovskite microstructures: the influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics
  publication-title: Nano Energy
– volume: 8
  start-page: 629
  year: 2015
  end-page: 640
  ident: b0810
  article-title: Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 1910
  year: 2006
  end-page: 1914
  ident: b0295
  article-title: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells
  publication-title: Adv. Mater.
– volume: 116
  start-page: 20717
  year: 2012
  end-page: 20721
  ident: b0525
  article-title: Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 2390
  year: 2013
  end-page: 2413
  ident: b0475
  article-title: Highly efficient organic tandem solar cells: a follow up review
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 174
  year: 2013
  end-page: 189
  ident: b0500
  article-title: Fabrication of flexible dye sensitized solar cells on plastic substrates
  publication-title: Nano Energy
– volume: 3
  start-page: 19288
  year: 2015
  end-page: 19293
  ident: b0625
  article-title: Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer
  publication-title: J. Mater. Chem. A
– volume: 293
  start-page: 1039
  year: 2015
  end-page: 1052
  ident: b0480
  article-title: Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges
  publication-title: J. Power Sources
– volume: 3
  start-page: 10837
  year: 2015
  end-page: 10844
  ident: b0710
  article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 206
  year: 2017
  end-page: 216
  ident: b0985
  article-title: Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 17649
  year: 2016
  end-page: 17654
  ident: b0780
  article-title: Elimination of the J-V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative
  publication-title: J. Mater. Chem. A
– reference: M, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than
– volume: 13
  start-page: 897
  year: 2014
  end-page: 903
  ident: b0350
  article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
  publication-title: Nat. Mater.
– volume: 8
  start-page: 904
  year: 2009
  end-page: 909
  ident: b0315
  article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells
  publication-title: Nat. Mater.
– volume: 7
  start-page: 167
  year: 2016
  end-page: 172
  ident: b0105
  article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 107
  year: 2015
  ident: b0805
  article-title: Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2013
  ident: b0755
  article-title: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells
  publication-title: Nat. Commun.
– volume: 18
  start-page: 21629
  year: 2016
  end-page: 21639
  ident: b0255
  article-title: Humidity versus photo-stability of metal halide perovskite films in a polymer matrix
  publication-title: PCCP
– volume: 18
  start-page: 32903
  year: 2016
  end-page: 32909
  ident: b0800
  article-title: Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres
  publication-title: PCCP
– volume: 355
  start-page: 98
  year: 2017
  end-page: 133
  ident: b0180
  article-title: Recent progress in stabilizing hybrid perovskites for solar cell applications
  publication-title: J. Power Sources
– volume: 8
  start-page: 995
  year: 2015
  end-page: 1004
  ident: b0870
  article-title: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 4088
  year: 2011
  end-page: 4093
  ident: b0020
  article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell
  publication-title: Nanoscale
– volume: 5
  start-page: 9173
  year: 2012
  end-page: 9179
  ident: b0495
  article-title: Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2015
  ident: b0860
  article-title: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes
  publication-title: Nat. Commun.
– volume: 517
  start-page: 476
  year: 2015
  end-page: 480
  ident: b0335
  article-title: Compositional engineering of perovskite materials for high-performance solar cells
  publication-title: Nature
– volume: 7
  start-page: 2934
  year: 2014
  end-page: 2938
  ident: b0385
  article-title: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition
  publication-title: Energy Environ. Sci.
– volume: 34
  start-page: 271
  year: 2017
  end-page: 305
  ident: b0025
  article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells
  publication-title: Nano Energy
– volume: 499
  start-page: 316
  year: 2013
  end-page: 319
  ident: b0410
  article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells
  publication-title: Nature
– volume: 73
  start-page: 179
  year: 2015
  end-page: 192
  ident: b0795
  article-title: Recent advances in perovskite solar cells: morphology control and interfacial engineering
  publication-title: Acta Chim. Sinica
– volume: 348
  start-page: 1234
  year: 2015
  end-page: 1237
  ident: b0330
  article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
  publication-title: Science
– volume: 5
  start-page: 6840
  year: 2017
  end-page: 6848
  ident: b0235
  article-title: Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 9741
  year: 2014
  end-page: 9744
  ident: b0160
  article-title: CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite
  publication-title: Chem. Commun.
– volume: 26
  start-page: 8179
  year: 2014
  end-page: 8183
  ident: b0150
  article-title: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5360
  year: 2003
  end-page: 5364
  ident: b0545
  article-title: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells
  publication-title: PCCP
– volume: 501
  start-page: 395
  year: 2013
  end-page: 398
  ident: b0270
  article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition
  publication-title: Nature
– volume: 165
  start-page: 36
  year: 2017
  end-page: 44
  ident: b0195
  article-title: Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 15
  start-page: 8972
  year: 2013
  end-page: 8982
  ident: b0845
  article-title: Fill factor in organic solar cells
  publication-title: PCCP
– reference: B. Grew, J.W. Bowers, H.M. Upadhyaya. The optimization of optical properties for increased performance in a monolithic tandem dye-sensitized/Cu(In, Ga)Se<inf>2</inf> solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)2013. p. 1008-12.
– volume: 4
  start-page: 3623
  year: 2013
  end-page: 3630
  ident: b0510
  article-title: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 54
  start-page: 7617
  year: 2015
  end-page: 7620
  ident: b0155
  article-title: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2927
  year: 2014
  end-page: 2934
  ident: b0885
  article-title: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer
  publication-title: J. Phys. Chem. Lett..
– volume: 5
  year: 2014
  ident: b0670
  article-title: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
  publication-title: Nat. Commun.
– volume: 126
  start-page: 12779
  year: 2014
  end-page: 12783
  ident: b0605
  article-title: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells
  publication-title: Angew. Chem.
– volume: 5
  year: 2015
  ident: b0305
  article-title: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 3808
  year: 2015
  end-page: 3814
  ident: b0890
  article-title: Modeling anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 7147
  year: 2014
  end-page: 7155
  ident: b0585
  article-title: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility
  publication-title: ACS Nano
– volume: 4
  start-page: 1532
  year: 2013
  end-page: 1536
  ident: b0325
  article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 32
  start-page: 187
  year: 2017
  end-page: 194
  ident: b0950
  article-title: Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency
  publication-title: Nano Energy
– volume: 15
  start-page: 247
  year: 2016
  end-page: 251
  ident: b0990
  article-title: Toxicity of organometal halide perovskite solar cells
  publication-title: Nat. Mater.
– volume: 1
  start-page: 5628
  year: 2013
  end-page: 5641
  ident: b0635
  article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4633
  year: 2015
  end-page: 4639
  ident: b0880
  article-title: Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 1000
  year: 2014
  end-page: 1004
  ident: b0650
  article-title: Why lead methylammonium Tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor)
  publication-title: Nano Lett.
– volume: 167
  start-page: 173
  year: 2017
  end-page: 177
  ident: b0465
  article-title: Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 5
  start-page: 648
  year: 2014
  end-page: 653
  ident: b0590
  article-title: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  year: 2015
  ident: b0535
  article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 11076
  year: 2016
  end-page: 11083
  ident: b0925
  article-title: Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 1233
  year: 2016
  end-page: 1240
  ident: b0110
  article-title: Toward lead-free perovskite solar cells
  publication-title: ACS Energy Lett.
– reference: 21%. 2016;1:16142.
– volume: 4
  start-page: 12080
  year: 2016
  end-page: 12087
  ident: b0740
  article-title: Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 362
  year: 2014
  end-page: 373
  ident: b0665
  article-title: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells
  publication-title: ACS Nano
– volume: 10
  start-page: 6029
  year: 2016
  end-page: 6036
  ident: b0930
  article-title: Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells
  publication-title: ACS Nano
– volume: 5
  start-page: 7339
  year: 2017
  end-page: 7344
  ident: b0955
  article-title: Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer
  publication-title: J. Mater. Chem. A
– volume: 77
  start-page: 131
  year: 2017
  end-page: 146
  ident: b0170
  article-title: Device stability of perovskite solar cells – a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 11
  start-page: 427
  year: 2015
  end-page: 434
  ident: b0035
  article-title: Magnetic field effects in hybrid perovskite devices
  publication-title: Nat. Phys.
– year: 2017
  ident: b0210
  article-title: Mixed cation hybrid lead halide perovskites with enhanced performance and stability
  publication-title: J. Mater. Chem. A
– reference: Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, et al. Thermally Stable MAPbI3 Perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. n/a-n/a.
– volume: 17
  start-page: 394
  year: 2009
  end-page: 402
  ident: b0320
  article-title: Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 236
  start-page: 122
  year: 2017
  end-page: 130
  ident: b0205
  article-title: Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells
  publication-title: Electrochim. Acta
– volume: 347
  start-page: 967
  year: 2015
  end-page: 970
  ident: b0045
  article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals
  publication-title: Science
– volume: 3
  year: 2011
  ident: b0290
  article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell
  publication-title: Nanoscale
– volume: 27
  start-page: 3424
  year: 2015
  end-page: 3430
  ident: b0655
  article-title: Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2676
  year: 2015
  end-page: 2681
  ident: b0735
  article-title: High-efficiency polycrystalline thin film tandem solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  year: 2017
  ident: b0175
  article-title: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2664
  year: 2016
  end-page: 2677
  ident: b0450
  article-title: In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency
  publication-title: Nanoscale
– volume: 58
  start-page: 2520
  year: 1991
  end-page: 2522
  ident: b0660
  article-title: Influence of trap filling on photocurrent transients in polycrystalline TiO2
  publication-title: Appl. Phys. Lett.
– volume: 41
  start-page: 397
  year: 2012
  end-page: 399
  ident: b0520
  article-title: Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media
  publication-title: Chem. Lett.
– volume: 119
  start-page: 10212
  year: 2015
  end-page: 10217
  ident: b0720
  article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 2554
  year: 2016
  end-page: 2560
  ident: b0640
  article-title: Highly reproducible, efficient hysteresis-less CH3NH3PbI3-xClx planar hybrid solar cells without requiring heat-treatment
  publication-title: Nanoscale
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: b0015
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 8696
  year: 2015
  end-page: 8699
  ident: b0395
  article-title: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide
  publication-title: J. Am. Chem. Soc.
– volume: 332
  start-page: 366
  year: 2016
  end-page: 371
  ident: b0435
  article-title: TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%
  publication-title: J. Power Sources
– volume: 125
  start-page: 222
  year: 2017
  end-page: 229
  ident: b0200
  article-title: CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: impact of bromide on stability and cell performance
  publication-title: Mater. Des.
– volume: 24
  start-page: 707
  year: 2015
  ident: b0765
  article-title: A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells
  publication-title: J. Energy Chem.
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  ident: b0770
  article-title: Interface engineering of highly efficient perovskite solar cells
  publication-title: Science
– volume: 342
  start-page: 341
  year: 2013
  end-page: 344
  ident: b0050
  article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
  publication-title: Science
– volume: 26
  year: 2015
  ident: b0215
  article-title: Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods
  publication-title: Nanotechnology.
– volume: 6
  start-page: 12609
  year: 2014
  end-page: 12617
  ident: b0610
  article-title: Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 203
  year: 2015
  end-page: 211
  ident: b0080
  article-title: Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process
  publication-title: Mater. Horiz.
– volume: 6
  year: 2016
  ident: b0375
  article-title: Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 138
  year: 2016
  end-page: 144
  ident: b0300
  article-title: Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%
  publication-title: Nano Energy
– volume: 1
  start-page: 547
  year: 2014
  end-page: 553
  ident: b0390
  article-title: Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells
  publication-title: ACS Photonics
– volume: 137
  start-page: 6730
  year: 2015
  end-page: 6733
  ident: b0745
  article-title: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 663
  year: 1980
  end-page: 664
  ident: b0355
  article-title: The crystal structure of lead(II) Iodide-dimethylsulphoxide(1/2), PbI<SUB>2</SUB>(dmso)<SUB>2</SUB>
  publication-title: Chem. Lett.
– volume: 3
  start-page: 18389
  year: 2015
  end-page: 18394
  ident: b0245
  article-title: Hole-conductor-free planar perovskite solar cells with 16.0% efficiency
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1142
  year: 2014
  end-page: 1147
  ident: b0560
  article-title: Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 5401
  year: 2012
  end-page: 5407
  ident: b0700
  article-title: High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 966
  year: 2015
  end-page: 977
  ident: b0540
  article-title: Recent progress of innovative perovskite hybrid solar cells
  publication-title: Isr. J. Chem.
– volume: 25
  start-page: 4613
  year: 2013
  end-page: 4618
  ident: b0645
  article-title: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties
  publication-title: Chem. Mater.
– reference: F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. 2016;7:10379.
– volume: 5
  start-page: 7060
  year: 2012
  end-page: 7065
  ident: b0850
  article-title: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 10399
  year: 2015
  end-page: 10405
  ident: b0425
  article-title: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%
  publication-title: J. Am. Chem. Soc.
– volume: 179
  start-page: 102
  year: 2018
  end-page: 117
  ident: b0725
  article-title: Tin oxide as an emerging electron transport medium in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 15
  start-page: 530
  year: 2015
  end-page: 539
  ident: b0835
  article-title: Hysteresis-less mesoscopic CH 3 NH 3 PbI 3 perovskite hybrid solar cells by introduction of Li-treated TiO 2 electrode
  publication-title: Nano Energy
– ident: 10.1016/j.poly.2021.115089_b0240
– volume: 2
  start-page: 203
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0080
  article-title: Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00237G
– ident: 10.1016/j.poly.2021.115089_b0230
  doi: 10.1038/nenergy.2016.142
– volume: 338
  start-page: 643
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0090
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 353
  start-page: 737
  year: 1991
  ident: 10.1016/j.poly.2021.115089_b0010
  article-title: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
  publication-title: Nature
  doi: 10.1038/353737a0
– volume: 129
  start-page: 2750
  year: 2007
  ident: 10.1016/j.poly.2021.115089_b0490
  article-title: Stable, solution-processed, high-mobility ZnO thin-film transistors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068876e
– volume: 5
  start-page: 2927
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0885
  article-title: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer
  publication-title: J. Phys. Chem. Lett..
  doi: 10.1021/jz501392m
– volume: 1
  start-page: 1233
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0110
  article-title: Toward lead-free perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00499
– volume: 6
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0375
  article-title: Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600285
– volume: 8
  start-page: 29580
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0940
  article-title: Ternary oxides in the TiO2–ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15%
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09326
– volume: 283
  start-page: 61
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0265
  article-title: Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.084
– volume: 3
  start-page: 19288
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0625
  article-title: Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04239A
– volume: 116
  start-page: 4558
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0975
  article-title: Organic-inorganic perovskites: structural versatility for functional materials design
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 26
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0775
  article-title: Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps
  publication-title: Chin. Phys. B
– volume: 53
  start-page: 3151
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0340
  article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309361
– volume: 8
  start-page: 12701
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0515
  article-title: Heterojunction modification for highly efficient organic-inorganic perovskite solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn505723h
– volume: 345
  start-page: 542
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0770
  article-title: Interface engineering of highly efficient perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 3
  start-page: 14121
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0370
  article-title: Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03169A
– volume: 5
  start-page: 6022
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0530
  article-title: Photovoltaic efficiency limits and material disorder
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03178g
– volume: 8
  start-page: 2928
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0730
  article-title: Highly efficient planar perovskite solar cells through band alignment engineering
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02608C
– volume: 342
  start-page: 341
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0050
  article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 80
  start-page: 4411
  year: 1996
  ident: 10.1016/j.poly.2021.115089_b0675
  article-title: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363401
– volume: 22
  start-page: 439
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0615
  article-title: Planar versus mesoscopic perovskite microstructures: the influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.031
– volume: 2
  start-page: 591
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0030
  article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 6
  start-page: 12609
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0610
  article-title: Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5025963
– volume: 3
  start-page: 9067
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0145
  article-title: Assessment of polyanion (BF4- and PF6-) substitutions in hybrid halide perovskites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05284F
– volume: 147
  start-page: 255
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0260
  article-title: Stability of perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.12.025
– volume: 6
  start-page: 1739
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0550
  article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40810h
– volume: 348
  start-page: 1234
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0330
  article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
  publication-title: Science
  doi: 10.1126/science.aaa9272
– volume: 136
  start-page: 3760
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0815
  article-title: Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4132246
– volume: 18
  start-page: 32903
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0800
  article-title: Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres
  publication-title: PCCP
  doi: 10.1039/C6CP06405A
– volume: 54
  start-page: 3430
  year: 1976
  ident: 10.1016/j.poly.2021.115089_b0400
  article-title: Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands
  publication-title: Can. J. Chem.
  doi: 10.1139/v76-493
– volume: 126
  start-page: 10056
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0760
  article-title: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201405334
– volume: 84
  start-page: 89
  year: 2018
  ident: 10.1016/j.poly.2021.115089_b0065
  article-title: Tandem perovskite solar cells
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.01.005
– volume: 4
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0250
  article-title: Research update: behind the high efficiency of hybrid perovskite solar cells
  publication-title: APL Mater.
  doi: 10.1063/1.4962143
– volume: 9
  start-page: 8420
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0225
  article-title: Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03265
– volume: 137
  start-page: 6730
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0745
  article-title: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01994
– volume: 342
  start-page: 344
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0040
  article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3Pb3
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 125
  start-page: 222
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0200
  article-title: CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: impact of bromide on stability and cell performance
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.04.010
– volume: 5
  start-page: 9173
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0495
  article-title: Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23073a
– volume: 7
  start-page: 161
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0075
  article-title: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02686
– volume: 7
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0440
  article-title: Molecularly engineered phthalocyanines as hole-transporting materials in perovskite solar cells reaching power conversion efficiency of 17.5%
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601733
– volume: 5
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0670
  article-title: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6784
– volume: 29
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0175
  article-title: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601715
– volume: 646
  start-page: 32
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0695
  article-title: One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.05.120
– volume: 8
  start-page: 11076
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0925
  article-title: Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12123
– volume: 17
  start-page: 394
  year: 2009
  ident: 10.1016/j.poly.2021.115089_b0320
  article-title: Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.895
– ident: 10.1016/j.poly.2021.115089_b0430
  doi: 10.1038/srep44603
– volume: 7
  start-page: 20539
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0420
  article-title: TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%
  publication-title: Nanoscale
  doi: 10.1039/C5NR05563F
– volume: 6
  start-page: 2390
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0475
  article-title: Highly efficient organic tandem solar cells: a follow up review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40388b
– volume: 8
  start-page: 629
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0810
  article-title: Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02833C
– volume: 4
  start-page: 12080
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0740
  article-title: Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04503K
– volume: 55
  start-page: 966
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0540
  article-title: Recent progress of innovative perovskite hybrid solar cells
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201500002
– volume: 5
  start-page: 5401
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0700
  article-title: High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02703D
– volume: 118
  start-page: 16458
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0085
  article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411112k
– volume: 13
  start-page: 1776
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0570
  article-title: Colloidal antireflection coating improves graphene-silicon solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl400353f
– volume: 7
  start-page: 167
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0105
  article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02597
– volume: 14
  start-page: 724
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0565
  article-title: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl403997a
– volume: 8
  start-page: 19654
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0445
  article-title: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%
  publication-title: Nanoscale
  doi: 10.1039/C6NR07076K
– volume: 50
  start-page: 487
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0055
  article-title: The rise of highly efficient and stable perovskite solar cells
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00492
– volume: 24
  start-page: 707
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0765
  article-title: A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2015.10.017
– volume: 26
  start-page: 4991
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0345
  article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401137
– volume: 26
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0215
  article-title: Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods
  publication-title: Nanotechnology.
– volume: 5
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0305
  article-title: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400812
– ident: 10.1016/j.poly.2021.115089_b0705
– volume: 119
  start-page: 9926
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0165
  article-title: Precipitation of CH3NH3PbCl3 in CH3NH3PbI3 and its impact on modulated charge separation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01667
– volume: 27
  start-page: 3424
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0655
  article-title: Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500048
– volume: 50
  start-page: 9741
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0160
  article-title: CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04537H
– ident: 10.1016/j.poly.2021.115089_b0830
  doi: 10.1038/ncomms10379
– volume: 34
  start-page: 271
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0025
  article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.025
– volume: 32
  start-page: 510
  year: 1961
  ident: 10.1016/j.poly.2021.115089_b0470
  article-title: Detailed balance limit of efficiency of p-n junction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 7
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0185
  article-title: Carbon nanoforms in perovskite-based solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601000
– volume: 6
  start-page: 8171
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0280
  article-title: Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition
  publication-title: Nanoscale
  doi: 10.1039/C4NR01141D
– volume: 5
  start-page: 7339
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0955
  article-title: Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01764B
– volume: 28
  start-page: 7344
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0970
  article-title: Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02744
– year: 2017
  ident: 10.1016/j.poly.2021.115089_b0210
  article-title: Mixed cation hybrid lead halide perovskites with enhanced performance and stability
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2554
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0640
  article-title: Highly reproducible, efficient hysteresis-less CH3NH3PbI3-xClx planar hybrid solar cells without requiring heat-treatment
  publication-title: Nanoscale
  doi: 10.1039/C5NR08458J
– volume: 29
  start-page: 3589
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0115
  article-title: Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00126
– volume: 8
  start-page: 133
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0915
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat Photon.
  doi: 10.1038/nphoton.2013.342
– ident: 10.1016/j.poly.2021.115089_b0070
  doi: 10.1109/PVSC.2013.6744311
– volume: 30
  start-page: 460
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0275
  article-title: Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.030
– volume: 222
  start-page: 3
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0620
  article-title: The benefits of graphene for hybrid perovskite solar cells
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2016.03.030
– volume: 9
  start-page: 2449
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0945
  article-title: Mixed-organic-cation (FA)x(MA)1–xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13410
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.poly.2021.115089_b0015
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 118
  start-page: 16651
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0575
  article-title: All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412627n
– volume: 338
  start-page: 625
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0485
  article-title: Getting moore from solar cells
  publication-title: Science
  doi: 10.1126/science.1230283
– volume: 8
  start-page: 2664
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0450
  article-title: In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency
  publication-title: Nanoscale
  doi: 10.1039/C5NR07395B
– volume: 5
  start-page: 6840
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0235
  article-title: Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00027H
– volume: 8
  start-page: 904
  year: 2009
  ident: 10.1016/j.poly.2021.115089_b0315
  article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2548
– volume: 499
  start-page: 316
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0410
  article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 104
  start-page: 8989
  year: 2000
  ident: 10.1016/j.poly.2021.115089_b0505
  article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp994365l
– volume: 9
  start-page: 1989
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0100
  article-title: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03874J
– volume: 3
  year: 2011
  ident: 10.1016/j.poly.2021.115089_b0290
  article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell
  publication-title: Nanoscale
  doi: 10.1039/c1nr10867k
– volume: 7
  start-page: 2934
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0385
  article-title: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01624F
– volume: 14
  start-page: 865
  year: 2004
  ident: 10.1016/j.poly.2021.115089_b0680
  article-title: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200305156
– volume: 517
  start-page: 476
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0335
  article-title: Compositional engineering of perovskite materials for high-performance solar cells
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 355
  start-page: 98
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0180
  article-title: Recent progress in stabilizing hybrid perovskites for solar cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.025
– volume: 144
  start-page: 623
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0750
  article-title: Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.09.054
– volume: 9
  start-page: 663
  year: 1980
  ident: 10.1016/j.poly.2021.115089_b0355
  article-title: The crystal structure of lead(II) Iodide-dimethylsulphoxide(1/2), PbI2(dmso)2
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1980.663
– volume: 149
  start-page: 54
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0140
  article-title: Development of organic-inorganic tin halide perovskites: a review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.03.077
– volume: 155
  start-page: 14
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0905
  article-title: Efficient planar heterojunction perovskite solar cells fabricated via roller-coating
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.04.059
– volume: 8
  start-page: 489
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0125
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.82
– volume: 2
  start-page: 174
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0500
  article-title: Fabrication of flexible dye sensitized solar cells on plastic substrates
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.10.004
– volume: 4
  start-page: 17649
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0780
  article-title: Elimination of the J-V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06143E
– volume: 7
  start-page: 1142
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0560
  article-title: Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43707H
– volume: 6
  start-page: 2676
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0735
  article-title: High-efficiency polycrystalline thin film tandem solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01108
– volume: 3
  start-page: 4088
  year: 2011
  ident: 10.1016/j.poly.2021.115089_b0020
  article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell
  publication-title: Nanoscale
  doi: 10.1039/c1nr10867k
– volume: 5
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0535
  article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501066
– volume: 7
  start-page: 15284
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0715
  article-title: Epitaxial 1D electron transport layers for high-performance perovskite solar cells
  publication-title: Nanoscale
  doi: 10.1039/C5NR03476K
– volume: 6
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0860
  article-title: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes
  publication-title: Nat. Commun.
– volume: 23
  start-page: 138
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0300
  article-title: Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.03.020
– volume: 3
  start-page: 10837
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0710
  article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01207D
– volume: 4
  start-page: 5647
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0820
  article-title: Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00989A
– volume: 4
  start-page: 3623
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0510
  article-title: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4020162
– volume: 41
  start-page: 397
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0520
  article-title: Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.397
– volume: 18
  start-page: 1910
  year: 2006
  ident: 10.1016/j.poly.2021.115089_b0295
  article-title: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502256
– volume: 15
  start-page: 530
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0835
  article-title: Hysteresis-less mesoscopic CH 3 NH 3 PbI 3 perovskite hybrid solar cells by introduction of Li-treated TiO 2 electrode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.014
– volume: 5
  start-page: 3586
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0595
  article-title: Excitons versus free charges in organo-lead tri-halide perovskites
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4586
– volume: 4
  start-page: 13203
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0460
  article-title: Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04465D
– volume: 7
  start-page: 3690
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0875
  article-title: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02465F
– volume: 77
  start-page: 131
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0170
  article-title: Device stability of perovskite solar cells – a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.003
– volume: 137
  start-page: 8696
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0395
  article-title: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04930
– volume: 167
  start-page: 173
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0465
  article-title: Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.04.018
– volume: 5
  start-page: 7060
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0850
  article-title: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee00056c
– volume: 9
  start-page: 4200
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0310
  article-title: Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00447
– volume: 347
  start-page: 967
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0045
  article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals
  publication-title: Science
  doi: 10.1126/science.aaa5760
– volume: 29
  start-page: 3246
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0095
  article-title: High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00523
– volume: 107
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0805
  article-title: Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4929435
– volume: 14
  start-page: 2584
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0365
  article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl500390f
– volume: 165
  start-page: 36
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0195
  article-title: Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.01.013
– volume: 6
  start-page: 3414
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0685
  article-title: The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41860j
– volume: 9
  start-page: 927
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0405
  article-title: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.181
– volume: 3
  start-page: 18389
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0245
  article-title: Hole-conductor-free planar perovskite solar cells with 16.0% efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05989E
– volume: 293
  start-page: 1039
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0480
  article-title: Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.037
– volume: 104
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0855
  article-title: Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864638
– volume: 8
  start-page: 1997
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0825
  article-title: Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0711-4
– volume: 2
  start-page: 897
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0130
  article-title: Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00171
– volume: 17
  start-page: 24092
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0580
  article-title: Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process
  publication-title: PCCP
  doi: 10.1039/C5CP03803K
– volume: 5
  start-page: 94290
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0285
  article-title: Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17129F
– volume: 6
  start-page: 4633
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0880
  article-title: Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02273
– volume: 3
  start-page: 24495
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0380
  article-title: High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08193A
– volume: 8
  start-page: 1602
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0865
  article-title: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00120J
– volume: 5
  start-page: 739
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0415
  article-title: Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09036B
– volume: 11
  start-page: 427
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0035
  article-title: Magnetic field effects in hybrid perovskite devices
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3277
– volume: 5
  start-page: 648
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0590
  article-title: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402749f
– volume: 32
  start-page: 187
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0950
  article-title: Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.029
– volume: 25
  start-page: 4613
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0645
  article-title: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm402919x
– volume: 4
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0755
  article-title: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3885
– volume: 4
  start-page: 15383
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0840
  article-title: Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06879K
– start-page: 16048
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0060
  article-title: Metal halide perovskites for energy applications
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.48
– volume: 1807
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0135
  article-title: Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4974791
– volume: 1
  start-page: 547
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0390
  article-title: Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells
  publication-title: ACS Photonics
  doi: 10.1021/ph5000067
– volume: 4
  start-page: 206
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0985
  article-title: Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00519E
– volume: 236
  start-page: 122
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0205
  article-title: Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.139
– volume: 14
  start-page: 1000
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0650
  article-title: Why lead methylammonium Tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor)
  publication-title: Nano Lett.
  doi: 10.1021/nl404454h
– volume: 13
  start-page: 897
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0350
  article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 2
  start-page: 17427
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0690
  article-title: Multiporous nanofibers of SnO 2 by electrospinning for high efficiency dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03056G
– volume: 7
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0190
  article-title: Carbon nanotubes in perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601839
– volume: 137
  start-page: 10399
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0425
  article-title: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06444
– volume: 26
  start-page: 6503
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0630
  article-title: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401685
– volume: 26
  start-page: 8179
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0150
  article-title: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403140
– volume: 27
  start-page: 6363
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0935
  article-title: Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502586
– volume: 24
  start-page: 693
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0790
  article-title: Improving the interfacial contact between CH3NH3PbI3–xClx and Au by LiTFSI solution treatment for efficient photoelectric devices
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2015.10.005
– volume: 54
  start-page: 7617
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0155
  article-title: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503038
– volume: 347
  start-page: 522
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0900
  article-title: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
  publication-title: Science
  doi: 10.1126/science.aaa0472
– volume: 10
  start-page: 6029
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0930
  article-title: Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01575
– volume: 7
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0895
  article-title: Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10334
– volume: 28
  start-page: 7496
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0120
  article-title: Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03310
– volume: 17
  start-page: 171
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0600
  article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.08.009
– volume: 179
  start-page: 102
  year: 2018
  ident: 10.1016/j.poly.2021.115089_b0725
  article-title: Tin oxide as an emerging electron transport medium in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.02.007
– volume: 15
  start-page: 8972
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0845
  article-title: Fill factor in organic solar cells
  publication-title: PCCP
  doi: 10.1039/c3cp51383a
– volume: 7
  start-page: 3952
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0005
  article-title: A perspective on the production of dye-sensitized solar modules
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01724B
– volume: 58
  start-page: 2520
  year: 1991
  ident: 10.1016/j.poly.2021.115089_b0660
  article-title: Influence of trap filling on photocurrent transients in polycrystalline TiO2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104839
– volume: 116
  start-page: 20717
  year: 2012
  ident: 10.1016/j.poly.2021.115089_b0525
  article-title: Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305150s
– volume: 6
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0455
  article-title: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502087
– volume: 18
  start-page: 21629
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0255
  article-title: Humidity versus photo-stability of metal halide perovskite films in a polymer matrix
  publication-title: PCCP
  doi: 10.1039/C6CP03600G
– volume: 501
  start-page: 395
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0270
  article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition
  publication-title: Nature
  doi: 10.1038/nature12509
– volume: 1
  start-page: 5628
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0635
  article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10518k
– volume: 4
  start-page: 599
  year: 2003
  ident: 10.1016/j.poly.2021.115089_b0555
  article-title: Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/j.stam.2003.09.019
– volume: 53
  start-page: 4366
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0980
  article-title: Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00921F
– volume: 5
  start-page: 1511
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0360
  article-title: Anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500113x
– volume: 8
  start-page: 7147
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0585
  article-title: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility
  publication-title: ACS Nano
  doi: 10.1021/nn502115k
– volume: 45
  start-page: 7856
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0910
  article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT00900J
– volume: 27
  start-page: 4013
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0785
  article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500523
– volume: 332
  start-page: 366
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0435
  article-title: TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17%
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.134
– volume: 137
  start-page: 9210
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0960
  article-title: Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03144
– volume: 8
  start-page: 995
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0870
  article-title: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03664F
– volume: 9
  start-page: 2262
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0920
  article-title: Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01037G
– volume: 15
  start-page: 247
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0990
  article-title: Toxicity of organometal halide perovskite solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4572
– volume: 7
  start-page: 1700623
  year: 2017
  ident: 10.1016/j.poly.2021.115089_b0220
  article-title: Interfaces in perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700623
– volume: 73
  start-page: 179
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0795
  article-title: Recent advances in perovskite solar cells: morphology control and interfacial engineering
  publication-title: Acta Chim. Sinica
  doi: 10.6023/A14090674
– volume: 6
  start-page: 3808
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0890
  article-title: Modeling anomalous hysteresis in perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01645
– volume: 126
  start-page: 12779
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0605
  article-title: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201405176
– volume: 4
  start-page: 1532
  year: 2013
  ident: 10.1016/j.poly.2021.115089_b0325
  article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400638x
– volume: 5
  start-page: 5360
  year: 2003
  ident: 10.1016/j.poly.2021.115089_b0545
  article-title: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells
  publication-title: PCCP
  doi: 10.1039/b310907k
– volume: 8
  start-page: 362
  year: 2014
  ident: 10.1016/j.poly.2021.115089_b0665
  article-title: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn404323g
– volume: 4
  start-page: 14423
  year: 2016
  ident: 10.1016/j.poly.2021.115089_b0965
  article-title: A mesoporous-planar hybrid architecture of methylammonium lead iodide perovskite based solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06960F
– volume: 119
  start-page: 10212
  year: 2015
  ident: 10.1016/j.poly.2021.115089_b0720
  article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b00541
SSID ssj0016413
Score 2.3282797
SecondaryResourceType review_article
Snippet Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points. [Display omitted] •TiO2 employed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115089
SubjectTerms Device Physical Parameters
Ionic movements
Multifunctional Photovoltaics
Renewable Energy
Structure-Property Relationship
Title Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells
URI https://dx.doi.org/10.1016/j.poly.2021.115089
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfGJ9lD14k7R57CbNsRRLVezFCr3Fze4GKzUJTRR68bc7k02KgvQg5JKwA2GYnflm95sZQq65TmIltG05PJAW87SyBMQBS0LyrDwwEGljvfPj1J88s_s5n7fIqKmFQVpl7fuNT6-8df2lX2uzny8W_Se8fYTtCilMFSirCnYWoJX3vjY0D8gGzIhkvKrE1XXhjOF45dlyDTmi6_QQGOGo97-C04-AMz4g-zVSpEPzM4ekpdMjsjtqBrQdkxfTeZhmCZWrNaC85bIuqqTwALCj-WtWZuB_IP2XFJt8vyP5paAiVRTWV7zYNcpjt_DPAg9yaYG5LsXz_OKEzMa3s9HEqgcmWNKz7dLyQqkGCVMAK7QIg1AwEYZKBMJTfhAzrWOW-KFWrtQxd4TLBeMicflABy42yjsl7TRL9Rmhivm-9JhwHR9CvBIDJjVAFSYkwMPQ9TvEaRQVybqZOM60WEYNa-wtQuVGqNzIKLdDbjYyuWmlsXU1b_Qf_TKICHz9Frnzf8pdkD18M1zGS9IuVx_6CvBGGXcrg-qSneHdw2T6DRw41po
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGBBPMUbDzCh0MZxkmZgQDxUngtFYjOO7Yii0lQkgLrwo_iF3DUOAgkxICFlSnx5XC6-7-Lv7gC2Q5ulRtmm54ex9kRgjafQD3gag2cToIHoJuU7X15F7RtxdhvejsF7nQtDtEo391dz-mi2dnsaTpuNQbfbuKbVR_xcMYQZOUrfMSvP7fAV47Zi__QIX_IO5yfHncO251oLeDpoNksvSLRpZcKgA7YqiRMlVJIYFavARHEqrE1FFiXWcG3T0Fc8VCJUGQ9bNuZUUg5POw6TAi9PXRP23j5pJRh9VC2ZaWmU7s4l6lScskHeG2JMyv09AmLUWv4nZ_jFwZ3MwoxDpuygevg5GLP9eZg6rBvCLcBdVemY5RnTT0NElb2eS-JkuCGQZIP7vMxxvitVVzMqKv5IZJuCqb5hOH7Ewx2SPFUnfynoxzErKLZmtH5QLELnP7S4BBP9vG-XgRkRRToQivsRQgqjWkJbhEZCaYSjCY9WwK8VJbUrXk49NHqyZqk9SFKuJOXKSrkrsPspM6hKd_w6Oqz1L78ZoETf8ovc6h_ltmCq3bm8kBenV-drME1HKh7lOkyUT892A7FOmW6OjIuB_Gdj_gDTDxLh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+crystallization+on+the+photovoltaic+parameters+and+stability+of+perovskite+solar+cells&rft.jtitle=Polyhedron&rft.au=Wali%2C+Qamar&rft.au=Iftikhar%2C+Faiza+Jan&rft.date=2021-05-01&rft.issn=0277-5387&rft.volume=199&rft.spage=115089&rft_id=info:doi/10.1016%2Fj.poly.2021.115089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_poly_2021_115089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-5387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-5387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-5387&client=summon