An evolutionary explainable deep learning approach for Alzheimer's MRI classification

Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 220; p. 119709
Main Authors Shojaei, Shakila, Saniee Abadeh, Mohammad, Momeni, Zahra
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2023
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.119709

Cover

Loading…
Abstract Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most fundamental drawbacks is their inability to clarify the cause of their outputs. Moreover, each ML algorithm needs to present an explanation of its output to the users to increase its reliability. Occlusion Map is a method used for this purpose and aims to find regions of an image that have a significant impact on determining the network's output, which does this through an iterative process of occluding different regions of images. In this study, we used Magnetic Resonance Imaging (MRI) scans from Alzheimer's Disease Neuroimaging Initiative (ADNI) and trained a 3D-CNN model to diagnose Alzheimer's Disease (AD) patients from cognitively normal (CN) subjects. We tried to combine a genetic algorithm-based Occlusion Map method with a set of Backpropagation-based explainability methods, and ultimately, we found a brain mask for AD patients. Also, by comparing the extracted brain regions with the studies in this field, we found that the extracted regions are significantly effective in diagnosing AD from the perspective of Alzheimer's specialists. Our model achieved an accuracy of 87% in 5-fold cross-validation, which is an acceptable accuracy compared to similar studies. We considered a 3D-CNN model with 96% validation accuracy (on unmasked data that includes all 96 distinct brain regions of the Harvard-Oxford brain atlas), which we used in the genetic algorithm phase to produce a suitable brain mask. Finally, using lrp_z_plus_fast explainability method, we achieved 93% validation accuracy with only 29 brain regions.
AbstractList Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most fundamental drawbacks is their inability to clarify the cause of their outputs. Moreover, each ML algorithm needs to present an explanation of its output to the users to increase its reliability. Occlusion Map is a method used for this purpose and aims to find regions of an image that have a significant impact on determining the network's output, which does this through an iterative process of occluding different regions of images. In this study, we used Magnetic Resonance Imaging (MRI) scans from Alzheimer's Disease Neuroimaging Initiative (ADNI) and trained a 3D-CNN model to diagnose Alzheimer's Disease (AD) patients from cognitively normal (CN) subjects. We tried to combine a genetic algorithm-based Occlusion Map method with a set of Backpropagation-based explainability methods, and ultimately, we found a brain mask for AD patients. Also, by comparing the extracted brain regions with the studies in this field, we found that the extracted regions are significantly effective in diagnosing AD from the perspective of Alzheimer's specialists. Our model achieved an accuracy of 87% in 5-fold cross-validation, which is an acceptable accuracy compared to similar studies. We considered a 3D-CNN model with 96% validation accuracy (on unmasked data that includes all 96 distinct brain regions of the Harvard-Oxford brain atlas), which we used in the genetic algorithm phase to produce a suitable brain mask. Finally, using lrp_z_plus_fast explainability method, we achieved 93% validation accuracy with only 29 brain regions.
ArticleNumber 119709
Author Momeni, Zahra
Saniee Abadeh, Mohammad
Shojaei, Shakila
Author_xml – sequence: 1
  givenname: Shakila
  surname: Shojaei
  fullname: Shojaei, Shakila
– sequence: 2
  givenname: Mohammad
  surname: Saniee Abadeh
  fullname: Saniee Abadeh, Mohammad
  email: saniee@modares.ac.ir
– sequence: 3
  givenname: Zahra
  orcidid: 0000-0001-9289-6841
  surname: Momeni
  fullname: Momeni, Zahra
BookMark eNp9kL1OwzAYRS0EEm3hBZi8MSXYcVPHEktV8VOpCAnR2frifKauXCeyQ_l5elrKxNDpTufq3jMkp6ENSMgVZzlnfHKzzjF9QF6wQuScK8nUCRnwSopsIpU4JQOmSpmNuRyfk2FKa8a4ZEwOyHIaKG5b_967NkD8ovjZeXABao-0QeyoR4jBhTcKXRdbMCtq20in_nuFboPxOtGnlzk1HlJy1hnYF12QMws-4eVfjsjy_u519pgtnh_ms-kiM4KxPhMVTCSAFLK2pVTjileMN4XiDAsF3DLBAaUsqwaY4U1d2dKoGlSJUpTGSjEixaHXxDaliFZ30W12NzRnei9Gr_VejN6L0QcxO6j6BxnX_87uIzh_HL09oLg7tXUYdTIOg8HGRTS9blp3DP8BGOeBtg
CitedBy_id crossref_primary_10_1016_j_array_2024_100345
crossref_primary_10_1016_j_bspc_2024_107184
crossref_primary_10_1038_s41598_024_78712_9
crossref_primary_10_1038_s41598_024_52185_2
crossref_primary_10_1007_s11227_025_07103_2
crossref_primary_10_3390_neurolint16060098
crossref_primary_10_1049_cit2_12291
crossref_primary_10_1186_s12880_024_01513_z
crossref_primary_10_1016_j_eswa_2023_122986
crossref_primary_10_3390_s23094184
crossref_primary_10_1016_j_imu_2024_101584
crossref_primary_10_1007_s13369_024_09954_y
crossref_primary_10_1016_j_jksuci_2024_101940
crossref_primary_10_1007_s12559_023_10192_x
crossref_primary_10_1016_j_bspc_2024_105990
crossref_primary_10_1016_j_eswa_2023_121160
crossref_primary_10_1016_j_knosys_2024_112306
crossref_primary_10_1016_j_bspc_2024_106920
crossref_primary_10_1016_j_bspc_2024_106721
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1016_j_jneumeth_2024_110318
crossref_primary_10_3389_fmed_2024_1445325
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_3233_JIFS_236542
crossref_primary_10_4108_eetpht_9_3966
crossref_primary_10_3390_diagnostics13071216
crossref_primary_10_3390_app14156798
crossref_primary_10_3390_diagnostics15020168
crossref_primary_10_1016_j_eswa_2024_124295
crossref_primary_10_3934_mbe_2023712
crossref_primary_10_1007_s10462_025_11146_5
crossref_primary_10_1016_j_eswa_2023_121186
Cites_doi 10.3390/make3040048
10.1016/j.media.2022.102430
10.1136/bmj.324.7328.35
10.1016/j.patcog.2016.11.008
10.1016/j.schres.2019.07.034
10.1016/j.visinf.2018.09.001
10.1016/j.cmpb.2019.105242
10.3233/JAD-170348
10.1016/j.neuroimage.2011.09.015
10.1038/s41598-019-45415-5
10.1016/j.jagp.2018.09.016
10.1136/gpsych-2018-100005
10.1002/ana.72
10.1109/CBMS49503.2020.00020
10.3389/fnins.2020.00259
10.1109/INCoS.2013.36
10.1016/j.eswa.2022.117158
10.1038/s41598-020-74399-w
10.1109/CVPR.2016.319
10.1038/s41598-020-79243-9
10.3389/fninf.2018.00035
10.1093/brain/awp075
10.1148/radiol.2018180958
10.1007/s00429-010-0283-8
10.1016/j.neunet.2020.03.017
10.1146/annurev-statistics-022513-115611
10.1016/j.jneumeth.2021.109098
10.1016/j.neurobiolaging.2020.12.005
10.1117/12.2550753
10.1186/s40478-018-0531-3
10.1016/j.patcog.2022.108825
10.1002/jmri.21049
10.1109/ICCV.2017.74
10.1007/s12021-019-09419-w
10.1016/j.nicl.2019.102003
10.1371/journal.pone.0130140
10.1212/WNL.0b013e3181cb3e25
10.1007/BF00294607
10.1186/s12859-020-03848-0
10.1016/j.eswa.2022.117649
10.1148/radiol.2019191061
10.1016/j.schres.2021.06.011
10.1016/j.eswa.2021.115271
10.3389/fbioe.2020.534592
10.3389/fnins.2019.00509
10.1109/ICSCDS53736.2022.9760858
10.1101/2021.05.07.443184
10.1038/s41467-019-10212-1
10.1186/s13073-016-0355-3
10.3389/fneur.2019.00869
10.3389/fneur.2019.01059
10.1001/archneur.1994.00540140051014
10.3389/fnagi.2019.00194
10.1016/j.cmpb.2016.10.007
10.1155/2021/5514839
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119709
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119709
S0957417423002105
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-38a67aa737bf579481801d2910e29a1f031ae7758da0c1db8f5c9ba95e735cf73
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:08 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Fri Feb 23 02:37:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Alzheimer's Disease Classification
Convolutional Neural Networks (CNN)
Explainable Deep Learning
Genetic Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-38a67aa737bf579481801d2910e29a1f031ae7758da0c1db8f5c9ba95e735cf73
ORCID 0000-0001-9289-6841
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_119709
crossref_citationtrail_10_1016_j_eswa_2023_119709
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Franc (b0085) 2019; 290
Tekin, Mega, Masterman, Chow, Garakian, Vinters, Cummings (b0310) 2001; 49
Bron, Klein, Papma, Jiskoot, Venkatraghavan, Linders, van der Lugt (b0065) 2021; 31
Jenkinson, Beckmann, Behrens, Woolrich, Smith (b0165) 2012; 62
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual explanations from deep networks via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV). Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE. https://doi.org/10.1109/iccv.2017.74.
Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Weiner (b0250) 2010; 74
Tang, Chuang, DeCarli, Jin, Beckett, Keiser, Dugger (b0305) 2019; 10
Böhle, Eitel, Weygandt, Ritter (b0050) 2019; 11
Cajanus, Solje, Koikkalainen, Lötjönen, Suhonen, Hallikainen, Hall (b0075) 2019; 10
Ebrahimighahnavieh, Luo, Chiong (b0100) 2020; 187
Montavon, Lapuschkin, Binder, Samek, Müller (b0200) 2017; 65
K. Sudar P. Nagaraj S. Nithisaa R. Aishwarya M. Aakash S. Lakshmi Alzheimer's Disease Analysis using Explainable Artificial Intelligence (XAI). 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) 2022 10.1109/icscds53736.2022.9760858.
Bae, Lee, Jung, Park, Kim, Oh, Kim (b0030) 2020; 10
Galli, Piscitelli, Moscato, Capozzoli (b0135) 2022; 206
Wang, Roussos, McKenzie, Zhou, Kajiwara, Brennand, Zhang (b0325) 2016; 8
Buhrmester, Münch, Arens (b0070) 2021; 3
Eitel, Soehler, Bellmann-Strobl, Brandt, Ruprecht, Giess, Ritter (b0110) 2019; 24
Iizuka, Fukasawa, Kameyama (b0155) 2019; 9
Yu, Shi (b0355) 2018; 2
Hu, Qian, Liu, Koh, Sim, Jiang, Zhou (b0145) 2022; 243
Folego, Weiler, Casseb, Pires, Rocha (b0130) 2020; 8
Zeiler, Fergus (b0360) 2014
Li, Liu, Yang, Peng, Zhou (b0185) 2021
Feng, Yang, Lipton, Small, Provenzano (b0120) 2018
Organisciak, Shum, Nwoye, Woo (b0225) 2022; 201
Zhu, Jiang, Tong, Xie, Zaharchuk, Wintermark (b0375) 2019; 10
Amini, Pedram, Moradi, Ouchani (b0010) 2021; 2021
Finger, E., Zhang, J., Dickerson, B., Bureau, Y., Masellis, M., Alzheimer’s Disease Neuroimaging Initiative, 2017. Disinhibition in Alzheimer’s disease is associated with reduced right frontal pole cortical thickness. J. Alzheimers. Dis. 60, 1161–1170. https://doi.org/10.3233/JAD-170348.
Braak, Braak (b0060) 1990; 80
Erhan, Bengio, Courville, Vincent (b0115) 2009; 1341
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929.
Yagis, E., Citi, L., Diciotti, S., Marzi, C., Workalemahu Atnafu, S., G. Seco De Herrera, A., 2020. 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI, in: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). Presented at the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), IEEE. https://doi.org/10.1109/cbms49503.2020.00020.
Alber, Lapuschkin, Seegerer, Hägele, Schütt, Montavon, Kindermans (b0005) 2019; 20
Gao, Hui, Tian (b0140) 2017; 138
Bowman (b0055) 2014; 1
Oh, Kim, Shen, Piao, Kang, Oh, Chung (b0220) 2019; 212
Arnold, Hyman, Van Hoesen (b0015) 1994; 51
Yılmaz Acar, Başçiftçi, Ekmekci (b0345) 2022; 35
Shahamat, Saniee Abadeh (b0275) 2020; 126
Joshi, Walambe, Kotecha (b0175) 2021; 1–1
Pei, Wan, Zhang, Wang, Leng, Yang (b0235) 2022; 131
Narayana, Coronado, Sujit, Wolinsky, Lublin, Gabr (b0215) 2020; 294
Venugopalan, Tong, Hassanzadeh, Wang (b0320) 2021; 11
Nag, Yu, Boyle, Leurgans, Bennett, Schneider (b0205) 2018; 6
Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M., 2017. SmoothGrad: removing noise by adding noise. https://doi.org/10.48550/arXiv.1706.03825.
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for Simplicity: The All Convolutional Net. https://doi.org/10.48550/arXiv.1412.6806.
Berger (b0045) 2002; 324
Zhang, Hong, McClement, Oladosu, Pridham, Slaney (b0365) 2021; 353
Liu, M., Cheng, D., Yan, W., Alzheimer’s Disease Neuroimaging Initiative, 2018. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12, 35. https://doi.org/10.3389/fninf.2018.00035.
Yang, Xu, Li, Jin, Jiang, Wang, Wang (b0340) 2019; 32
Qian, Schweizer, Churchill, Millikin, Ismail, Smith, Fischer (b0260) 2019; 27
Barbero-Gómez, Gutiérrez, Vargas, Vallejo-Casas, Hervás-Martínez (b0035) 2021; 182
Chakraborty, Sain, Park, Aich (b0080) 2021
Bae, J., Stocks, J., Heywood, A., Jung, Y., Jenkins, L., Hill, V., Katsaggelos, A., Popuri, K., Rosen, H., Beg, M.F., Wang, L., Alzheimer’s Disease Neuroimaging Initiative, 2021. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network. Neurobiol. Aging 99, 53–64. https://doi.org/10.1016/j.neurobiolaging.2020.12.005.
Kromer, P., Snael, V., Zelinka, I., 2013. Randomness and chaos in genetic algorithms and differential evolution, in: 2013 5th International Conference on Intelligent Networking and Collaborative Systems. Presented at the 2013 International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE. https://doi.org/10.1109/incos.2013.36.
Bach, Binder, Montavon, Klauschen, Müller, Samek (b0020) 2015; 10
Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic Attribution for Deep Networks, in: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, pp. 3319–3328.
Peters, Collette, Degueldre, Sterpenich, Majerus, Salmon (b0245) 2009; 132
Pan, Zeng, Jia, Huang, Frizzell, Song (b0230) 2020; 14
Tinauer, Heber, Pirpamer, Damulina, Schmidt, Stollberger, Langkammer (b0315) 2021
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. https://doi.org/10.48550/arXiv.1312.6034.
Echávarri, Aalten, Uylings, Jacobs, Visser, Gronenschild, Burgmans (b0105) 2011; 215
Lin, Niu, Sui, Zhao, Zhuo, Calhoun (b0190) 2022; 79
Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Iyengar (b0255) 2018; 51
Pereira, M., Fantini, I., Lotufo, R., Rittner, L., 2020. An extended-2D CNN for multiclass Alzheimer’s Disease diagnosis through structural MRI, in: Medical Imaging 2020: Computer-Aided Diagnosis. Presented at the Medical Imaging 2020: Computer-Aided Diagnosis, SPIE, pp. 438–444. https://doi.org/10.1117/12.2550753.
Duc, Ryu, Qureshi, Choi, Lee, Lee (b0090) 2020; 18
Jo, T., Nho, K., Risacher, S.L., Saykin, A.J., Alzheimer’s Neuroimaging Initiative, 2020. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 21, 496. https://doi.org/10.1186/s12859-020-03848-0.
[dataset]Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L. Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., De-Carli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging, 27, pp. 685–691. doi:https://doi.org/10.1002/jmri.21049.
Huang, Y., Xu, J., Zhou, Y., Tong, T., Zhuang, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI), 2019. Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network. Front. Neurosci. 13, 509. https://doi.org/10.3389/fnins.2019.00509.
Ying, Q., Xing, X., Liu, L., Lin, A.-L., Jacobs, N., Liang, G., 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis: An Ensemble Model Using Imagery and Genetic Features. bioRxiv. https://doi.org/10.1101/2021.05.07.443184.
Sarvamangala, Kulkarni (b0265) 2021; 1–22
Yang, Rangarajan, Ranka (b0335) 2018; 2018
Nakagawa, T., Ishida, M., Naito, J., Nagai, A., Yamaguchi, S., Onoda, K., on behalf of the Alzheimer’s Disease Neuroimaging Initiative (b0210) 2020
Nag (10.1016/j.eswa.2023.119709_b0205) 2018; 6
Folego (10.1016/j.eswa.2023.119709_b0130) 2020; 8
Yang (10.1016/j.eswa.2023.119709_b0335) 2018; 2018
Zeiler (10.1016/j.eswa.2023.119709_b0360) 2014
Braak (10.1016/j.eswa.2023.119709_b0060) 1990; 80
Joshi (10.1016/j.eswa.2023.119709_b0175) 2021; 1–1
Shahamat (10.1016/j.eswa.2023.119709_b0275) 2020; 126
10.1016/j.eswa.2023.119709_b0285
10.1016/j.eswa.2023.119709_b0240
10.1016/j.eswa.2023.119709_b0125
Gao (10.1016/j.eswa.2023.119709_b0140) 2017; 138
Peters (10.1016/j.eswa.2023.119709_b0245) 2009; 132
10.1016/j.eswa.2023.119709_b0370
Galli (10.1016/j.eswa.2023.119709_b0135) 2022; 206
10.1016/j.eswa.2023.119709_b0170
10.1016/j.eswa.2023.119709_b0290
Amini (10.1016/j.eswa.2023.119709_b0010) 2021; 2021
Buhrmester (10.1016/j.eswa.2023.119709_b0070) 2021; 3
Sarvamangala (10.1016/j.eswa.2023.119709_b0265) 2021; 1–22
Chakraborty (10.1016/j.eswa.2023.119709_b0080) 2021
10.1016/j.eswa.2023.119709_b0350
10.1016/j.eswa.2023.119709_b0195
Böhle (10.1016/j.eswa.2023.119709_b0050) 2019; 11
Zhang (10.1016/j.eswa.2023.119709_b0365) 2021; 353
10.1016/j.eswa.2023.119709_b0160
Echávarri (10.1016/j.eswa.2023.119709_b0105) 2011; 215
10.1016/j.eswa.2023.119709_b0280
Tinauer (10.1016/j.eswa.2023.119709_b0315) 2021
Venugopalan (10.1016/j.eswa.2023.119709_b0320) 2021; 11
Ebrahimighahnavieh (10.1016/j.eswa.2023.119709_b0100) 2020; 187
Bach (10.1016/j.eswa.2023.119709_b0020) 2015; 10
Nakagawa, T., Ishida, M., Naito, J., Nagai, A., Yamaguchi, S., Onoda, K., on behalf of the Alzheimer’s Disease Neuroimaging Initiative (10.1016/j.eswa.2023.119709_b0210) 2020
Yang (10.1016/j.eswa.2023.119709_b0340) 2019; 32
Qian (10.1016/j.eswa.2023.119709_b0260) 2019; 27
Iizuka (10.1016/j.eswa.2023.119709_b0155) 2019; 9
10.1016/j.eswa.2023.119709_b0025
10.1016/j.eswa.2023.119709_b0300
Cajanus (10.1016/j.eswa.2023.119709_b0075) 2019; 10
Ding (10.1016/j.eswa.2023.119709_b0085) 2019; 290
Pei (10.1016/j.eswa.2023.119709_b0235) 2022; 131
10.1016/j.eswa.2023.119709_b0150
Pouyanfar (10.1016/j.eswa.2023.119709_b0255) 2018; 51
10.1016/j.eswa.2023.119709_b0270
Yu (10.1016/j.eswa.2023.119709_b0355) 2018; 2
Duc (10.1016/j.eswa.2023.119709_b0090) 2020; 18
Yılmaz Acar (10.1016/j.eswa.2023.119709_b0345) 2022; 35
Arnold (10.1016/j.eswa.2023.119709_b0015) 1994; 51
Barbero-Gómez (10.1016/j.eswa.2023.119709_b0035) 2021; 182
Hu (10.1016/j.eswa.2023.119709_b0145) 2022; 243
Oh (10.1016/j.eswa.2023.119709_b0220) 2019; 212
Organisciak (10.1016/j.eswa.2023.119709_b0225) 2022; 201
Tekin (10.1016/j.eswa.2023.119709_b0310) 2001; 49
10.1016/j.eswa.2023.119709_b0330
Narayana (10.1016/j.eswa.2023.119709_b0215) 2020; 294
Petersen (10.1016/j.eswa.2023.119709_b0250) 2010; 74
10.1016/j.eswa.2023.119709_b0295
Jenkinson (10.1016/j.eswa.2023.119709_b0165) 2012; 62
Pan (10.1016/j.eswa.2023.119709_b0230) 2020; 14
Alber (10.1016/j.eswa.2023.119709_b0005) 2019; 20
Bae (10.1016/j.eswa.2023.119709_b0030) 2020; 10
Bron (10.1016/j.eswa.2023.119709_b0065) 2021; 31
Eitel (10.1016/j.eswa.2023.119709_b0110) 2019; 24
Lin (10.1016/j.eswa.2023.119709_b0190) 2022; 79
Wang (10.1016/j.eswa.2023.119709_b0325) 2016; 8
Bowman (10.1016/j.eswa.2023.119709_b0055) 2014; 1
10.1016/j.eswa.2023.119709_b0180
Feng (10.1016/j.eswa.2023.119709_b0120) 2018
Montavon (10.1016/j.eswa.2023.119709_b0200) 2017; 65
Li (10.1016/j.eswa.2023.119709_b0185) 2021
Erhan (10.1016/j.eswa.2023.119709_b0115) 2009; 1341
Zhu (10.1016/j.eswa.2023.119709_b0375) 2019; 10
Berger (10.1016/j.eswa.2023.119709_b0045) 2002; 324
Tang (10.1016/j.eswa.2023.119709_b0305) 2019; 10
References_xml – volume: 187
  year: 2020
  ident: b0100
  article-title: Deep learning to detect alzheimer's disease from neuroimaging: A systematic literature review
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 215
  start-page: 265
  year: 2011
  end-page: 271
  ident: b0105
  article-title: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease
  publication-title: Brain Struct. Funct.
– volume: 131
  year: 2022
  ident: b0235
  article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognition
– reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929.
– volume: 1–1
  year: 2021
  ident: b0175
  article-title: A Review on Explainability in Multimodal Deep Neural Nets
  publication-title: IEEE Access
– volume: 126
  start-page: 218
  year: 2020
  end-page: 234
  ident: b0275
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Netw.
– volume: 24
  year: 2019
  ident: b0110
  article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
  publication-title: Neuroimage Clin
– volume: 49
  start-page: 355
  year: 2001
  end-page: 361
  ident: b0310
  article-title: Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease
  publication-title: Ann. Neurol.
– volume: 10
  start-page: 22252
  year: 2020
  ident: b0030
  article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging
  publication-title: Sci. Rep.
– reference: Kromer, P., Snael, V., Zelinka, I., 2013. Randomness and chaos in genetic algorithms and differential evolution, in: 2013 5th International Conference on Intelligent Networking and Collaborative Systems. Presented at the 2013 International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE. https://doi.org/10.1109/incos.2013.36.
– volume: 132
  start-page: 1833
  year: 2009
  end-page: 1846
  ident: b0245
  article-title: The neural correlates of verbal short-term memory in Alzheimer’s disease: An fMRI study
  publication-title: Brain
– volume: 243
  start-page: 330
  year: 2022
  end-page: 341
  ident: b0145
  article-title: Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks
  publication-title: Schizophrenia Research
– volume: 79
  year: 2022
  ident: b0190
  article-title: SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data
  publication-title: Medical Image Analysis
– reference: Huang, Y., Xu, J., Zhou, Y., Tong, T., Zhuang, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI), 2019. Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network. Front. Neurosci. 13, 509. https://doi.org/10.3389/fnins.2019.00509.
– volume: 6
  year: 2018
  ident: b0205
  article-title: TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease
  publication-title: Acta Neuropathol. Commun.
– reference: K. Sudar P. Nagaraj S. Nithisaa R. Aishwarya M. Aakash S. Lakshmi Alzheimer's Disease Analysis using Explainable Artificial Intelligence (XAI). 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) 2022 10.1109/icscds53736.2022.9760858.
– volume: 353
  year: 2021
  ident: b0365
  article-title: Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging
  publication-title: Journal of Neuroscience Methods
– volume: 10
  start-page: 2173
  year: 2019
  ident: b0305
  article-title: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
  publication-title: Nat. Commun.
– volume: 324
  start-page: 35
  year: 2002
  ident: b0045
  article-title: Magnetic resonance imaging
  publication-title: BMJ
– volume: 1341
  start-page: 1
  year: 2009
  ident: b0115
  article-title: Visualizing higher-layer features of a deep network
  publication-title: University of Montreal
– volume: 2021
  start-page: 5514839
  year: 2021
  ident: b0010
  article-title: Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN)
  publication-title: Comput. Math. Methods Med.
– year: 2018
  ident: b0120
  article-title: Deep Learning on MRI Affirms the Prominence of the Hippocampal Formation in Alzheimer’s Disease Classification. bioRxiv
  publication-title: Alzheimer’s Disease Neuroimaging Initiative
– volume: 138
  start-page: 49
  year: 2017
  end-page: 56
  ident: b0140
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Programs Biomed.
– reference: Bae, J., Stocks, J., Heywood, A., Jung, Y., Jenkins, L., Hill, V., Katsaggelos, A., Popuri, K., Rosen, H., Beg, M.F., Wang, L., Alzheimer’s Disease Neuroimaging Initiative, 2021. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network. Neurobiol. Aging 99, 53–64. https://doi.org/10.1016/j.neurobiolaging.2020.12.005.
– volume: 206
  year: 2022
  ident: b0135
  article-title: Bridging the gap between complexity and interpretability of a data analytics-based process for benchmarking energy performance of buildings
  publication-title: Expert Systems with Applications
– volume: 51
  start-page: 145
  year: 1994
  end-page: 150
  ident: b0015
  article-title: Neuropathologic changes of the temporal pole in Alzheimer’s disease and Pick’s disease
  publication-title: Arch. Neurol.
– volume: 2
  start-page: 147
  year: 2018
  end-page: 154
  ident: b0355
  article-title: A user-based taxonomy for deep learning visualization
  publication-title: Visual Informatics
– volume: 31
  year: 2021
  ident: b0065
  article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
  publication-title: NeuroImage: Clinical
– reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for Simplicity: The All Convolutional Net. https://doi.org/10.48550/arXiv.1412.6806.
– volume: 18
  start-page: 71
  year: 2020
  end-page: 86
  ident: b0090
  article-title: 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI
  publication-title: Neuroinformatics
– volume: 8
  start-page: 104
  year: 2016
  ident: b0325
  article-title: Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease
  publication-title: Genome Med.
– volume: 212
  start-page: 186
  year: 2019
  end-page: 195
  ident: b0220
  article-title: Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization
  publication-title: Schizophr. Res.
– reference: [dataset]Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L. Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., De-Carli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging, 27, pp. 685–691. doi:https://doi.org/10.1002/jmri.21049.
– volume: 1
  start-page: 61
  year: 2014
  end-page: 85
  ident: b0055
  article-title: Brain Imaging Analysis
  publication-title: Annu Rev Stat Appl
– volume: 10
  start-page: 1059
  year: 2019
  ident: b0075
  article-title: The association between distinct frontal brain volumes and behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and frontotemporal dementia
  publication-title: Front. Neurol.
– reference: Liu, M., Cheng, D., Yan, W., Alzheimer’s Disease Neuroimaging Initiative, 2018. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12, 35. https://doi.org/10.3389/fninf.2018.00035.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: b0165
  publication-title: FSL.
– reference: Ying, Q., Xing, X., Liu, L., Lin, A.-L., Jacobs, N., Liang, G., 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis: An Ensemble Model Using Imagery and Genetic Features. bioRxiv. https://doi.org/10.1101/2021.05.07.443184.
– reference: Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual explanations from deep networks via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV). Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE. https://doi.org/10.1109/iccv.2017.74.
– volume: 201
  year: 2022
  ident: b0225
  article-title: RobIn: A robust interpretable deep network for schizophrenia diagnosis
  publication-title: Expert Systems with Applications
– start-page: 6999
  year: 2021
  end-page: 7019
  ident: b0185
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 11
  start-page: 3254
  year: 2021
  ident: b0320
  article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage
  publication-title: Sci. Rep.
– volume: 20
  year: 2019
  ident: b0005
  article-title: iNNvestigate neural networks!
  publication-title: Journal of Machine Learning Research
– volume: 27
  start-page: 490
  year: 2019
  end-page: 498
  ident: b0260
  article-title: Gray matter changes associated with the development of delusions in Alzheimer disease
  publication-title: Am. J. Geriatr. Psychiatry
– volume: 80
  start-page: 479
  year: 1990
  end-page: 486
  ident: b0060
  article-title: Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia
  publication-title: Acta Neuropathol.
– reference: Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M., 2017. SmoothGrad: removing noise by adding noise. https://doi.org/10.48550/arXiv.1706.03825.
– volume: 32
  start-page: e100005
  year: 2019
  ident: b0340
  article-title: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls
  publication-title: Gen Psychiatr
– volume: 10
  start-page: e0130140
  year: 2015
  ident: b0020
  article-title: On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
  publication-title: PLoS One
– volume: 11
  start-page: 194
  year: 2019
  ident: b0050
  article-title: Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease Classification
  publication-title: Front. Aging Neurosci.
– reference: Yagis, E., Citi, L., Diciotti, S., Marzi, C., Workalemahu Atnafu, S., G. Seco De Herrera, A., 2020. 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI, in: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). Presented at the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), IEEE. https://doi.org/10.1109/cbms49503.2020.00020.
– volume: 294
  start-page: 398
  year: 2020
  end-page: 404
  ident: b0215
  article-title: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI
  publication-title: Radiology
– volume: 8
  year: 2020
  ident: b0130
  article-title: Alzheimer’s Disease Detection Through Whole-Brain 3D-CNN MRI
  publication-title: Front Bioeng Biotechnol
– volume: 2018
  start-page: 1571
  year: 2018
  end-page: 1580
  ident: b0335
  article-title: Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification
  publication-title: AMIA Annu. Symp. Proc.
– start-page: 818
  year: 2014
  end-page: 833
  ident: b0360
  article-title: Visualizing and Understanding Convolutional Networks
  publication-title: Computer Vision – ECCV 2014
– volume: 51
  start-page: 1
  year: 2018
  end-page: 36
  ident: b0255
  article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications
  publication-title: ACM Comput. Surv.
– reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. https://doi.org/10.48550/arXiv.1312.6034.
– volume: 74
  start-page: 201
  year: 2010
  end-page: 209
  ident: b0250
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization
  publication-title: Neurology
– volume: 182
  year: 2021
  ident: b0035
  article-title: An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients
  publication-title: Expert Systems with Applications
– reference: Finger, E., Zhang, J., Dickerson, B., Bureau, Y., Masellis, M., Alzheimer’s Disease Neuroimaging Initiative, 2017. Disinhibition in Alzheimer’s disease is associated with reduced right frontal pole cortical thickness. J. Alzheimers. Dis. 60, 1161–1170. https://doi.org/10.3233/JAD-170348.
– volume: 35
  year: 2022
  ident: b0345
  article-title: A Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 3
  start-page: 966
  year: 2021
  end-page: 989
  ident: b0070
  article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
  publication-title: Machine Learning and Knowledge Extraction
– volume: 10
  start-page: 869
  year: 2019
  ident: b0375
  article-title: Applications of Deep Learning to Neuro-Imaging Techniques
  publication-title: Front. Neurol.
– volume: 65
  start-page: 211
  year: 2017
  end-page: 222
  ident: b0200
  article-title: Explaining nonlinear classification decisions with deep Taylor decomposition
  publication-title: Pattern Recognit.
– volume: 1–22
  year: 2021
  ident: b0265
  article-title: Convolutional neural networks in medical image understanding: A survey
  publication-title: Evol. Intell.
– reference: Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic Attribution for Deep Networks, in: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, pp. 3319–3328.
– reference: Pereira, M., Fantini, I., Lotufo, R., Rittner, L., 2020. An extended-2D CNN for multiclass Alzheimer’s Disease diagnosis through structural MRI, in: Medical Imaging 2020: Computer-Aided Diagnosis. Presented at the Medical Imaging 2020: Computer-Aided Diagnosis, SPIE, pp. 438–444. https://doi.org/10.1117/12.2550753.
– year: 2020
  ident: b0210
  article-title: Prediction of conversion to Alzheimer’s disease using deep survival analysis of MRI images
  publication-title: Brain Communications
– volume: 14
  start-page: 259
  year: 2020
  ident: b0230
  article-title: Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning
  publication-title: Front. Neurosci.
– start-page: 15
  year: 2021
  end-page: 28
  ident: b0080
  article-title: Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network, in
  publication-title: Proceedings of International Conference on Smart Computing and Cyber Security. Springer Singapore
– reference: Jo, T., Nho, K., Risacher, S.L., Saykin, A.J., Alzheimer’s Neuroimaging Initiative, 2020. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 21, 496. https://doi.org/10.1186/s12859-020-03848-0.
– volume: 9
  start-page: 8944
  year: 2019
  ident: b0155
  article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies
  publication-title: Sci. Rep.
– year: 2021
  ident: b0315
  publication-title: Interpretable Brain Disease Classification and Relevance-Guided Deep Learning.
– volume: 290
  start-page: 456
  year: 2019
  end-page: 464
  ident: b0085
  article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
  publication-title: Radiology
– volume: 3
  start-page: 966
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0070
  article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make3040048
– volume: 79
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0190
  article-title: SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102430
– volume: 51
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.119709_b0255
  article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications
  publication-title: ACM Comput. Surv.
– volume: 324
  start-page: 35
  year: 2002
  ident: 10.1016/j.eswa.2023.119709_b0045
  article-title: Magnetic resonance imaging
  publication-title: BMJ
  doi: 10.1136/bmj.324.7328.35
– volume: 65
  start-page: 211
  year: 2017
  ident: 10.1016/j.eswa.2023.119709_b0200
  article-title: Explaining nonlinear classification decisions with deep Taylor decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.008
– start-page: 15
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0080
  article-title: Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network, in
– ident: 10.1016/j.eswa.2023.119709_b0285
– volume: 212
  start-page: 186
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0220
  article-title: Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2019.07.034
– volume: 2
  start-page: 147
  year: 2018
  ident: 10.1016/j.eswa.2023.119709_b0355
  article-title: A user-based taxonomy for deep learning visualization
  publication-title: Visual Informatics
  doi: 10.1016/j.visinf.2018.09.001
– year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0315
  publication-title: Interpretable Brain Disease Classification and Relevance-Guided Deep Learning.
– volume: 1–22
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0265
  article-title: Convolutional neural networks in medical image understanding: A survey
  publication-title: Evol. Intell.
– ident: 10.1016/j.eswa.2023.119709_b0290
– volume: 187
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0100
  article-title: Deep learning to detect alzheimer's disease from neuroimaging: A systematic literature review
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.105242
– ident: 10.1016/j.eswa.2023.119709_b0300
– volume: 1–1
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0175
  article-title: A Review on Explainability in Multimodal Deep Neural Nets
  publication-title: IEEE Access
– ident: 10.1016/j.eswa.2023.119709_b0125
  doi: 10.3233/JAD-170348
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2023.119709_b0165
  publication-title: FSL. NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 20
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0005
  article-title: iNNvestigate neural networks!
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 8944
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0155
  article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45415-5
– volume: 27
  start-page: 490
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0260
  article-title: Gray matter changes associated with the development of delusions in Alzheimer disease
  publication-title: Am. J. Geriatr. Psychiatry
  doi: 10.1016/j.jagp.2018.09.016
– volume: 32
  start-page: e100005
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0340
  article-title: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls
  publication-title: Gen Psychiatr
  doi: 10.1136/gpsych-2018-100005
– volume: 49
  start-page: 355
  year: 2001
  ident: 10.1016/j.eswa.2023.119709_b0310
  article-title: Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.72
– ident: 10.1016/j.eswa.2023.119709_b0280
– ident: 10.1016/j.eswa.2023.119709_b0330
  doi: 10.1109/CBMS49503.2020.00020
– volume: 14
  start-page: 259
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0230
  article-title: Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00259
– ident: 10.1016/j.eswa.2023.119709_b0180
  doi: 10.1109/INCoS.2013.36
– volume: 201
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0225
  article-title: RobIn: A robust interpretable deep network for schizophrenia diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117158
– volume: 11
  start-page: 3254
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0320
  article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74399-w
– ident: 10.1016/j.eswa.2023.119709_b0370
  doi: 10.1109/CVPR.2016.319
– volume: 10
  start-page: 22252
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0030
  article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79243-9
– volume: 31
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0065
  article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
  publication-title: NeuroImage: Clinical
– ident: 10.1016/j.eswa.2023.119709_b0195
  doi: 10.3389/fninf.2018.00035
– volume: 132
  start-page: 1833
  year: 2009
  ident: 10.1016/j.eswa.2023.119709_b0245
  article-title: The neural correlates of verbal short-term memory in Alzheimer’s disease: An fMRI study
  publication-title: Brain
  doi: 10.1093/brain/awp075
– volume: 290
  start-page: 456
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0085
  article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
  publication-title: Radiology
  doi: 10.1148/radiol.2018180958
– volume: 215
  start-page: 265
  year: 2011
  ident: 10.1016/j.eswa.2023.119709_b0105
  article-title: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-010-0283-8
– volume: 126
  start-page: 218
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0275
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.03.017
– volume: 1
  start-page: 61
  year: 2014
  ident: 10.1016/j.eswa.2023.119709_b0055
  article-title: Brain Imaging Analysis
  publication-title: Annu Rev Stat Appl
  doi: 10.1146/annurev-statistics-022513-115611
– volume: 353
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0365
  article-title: Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2021.109098
– ident: 10.1016/j.eswa.2023.119709_b0025
  doi: 10.1016/j.neurobiolaging.2020.12.005
– ident: 10.1016/j.eswa.2023.119709_b0240
  doi: 10.1117/12.2550753
– year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0210
  article-title: Prediction of conversion to Alzheimer’s disease using deep survival analysis of MRI images
  publication-title: Brain Communications
– volume: 6
  year: 2018
  ident: 10.1016/j.eswa.2023.119709_b0205
  article-title: TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-018-0531-3
– volume: 131
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0235
  article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108825
– ident: 10.1016/j.eswa.2023.119709_b0160
  doi: 10.1002/jmri.21049
– ident: 10.1016/j.eswa.2023.119709_b0270
  doi: 10.1109/ICCV.2017.74
– volume: 2018
  start-page: 1571
  year: 2018
  ident: 10.1016/j.eswa.2023.119709_b0335
  article-title: Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification
  publication-title: AMIA Annu. Symp. Proc.
– volume: 18
  start-page: 71
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0090
  article-title: 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-019-09419-w
– start-page: 6999
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0185
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 818
  year: 2014
  ident: 10.1016/j.eswa.2023.119709_b0360
  article-title: Visualizing and Understanding Convolutional Networks
– volume: 24
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0110
  article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2019.102003
– volume: 10
  start-page: e0130140
  year: 2015
  ident: 10.1016/j.eswa.2023.119709_b0020
  article-title: On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– volume: 74
  start-page: 201
  year: 2010
  ident: 10.1016/j.eswa.2023.119709_b0250
  article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– volume: 80
  start-page: 479
  year: 1990
  ident: 10.1016/j.eswa.2023.119709_b0060
  article-title: Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00294607
– ident: 10.1016/j.eswa.2023.119709_b0170
  doi: 10.1186/s12859-020-03848-0
– year: 2018
  ident: 10.1016/j.eswa.2023.119709_b0120
  article-title: Deep Learning on MRI Affirms the Prominence of the Hippocampal Formation in Alzheimer’s Disease Classification. bioRxiv
  publication-title: Alzheimer’s Disease Neuroimaging Initiative
– volume: 206
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0135
  article-title: Bridging the gap between complexity and interpretability of a data analytics-based process for benchmarking energy performance of buildings
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117649
– volume: 294
  start-page: 398
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0215
  article-title: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2019191061
– volume: 243
  start-page: 330
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0145
  article-title: Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks
  publication-title: Schizophrenia Research
  doi: 10.1016/j.schres.2021.06.011
– volume: 182
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0035
  article-title: An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115271
– volume: 1341
  start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2023.119709_b0115
  article-title: Visualizing higher-layer features of a deep network
  publication-title: University of Montreal
– volume: 8
  year: 2020
  ident: 10.1016/j.eswa.2023.119709_b0130
  article-title: Alzheimer’s Disease Detection Through Whole-Brain 3D-CNN MRI
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.534592
– ident: 10.1016/j.eswa.2023.119709_b0150
  doi: 10.3389/fnins.2019.00509
– ident: 10.1016/j.eswa.2023.119709_b0295
  doi: 10.1109/ICSCDS53736.2022.9760858
– ident: 10.1016/j.eswa.2023.119709_b0350
  doi: 10.1101/2021.05.07.443184
– volume: 10
  start-page: 2173
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0305
  article-title: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10212-1
– volume: 8
  start-page: 104
  year: 2016
  ident: 10.1016/j.eswa.2023.119709_b0325
  article-title: Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0355-3
– volume: 10
  start-page: 869
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0375
  article-title: Applications of Deep Learning to Neuro-Imaging Techniques
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00869
– volume: 10
  start-page: 1059
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0075
  article-title: The association between distinct frontal brain volumes and behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and frontotemporal dementia
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.01059
– volume: 35
  year: 2022
  ident: 10.1016/j.eswa.2023.119709_b0345
  article-title: A Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 51
  start-page: 145
  year: 1994
  ident: 10.1016/j.eswa.2023.119709_b0015
  article-title: Neuropathologic changes of the temporal pole in Alzheimer’s disease and Pick’s disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1994.00540140051014
– volume: 11
  start-page: 194
  year: 2019
  ident: 10.1016/j.eswa.2023.119709_b0050
  article-title: Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease Classification
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00194
– volume: 138
  start-page: 49
  year: 2017
  ident: 10.1016/j.eswa.2023.119709_b0140
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
– volume: 2021
  start-page: 5514839
  year: 2021
  ident: 10.1016/j.eswa.2023.119709_b0010
  article-title: Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN)
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/5514839
SSID ssj0017007
Score 2.53642
Snippet Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119709
SubjectTerms Alzheimer's Disease Classification
Convolutional Neural Networks (CNN)
Explainable Deep Learning
Genetic Algorithm
Title An evolutionary explainable deep learning approach for Alzheimer's MRI classification
URI https://dx.doi.org/10.1016/j.eswa.2023.119709
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5QGJAaUlD8fNGFVULagdgErdootzgaISqrY8B347vsSpQEIdGDIksqP4cr476777jrFTBdrPJQCWFA6lGYXecxiA5UuVeuD5LRlToXB_4HeH3tVIjCqsXdbCEKzS2P7CpufW2jxpGmk2p-Nx81YHB9odUqYxP7hQobnnSdLyxtcS5kH0c7Lg25MWjTaFMwXGC-dvxD3kuA3KphEo8S_n9MPhdLbYhokUeVh8zDarYLbDNssuDNxsyl02DDOOr0aDYPbB8X06MTVRPEGcctMZ4p6XBOJcR6o8nHw-4PgJZ2dz3r_pcUVxNAGH8n-1x4ady7t21zLNEiyl17-w3Bb4EkC6Mk6FJA4W7XsSR0cD6ARgp3rzAkp9OkjgQtlJ3EqFCmIIBEpXqFS6-6yaPWd4wLivlAzAF14aoKf8BFBfoGLlKk-_wa4xu5RSpAyTODW0mEQlZOwxIslGJNmokGyNnS_nTAsejZWjRSn86Jc2RNrQr5h3-M95R2yd7ggCZotjVl3MXvBEBxuLuJ5rU52thb3r7uAbiTfUUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45oDEAZWtjzTrsZqYOvY4wCbtVqVpCkOjVNt4_nriNZ1AQjtw6KWNq-qrYzvyZxvgQnDl52LODUYtTDNSteekxw2XicThjttgERYK9_puMHRuR3RUgmZRC4O0Sm37c5u-sNb6Tk2jWcvG49q9Cg6UO8RM4-LgQteggt2paBkqfrsT9JfJBFbPq6bVegMFdO1MTvOSs3dsP2TZ15hQQ17iX_7ph89pbcOmDhaJn3_PDpRkugtbxSAGovflHgz9lMg3rUR8-knkRzbRZVEkljIjejjEAyl6iBMVrBJ_8vUox89yejkjvbs2ERhKI3do8bv2Ydi6GTQDQ89LMISCYG7YDe4yzpnNooQybMOi3E9sqYBAWh43E7V_uWTqgBDzujDjqJFQ4UXco5LZVCTMPoBy-pLKQyCuEMzjLnUSTzrCjblUFxeRsIWj3mBWwSxQCoVuJo4zLSZhwRp7ChHZEJENc2SrcLWUyfJWGitX0wL88JdChMrWr5A7-qfcOawHg1437Lb7nWPYwCfICDPpCZTn01d5qmKPeXSmdesb3XLXAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+explainable+deep+learning+approach+for+Alzheimer%27s+MRI+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Shojaei%2C+Shakila&rft.au=Saniee+Abadeh%2C+Mohammad&rft.au=Momeni%2C+Zahra&rft.date=2023-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=220&rft_id=info:doi/10.1016%2Fj.eswa.2023.119709&rft.externalDocID=S0957417423002105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon