Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells
Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points. [Display omitted] •TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have be...
Saved in:
Published in | Polyhedron Vol. 199; p. 115089 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points.
[Display omitted]
•TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have been highlighted.•Sources of degradation in perovskite solar cells are reviewed.
Perovskite solar cells (PSCs) constitute a class of devices with significantly high photovoltaic conversion efficiency (>25%) and cost-effective solution processability in which an organic–inorganic hybrid perovskite material is utilized for photovoltaic action. In PSCs, the organic–inorganic hybrid perovskite heterogeneously crystallizes either on a thin flat surface (~100 nm) or a few microns thick layer of mesoporous surface, which typically develop planar and mesoporous PSCs, respectively. Other PSC architectures are derived from the above two. This article reviews the device–property and materials–property correlations in the aforementioned two architectures. The charging mechanism and the role of each layer in these devices have been discussed to understand the basic characteristics of the employed perovskite materials, the charge transport behaviour in nanostructured metal oxide semiconductors, and the factors that affect charge mobility. Issues such as the influence of humidity, thermal stress, and hysteresis that influence the performance of these devices have been discussed, along with an insight into future directions in the subject area. |
---|---|
AbstractList | Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points.
[Display omitted]
•TiO2 employed as a model surface for perovskite crystallization.•Crystallinity effects on the device performance were discussed.•Stability factors have been highlighted.•Sources of degradation in perovskite solar cells are reviewed.
Perovskite solar cells (PSCs) constitute a class of devices with significantly high photovoltaic conversion efficiency (>25%) and cost-effective solution processability in which an organic–inorganic hybrid perovskite material is utilized for photovoltaic action. In PSCs, the organic–inorganic hybrid perovskite heterogeneously crystallizes either on a thin flat surface (~100 nm) or a few microns thick layer of mesoporous surface, which typically develop planar and mesoporous PSCs, respectively. Other PSC architectures are derived from the above two. This article reviews the device–property and materials–property correlations in the aforementioned two architectures. The charging mechanism and the role of each layer in these devices have been discussed to understand the basic characteristics of the employed perovskite materials, the charge transport behaviour in nanostructured metal oxide semiconductors, and the factors that affect charge mobility. Issues such as the influence of humidity, thermal stress, and hysteresis that influence the performance of these devices have been discussed, along with an insight into future directions in the subject area. |
ArticleNumber | 115089 |
Author | Wali, Qamar Iftikhar, Faiza Jan |
Author_xml | – sequence: 1 givenname: Qamar surname: Wali fullname: Wali, Qamar – sequence: 2 givenname: Faiza Jan surname: Iftikhar fullname: Iftikhar, Faiza Jan email: faizajiftikhar@nutech.edu.pk |
BookMark | eNp9kMtqwzAQRbVIoUnaH-hKP2BX8ks2dFNC-oBAN9mrY3lElCqWkUTA_fraTVddBAZmc8-Fe1Zk0bseCXngLOWMV4_HdHB2TDOW8ZTzktXNgixZJkRS5rW4JasQjmwKFjxfks-t1qgidZoqP4YI1ppviMb1dLp4QDocXHRnZyMYRQfwcMKIPlDoOzrlW2NNHGd-QO_O4ctEpMFZ8FShteGO3GiwAe___prsX7b7zVuy-3h93zzvEpUzFpO8UV2ti45VJUIjGiigaToQkHeVaAvEttBVg12msC05ZCUUJeisrFFkTDT5mtSXWuVdCB61VCb-7ogejJWcyVmOPMpZjpzlyIucCc3-oYM3J_DjdejpAuG06WzQy6AM9go74yefsnPmGv4D5yyFlQ |
CitedBy_id | crossref_primary_10_1002_aenm_202201274 crossref_primary_10_1007_s10854_021_06880_9 crossref_primary_10_3390_ma16175839 crossref_primary_10_1016_j_jece_2021_106898 |
Cites_doi | 10.1039/C4MH00237G 10.1038/nenergy.2016.142 10.1126/science.1228604 10.1038/353737a0 10.1021/ja068876e 10.1021/jz501392m 10.1021/acsenergylett.6b00499 10.1002/aenm.201600285 10.1021/acsami.6b09326 10.1016/j.jpowsour.2015.02.084 10.1039/C5TA04239A 10.1021/acs.chemrev.5b00715 10.1002/anie.201309361 10.1021/nn505723h 10.1126/science.1254050 10.1039/C5TA03169A 10.1039/c2ee03178g 10.1039/C5EE02608C 10.1126/science.1243982 10.1063/1.363401 10.1016/j.nanoen.2016.02.031 10.1038/srep00591 10.1021/am5025963 10.1039/C4TA05284F 10.1016/j.solmat.2015.12.025 10.1039/c3ee40810h 10.1126/science.aaa9272 10.1021/ja4132246 10.1039/C6CP06405A 10.1139/v76-493 10.1002/ange.201405334 10.1016/j.rser.2018.01.005 10.1063/1.4962143 10.1021/acsnano.5b03265 10.1021/jacs.5b01994 10.1126/science.1243167 10.1016/j.matdes.2017.04.010 10.1039/c2ee23073a 10.1021/acs.jpclett.5b02686 10.1002/aenm.201601733 10.1038/ncomms6784 10.1002/adma.201601715 10.1016/j.jallcom.2015.05.120 10.1021/acsami.5b12123 10.1002/pip.895 10.1038/srep44603 10.1039/C5NR05563F 10.1039/c3ee40388b 10.1039/C4EE02833C 10.1039/C6TA04503K 10.1002/ijch.201500002 10.1039/C1EE02703D 10.1021/jp411112k 10.1021/nl400353f 10.1021/acs.jpclett.5b02597 10.1021/nl403997a 10.1039/C6NR07076K 10.1021/acs.accounts.6b00492 10.1016/j.jechem.2015.10.017 10.1002/adma.201401137 10.1002/aenm.201400812 10.1021/acs.jpcc.5b01667 10.1002/adma.201500048 10.1039/C4CC04537H 10.1038/ncomms10379 10.1016/j.nanoen.2017.02.025 10.1063/1.1736034 10.1002/aenm.201601000 10.1039/C4NR01141D 10.1039/C7TA01764B 10.1021/acs.chemmater.6b02744 10.1039/C5NR08458J 10.1021/acs.chemmater.7b00126 10.1038/nphoton.2013.342 10.1109/PVSC.2013.6744311 10.1016/j.nanoen.2016.10.030 10.1016/j.synthmet.2016.03.030 10.1021/acsami.6b13410 10.1021/ja809598r 10.1021/jp412627n 10.1126/science.1230283 10.1039/C5NR07395B 10.1039/C7TA00027H 10.1038/nmat2548 10.1038/nature12340 10.1021/jp994365l 10.1039/C5EE03874J 10.1039/c1nr10867k 10.1039/C4EE01624F 10.1002/adfm.200305156 10.1038/nature14133 10.1016/j.jpowsour.2017.04.025 10.1016/j.solmat.2015.09.054 10.1246/cl.1980.663 10.1016/j.solener.2017.03.077 10.1016/j.solmat.2016.04.059 10.1038/nphoton.2014.82 10.1016/j.nanoen.2012.10.004 10.1039/C6TA06143E 10.1039/C3EE43707H 10.1021/acs.jpclett.5b01108 10.1002/aenm.201501066 10.1039/C5NR03476K 10.1016/j.nanoen.2016.03.020 10.1039/C5TA01207D 10.1039/C6TA00989A 10.1021/jz4020162 10.1246/cl.2012.397 10.1002/adma.200502256 10.1016/j.nanoen.2015.05.014 10.1038/ncomms4586 10.1039/C6TA04465D 10.1039/C4EE02465F 10.1016/j.rser.2017.04.003 10.1021/jacs.5b04930 10.1016/j.solmat.2017.04.018 10.1039/c2ee00056c 10.1021/acsnano.5b00447 10.1126/science.aaa5760 10.1021/acs.chemmater.7b00523 10.1063/1.4929435 10.1021/nl500390f 10.1016/j.solmat.2017.01.013 10.1039/c3ee41860j 10.1038/nnano.2014.181 10.1039/C5TA05989E 10.1016/j.jpowsour.2015.06.037 10.1063/1.4864638 10.1007/s12274-015-0711-4 10.1021/acsenergylett.7b00171 10.1039/C5CP03803K 10.1039/C5RA17129F 10.1021/acs.jpclett.5b02273 10.1039/C5TA08193A 10.1039/C5EE00120J 10.1039/C6TA09036B 10.1038/nphys3277 10.1021/jz402749f 10.1016/j.nanoen.2016.12.029 10.1021/cm402919x 10.1038/ncomms3885 10.1039/C6TA06879K 10.1038/nenergy.2016.48 10.1063/1.4974791 10.1021/ph5000067 10.1039/C6MH00519E 10.1016/j.electacta.2017.03.139 10.1021/nl404454h 10.1038/nmat4014 10.1039/C4TA03056G 10.1002/aenm.201601839 10.1021/jacs.5b06444 10.1002/adma.201401685 10.1002/adma.201403140 10.1002/adma.201502586 10.1016/j.jechem.2015.10.005 10.1002/anie.201503038 10.1126/science.aaa0472 10.1021/acsnano.6b01575 10.1038/ncomms10334 10.1021/acs.chemmater.6b03310 10.1016/j.nanoen.2015.08.009 10.1016/j.solmat.2018.02.007 10.1039/c3cp51383a 10.1039/C4EE01724B 10.1063/1.104839 10.1021/jp305150s 10.1002/aenm.201502087 10.1039/C6CP03600G 10.1038/nature12509 10.1039/c3ta10518k 10.1016/j.stam.2003.09.019 10.1039/C7CC00921F 10.1021/jz500113x 10.1021/nn502115k 10.1039/C6DT00900J 10.1002/adma.201500523 10.1016/j.jpowsour.2016.09.134 10.1021/jacs.5b03144 10.1039/C4EE03664F 10.1039/C6EE01037G 10.1038/nmat4572 10.1002/aenm.201700623 10.6023/A14090674 10.1021/acs.jpclett.5b01645 10.1002/ange.201405176 10.1021/jz400638x 10.1039/b310907k 10.1021/nn404323g 10.1039/C6TA06960F 10.1021/acs.jpcc.5b00541 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.poly.2021.115089 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_poly_2021_115089 S0277538721000711 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABXRA ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSK SSM SSU SSZ T5K XPP YK3 ZMT ~02 ~G- 29O 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 MVM NDZJH NEJ OHT R2- RIG SCB SEW SIC SSH UQL WUQ XJT XOL ZCG |
ID | FETCH-LOGICAL-c300t-39cd8f4d065ea979a4a99da7a3d67b4eeb4f69ed2ceb51a25a45af258e720793 |
IEDL.DBID | .~1 |
ISSN | 0277-5387 |
IngestDate | Tue Jul 01 01:46:33 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Fri Feb 23 02:45:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structure-Property Relationship Device Physical Parameters Renewable Energy Multifunctional Photovoltaics Ionic movements |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-39cd8f4d065ea979a4a99da7a3d67b4eeb4f69ed2ceb51a25a45af258e720793 |
ParticipantIDs | crossref_citationtrail_10_1016_j_poly_2021_115089 crossref_primary_10_1016_j_poly_2021_115089 elsevier_sciencedirect_doi_10_1016_j_poly_2021_115089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Polyhedron |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bi, Xu, Gao, Sun, Grätzel, Hagfeldt (b0300) 2016; 23 He, Wu, Tu, Xie, Dong, Jia (b0435) 2016; 332 Carr, Chaudhary (b0685) 2013; 6 Song, Zheng, Bian, Wang, Tian, Sanehira (b0710) 2015; 3 Tsai, Wu, Narra, Chang, Mohanta, Wu (b0415) 2017; 5 Im, Lee, Lee, Park, Park (b0020) 2011; 3 Xu, Zhang, Li, Zhao (b0210) 2017 Zhang, Sun, Sheng, Zhai, Mielczarek, Zakhidov (b0035) 2015; 11 Park, Seo, Park, Shin, Kim, Jeon (b0785) 2015; 27 Correa Baena, Steier, Tress, Saliba, Neutzner, Matsui (b0730) 2015; 8 Zhu, Ma, Wang, Mu, Fan, Du (b0815) 2014; 136 Shi, Li, Yang, Zhang, Li, Li (b0570) 2013; 13 Fu, Hou, Wang, Liu, Wang, Li (b0195) 2017; 165 Chen, Wei, He, Zheng, Wong, Yang (b0455) 2016; 6 Walter, Herberholz, Müller, Schock (b0675) 1996; 80 Babayigit, Ethirajan, Muller, Conings (b0990) 2016; 15 Huang, Pascoe, Wu, Ku, Peng, Zhong (b0175) 2017; 29 Heo, Im (b0640) 2016; 8 Habisreutinger, Nicholas, Snaith (b0190) 2017; 7 Wojciechowski, Stranks, Abate, Sadoughi, Sadhanala, Kopidakis (b0515) 2014; 8 Harikesh, Mulmudi, Ghosh, Goh, Teng, Thirumal (b0120) 2016; 28 Gu, Wang, Wang, Zhou, Long, Tian (b0955) 2017; 5 Zhang, Song, Chen, Liu, Hao, Wang (b0800) 2016; 18 Yin, Xu, Guo, Xu, He (b0940) 2016; 8 Kranz, Abate, Feurer, Fu, Avancini, Löckinger (b0735) 2015; 6 Li, Chen, Liang, Gao, Huang (b0285) 2015; 5 Chen, Wu, Liu, Qin, Yang, Islam (b0810) 2015; 8 Wu, Chen, Li, Pascoe, Cheng, Caruso (b0950) 2017; 32 Song, Zheng, Wang, Tian, Miyasaka (b0750) 2016; 144 Xiao, Huang, Huang, Dkhissi, Zhu, Etheridge (b0760) 2014; 126 Fakharuddin, Jose, Brown, Fabregat-Santiago, Bisquert (b0005) 2014; 7 M, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than Dong, Fang, Shao, Mulligan, Qiu, Cao (b0045) 2015; 347 Di Giacomo, Zardetto, Lucarelli, Cinà, Di Carlo, Creatore (b0275) 2016; 30 Chen, Cai, Yang, Song, Wang, Jiang (b0180) 2017; 355 Jeon, Noh, Kim, Yang, Ryu, Seok (b0350) 2014; 13 Li, Fan, Li, Mai, Wang (b0425) 2015; 137 Norris, Aydil (b0485) 2012; 338 Tress, Marinova, Inganäs, Nazeeruddin, Zakeeruddin, Graetzel (b0305) 2015; 5 Wang, Wright, Elumalai, Uddin (b0260) 2016; 147 Cao, Zuo, Cui, Shen, Moehl, Zakeeruddin (b0600) 2015; 17 21%. 2016;1:16142. Kim, Park (b0885) 2014; 5 Jiang, Rebollar, Gong, Piacentino, Zheng, Xu (b0155) 2015; 54 Bisquert (b0545) 2003; 5 Collavini, Delgado (b0185) 2017; 7 Yang, Dyck, Poplawsky, Keum, Puretzky, Das (b0960) 2015; 137 Hao, Stoumpos, Cao, Chang, Kanatzidis (b0125) 2014; 8 Ahn, Son, Jang, Kang, Choi, Park (b0395) 2015; 137 Shao, Xiao, Bi, Yuan, Huang (b0670) 2014; 5 Melzer, Koop, Mihailetchi, Blom (b0680) 2004; 14 Heo, Song, Patil, Im (b0540) 2015; 55 Fakharuddin, Schmidt-Mende, Garcia-Belmonte, Jose, Mora-Sero (b0220) 2017; 7 Dong, Shi, Li, Luo, Meng (b0805) 2015; 107 Baikie, Fang, Kadro, Schreyer, Wei, Mhaisalkar (b0635) 2013; 1 Huiyin, Jiangjian, Juan, Xin, Yanhong, Dongmei (b0765) 2015; 24 Frost, Butler, Brivio, Hendon, van Schilfgaarde, Walsh (b0365) 2014; 14 Yoon, Kang, Lee, Choi (b0920) 2016; 9 B. Grew, J.W. Bowers, H.M. Upadhyaya. The optimization of optical properties for increased performance in a monolithic tandem dye-sensitized/Cu(In, Ga)Se 2 solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)2013. p. 1008-12. Wali, Fakharuddin, Jose (b0480) 2015; 293 Snaith (b0510) 2013; 4 Liu, Chen, Hong, Zhou, Xu, De Marco (b0925) 2016; 8 Park, van de Lagemaat, Frank (b0505) 2000; 104 Yang, Noh, Jeon, Kim, Ryu, Seo (b0330) 2015; 348 Chen, Rao, Li, Xu, Chen, Kuang (b0820) 2016; 4 Bouclé, Herlin-Boime (b0620) 2016; 222 Heo, Im, Kim, Boix, Lee, Seok (b0525) 2012; 116 Pascoe, Yang, Kopidakis, Zhu, Reese, Rumbles (b0615) 2016; 22 Koh, Fu, Fang, Chen, Sum, Mathews (b0085) 2014; 118 Hamaguchi, Yoshizawa-Fujita, Miyasaka, Kunugita, Ema, Takeoka (b0980) 2017; 53 Lee, Teuscher, Miyasaka, Murakami, Snaith (b0090) 2012; 338 Xing, Mathews, Sun, Lim, Lam, Grätzel (b0040) 2013; 342 Wang, Zhao, Grice, Liao, Yu, Cimaroli (b0740) 2016; 4 Schwarzburg, Willig (b0660) 1991; 58 Giustino, Snaith (b0110) 2016; 1 Ueoka, Ohishi, Shirahata, Suzuki, Oku, Sandhu (b0135) 2017; 1807 Kojima, Teshima, Shirai, Miyasaka (b0015) 2009; 131 Han, Luo, Zhao, Wan, Wang, Jia (b0205) 2017; 236 Wharf, Gramstad, Makhija, Onyszchuk (b0400) 1976; 54 Kulbak, Gupta, Kedem, Levine, Bendikov, Hodes (b0105) 2016; 7 Xiao, Dong, Bi, Shao, Yuan, Huang (b0630) 2014; 26 Chen, Bae, Chang, Hong, Li, Chen (b0080) 2015; 2 Wang, Li, Zhang, Liu, Gu, Sarvari (b0445) 2016; 8 Hu, Peng, Wang, Xia, Yuan, Lu (b0390) 2014; 1 Kumar, Jose, Archana, Vijila, Yusoff, Ramakrishna (b0700) 2012; 5 D'Innocenzo, Grancini, Alcocer, Kandada, Stranks, Lee (b0595) 2014; 5 Wu, Islam, Yang, Qin, Liu, Zhang (b0385) 2014; 7 Wojciechowski, Saliba, Leijtens, Abate, Snaith (b0560) 2014; 7 Zhou, Chen, Li, Luo, Song, Duan (b0770) 2014; 345 Xu, Lu, Zhu, Kou, Liu, Li (b0780) 2016; 4 Savva, Burgués-Ceballos, Choulis (b0375) 2016; 6 Yin, Que, Xing, Que (b0380) 2015; 3 Tu, Wu, Zheng, Huo, Zhou, Lan (b0420) 2015; 7 Zheng, Ma, Chu, Wang, Qu, Xiao (b0280) 2014; 6 Yang, Fransishyn, Kelly (b0970) 2016; 28 Li, Ye, Sun, Yan, Li, Bian (b0245) 2015; 3 Li, Li, Li, Wang, Wang (b0580) 2015; 17 Fakharuddin, Di Giacomo, Ahmed, Wali, Brown, Jose (b0265) 2015; 283 Mali, Shim, Kim, Patil, Hong (b0450) 2016; 8 Wang, Yan, Wang, Chang, Wang, Wang (b0465) 2017; 167 Manshor, Wali, Wong, Muzakir, Fakharuddin, Schmidt-Mende (b0255) 2016; 18 Rong, Liu, Mei, Li, Han (b0535) 2015; 5 Tress, Marinova, Moehl, Zakeeruddin, Nazeeruddin, Gratzel (b0870) 2015; 8 Liu, Johnston, Snaith (b0270) 2013; 501 Xia, Li, Li, Liu, Liu (b0790) 2015; 24 Beiley, McGehee (b0495) 2012; 5 Shockley, Queisser (b0470) 1961; 32 Grätzel (b0055) 2017; 50 Ameri, Li, Brabec (b0475) 2013; 6 Kojima, Ikegami, Teshima, Miyasaka (b0520) 2012; 41 Qi, Wang (b0845) 2013; 15 Wang, Zeng, Huang, Zhang, Qiao, Hu (b0610) 2014; 6 Leijtens, Eperon, Pathak, Abate, Lee, Snaith (b0755) 2013; 4 Chen, Xu, Xiao, Zhang, Dai, Yao (b0945) 2017; 9 Marinova, Tress, Humphry-Baker, Dar, Bojinov, Zakeeruddin (b0310) 2015; 9 Leijtens, Stranks, Eperon, Lindblad, Johansson, McPherson (b0585) 2014; 8 Chao, Wei-Dong, Chong-Zhen, Song-Yang, Wen-Xiao, Ping (b0775) 2017; 26 Azhar, Alessandro, Francesco Di, Simone, Fabio, Qamar (b0215) 2015; 26 Toshniwal, Kheraj (b0140) 2017; 149 Forgacs, Sessolo, Bolink (b0370) 2015; 3 Philippe, Saliba, Correa-Baena, Cappel, Turren-Cruz, Grätzel (b0115) 2017; 29 Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens (b0050) 2013; 342 Unger, Hoke, Bailie, Nguyen, Bowring, Heumuller (b0875) 2014; 7 Meloni, Moehl, Tress, Franckevicius, Saliba, Lee (b0895) 2016; 7 Nie, Tsai, Asadpour, Blancon, Neukirch, Gupta (b0900) 2015; 347 Bag, Gunawan, Gokmen, Zhu, Todorov, Mitzi (b0850) 2012; 5 Bakr, Wali, Fakharuddin, Schmidt-Mende, Brown, Jose (b0025) 2017; 34 Zhu, Bao, Wang, Li, Zhou, Yang (b0910) 2016; 45 Wali, Elumalai, Iqbal, Uddin, Jose (b0065) 2018; 84 Kirchartz, Helbig, Reetz, Reuter, Werner, Rau (b0320) 2009; 17 Ogomi, Morita, Tsukamoto, Saitho, Shen, Toyoda (b0575) 2014; 118 Liu, Kelly (b0915) 2014; 8 Liu, Zong, Zhou, Yang, Li, Game (b0095) 2017; 29 Xiao, Meng, Wang, Mitzi, Yan (b0985) 2017; 4 Fakharuddin, Rossi, Watson, Schmidt-Mende, Jose (b0250) 2016; 4 Dong, Shi, Wang, Li, Wang, Zhang (b0720) 2015; 119 Y. Tu, J. Wu, Z. Lan, X. He, J. Dong, J. Jia, et al. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. 2017;7:44603. Bi, Yang, Boschloo, Hagfeldt, Johansson (b0325) 2013; 4 Qifan, Chen, Zhicheng, Fei, Hin-Lap, Yong (b0795) 2015; 73 Nayak, Garcia-Belmonte, Kahn, Bisquert, Cahen (b0530) 2012; 5 Lindblad, Bi, Park, Oscarsson, Gorgoi, Siegbahn (b0590) 2014; 5 Misra, Aharon, Layani, Magdassi, Etgar (b0965) 2016; 4 Ding, Li, Huang, Chu, Li, Li (b0235) 2017; 5 Saparov, Mitzi (b0975) 2016; 116 Pellet, Gao, Gregori, Yang, Nazeeruddin, Maier (b0340) 2014; 53 Yin, Qu, Cao, Tai, Li, Zheng (b0460) 2016; 4 Yin, Guo, Xue, Xu, He, Liu (b0825) 2015; 8 Wali, Fakharuddin, Ahmed, Ab Rahim, Ismail, Jose (b0690) 2014; 2 Choi, Song, Hörantner, Snaith, Park (b0930) 2016; 10 Ong, Li, Li, Wu, Loutfy (b0490) 2007; 129 Weerasinghe, Huang, Cheng (b0500) 2013; 2 Saliba, Matsui, Seo, Domanski, Correa-Baena, Nazeeruddin (b0100) 2016; 9 Zhu, Bai, Zhang, Liu, Long, Wei (b0605) 2014; 126 Zhang, Shi, Xu, Zhu, Luo, Li (b0840) 2016; 4 Heo, You, Chang, Yin, Ahn, Lee (b0835) 2015; 15 Lee, Seol, Cho, Park (b0345) 2014; 26 Chai, Luo, Zhou, Daoud (b0200) 2017; 125 Jeon, Noh, Yang, Kim, Ryu, Seo (b0335) 2015; 517 Colella, Mosconi, Fedeli, Listorti, Gazza, Orlandi (b0645) 2013; 25 Miyamae, Numahata, Nagata (b0355) 1980; 9 Han, Chung, Kim, Kim, Lee, Park (b0715) 2015; 7 Park, Noh, Jin, Na (b0905) 2016; 155 Kim, Lee, Im, Lee, Moehl, Marchioro (b0030) 2012; 2 Shi, Dong, Lv, Xu, Zhu, Xiao (b0855) 2014; 104 Nagane, Bansode, Game, Chhatre, Ogale (b0160) 2014; 50 Kim, Jang, Ahn, Choi, Guerrero, Bisquert (b0880) 2015; 6 Wali, Fakharuddin, Yasin, Ab Rahim, Ismail, Jose (b0695) 2015; 646 Vandewal, Tvingstedt, Gadisa, Inganas, Manca (b0315) 2009; 8 Wali, Iqbal, Pal, Lowe, Jose (b0725) 2018; 179 Song, Yokoyama, Aramaki, Kanatzidis (b0130) 2017; 2 Ke, Fang, Liu, Xiong, Qin, Tao (b0745) 2015; 137 Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik Heo, Song, Han, Kim, Kim, Kim (b0655) 2015; 27 Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, et al. Thermally Stable MAPbI3 Perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. n/a-n/a. Ball, Lee, Hey, Snaith (b0550) 2013; 6 Edri, Kirmayer, Henning, Mukhopadhyay, Gartsman, Rosenwaks (b0650) 2014; 14 Xu, Zhang, Shi, Dong, Luo, Li (b0625) 2015; 3 Dualeh, Moehl, Tétreault, Teuscher, Gao, Nazeeruddin (b0665) 2014; 8 Cho, Trukhina, Roldán-Carmona, Ince, Gratia, Grancini (b0440) 2017; 7 Yang, Zhou, Zeng, Jiang, Padture, Zhu (b0935) 2015; 27 F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. 2016;7:10379. Hendon, Yang, Burton, Walsh (b0145) 2015; 3 Snaith, Grätzel (b0295) 2006; 18 J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang. Low-temperature proc Forgacs (10.1016/j.poly.2021.115089_b0370) 2015; 3 Norris (10.1016/j.poly.2021.115089_b0485) 2012; 338 Saparov (10.1016/j.poly.2021.115089_b0975) 2016; 116 Frost (10.1016/j.poly.2021.115089_b0365) 2014; 14 Cao (10.1016/j.poly.2021.115089_b0600) 2015; 17 Prajongtat (10.1016/j.poly.2021.115089_b0165) 2015; 119 Zhang (10.1016/j.poly.2021.115089_b0800) 2016; 18 Babayigit (10.1016/j.poly.2021.115089_b0990) 2016; 15 Pellet (10.1016/j.poly.2021.115089_b0340) 2014; 53 Yang (10.1016/j.poly.2021.115089_b0935) 2015; 27 Correa Baena (10.1016/j.poly.2021.115089_b0730) 2015; 8 Kumar (10.1016/j.poly.2021.115089_b0700) 2012; 5 Tress (10.1016/j.poly.2021.115089_b0305) 2015; 5 Meloni (10.1016/j.poly.2021.115089_b0895) 2016; 7 Stranks (10.1016/j.poly.2021.115089_b0050) 2013; 342 Ding (10.1016/j.poly.2021.115089_b0235) 2017; 5 Weerasinghe (10.1016/j.poly.2021.115089_b0500) 2013; 2 Pascoe (10.1016/j.poly.2021.115089_b0615) 2016; 22 Snaith (10.1016/j.poly.2021.115089_b0360) 2014; 5 Xiao (10.1016/j.poly.2021.115089_b0985) 2017; 4 Gu (10.1016/j.poly.2021.115089_b0955) 2017; 5 Fu (10.1016/j.poly.2021.115089_b0195) 2017; 165 Kulbak (10.1016/j.poly.2021.115089_b0105) 2016; 7 Wang (10.1016/j.poly.2021.115089_b0465) 2017; 167 10.1016/j.poly.2021.115089_b0830 Yoon (10.1016/j.poly.2021.115089_b0920) 2016; 9 Kirchartz (10.1016/j.poly.2021.115089_b0320) 2009; 17 Zhu (10.1016/j.poly.2021.115089_b0910) 2016; 45 Unger (10.1016/j.poly.2021.115089_b0875) 2014; 7 Xu (10.1016/j.poly.2021.115089_b0210) 2017 Bi (10.1016/j.poly.2021.115089_b0325) 2013; 4 Giustino (10.1016/j.poly.2021.115089_b0110) 2016; 1 Misra (10.1016/j.poly.2021.115089_b0965) 2016; 4 Bisquert (10.1016/j.poly.2021.115089_b0545) 2003; 5 Chao (10.1016/j.poly.2021.115089_b0775) 2017; 26 Fakharuddin (10.1016/j.poly.2021.115089_b0005) 2014; 7 Nie (10.1016/j.poly.2021.115089_b0900) 2015; 347 Koh (10.1016/j.poly.2021.115089_b0085) 2014; 118 Song (10.1016/j.poly.2021.115089_b0710) 2015; 3 Chen (10.1016/j.poly.2021.115089_b0080) 2015; 2 Asghar (10.1016/j.poly.2021.115089_b0170) 2017; 77 Wang (10.1016/j.poly.2021.115089_b0445) 2016; 8 Azhar (10.1016/j.poly.2021.115089_b0215) 2015; 26 Ahn (10.1016/j.poly.2021.115089_b0395) 2015; 137 He (10.1016/j.poly.2021.115089_b0435) 2016; 332 Bakr (10.1016/j.poly.2021.115089_b0025) 2017; 34 Wojciechowski (10.1016/j.poly.2021.115089_b0560) 2014; 7 Savva (10.1016/j.poly.2021.115089_b0375) 2016; 6 Li (10.1016/j.poly.2021.115089_b0245) 2015; 3 Di Giacomo (10.1016/j.poly.2021.115089_b0275) 2016; 30 Wang (10.1016/j.poly.2021.115089_b0610) 2014; 6 Bi (10.1016/j.poly.2021.115089_b0300) 2016; 23 Xu (10.1016/j.poly.2021.115089_b0780) 2016; 4 Snaith (10.1016/j.poly.2021.115089_b0510) 2013; 4 Li (10.1016/j.poly.2021.115089_b0425) 2015; 137 Tu (10.1016/j.poly.2021.115089_b0420) 2015; 7 Choi (10.1016/j.poly.2021.115089_b0930) 2016; 10 Shao (10.1016/j.poly.2021.115089_b0670) 2014; 5 Huiyin (10.1016/j.poly.2021.115089_b0765) 2015; 24 Shockley (10.1016/j.poly.2021.115089_b0470) 1961; 32 Yin (10.1016/j.poly.2021.115089_b0940) 2016; 8 Xiao (10.1016/j.poly.2021.115089_b0630) 2014; 26 Xu (10.1016/j.poly.2021.115089_b0625) 2015; 3 Song (10.1016/j.poly.2021.115089_b0750) 2016; 144 Kim (10.1016/j.poly.2021.115089_b0885) 2014; 5 Wali (10.1016/j.poly.2021.115089_b0065) 2018; 84 Collavini (10.1016/j.poly.2021.115089_b0185) 2017; 7 10.1016/j.poly.2021.115089_b0070 Tsai (10.1016/j.poly.2021.115089_b0415) 2017; 5 Ameri (10.1016/j.poly.2021.115089_b0475) 2013; 6 Kojima (10.1016/j.poly.2021.115089_b0015) 2009; 131 Miyamae (10.1016/j.poly.2021.115089_b0355) 1980; 9 Xiao (10.1016/j.poly.2021.115089_b0760) 2014; 126 Heo (10.1016/j.poly.2021.115089_b0150) 2014; 26 Tress (10.1016/j.poly.2021.115089_b0870) 2015; 8 Chen (10.1016/j.poly.2021.115089_b0180) 2017; 355 Yin (10.1016/j.poly.2021.115089_b0825) 2015; 8 Mali (10.1016/j.poly.2021.115089_b0450) 2016; 8 Lee (10.1016/j.poly.2021.115089_b0090) 2012; 338 Cho (10.1016/j.poly.2021.115089_b0440) 2017; 7 Shi (10.1016/j.poly.2021.115089_b0570) 2013; 13 Fakharuddin (10.1016/j.poly.2021.115089_b0220) 2017; 7 Heo (10.1016/j.poly.2021.115089_b0865) 2015; 8 Wharf (10.1016/j.poly.2021.115089_b0400) 1976; 54 Dong (10.1016/j.poly.2021.115089_b0045) 2015; 347 Heo (10.1016/j.poly.2021.115089_b0525) 2012; 116 Zhu (10.1016/j.poly.2021.115089_b0815) 2014; 136 Li (10.1016/j.poly.2021.115089_b0580) 2015; 17 Hendon (10.1016/j.poly.2021.115089_b0145) 2015; 3 Fakharuddin (10.1016/j.poly.2021.115089_b0265) 2015; 283 Rong (10.1016/j.poly.2021.115089_b0535) 2015; 5 Habisreutinger (10.1016/j.poly.2021.115089_b0190) 2017; 7 Colella (10.1016/j.poly.2021.115089_b0645) 2013; 25 Wali (10.1016/j.poly.2021.115089_b0695) 2015; 646 Xia (10.1016/j.poly.2021.115089_b0790) 2015; 24 Liu (10.1016/j.poly.2021.115089_b0270) 2013; 501 Heo (10.1016/j.poly.2021.115089_b0640) 2016; 8 Ong (10.1016/j.poly.2021.115089_b0490) 2007; 129 Dong (10.1016/j.poly.2021.115089_b0720) 2015; 119 Zhang (10.1016/j.poly.2021.115089_b0035) 2015; 11 Harikesh (10.1016/j.poly.2021.115089_b0120) 2016; 28 Fakharuddin (10.1016/j.poly.2021.115089_b0225) 2015; 9 Kenichiro (10.1016/j.poly.2021.115089_b0555) 2003; 4 Zhu (10.1016/j.poly.2021.115089_b0605) 2014; 126 Han (10.1016/j.poly.2021.115089_b0715) 2015; 7 Ball (10.1016/j.poly.2021.115089_b0550) 2013; 6 Dualeh (10.1016/j.poly.2021.115089_b0665) 2014; 8 Chen (10.1016/j.poly.2021.115089_b0810) 2015; 8 O'Regan (10.1016/j.poly.2021.115089_b0010) 1991; 353 Burschka (10.1016/j.poly.2021.115089_b0410) 2013; 499 Dong (10.1016/j.poly.2021.115089_b0805) 2015; 107 Park (10.1016/j.poly.2021.115089_b0505) 2000; 104 Xu (10.1016/j.poly.2021.115089_b0860) 2015; 6 D'Innocenzo (10.1016/j.poly.2021.115089_b0595) 2014; 5 Liu (10.1016/j.poly.2021.115089_b0095) 2017; 29 Ogomi (10.1016/j.poly.2021.115089_b0575) 2014; 118 Carr (10.1016/j.poly.2021.115089_b0685) 2013; 6 Wali (10.1016/j.poly.2021.115089_b0480) 2015; 293 Vandewal (10.1016/j.poly.2021.115089_b0315) 2009; 8 Chen (10.1016/j.poly.2021.115089_b0820) 2016; 4 Im (10.1016/j.poly.2021.115089_b0020) 2011; 3 Song (10.1016/j.poly.2021.115089_b0130) 2017; 2 Im (10.1016/j.poly.2021.115089_b0405) 2014; 9 Wang (10.1016/j.poly.2021.115089_b0565) 2014; 14 Melzer (10.1016/j.poly.2021.115089_b0680) 2004; 14 Wu (10.1016/j.poly.2021.115089_b0950) 2017; 32 Leijtens (10.1016/j.poly.2021.115089_b0585) 2014; 8 Walter (10.1016/j.poly.2021.115089_b0675) 1996; 80 Yin (10.1016/j.poly.2021.115089_b0460) 2016; 4 Zhang (10.1016/j.poly.2021.115089_b0060) 2016 Jeon (10.1016/j.poly.2021.115089_b0335) 2015; 517 Bag (10.1016/j.poly.2021.115089_b0850) 2012; 5 Wang (10.1016/j.poly.2021.115089_b0260) 2016; 147 Im (10.1016/j.poly.2021.115089_b0290) 2011; 3 Liu (10.1016/j.poly.2021.115089_b0925) 2016; 8 Fakharuddin (10.1016/j.poly.2021.115089_b0250) 2016; 4 Kranz (10.1016/j.poly.2021.115089_b0735) 2015; 6 Yin (10.1016/j.poly.2021.115089_b0380) 2015; 3 10.1016/j.poly.2021.115089_b0430 Heo (10.1016/j.poly.2021.115089_b0835) 2015; 15 Huang (10.1016/j.poly.2021.115089_b0175) 2017; 29 Wang (10.1016/j.poly.2021.115089_b0740) 2016; 4 van Reenen (10.1016/j.poly.2021.115089_b0890) 2015; 6 Yang (10.1016/j.poly.2021.115089_b0960) 2015; 137 Li (10.1016/j.poly.2021.115089_b0285) 2015; 5 Marinova (10.1016/j.poly.2021.115089_b0310) 2015; 9 Baikie (10.1016/j.poly.2021.115089_b0635) 2013; 1 Snaith (10.1016/j.poly.2021.115089_b0295) 2006; 18 Kim (10.1016/j.poly.2021.115089_b0030) 2012; 2 Zheng (10.1016/j.poly.2021.115089_b0280) 2014; 6 Qifan (10.1016/j.poly.2021.115089_b0795) 2015; 73 Saliba (10.1016/j.poly.2021.115089_b0100) 2016; 9 Manshor (10.1016/j.poly.2021.115089_b0255) 2016; 18 Wojciechowski (10.1016/j.poly.2021.115089_b0515) 2014; 8 Kim (10.1016/j.poly.2021.115089_b0880) 2015; 6 Lindblad (10.1016/j.poly.2021.115089_b0590) 2014; 5 Park (10.1016/j.poly.2021.115089_b0905) 2016; 155 Toshniwal (10.1016/j.poly.2021.115089_b0140) 2017; 149 Zhou (10.1016/j.poly.2021.115089_b0770) 2014; 345 Ke (10.1016/j.poly.2021.115089_b0745) 2015; 137 Zhang (10.1016/j.poly.2021.115089_b0840) 2016; 4 Edri (10.1016/j.poly.2021.115089_b0650) 2014; 14 Xing (10.1016/j.poly.2021.115089_b0040) 2013; 342 Heo (10.1016/j.poly.2021.115089_b0655) 2015; 27 Qi (10.1016/j.poly.2021.115089_b0845) 2013; 15 Han (10.1016/j.poly.2021.115089_b0205) 2017; 236 Jiang (10.1016/j.poly.2021.115089_b0155) 2015; 54 Lee (10.1016/j.poly.2021.115089_b0345) 2014; 26 10.1016/j.poly.2021.115089_b0705 Jeon (10.1016/j.poly.2021.115089_b0350) 2014; 13 Hu (10.1016/j.poly.2021.115089_b0390) 2014; 1 Wali (10.1016/j.poly.2021.115089_b0690) 2014; 2 Yang (10.1016/j.poly.2021.115089_b0970) 2016; 28 Yang (10.1016/j.poly.2021.115089_b0330) 2015; 348 Heo (10.1016/j.poly.2021.115089_b0540) 2015; 55 Schwarzburg (10.1016/j.poly.2021.115089_b0660) 1991; 58 Shi (10.1016/j.poly.2021.115089_b0855) 2014; 104 Liu (10.1016/j.poly.2021.115089_b0915) 2014; 8 Chen (10.1016/j.poly.2021.115089_b0455) 2016; 6 Nayak (10.1016/j.poly.2021.115089_b0530) 2012; 5 Bouclé (10.1016/j.poly.2021.115089_b0620) 2016; 222 10.1016/j.poly.2021.115089_b0230 Park (10.1016/j.poly.2021.115089_b0785) 2015; 27 Wu (10.1016/j.poly.2021.115089_b0385) 2014; 7 Grätzel (10.1016/j.poly.2021.115089_b0055) 2017; 50 Wali (10.1016/j.poly.2021.115089_b0725) 2018; 179 Chen (10.1016/j.poly.2021.115089_b0945) 2017; 9 Ueoka (10.1016/j.poly.2021.115089_b0135) 2017; 1807 Philippe (10.1016/j.poly.2021.115089_b0115) 2017; 29 Kojima (10.1016/j.poly.2021.115089_b0520) 2012; 41 Nagane (10.1016/j.poly.2021.115089_b0160) 2014; 50 Werner (10.1016/j.poly.2021.115089_b0075) 2016; 7 Leijtens (10.1016/j.poly.2021.115089_b0755) 2013; 4 Beiley (10.1016/j.poly.2021.115089_b0495) 2012; 5 Hamaguchi (10.1016/j.poly.2021.115089_b0980) 2017; 53 10.1016/j.poly.2021.115089_b0240 Hao (10.1016/j.poly.2021.115089_b0125) 2014; 8 Chai (10.1016/j.poly.2021.115089_b0200) 2017; 125 |
References_xml | – volume: 3 start-page: 14121 year: 2015 end-page: 14125 ident: b0370 article-title: Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis publication-title: J. Mater. Chem. A – volume: 338 start-page: 625 year: 2012 end-page: 626 ident: b0485 article-title: Getting moore from solar cells publication-title: Science – volume: 8 start-page: 1997 year: 2015 end-page: 2003 ident: b0825 article-title: Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer publication-title: Nano Res. – volume: 28 start-page: 7344 year: 2016 end-page: 7352 ident: b0970 article-title: Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films publication-title: Chem. Mater. – volume: 7 start-page: 161 year: 2016 end-page: 166 ident: b0075 article-title: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 7856 year: 2016 end-page: 7865 ident: b0910 article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells publication-title: Dalton Trans. – volume: 9 start-page: 1989 year: 2016 end-page: 1997 ident: b0100 article-title: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency publication-title: Energy Environ. Sci. – volume: 104 year: 2014 ident: b0855 article-title: Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property publication-title: Appl. Phys. Lett. – volume: 29 start-page: 3589 year: 2017 end-page: 3596 ident: b0115 article-title: Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy publication-title: Chem. Mater. – volume: 353 start-page: 737 year: 1991 end-page: 740 ident: b0010 article-title: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films publication-title: Nature – volume: 26 start-page: 6503 year: 2014 end-page: 6509 ident: b0630 article-title: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement publication-title: Adv. Mater. – volume: 7 year: 2017 ident: b0440 article-title: Molecularly engineered phthalocyanines as hole-transporting materials in perovskite solar cells reaching power conversion efficiency of 17.5% publication-title: Adv. Energy Mater. – volume: 30 start-page: 460 year: 2016 end-page: 469 ident: b0275 article-title: Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination publication-title: Nano Energy – volume: 9 start-page: 2262 year: 2016 end-page: 2266 ident: b0920 article-title: Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency publication-title: Energy Environ. Sci. – volume: 53 start-page: 4366 year: 2017 end-page: 4369 ident: b0980 article-title: Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers publication-title: Chem. Commun. – volume: 129 start-page: 2750 year: 2007 end-page: 2751 ident: b0490 article-title: Stable, solution-processed, high-mobility ZnO thin-film transistors publication-title: J. Am. Chem. Soc. – volume: 7 year: 2017 ident: b0185 article-title: Carbon nanoforms in perovskite-based solar cells publication-title: Adv. Energy Mater. – volume: 14 start-page: 2584 year: 2014 end-page: 2590 ident: b0365 article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells publication-title: Nano Lett. – volume: 4 year: 2016 ident: b0250 article-title: Research update: behind the high efficiency of hybrid perovskite solar cells publication-title: APL Mater. – volume: 17 start-page: 24092 year: 2015 end-page: 24097 ident: b0580 article-title: Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process publication-title: PCCP – volume: 7 start-page: 20539 year: 2015 end-page: 20546 ident: b0420 article-title: TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97% publication-title: Nanoscale – volume: 1807 year: 2017 ident: b0135 article-title: Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells publication-title: AIP Conf. Proc. – reference: J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang. Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Appl. Surf. Sci. – volume: 24 start-page: 693 year: 2015 end-page: 697 ident: b0790 article-title: Improving the interfacial contact between CH3NH3PbI3–xClx and Au by LiTFSI solution treatment for efficient photoelectric devices publication-title: J. Energy Chem. – volume: 136 start-page: 3760 year: 2014 end-page: 3763 ident: b0815 article-title: Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots publication-title: J. Am. Chem. Soc. – start-page: 16048 year: 2016 ident: b0060 article-title: Metal halide perovskites for energy applications publication-title: Nature Energy – volume: 3 start-page: 24495 year: 2015 end-page: 24503 ident: b0380 article-title: High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer publication-title: J. Mater. Chem. A – volume: 8 start-page: 19654 year: 2016 end-page: 19661 ident: b0445 article-title: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18% publication-title: Nanoscale – volume: 5 start-page: 739 year: 2017 end-page: 747 ident: b0415 article-title: Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15% publication-title: J. Mater. Chem. A – volume: 7 start-page: 3690 year: 2014 end-page: 3698 ident: b0875 article-title: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells publication-title: Energy Environ. Sci. – volume: 104 start-page: 8989 year: 2000 end-page: 8994 ident: b0505 article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells publication-title: J. Phys. Chem. B – volume: 137 start-page: 9210 year: 2015 end-page: 9213 ident: b0960 article-title: Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions publication-title: J. Am. Chem. Soc. – volume: 283 start-page: 61 year: 2015 end-page: 67 ident: b0265 article-title: Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells publication-title: J. Power Sources – volume: 9 start-page: 4200 year: 2015 end-page: 4209 ident: b0310 article-title: Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation publication-title: ACS Nano – volume: 4 start-page: 13203 year: 2016 end-page: 13210 ident: b0460 article-title: Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere publication-title: J. Mater. Chem. A – volume: 2 start-page: 591 year: 2012 ident: b0030 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. – volume: 7 year: 2016 ident: b0895 article-title: Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells publication-title: Nat. Commun. – volume: 27 start-page: 4013 year: 2015 end-page: 4019 ident: b0785 article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition publication-title: Adv. Mater. – volume: 80 start-page: 4411 year: 1996 end-page: 4420 ident: b0675 article-title: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions publication-title: J. Appl. Phys. – volume: 7 start-page: 3952 year: 2014 end-page: 3981 ident: b0005 article-title: A perspective on the production of dye-sensitized solar modules publication-title: Energy Environ. Sci. – volume: 9 start-page: 8420 year: 2015 end-page: 8429 ident: b0225 article-title: Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules publication-title: ACS Nano – volume: 8 start-page: 12701 year: 2014 end-page: 12709 ident: b0515 article-title: Heterojunction modification for highly efficient organic-inorganic perovskite solar cells publication-title: ACS Nano – volume: 149 start-page: 54 year: 2017 end-page: 59 ident: b0140 article-title: Development of organic-inorganic tin halide perovskites: a review publication-title: Sol. Energy – volume: 28 start-page: 7496 year: 2016 end-page: 7504 ident: b0120 article-title: Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics publication-title: Chem. Mater. – volume: 9 start-page: 927 year: 2014 end-page: 932 ident: b0405 article-title: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells publication-title: Nat. Nanotechnol. – volume: 84 start-page: 89 year: 2018 end-page: 110 ident: b0065 article-title: Tandem perovskite solar cells publication-title: Renew. Sustain. Energy Rev. – volume: 144 start-page: 623 year: 2016 end-page: 630 ident: b0750 article-title: Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 13 start-page: 1776 year: 2013 end-page: 1781 ident: b0570 article-title: Colloidal antireflection coating improves graphene-silicon solar cells publication-title: Nano Lett. – volume: 14 start-page: 724 year: 2014 end-page: 730 ident: b0565 article-title: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells publication-title: Nano Lett. – volume: 27 start-page: 6363 year: 2015 end-page: 6370 ident: b0935 article-title: Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15% publication-title: Adv. Mater. – volume: 116 start-page: 4558 year: 2016 end-page: 4596 ident: b0975 article-title: Organic-inorganic perovskites: structural versatility for functional materials design publication-title: Chem. Rev. – volume: 8 start-page: 489 year: 2014 end-page: 494 ident: b0125 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photon. – volume: 2 start-page: 897 year: 2017 end-page: 903 ident: b0130 article-title: Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive publication-title: ACS Energy Lett. – volume: 222 start-page: 3 year: 2016 end-page: 16 ident: b0620 article-title: The benefits of graphene for hybrid perovskite solar cells publication-title: Synth. Met. – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: b0470 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. – volume: 26 start-page: 4991 year: 2014 end-page: 4998 ident: b0345 article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3 publication-title: Adv. Mater. – volume: 118 start-page: 16458 year: 2014 end-page: 16462 ident: b0085 article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells publication-title: J. Phys. Chem. C – volume: 5 start-page: 94290 year: 2015 end-page: 94295 ident: b0285 article-title: Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell publication-title: RSC Adv. – reference: Y. Tu, J. Wu, Z. Lan, X. He, J. Dong, J. Jia, et al. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. 2017;7:44603. – reference: Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik – volume: 5 start-page: 6022 year: 2012 end-page: 6039 ident: b0530 article-title: Photovoltaic efficiency limits and material disorder publication-title: Energy Environ. Sci. – volume: 14 start-page: 865 year: 2004 end-page: 870 ident: b0680 article-title: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8171 year: 2014 end-page: 8176 ident: b0280 article-title: Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition publication-title: Nanoscale – volume: 147 start-page: 255 year: 2016 end-page: 275 ident: b0260 article-title: Stability of perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 646 start-page: 32 year: 2015 end-page: 39 ident: b0695 article-title: One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells publication-title: J. Alloy. Compd. – volume: 118 start-page: 16651 year: 2014 end-page: 16659 ident: b0575 article-title: All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite publication-title: J. Phys. Chem. C – volume: 6 start-page: 3414 year: 2013 end-page: 3438 ident: b0685 article-title: The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook publication-title: Energy Environ. Sci. – volume: 4 start-page: 15383 year: 2016 end-page: 15389 ident: b0840 article-title: Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19% publication-title: J. Mater. Chem. A – volume: 50 start-page: 487 year: 2017 end-page: 491 ident: b0055 article-title: The rise of highly efficient and stable perovskite solar cells publication-title: Acc. Chem. Res. – volume: 7 start-page: 15284 year: 2015 end-page: 15290 ident: b0715 article-title: Epitaxial 1D electron transport layers for high-performance perovskite solar cells publication-title: Nanoscale – volume: 342 start-page: 344 year: 2013 ident: b0040 article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3Pb3 publication-title: Science – volume: 8 start-page: 2928 year: 2015 end-page: 2934 ident: b0730 article-title: Highly efficient planar perovskite solar cells through band alignment engineering publication-title: Energy Environ. Sci. – volume: 6 start-page: 1739 year: 2013 end-page: 1743 ident: b0550 article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells publication-title: Energy Environ. Sci. – volume: 8 start-page: 29580 year: 2016 end-page: 29587 ident: b0940 article-title: Ternary oxides in the TiO2–ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15% publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 17427 year: 2014 end-page: 17434 ident: b0690 article-title: Multiporous nanofibers of SnO 2 by electrospinning for high efficiency dye-sensitized solar cells publication-title: J. Mater. Chem. A – volume: 8 start-page: 1602 year: 2015 end-page: 1608 ident: b0865 article-title: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency publication-title: Energy Environ. Sci. – volume: 5 start-page: 1511 year: 2014 end-page: 1515 ident: b0360 article-title: Anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 126 start-page: 10056 year: 2014 end-page: 10061 ident: b0760 article-title: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells publication-title: Angew. Chem. – volume: 53 start-page: 3151 year: 2014 end-page: 3157 ident: b0340 article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 14423 year: 2016 end-page: 14429 ident: b0965 article-title: A mesoporous-planar hybrid architecture of methylammonium lead iodide perovskite based solar cells publication-title: J. Mater. Chem. A – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: b0090 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science – volume: 9 start-page: 2449 year: 2017 end-page: 2458 ident: b0945 article-title: Mixed-organic-cation (FA)x(MA)1–xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 9067 year: 2015 end-page: 9070 ident: b0145 article-title: Assessment of polyanion (BF4- and PF6-) substitutions in hybrid halide perovskites publication-title: J. Mater. Chem. A – volume: 6 year: 2016 ident: b0455 article-title: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14% publication-title: Adv. Energy Mater. – volume: 5 start-page: 3586 year: 2014 ident: b0595 article-title: Excitons versus free charges in organo-lead tri-halide perovskites publication-title: Nat. Commun. – volume: 155 start-page: 14 year: 2016 end-page: 19 ident: b0905 article-title: Efficient planar heterojunction perovskite solar cells fabricated via roller-coating publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 599 year: 2003 ident: b0555 article-title: Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals publication-title: Sci. Technol. Adv. Mater. – volume: 54 start-page: 3430 year: 1976 end-page: 3438 ident: b0400 article-title: Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands publication-title: Can. J. Chem. – volume: 17 start-page: 171 year: 2015 end-page: 179 ident: b0600 article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture publication-title: Nano Energy – volume: 4 start-page: 5647 year: 2016 end-page: 5653 ident: b0820 article-title: Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction publication-title: J. Mater. Chem. A – volume: 347 start-page: 522 year: 2015 end-page: 525 ident: b0900 article-title: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains publication-title: Science – volume: 119 start-page: 9926 year: 2015 end-page: 9933 ident: b0165 article-title: Precipitation of CH3NH3PbCl3 in CH3NH3PbI3 and its impact on modulated charge separation publication-title: J. Phys. Chem. C – volume: 26 year: 2017 ident: b0775 article-title: Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps publication-title: Chin. Phys. B – volume: 29 start-page: 3246 year: 2017 end-page: 3250 ident: b0095 article-title: High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation publication-title: Chem. Mater. – volume: 7 year: 2017 ident: b0190 article-title: Carbon nanotubes in perovskite solar cells publication-title: Adv. Energy Mater. – volume: 7 start-page: 1700623 year: 2017 ident: b0220 article-title: Interfaces in perovskite solar cells publication-title: Adv. Energy Mater. – volume: 8 start-page: 133 year: 2014 end-page: 138 ident: b0915 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat Photon. – volume: 22 start-page: 439 year: 2016 end-page: 452 ident: b0615 article-title: Planar versus mesoscopic perovskite microstructures: the influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics publication-title: Nano Energy – volume: 8 start-page: 629 year: 2015 end-page: 640 ident: b0810 article-title: Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells publication-title: Energy Environ. Sci. – volume: 18 start-page: 1910 year: 2006 end-page: 1914 ident: b0295 article-title: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells publication-title: Adv. Mater. – volume: 116 start-page: 20717 year: 2012 end-page: 20721 ident: b0525 article-title: Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer publication-title: J. Phys. Chem. C – volume: 6 start-page: 2390 year: 2013 end-page: 2413 ident: b0475 article-title: Highly efficient organic tandem solar cells: a follow up review publication-title: Energy Environ. Sci. – volume: 2 start-page: 174 year: 2013 end-page: 189 ident: b0500 article-title: Fabrication of flexible dye sensitized solar cells on plastic substrates publication-title: Nano Energy – volume: 3 start-page: 19288 year: 2015 end-page: 19293 ident: b0625 article-title: Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer publication-title: J. Mater. Chem. A – volume: 293 start-page: 1039 year: 2015 end-page: 1052 ident: b0480 article-title: Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges publication-title: J. Power Sources – volume: 3 start-page: 10837 year: 2015 end-page: 10844 ident: b0710 article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells publication-title: J. Mater. Chem. A – volume: 4 start-page: 206 year: 2017 end-page: 216 ident: b0985 article-title: Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality publication-title: Mater. Horiz. – volume: 4 start-page: 17649 year: 2016 end-page: 17654 ident: b0780 article-title: Elimination of the J-V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative publication-title: J. Mater. Chem. A – reference: M, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than – volume: 13 start-page: 897 year: 2014 end-page: 903 ident: b0350 article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells publication-title: Nat. Mater. – volume: 8 start-page: 904 year: 2009 end-page: 909 ident: b0315 article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells publication-title: Nat. Mater. – volume: 7 start-page: 167 year: 2016 end-page: 172 ident: b0105 article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells publication-title: J. Phys. Chem. Lett. – volume: 107 year: 2015 ident: b0805 article-title: Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell publication-title: Appl. Phys. Lett. – volume: 4 year: 2013 ident: b0755 article-title: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells publication-title: Nat. Commun. – volume: 18 start-page: 21629 year: 2016 end-page: 21639 ident: b0255 article-title: Humidity versus photo-stability of metal halide perovskite films in a polymer matrix publication-title: PCCP – volume: 18 start-page: 32903 year: 2016 end-page: 32909 ident: b0800 article-title: Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres publication-title: PCCP – volume: 355 start-page: 98 year: 2017 end-page: 133 ident: b0180 article-title: Recent progress in stabilizing hybrid perovskites for solar cell applications publication-title: J. Power Sources – volume: 8 start-page: 995 year: 2015 end-page: 1004 ident: b0870 article-title: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field publication-title: Energy Environ. Sci. – volume: 3 start-page: 4088 year: 2011 end-page: 4093 ident: b0020 article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell publication-title: Nanoscale – volume: 5 start-page: 9173 year: 2012 end-page: 9179 ident: b0495 article-title: Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20% publication-title: Energy Environ. Sci. – volume: 6 year: 2015 ident: b0860 article-title: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes publication-title: Nat. Commun. – volume: 517 start-page: 476 year: 2015 end-page: 480 ident: b0335 article-title: Compositional engineering of perovskite materials for high-performance solar cells publication-title: Nature – volume: 7 start-page: 2934 year: 2014 end-page: 2938 ident: b0385 article-title: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition publication-title: Energy Environ. Sci. – volume: 34 start-page: 271 year: 2017 end-page: 305 ident: b0025 article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells publication-title: Nano Energy – volume: 499 start-page: 316 year: 2013 end-page: 319 ident: b0410 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature – volume: 73 start-page: 179 year: 2015 end-page: 192 ident: b0795 article-title: Recent advances in perovskite solar cells: morphology control and interfacial engineering publication-title: Acta Chim. Sinica – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: b0330 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science – volume: 5 start-page: 6840 year: 2017 end-page: 6848 ident: b0235 article-title: Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20% publication-title: J. Mater. Chem. A – volume: 50 start-page: 9741 year: 2014 end-page: 9744 ident: b0160 article-title: CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite publication-title: Chem. Commun. – volume: 26 start-page: 8179 year: 2014 end-page: 8183 ident: b0150 article-title: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process publication-title: Adv. Mater. – volume: 5 start-page: 5360 year: 2003 end-page: 5364 ident: b0545 article-title: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells publication-title: PCCP – volume: 501 start-page: 395 year: 2013 end-page: 398 ident: b0270 article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition publication-title: Nature – volume: 165 start-page: 36 year: 2017 end-page: 44 ident: b0195 article-title: Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives publication-title: Sol. Energy Mater. Sol. Cells – volume: 15 start-page: 8972 year: 2013 end-page: 8982 ident: b0845 article-title: Fill factor in organic solar cells publication-title: PCCP – reference: B. Grew, J.W. Bowers, H.M. Upadhyaya. The optimization of optical properties for increased performance in a monolithic tandem dye-sensitized/Cu(In, Ga)Se<inf>2</inf> solar cell. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)2013. p. 1008-12. – volume: 4 start-page: 3623 year: 2013 end-page: 3630 ident: b0510 article-title: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells publication-title: J. Phys. Chem. Lett. – volume: 54 start-page: 7617 year: 2015 end-page: 7620 ident: b0155 article-title: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2927 year: 2014 end-page: 2934 ident: b0885 article-title: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer publication-title: J. Phys. Chem. Lett.. – volume: 5 year: 2014 ident: b0670 article-title: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells publication-title: Nat. Commun. – volume: 126 start-page: 12779 year: 2014 end-page: 12783 ident: b0605 article-title: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells publication-title: Angew. Chem. – volume: 5 year: 2015 ident: b0305 article-title: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination publication-title: Adv. Energy Mater. – volume: 6 start-page: 3808 year: 2015 end-page: 3814 ident: b0890 article-title: Modeling anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 7147 year: 2014 end-page: 7155 ident: b0585 article-title: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility publication-title: ACS Nano – volume: 4 start-page: 1532 year: 2013 end-page: 1536 ident: b0325 article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells publication-title: J. Phys. Chem. Lett. – volume: 32 start-page: 187 year: 2017 end-page: 194 ident: b0950 article-title: Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency publication-title: Nano Energy – volume: 15 start-page: 247 year: 2016 end-page: 251 ident: b0990 article-title: Toxicity of organometal halide perovskite solar cells publication-title: Nat. Mater. – volume: 1 start-page: 5628 year: 2013 end-page: 5641 ident: b0635 article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications publication-title: J. Mater. Chem. A – volume: 6 start-page: 4633 year: 2015 end-page: 4639 ident: b0880 article-title: Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 1000 year: 2014 end-page: 1004 ident: b0650 article-title: Why lead methylammonium Tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor) publication-title: Nano Lett. – volume: 167 start-page: 173 year: 2017 end-page: 177 ident: b0465 article-title: Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique publication-title: Sol. Energy Mater. Sol. Cells – volume: 5 start-page: 648 year: 2014 end-page: 653 ident: b0590 article-title: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces publication-title: J. Phys. Chem. Lett. – volume: 5 year: 2015 ident: b0535 article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells publication-title: Adv. Energy Mater. – volume: 8 start-page: 11076 year: 2016 end-page: 11083 ident: b0925 article-title: Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 1233 year: 2016 end-page: 1240 ident: b0110 article-title: Toward lead-free perovskite solar cells publication-title: ACS Energy Lett. – reference: 21%. 2016;1:16142. – volume: 4 start-page: 12080 year: 2016 end-page: 12087 ident: b0740 article-title: Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells publication-title: J. Mater. Chem. A – volume: 8 start-page: 362 year: 2014 end-page: 373 ident: b0665 article-title: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells publication-title: ACS Nano – volume: 10 start-page: 6029 year: 2016 end-page: 6036 ident: b0930 article-title: Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells publication-title: ACS Nano – volume: 5 start-page: 7339 year: 2017 end-page: 7344 ident: b0955 article-title: Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer publication-title: J. Mater. Chem. A – volume: 77 start-page: 131 year: 2017 end-page: 146 ident: b0170 article-title: Device stability of perovskite solar cells – a review publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 427 year: 2015 end-page: 434 ident: b0035 article-title: Magnetic field effects in hybrid perovskite devices publication-title: Nat. Phys. – year: 2017 ident: b0210 article-title: Mixed cation hybrid lead halide perovskites with enhanced performance and stability publication-title: J. Mater. Chem. A – reference: Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, et al. Thermally Stable MAPbI3 Perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. n/a-n/a. – volume: 17 start-page: 394 year: 2009 end-page: 402 ident: b0320 article-title: Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells publication-title: Prog. Photovoltaics Res. Appl. – volume: 236 start-page: 122 year: 2017 end-page: 130 ident: b0205 article-title: Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells publication-title: Electrochim. Acta – volume: 347 start-page: 967 year: 2015 end-page: 970 ident: b0045 article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals publication-title: Science – volume: 3 year: 2011 ident: b0290 article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell publication-title: Nanoscale – volume: 27 start-page: 3424 year: 2015 end-page: 3430 ident: b0655 article-title: Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate publication-title: Adv. Mater. – volume: 6 start-page: 2676 year: 2015 end-page: 2681 ident: b0735 article-title: High-efficiency polycrystalline thin film tandem solar cells publication-title: J. Phys. Chem. Lett. – volume: 29 year: 2017 ident: b0175 article-title: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells publication-title: Adv. Mater. – volume: 8 start-page: 2664 year: 2016 end-page: 2677 ident: b0450 article-title: In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency publication-title: Nanoscale – volume: 58 start-page: 2520 year: 1991 end-page: 2522 ident: b0660 article-title: Influence of trap filling on photocurrent transients in polycrystalline TiO2 publication-title: Appl. Phys. Lett. – volume: 41 start-page: 397 year: 2012 end-page: 399 ident: b0520 article-title: Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media publication-title: Chem. Lett. – volume: 119 start-page: 10212 year: 2015 end-page: 10217 ident: b0720 article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer publication-title: J. Phys. Chem. C – volume: 8 start-page: 2554 year: 2016 end-page: 2560 ident: b0640 article-title: Highly reproducible, efficient hysteresis-less CH3NH3PbI3-xClx planar hybrid solar cells without requiring heat-treatment publication-title: Nanoscale – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: b0015 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 8696 year: 2015 end-page: 8699 ident: b0395 article-title: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide publication-title: J. Am. Chem. Soc. – volume: 332 start-page: 366 year: 2016 end-page: 371 ident: b0435 article-title: TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17% publication-title: J. Power Sources – volume: 125 start-page: 222 year: 2017 end-page: 229 ident: b0200 article-title: CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: impact of bromide on stability and cell performance publication-title: Mater. Des. – volume: 24 start-page: 707 year: 2015 ident: b0765 article-title: A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells publication-title: J. Energy Chem. – volume: 345 start-page: 542 year: 2014 end-page: 546 ident: b0770 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science – volume: 342 start-page: 341 year: 2013 end-page: 344 ident: b0050 article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber publication-title: Science – volume: 26 year: 2015 ident: b0215 article-title: Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods publication-title: Nanotechnology. – volume: 6 start-page: 12609 year: 2014 end-page: 12617 ident: b0610 article-title: Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 203 year: 2015 end-page: 211 ident: b0080 article-title: Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process publication-title: Mater. Horiz. – volume: 6 year: 2016 ident: b0375 article-title: Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides publication-title: Adv. Energy Mater. – volume: 23 start-page: 138 year: 2016 end-page: 144 ident: b0300 article-title: Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8% publication-title: Nano Energy – volume: 1 start-page: 547 year: 2014 end-page: 553 ident: b0390 article-title: Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells publication-title: ACS Photonics – volume: 137 start-page: 6730 year: 2015 end-page: 6733 ident: b0745 article-title: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 663 year: 1980 end-page: 664 ident: b0355 article-title: The crystal structure of lead(II) Iodide-dimethylsulphoxide(1/2), PbI<SUB>2</SUB>(dmso)<SUB>2</SUB> publication-title: Chem. Lett. – volume: 3 start-page: 18389 year: 2015 end-page: 18394 ident: b0245 article-title: Hole-conductor-free planar perovskite solar cells with 16.0% efficiency publication-title: J. Mater. Chem. A – volume: 7 start-page: 1142 year: 2014 end-page: 1147 ident: b0560 article-title: Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency publication-title: Energy Environ. Sci. – volume: 5 start-page: 5401 year: 2012 end-page: 5407 ident: b0700 article-title: High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning publication-title: Energy Environ. Sci. – volume: 55 start-page: 966 year: 2015 end-page: 977 ident: b0540 article-title: Recent progress of innovative perovskite hybrid solar cells publication-title: Isr. J. Chem. – volume: 25 start-page: 4613 year: 2013 end-page: 4618 ident: b0645 article-title: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties publication-title: Chem. Mater. – reference: F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. 2016;7:10379. – volume: 5 start-page: 7060 year: 2012 end-page: 7065 ident: b0850 article-title: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency publication-title: Energy Environ. Sci. – volume: 137 start-page: 10399 year: 2015 end-page: 10405 ident: b0425 article-title: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17% publication-title: J. Am. Chem. Soc. – volume: 179 start-page: 102 year: 2018 end-page: 117 ident: b0725 article-title: Tin oxide as an emerging electron transport medium in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 15 start-page: 530 year: 2015 end-page: 539 ident: b0835 article-title: Hysteresis-less mesoscopic CH 3 NH 3 PbI 3 perovskite hybrid solar cells by introduction of Li-treated TiO 2 electrode publication-title: Nano Energy – ident: 10.1016/j.poly.2021.115089_b0240 – volume: 2 start-page: 203 year: 2015 ident: 10.1016/j.poly.2021.115089_b0080 article-title: Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process publication-title: Mater. Horiz. doi: 10.1039/C4MH00237G – ident: 10.1016/j.poly.2021.115089_b0230 doi: 10.1038/nenergy.2016.142 – volume: 338 start-page: 643 year: 2012 ident: 10.1016/j.poly.2021.115089_b0090 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science doi: 10.1126/science.1228604 – volume: 353 start-page: 737 year: 1991 ident: 10.1016/j.poly.2021.115089_b0010 article-title: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films publication-title: Nature doi: 10.1038/353737a0 – volume: 129 start-page: 2750 year: 2007 ident: 10.1016/j.poly.2021.115089_b0490 article-title: Stable, solution-processed, high-mobility ZnO thin-film transistors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068876e – volume: 5 start-page: 2927 year: 2014 ident: 10.1016/j.poly.2021.115089_b0885 article-title: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer publication-title: J. Phys. Chem. Lett.. doi: 10.1021/jz501392m – volume: 1 start-page: 1233 year: 2016 ident: 10.1016/j.poly.2021.115089_b0110 article-title: Toward lead-free perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00499 – volume: 6 year: 2016 ident: 10.1016/j.poly.2021.115089_b0375 article-title: Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600285 – volume: 8 start-page: 29580 year: 2016 ident: 10.1016/j.poly.2021.115089_b0940 article-title: Ternary oxides in the TiO2–ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15% publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09326 – volume: 283 start-page: 61 year: 2015 ident: 10.1016/j.poly.2021.115089_b0265 article-title: Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.084 – volume: 3 start-page: 19288 year: 2015 ident: 10.1016/j.poly.2021.115089_b0625 article-title: Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04239A – volume: 116 start-page: 4558 year: 2016 ident: 10.1016/j.poly.2021.115089_b0975 article-title: Organic-inorganic perovskites: structural versatility for functional materials design publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 26 year: 2017 ident: 10.1016/j.poly.2021.115089_b0775 article-title: Alleviating hysteresis and improving device stability of perovskite solar cells via alternate voltage sweeps publication-title: Chin. Phys. B – volume: 53 start-page: 3151 year: 2014 ident: 10.1016/j.poly.2021.115089_b0340 article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309361 – volume: 8 start-page: 12701 year: 2014 ident: 10.1016/j.poly.2021.115089_b0515 article-title: Heterojunction modification for highly efficient organic-inorganic perovskite solar cells publication-title: ACS Nano doi: 10.1021/nn505723h – volume: 345 start-page: 542 year: 2014 ident: 10.1016/j.poly.2021.115089_b0770 article-title: Interface engineering of highly efficient perovskite solar cells publication-title: Science doi: 10.1126/science.1254050 – volume: 3 start-page: 14121 year: 2015 ident: 10.1016/j.poly.2021.115089_b0370 article-title: Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03169A – volume: 5 start-page: 6022 year: 2012 ident: 10.1016/j.poly.2021.115089_b0530 article-title: Photovoltaic efficiency limits and material disorder publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03178g – volume: 8 start-page: 2928 year: 2015 ident: 10.1016/j.poly.2021.115089_b0730 article-title: Highly efficient planar perovskite solar cells through band alignment engineering publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02608C – volume: 342 start-page: 341 year: 2013 ident: 10.1016/j.poly.2021.115089_b0050 article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber publication-title: Science doi: 10.1126/science.1243982 – volume: 80 start-page: 4411 year: 1996 ident: 10.1016/j.poly.2021.115089_b0675 article-title: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions publication-title: J. Appl. Phys. doi: 10.1063/1.363401 – volume: 22 start-page: 439 year: 2016 ident: 10.1016/j.poly.2021.115089_b0615 article-title: Planar versus mesoscopic perovskite microstructures: the influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.031 – volume: 2 start-page: 591 year: 2012 ident: 10.1016/j.poly.2021.115089_b0030 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 6 start-page: 12609 year: 2014 ident: 10.1016/j.poly.2021.115089_b0610 article-title: Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5025963 – volume: 3 start-page: 9067 year: 2015 ident: 10.1016/j.poly.2021.115089_b0145 article-title: Assessment of polyanion (BF4- and PF6-) substitutions in hybrid halide perovskites publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05284F – volume: 147 start-page: 255 year: 2016 ident: 10.1016/j.poly.2021.115089_b0260 article-title: Stability of perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.12.025 – volume: 6 start-page: 1739 year: 2013 ident: 10.1016/j.poly.2021.115089_b0550 article-title: Low-temperature processed meso-superstructured to thin-film perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40810h – volume: 348 start-page: 1234 year: 2015 ident: 10.1016/j.poly.2021.115089_b0330 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science doi: 10.1126/science.aaa9272 – volume: 136 start-page: 3760 year: 2014 ident: 10.1016/j.poly.2021.115089_b0815 article-title: Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4132246 – volume: 18 start-page: 32903 year: 2016 ident: 10.1016/j.poly.2021.115089_b0800 article-title: Enhanced perovskite morphology and crystallinity for high performance perovskite solar cells using a porous hole transport layer from polystyrene nanospheres publication-title: PCCP doi: 10.1039/C6CP06405A – volume: 54 start-page: 3430 year: 1976 ident: 10.1016/j.poly.2021.115089_b0400 article-title: Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands publication-title: Can. J. Chem. doi: 10.1139/v76-493 – volume: 126 start-page: 10056 year: 2014 ident: 10.1016/j.poly.2021.115089_b0760 article-title: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells publication-title: Angew. Chem. doi: 10.1002/ange.201405334 – volume: 84 start-page: 89 year: 2018 ident: 10.1016/j.poly.2021.115089_b0065 article-title: Tandem perovskite solar cells publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.01.005 – volume: 4 year: 2016 ident: 10.1016/j.poly.2021.115089_b0250 article-title: Research update: behind the high efficiency of hybrid perovskite solar cells publication-title: APL Mater. doi: 10.1063/1.4962143 – volume: 9 start-page: 8420 year: 2015 ident: 10.1016/j.poly.2021.115089_b0225 article-title: Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules publication-title: ACS Nano doi: 10.1021/acsnano.5b03265 – volume: 137 start-page: 6730 year: 2015 ident: 10.1016/j.poly.2021.115089_b0745 article-title: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01994 – volume: 342 start-page: 344 year: 2013 ident: 10.1016/j.poly.2021.115089_b0040 article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3Pb3 publication-title: Science doi: 10.1126/science.1243167 – volume: 125 start-page: 222 year: 2017 ident: 10.1016/j.poly.2021.115089_b0200 article-title: CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: impact of bromide on stability and cell performance publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.04.010 – volume: 5 start-page: 9173 year: 2012 ident: 10.1016/j.poly.2021.115089_b0495 article-title: Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20% publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23073a – volume: 7 start-page: 161 year: 2016 ident: 10.1016/j.poly.2021.115089_b0075 article-title: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02686 – volume: 7 year: 2017 ident: 10.1016/j.poly.2021.115089_b0440 article-title: Molecularly engineered phthalocyanines as hole-transporting materials in perovskite solar cells reaching power conversion efficiency of 17.5% publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601733 – volume: 5 year: 2014 ident: 10.1016/j.poly.2021.115089_b0670 article-title: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 29 year: 2017 ident: 10.1016/j.poly.2021.115089_b0175 article-title: Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201601715 – volume: 646 start-page: 32 year: 2015 ident: 10.1016/j.poly.2021.115089_b0695 article-title: One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.05.120 – volume: 8 start-page: 11076 year: 2016 ident: 10.1016/j.poly.2021.115089_b0925 article-title: Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12123 – volume: 17 start-page: 394 year: 2009 ident: 10.1016/j.poly.2021.115089_b0320 article-title: Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.895 – ident: 10.1016/j.poly.2021.115089_b0430 doi: 10.1038/srep44603 – volume: 7 start-page: 20539 year: 2015 ident: 10.1016/j.poly.2021.115089_b0420 article-title: TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97% publication-title: Nanoscale doi: 10.1039/C5NR05563F – volume: 6 start-page: 2390 year: 2013 ident: 10.1016/j.poly.2021.115089_b0475 article-title: Highly efficient organic tandem solar cells: a follow up review publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40388b – volume: 8 start-page: 629 year: 2015 ident: 10.1016/j.poly.2021.115089_b0810 article-title: Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02833C – volume: 4 start-page: 12080 year: 2016 ident: 10.1016/j.poly.2021.115089_b0740 article-title: Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04503K – volume: 55 start-page: 966 year: 2015 ident: 10.1016/j.poly.2021.115089_b0540 article-title: Recent progress of innovative perovskite hybrid solar cells publication-title: Isr. J. Chem. doi: 10.1002/ijch.201500002 – volume: 5 start-page: 5401 year: 2012 ident: 10.1016/j.poly.2021.115089_b0700 article-title: High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02703D – volume: 118 start-page: 16458 year: 2014 ident: 10.1016/j.poly.2021.115089_b0085 article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp411112k – volume: 13 start-page: 1776 year: 2013 ident: 10.1016/j.poly.2021.115089_b0570 article-title: Colloidal antireflection coating improves graphene-silicon solar cells publication-title: Nano Lett. doi: 10.1021/nl400353f – volume: 7 start-page: 167 year: 2016 ident: 10.1016/j.poly.2021.115089_b0105 article-title: Cesium enhances long-term stability of lead bromide perovskite-based solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02597 – volume: 14 start-page: 724 year: 2014 ident: 10.1016/j.poly.2021.115089_b0565 article-title: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells publication-title: Nano Lett. doi: 10.1021/nl403997a – volume: 8 start-page: 19654 year: 2016 ident: 10.1016/j.poly.2021.115089_b0445 article-title: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18% publication-title: Nanoscale doi: 10.1039/C6NR07076K – volume: 50 start-page: 487 year: 2017 ident: 10.1016/j.poly.2021.115089_b0055 article-title: The rise of highly efficient and stable perovskite solar cells publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00492 – volume: 24 start-page: 707 year: 2015 ident: 10.1016/j.poly.2021.115089_b0765 article-title: A repeated interdiffusion method for efficient planar formamidinium perovskite solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2015.10.017 – volume: 26 start-page: 4991 year: 2014 ident: 10.1016/j.poly.2021.115089_b0345 article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3 publication-title: Adv. Mater. doi: 10.1002/adma.201401137 – volume: 26 year: 2015 ident: 10.1016/j.poly.2021.115089_b0215 article-title: Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods publication-title: Nanotechnology. – volume: 5 year: 2015 ident: 10.1016/j.poly.2021.115089_b0305 article-title: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400812 – ident: 10.1016/j.poly.2021.115089_b0705 – volume: 119 start-page: 9926 year: 2015 ident: 10.1016/j.poly.2021.115089_b0165 article-title: Precipitation of CH3NH3PbCl3 in CH3NH3PbI3 and its impact on modulated charge separation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01667 – volume: 27 start-page: 3424 year: 2015 ident: 10.1016/j.poly.2021.115089_b0655 article-title: Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate publication-title: Adv. Mater. doi: 10.1002/adma.201500048 – volume: 50 start-page: 9741 year: 2014 ident: 10.1016/j.poly.2021.115089_b0160 article-title: CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite publication-title: Chem. Commun. doi: 10.1039/C4CC04537H – ident: 10.1016/j.poly.2021.115089_b0830 doi: 10.1038/ncomms10379 – volume: 34 start-page: 271 year: 2017 ident: 10.1016/j.poly.2021.115089_b0025 article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.025 – volume: 32 start-page: 510 year: 1961 ident: 10.1016/j.poly.2021.115089_b0470 article-title: Detailed balance limit of efficiency of p-n junction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 7 year: 2017 ident: 10.1016/j.poly.2021.115089_b0185 article-title: Carbon nanoforms in perovskite-based solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601000 – volume: 6 start-page: 8171 year: 2014 ident: 10.1016/j.poly.2021.115089_b0280 article-title: Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition publication-title: Nanoscale doi: 10.1039/C4NR01141D – volume: 5 start-page: 7339 year: 2017 ident: 10.1016/j.poly.2021.115089_b0955 article-title: Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01764B – volume: 28 start-page: 7344 year: 2016 ident: 10.1016/j.poly.2021.115089_b0970 article-title: Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02744 – year: 2017 ident: 10.1016/j.poly.2021.115089_b0210 article-title: Mixed cation hybrid lead halide perovskites with enhanced performance and stability publication-title: J. Mater. Chem. A – volume: 8 start-page: 2554 year: 2016 ident: 10.1016/j.poly.2021.115089_b0640 article-title: Highly reproducible, efficient hysteresis-less CH3NH3PbI3-xClx planar hybrid solar cells without requiring heat-treatment publication-title: Nanoscale doi: 10.1039/C5NR08458J – volume: 29 start-page: 3589 year: 2017 ident: 10.1016/j.poly.2021.115089_b0115 article-title: Chemical distribution of multiple cation (Rb+, Cs+, MA+, and FA+) perovskite materials by photoelectron spectroscopy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00126 – volume: 8 start-page: 133 year: 2014 ident: 10.1016/j.poly.2021.115089_b0915 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat Photon. doi: 10.1038/nphoton.2013.342 – ident: 10.1016/j.poly.2021.115089_b0070 doi: 10.1109/PVSC.2013.6744311 – volume: 30 start-page: 460 year: 2016 ident: 10.1016/j.poly.2021.115089_b0275 article-title: Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.030 – volume: 222 start-page: 3 year: 2016 ident: 10.1016/j.poly.2021.115089_b0620 article-title: The benefits of graphene for hybrid perovskite solar cells publication-title: Synth. Met. doi: 10.1016/j.synthmet.2016.03.030 – volume: 9 start-page: 2449 year: 2017 ident: 10.1016/j.poly.2021.115089_b0945 article-title: Mixed-organic-cation (FA)x(MA)1–xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13410 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.poly.2021.115089_b0015 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 118 start-page: 16651 year: 2014 ident: 10.1016/j.poly.2021.115089_b0575 article-title: All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite publication-title: J. Phys. Chem. C doi: 10.1021/jp412627n – volume: 338 start-page: 625 year: 2012 ident: 10.1016/j.poly.2021.115089_b0485 article-title: Getting moore from solar cells publication-title: Science doi: 10.1126/science.1230283 – volume: 8 start-page: 2664 year: 2016 ident: 10.1016/j.poly.2021.115089_b0450 article-title: In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency publication-title: Nanoscale doi: 10.1039/C5NR07395B – volume: 5 start-page: 6840 year: 2017 ident: 10.1016/j.poly.2021.115089_b0235 article-title: Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20% publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00027H – volume: 8 start-page: 904 year: 2009 ident: 10.1016/j.poly.2021.115089_b0315 article-title: On the origin of the open-circuit voltage of polymer-fullerene solar cells publication-title: Nat. Mater. doi: 10.1038/nmat2548 – volume: 499 start-page: 316 year: 2013 ident: 10.1016/j.poly.2021.115089_b0410 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature doi: 10.1038/nature12340 – volume: 104 start-page: 8989 year: 2000 ident: 10.1016/j.poly.2021.115089_b0505 article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells publication-title: J. Phys. Chem. B doi: 10.1021/jp994365l – volume: 9 start-page: 1989 year: 2016 ident: 10.1016/j.poly.2021.115089_b0100 article-title: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 3 year: 2011 ident: 10.1016/j.poly.2021.115089_b0290 article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell publication-title: Nanoscale doi: 10.1039/c1nr10867k – volume: 7 start-page: 2934 year: 2014 ident: 10.1016/j.poly.2021.115089_b0385 article-title: Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01624F – volume: 14 start-page: 865 year: 2004 ident: 10.1016/j.poly.2021.115089_b0680 article-title: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200305156 – volume: 517 start-page: 476 year: 2015 ident: 10.1016/j.poly.2021.115089_b0335 article-title: Compositional engineering of perovskite materials for high-performance solar cells publication-title: Nature doi: 10.1038/nature14133 – volume: 355 start-page: 98 year: 2017 ident: 10.1016/j.poly.2021.115089_b0180 article-title: Recent progress in stabilizing hybrid perovskites for solar cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.025 – volume: 144 start-page: 623 year: 2016 ident: 10.1016/j.poly.2021.115089_b0750 article-title: Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.09.054 – volume: 9 start-page: 663 year: 1980 ident: 10.1016/j.poly.2021.115089_b0355 article-title: The crystal structure of lead(II) Iodide-dimethylsulphoxide(1/2), PbI2(dmso)2 publication-title: Chem. Lett. doi: 10.1246/cl.1980.663 – volume: 149 start-page: 54 year: 2017 ident: 10.1016/j.poly.2021.115089_b0140 article-title: Development of organic-inorganic tin halide perovskites: a review publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.077 – volume: 155 start-page: 14 year: 2016 ident: 10.1016/j.poly.2021.115089_b0905 article-title: Efficient planar heterojunction perovskite solar cells fabricated via roller-coating publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.04.059 – volume: 8 start-page: 489 year: 2014 ident: 10.1016/j.poly.2021.115089_b0125 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.82 – volume: 2 start-page: 174 year: 2013 ident: 10.1016/j.poly.2021.115089_b0500 article-title: Fabrication of flexible dye sensitized solar cells on plastic substrates publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.10.004 – volume: 4 start-page: 17649 year: 2016 ident: 10.1016/j.poly.2021.115089_b0780 article-title: Elimination of the J-V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06143E – volume: 7 start-page: 1142 year: 2014 ident: 10.1016/j.poly.2021.115089_b0560 article-title: Sub-150 [degree]C processed meso-superstructured perovskite solar cells with enhanced efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43707H – volume: 6 start-page: 2676 year: 2015 ident: 10.1016/j.poly.2021.115089_b0735 article-title: High-efficiency polycrystalline thin film tandem solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01108 – volume: 3 start-page: 4088 year: 2011 ident: 10.1016/j.poly.2021.115089_b0020 article-title: 6.5% efficient perovskite quantum-dot-sensitized solar cell publication-title: Nanoscale doi: 10.1039/c1nr10867k – volume: 5 year: 2015 ident: 10.1016/j.poly.2021.115089_b0535 article-title: Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501066 – volume: 7 start-page: 15284 year: 2015 ident: 10.1016/j.poly.2021.115089_b0715 article-title: Epitaxial 1D electron transport layers for high-performance perovskite solar cells publication-title: Nanoscale doi: 10.1039/C5NR03476K – volume: 6 year: 2015 ident: 10.1016/j.poly.2021.115089_b0860 article-title: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes publication-title: Nat. Commun. – volume: 23 start-page: 138 year: 2016 ident: 10.1016/j.poly.2021.115089_b0300 article-title: Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8% publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.03.020 – volume: 3 start-page: 10837 year: 2015 ident: 10.1016/j.poly.2021.115089_b0710 article-title: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01207D – volume: 4 start-page: 5647 year: 2016 ident: 10.1016/j.poly.2021.115089_b0820 article-title: Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00989A – volume: 4 start-page: 3623 year: 2013 ident: 10.1016/j.poly.2021.115089_b0510 article-title: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4020162 – volume: 41 start-page: 397 year: 2012 ident: 10.1016/j.poly.2021.115089_b0520 article-title: Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media publication-title: Chem. Lett. doi: 10.1246/cl.2012.397 – volume: 18 start-page: 1910 year: 2006 ident: 10.1016/j.poly.2021.115089_b0295 article-title: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells publication-title: Adv. Mater. doi: 10.1002/adma.200502256 – volume: 15 start-page: 530 year: 2015 ident: 10.1016/j.poly.2021.115089_b0835 article-title: Hysteresis-less mesoscopic CH 3 NH 3 PbI 3 perovskite hybrid solar cells by introduction of Li-treated TiO 2 electrode publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.014 – volume: 5 start-page: 3586 year: 2014 ident: 10.1016/j.poly.2021.115089_b0595 article-title: Excitons versus free charges in organo-lead tri-halide perovskites publication-title: Nat. Commun. doi: 10.1038/ncomms4586 – volume: 4 start-page: 13203 year: 2016 ident: 10.1016/j.poly.2021.115089_b0460 article-title: Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04465D – volume: 7 start-page: 3690 year: 2014 ident: 10.1016/j.poly.2021.115089_b0875 article-title: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02465F – volume: 77 start-page: 131 year: 2017 ident: 10.1016/j.poly.2021.115089_b0170 article-title: Device stability of perovskite solar cells – a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.003 – volume: 137 start-page: 8696 year: 2015 ident: 10.1016/j.poly.2021.115089_b0395 article-title: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04930 – volume: 167 start-page: 173 year: 2017 ident: 10.1016/j.poly.2021.115089_b0465 article-title: Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.04.018 – volume: 5 start-page: 7060 year: 2012 ident: 10.1016/j.poly.2021.115089_b0850 article-title: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency publication-title: Energy Environ. Sci. doi: 10.1039/c2ee00056c – volume: 9 start-page: 4200 year: 2015 ident: 10.1016/j.poly.2021.115089_b0310 article-title: Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation publication-title: ACS Nano doi: 10.1021/acsnano.5b00447 – volume: 347 start-page: 967 year: 2015 ident: 10.1016/j.poly.2021.115089_b0045 article-title: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals publication-title: Science doi: 10.1126/science.aaa5760 – volume: 29 start-page: 3246 year: 2017 ident: 10.1016/j.poly.2021.115089_b0095 article-title: High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00523 – volume: 107 year: 2015 ident: 10.1016/j.poly.2021.115089_b0805 article-title: Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929435 – volume: 14 start-page: 2584 year: 2014 ident: 10.1016/j.poly.2021.115089_b0365 article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells publication-title: Nano Lett. doi: 10.1021/nl500390f – volume: 165 start-page: 36 year: 2017 ident: 10.1016/j.poly.2021.115089_b0195 article-title: Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.01.013 – volume: 6 start-page: 3414 year: 2013 ident: 10.1016/j.poly.2021.115089_b0685 article-title: The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41860j – volume: 9 start-page: 927 year: 2014 ident: 10.1016/j.poly.2021.115089_b0405 article-title: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.181 – volume: 3 start-page: 18389 year: 2015 ident: 10.1016/j.poly.2021.115089_b0245 article-title: Hole-conductor-free planar perovskite solar cells with 16.0% efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05989E – volume: 293 start-page: 1039 year: 2015 ident: 10.1016/j.poly.2021.115089_b0480 article-title: Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.037 – volume: 104 year: 2014 ident: 10.1016/j.poly.2021.115089_b0855 article-title: Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property publication-title: Appl. Phys. Lett. doi: 10.1063/1.4864638 – volume: 8 start-page: 1997 year: 2015 ident: 10.1016/j.poly.2021.115089_b0825 article-title: Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer publication-title: Nano Res. doi: 10.1007/s12274-015-0711-4 – volume: 2 start-page: 897 year: 2017 ident: 10.1016/j.poly.2021.115089_b0130 article-title: Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00171 – volume: 17 start-page: 24092 year: 2015 ident: 10.1016/j.poly.2021.115089_b0580 article-title: Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process publication-title: PCCP doi: 10.1039/C5CP03803K – volume: 5 start-page: 94290 year: 2015 ident: 10.1016/j.poly.2021.115089_b0285 article-title: Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell publication-title: RSC Adv. doi: 10.1039/C5RA17129F – volume: 6 start-page: 4633 year: 2015 ident: 10.1016/j.poly.2021.115089_b0880 article-title: Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02273 – volume: 3 start-page: 24495 year: 2015 ident: 10.1016/j.poly.2021.115089_b0380 article-title: High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08193A – volume: 8 start-page: 1602 year: 2015 ident: 10.1016/j.poly.2021.115089_b0865 article-title: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00120J – volume: 5 start-page: 739 year: 2017 ident: 10.1016/j.poly.2021.115089_b0415 article-title: Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15% publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09036B – volume: 11 start-page: 427 year: 2015 ident: 10.1016/j.poly.2021.115089_b0035 article-title: Magnetic field effects in hybrid perovskite devices publication-title: Nat. Phys. doi: 10.1038/nphys3277 – volume: 5 start-page: 648 year: 2014 ident: 10.1016/j.poly.2021.115089_b0590 article-title: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402749f – volume: 32 start-page: 187 year: 2017 ident: 10.1016/j.poly.2021.115089_b0950 article-title: Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.029 – volume: 25 start-page: 4613 year: 2013 ident: 10.1016/j.poly.2021.115089_b0645 article-title: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties publication-title: Chem. Mater. doi: 10.1021/cm402919x – volume: 4 year: 2013 ident: 10.1016/j.poly.2021.115089_b0755 article-title: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms3885 – volume: 4 start-page: 15383 year: 2016 ident: 10.1016/j.poly.2021.115089_b0840 article-title: Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19% publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06879K – start-page: 16048 year: 2016 ident: 10.1016/j.poly.2021.115089_b0060 article-title: Metal halide perovskites for energy applications publication-title: Nature Energy doi: 10.1038/nenergy.2016.48 – volume: 1807 year: 2017 ident: 10.1016/j.poly.2021.115089_b0135 article-title: Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells publication-title: AIP Conf. Proc. doi: 10.1063/1.4974791 – volume: 1 start-page: 547 year: 2014 ident: 10.1016/j.poly.2021.115089_b0390 article-title: Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells publication-title: ACS Photonics doi: 10.1021/ph5000067 – volume: 4 start-page: 206 year: 2017 ident: 10.1016/j.poly.2021.115089_b0985 article-title: Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality publication-title: Mater. Horiz. doi: 10.1039/C6MH00519E – volume: 236 start-page: 122 year: 2017 ident: 10.1016/j.poly.2021.115089_b0205 article-title: Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.139 – volume: 14 start-page: 1000 year: 2014 ident: 10.1016/j.poly.2021.115089_b0650 article-title: Why lead methylammonium Tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor) publication-title: Nano Lett. doi: 10.1021/nl404454h – volume: 13 start-page: 897 year: 2014 ident: 10.1016/j.poly.2021.115089_b0350 article-title: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 2 start-page: 17427 year: 2014 ident: 10.1016/j.poly.2021.115089_b0690 article-title: Multiporous nanofibers of SnO 2 by electrospinning for high efficiency dye-sensitized solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03056G – volume: 7 year: 2017 ident: 10.1016/j.poly.2021.115089_b0190 article-title: Carbon nanotubes in perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601839 – volume: 137 start-page: 10399 year: 2015 ident: 10.1016/j.poly.2021.115089_b0425 article-title: Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17% publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06444 – volume: 26 start-page: 6503 year: 2014 ident: 10.1016/j.poly.2021.115089_b0630 article-title: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement publication-title: Adv. Mater. doi: 10.1002/adma.201401685 – volume: 26 start-page: 8179 year: 2014 ident: 10.1016/j.poly.2021.115089_b0150 article-title: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process publication-title: Adv. Mater. doi: 10.1002/adma.201403140 – volume: 27 start-page: 6363 year: 2015 ident: 10.1016/j.poly.2021.115089_b0935 article-title: Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15% publication-title: Adv. Mater. doi: 10.1002/adma.201502586 – volume: 24 start-page: 693 year: 2015 ident: 10.1016/j.poly.2021.115089_b0790 article-title: Improving the interfacial contact between CH3NH3PbI3–xClx and Au by LiTFSI solution treatment for efficient photoelectric devices publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2015.10.005 – volume: 54 start-page: 7617 year: 2015 ident: 10.1016/j.poly.2021.115089_b0155 article-title: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503038 – volume: 347 start-page: 522 year: 2015 ident: 10.1016/j.poly.2021.115089_b0900 article-title: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains publication-title: Science doi: 10.1126/science.aaa0472 – volume: 10 start-page: 6029 year: 2016 ident: 10.1016/j.poly.2021.115089_b0930 article-title: Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells publication-title: ACS Nano doi: 10.1021/acsnano.6b01575 – volume: 7 year: 2016 ident: 10.1016/j.poly.2021.115089_b0895 article-title: Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms10334 – volume: 28 start-page: 7496 year: 2016 ident: 10.1016/j.poly.2021.115089_b0120 article-title: Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03310 – volume: 17 start-page: 171 year: 2015 ident: 10.1016/j.poly.2021.115089_b0600 article-title: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.009 – volume: 179 start-page: 102 year: 2018 ident: 10.1016/j.poly.2021.115089_b0725 article-title: Tin oxide as an emerging electron transport medium in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.02.007 – volume: 15 start-page: 8972 year: 2013 ident: 10.1016/j.poly.2021.115089_b0845 article-title: Fill factor in organic solar cells publication-title: PCCP doi: 10.1039/c3cp51383a – volume: 7 start-page: 3952 year: 2014 ident: 10.1016/j.poly.2021.115089_b0005 article-title: A perspective on the production of dye-sensitized solar modules publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01724B – volume: 58 start-page: 2520 year: 1991 ident: 10.1016/j.poly.2021.115089_b0660 article-title: Influence of trap filling on photocurrent transients in polycrystalline TiO2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104839 – volume: 116 start-page: 20717 year: 2012 ident: 10.1016/j.poly.2021.115089_b0525 article-title: Sb2S3-sensitized photoelectrochemical cells: open circuit voltage enhancement through the introduction of poly-3-hexylthiophene interlayer publication-title: J. Phys. Chem. C doi: 10.1021/jp305150s – volume: 6 year: 2016 ident: 10.1016/j.poly.2021.115089_b0455 article-title: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14% publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502087 – volume: 18 start-page: 21629 year: 2016 ident: 10.1016/j.poly.2021.115089_b0255 article-title: Humidity versus photo-stability of metal halide perovskite films in a polymer matrix publication-title: PCCP doi: 10.1039/C6CP03600G – volume: 501 start-page: 395 year: 2013 ident: 10.1016/j.poly.2021.115089_b0270 article-title: Efficient planar heterojunction perovskite solar cells by vapour deposition publication-title: Nature doi: 10.1038/nature12509 – volume: 1 start-page: 5628 year: 2013 ident: 10.1016/j.poly.2021.115089_b0635 article-title: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10518k – volume: 4 start-page: 599 year: 2003 ident: 10.1016/j.poly.2021.115089_b0555 article-title: Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2003.09.019 – volume: 53 start-page: 4366 year: 2017 ident: 10.1016/j.poly.2021.115089_b0980 article-title: Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers publication-title: Chem. Commun. doi: 10.1039/C7CC00921F – volume: 5 start-page: 1511 year: 2014 ident: 10.1016/j.poly.2021.115089_b0360 article-title: Anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 8 start-page: 7147 year: 2014 ident: 10.1016/j.poly.2021.115089_b0585 article-title: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility publication-title: ACS Nano doi: 10.1021/nn502115k – volume: 45 start-page: 7856 year: 2016 ident: 10.1016/j.poly.2021.115089_b0910 article-title: Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells publication-title: Dalton Trans. doi: 10.1039/C6DT00900J – volume: 27 start-page: 4013 year: 2015 ident: 10.1016/j.poly.2021.115089_b0785 article-title: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition publication-title: Adv. Mater. doi: 10.1002/adma.201500523 – volume: 332 start-page: 366 year: 2016 ident: 10.1016/j.poly.2021.115089_b0435 article-title: TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17% publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.134 – volume: 137 start-page: 9210 year: 2015 ident: 10.1016/j.poly.2021.115089_b0960 article-title: Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03144 – volume: 8 start-page: 995 year: 2015 ident: 10.1016/j.poly.2021.115089_b0870 article-title: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03664F – volume: 9 start-page: 2262 year: 2016 ident: 10.1016/j.poly.2021.115089_b0920 article-title: Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01037G – volume: 15 start-page: 247 year: 2016 ident: 10.1016/j.poly.2021.115089_b0990 article-title: Toxicity of organometal halide perovskite solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4572 – volume: 7 start-page: 1700623 year: 2017 ident: 10.1016/j.poly.2021.115089_b0220 article-title: Interfaces in perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700623 – volume: 73 start-page: 179 year: 2015 ident: 10.1016/j.poly.2021.115089_b0795 article-title: Recent advances in perovskite solar cells: morphology control and interfacial engineering publication-title: Acta Chim. Sinica doi: 10.6023/A14090674 – volume: 6 start-page: 3808 year: 2015 ident: 10.1016/j.poly.2021.115089_b0890 article-title: Modeling anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01645 – volume: 126 start-page: 12779 year: 2014 ident: 10.1016/j.poly.2021.115089_b0605 article-title: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells publication-title: Angew. Chem. doi: 10.1002/ange.201405176 – volume: 4 start-page: 1532 year: 2013 ident: 10.1016/j.poly.2021.115089_b0325 article-title: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400638x – volume: 5 start-page: 5360 year: 2003 ident: 10.1016/j.poly.2021.115089_b0545 article-title: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells publication-title: PCCP doi: 10.1039/b310907k – volume: 8 start-page: 362 year: 2014 ident: 10.1016/j.poly.2021.115089_b0665 article-title: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells publication-title: ACS Nano doi: 10.1021/nn404323g – volume: 4 start-page: 14423 year: 2016 ident: 10.1016/j.poly.2021.115089_b0965 article-title: A mesoporous-planar hybrid architecture of methylammonium lead iodide perovskite based solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06960F – volume: 119 start-page: 10212 year: 2015 ident: 10.1016/j.poly.2021.115089_b0720 article-title: Insight into perovskite solar cells based on SnO2 compact electron-selective layer publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b00541 |
SSID | ssj0016413 |
Score | 2.3282797 |
SecondaryResourceType | review_article |
Snippet | Outstanding characteristics of perovskite materials/hybrid organic–inorganic perovskite solar cells in view of selling points.
[Display omitted]
•TiO2 employed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115089 |
SubjectTerms | Device Physical Parameters Ionic movements Multifunctional Photovoltaics Renewable Energy Structure-Property Relationship |
Title | Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells |
URI | https://dx.doi.org/10.1016/j.poly.2021.115089 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfGJ9lD14k7R57CbNsRRLVezFCr3Fze4GKzUJTRR68bc7k02KgvQg5JKwA2GYnflm95sZQq65TmIltG05PJAW87SyBMQBS0LyrDwwEGljvfPj1J88s_s5n7fIqKmFQVpl7fuNT6-8df2lX2uzny8W_Se8fYTtCilMFSirCnYWoJX3vjY0D8gGzIhkvKrE1XXhjOF45dlyDTmi6_QQGOGo97-C04-AMz4g-zVSpEPzM4ekpdMjsjtqBrQdkxfTeZhmCZWrNaC85bIuqqTwALCj-WtWZuB_IP2XFJt8vyP5paAiVRTWV7zYNcpjt_DPAg9yaYG5LsXz_OKEzMa3s9HEqgcmWNKz7dLyQqkGCVMAK7QIg1AwEYZKBMJTfhAzrWOW-KFWrtQxd4TLBeMicflABy42yjsl7TRL9Rmhivm-9JhwHR9CvBIDJjVAFSYkwMPQ9TvEaRQVybqZOM60WEYNa-wtQuVGqNzIKLdDbjYyuWmlsXU1b_Qf_TKICHz9Frnzf8pdkD18M1zGS9IuVx_6CvBGGXcrg-qSneHdw2T6DRw41po |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGBBPMUbDzCh0MZxkmZgQDxUngtFYjOO7Yii0lQkgLrwo_iF3DUOAgkxICFlSnx5XC6-7-Lv7gC2Q5ulRtmm54ex9kRgjafQD3gag2cToIHoJuU7X15F7RtxdhvejsF7nQtDtEo391dz-mi2dnsaTpuNQbfbuKbVR_xcMYQZOUrfMSvP7fAV47Zi__QIX_IO5yfHncO251oLeDpoNksvSLRpZcKgA7YqiRMlVJIYFavARHEqrE1FFiXWcG3T0Fc8VCJUGQ9bNuZUUg5POw6TAi9PXRP23j5pJRh9VC2ZaWmU7s4l6lScskHeG2JMyv09AmLUWv4nZ_jFwZ3MwoxDpuygevg5GLP9eZg6rBvCLcBdVemY5RnTT0NElb2eS-JkuCGQZIP7vMxxvitVVzMqKv5IZJuCqb5hOH7Ewx2SPFUnfynoxzErKLZmtH5QLELnP7S4BBP9vG-XgRkRRToQivsRQgqjWkJbhEZCaYSjCY9WwK8VJbUrXk49NHqyZqk9SFKuJOXKSrkrsPspM6hKd_w6Oqz1L78ZoETf8ovc6h_ltmCq3bm8kBenV-drME1HKh7lOkyUT892A7FOmW6OjIuB_Gdj_gDTDxLh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+crystallization+on+the+photovoltaic+parameters+and+stability+of+perovskite+solar+cells&rft.jtitle=Polyhedron&rft.au=Wali%2C+Qamar&rft.au=Iftikhar%2C+Faiza+Jan&rft.date=2021-05-01&rft.issn=0277-5387&rft.volume=199&rft.spage=115089&rft_id=info:doi/10.1016%2Fj.poly.2021.115089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_poly_2021_115089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-5387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-5387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-5387&client=summon |