An evolutionary explainable deep learning approach for Alzheimer's MRI classification
Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most...
Saved in:
Published in | Expert systems with applications Vol. 220; p. 119709 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2023.119709 |
Cover
Loading…
Abstract | Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most fundamental drawbacks is their inability to clarify the cause of their outputs. Moreover, each ML algorithm needs to present an explanation of its output to the users to increase its reliability. Occlusion Map is a method used for this purpose and aims to find regions of an image that have a significant impact on determining the network's output, which does this through an iterative process of occluding different regions of images. In this study, we used Magnetic Resonance Imaging (MRI) scans from Alzheimer's Disease Neuroimaging Initiative (ADNI) and trained a 3D-CNN model to diagnose Alzheimer's Disease (AD) patients from cognitively normal (CN) subjects. We tried to combine a genetic algorithm-based Occlusion Map method with a set of Backpropagation-based explainability methods, and ultimately, we found a brain mask for AD patients. Also, by comparing the extracted brain regions with the studies in this field, we found that the extracted regions are significantly effective in diagnosing AD from the perspective of Alzheimer's specialists. Our model achieved an accuracy of 87% in 5-fold cross-validation, which is an acceptable accuracy compared to similar studies. We considered a 3D-CNN model with 96% validation accuracy (on unmasked data that includes all 96 distinct brain regions of the Harvard-Oxford brain atlas), which we used in the genetic algorithm phase to produce a suitable brain mask. Finally, using lrp_z_plus_fast explainability method, we achieved 93% validation accuracy with only 29 brain regions. |
---|---|
AbstractList | Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks (CNN) are well-known for image-based tasks and have shown excellent performance. In contrast to this remarkable performance, one of their most fundamental drawbacks is their inability to clarify the cause of their outputs. Moreover, each ML algorithm needs to present an explanation of its output to the users to increase its reliability. Occlusion Map is a method used for this purpose and aims to find regions of an image that have a significant impact on determining the network's output, which does this through an iterative process of occluding different regions of images. In this study, we used Magnetic Resonance Imaging (MRI) scans from Alzheimer's Disease Neuroimaging Initiative (ADNI) and trained a 3D-CNN model to diagnose Alzheimer's Disease (AD) patients from cognitively normal (CN) subjects. We tried to combine a genetic algorithm-based Occlusion Map method with a set of Backpropagation-based explainability methods, and ultimately, we found a brain mask for AD patients. Also, by comparing the extracted brain regions with the studies in this field, we found that the extracted regions are significantly effective in diagnosing AD from the perspective of Alzheimer's specialists. Our model achieved an accuracy of 87% in 5-fold cross-validation, which is an acceptable accuracy compared to similar studies. We considered a 3D-CNN model with 96% validation accuracy (on unmasked data that includes all 96 distinct brain regions of the Harvard-Oxford brain atlas), which we used in the genetic algorithm phase to produce a suitable brain mask. Finally, using lrp_z_plus_fast explainability method, we achieved 93% validation accuracy with only 29 brain regions. |
ArticleNumber | 119709 |
Author | Momeni, Zahra Saniee Abadeh, Mohammad Shojaei, Shakila |
Author_xml | – sequence: 1 givenname: Shakila surname: Shojaei fullname: Shojaei, Shakila – sequence: 2 givenname: Mohammad surname: Saniee Abadeh fullname: Saniee Abadeh, Mohammad email: saniee@modares.ac.ir – sequence: 3 givenname: Zahra orcidid: 0000-0001-9289-6841 surname: Momeni fullname: Momeni, Zahra |
BookMark | eNp9kL1OwzAYRS0EEm3hBZi8MSXYcVPHEktV8VOpCAnR2frifKauXCeyQ_l5elrKxNDpTufq3jMkp6ENSMgVZzlnfHKzzjF9QF6wQuScK8nUCRnwSopsIpU4JQOmSpmNuRyfk2FKa8a4ZEwOyHIaKG5b_967NkD8ovjZeXABao-0QeyoR4jBhTcKXRdbMCtq20in_nuFboPxOtGnlzk1HlJy1hnYF12QMws-4eVfjsjy_u519pgtnh_ms-kiM4KxPhMVTCSAFLK2pVTjileMN4XiDAsF3DLBAaUsqwaY4U1d2dKoGlSJUpTGSjEixaHXxDaliFZ30W12NzRnei9Gr_VejN6L0QcxO6j6BxnX_87uIzh_HL09oLg7tXUYdTIOg8HGRTS9blp3DP8BGOeBtg |
CitedBy_id | crossref_primary_10_1016_j_array_2024_100345 crossref_primary_10_1016_j_bspc_2024_107184 crossref_primary_10_1038_s41598_024_78712_9 crossref_primary_10_1038_s41598_024_52185_2 crossref_primary_10_1007_s11227_025_07103_2 crossref_primary_10_3390_neurolint16060098 crossref_primary_10_1049_cit2_12291 crossref_primary_10_1186_s12880_024_01513_z crossref_primary_10_1016_j_eswa_2023_122986 crossref_primary_10_3390_s23094184 crossref_primary_10_1016_j_imu_2024_101584 crossref_primary_10_1007_s13369_024_09954_y crossref_primary_10_1016_j_jksuci_2024_101940 crossref_primary_10_1007_s12559_023_10192_x crossref_primary_10_1016_j_bspc_2024_105990 crossref_primary_10_1016_j_eswa_2023_121160 crossref_primary_10_1016_j_knosys_2024_112306 crossref_primary_10_1016_j_bspc_2024_106920 crossref_primary_10_1016_j_bspc_2024_106721 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_1016_j_jneumeth_2024_110318 crossref_primary_10_3389_fmed_2024_1445325 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_3233_JIFS_236542 crossref_primary_10_4108_eetpht_9_3966 crossref_primary_10_3390_diagnostics13071216 crossref_primary_10_3390_app14156798 crossref_primary_10_3390_diagnostics15020168 crossref_primary_10_1016_j_eswa_2024_124295 crossref_primary_10_3934_mbe_2023712 crossref_primary_10_1007_s10462_025_11146_5 crossref_primary_10_1016_j_eswa_2023_121186 |
Cites_doi | 10.3390/make3040048 10.1016/j.media.2022.102430 10.1136/bmj.324.7328.35 10.1016/j.patcog.2016.11.008 10.1016/j.schres.2019.07.034 10.1016/j.visinf.2018.09.001 10.1016/j.cmpb.2019.105242 10.3233/JAD-170348 10.1016/j.neuroimage.2011.09.015 10.1038/s41598-019-45415-5 10.1016/j.jagp.2018.09.016 10.1136/gpsych-2018-100005 10.1002/ana.72 10.1109/CBMS49503.2020.00020 10.3389/fnins.2020.00259 10.1109/INCoS.2013.36 10.1016/j.eswa.2022.117158 10.1038/s41598-020-74399-w 10.1109/CVPR.2016.319 10.1038/s41598-020-79243-9 10.3389/fninf.2018.00035 10.1093/brain/awp075 10.1148/radiol.2018180958 10.1007/s00429-010-0283-8 10.1016/j.neunet.2020.03.017 10.1146/annurev-statistics-022513-115611 10.1016/j.jneumeth.2021.109098 10.1016/j.neurobiolaging.2020.12.005 10.1117/12.2550753 10.1186/s40478-018-0531-3 10.1016/j.patcog.2022.108825 10.1002/jmri.21049 10.1109/ICCV.2017.74 10.1007/s12021-019-09419-w 10.1016/j.nicl.2019.102003 10.1371/journal.pone.0130140 10.1212/WNL.0b013e3181cb3e25 10.1007/BF00294607 10.1186/s12859-020-03848-0 10.1016/j.eswa.2022.117649 10.1148/radiol.2019191061 10.1016/j.schres.2021.06.011 10.1016/j.eswa.2021.115271 10.3389/fbioe.2020.534592 10.3389/fnins.2019.00509 10.1109/ICSCDS53736.2022.9760858 10.1101/2021.05.07.443184 10.1038/s41467-019-10212-1 10.1186/s13073-016-0355-3 10.3389/fneur.2019.00869 10.3389/fneur.2019.01059 10.1001/archneur.1994.00540140051014 10.3389/fnagi.2019.00194 10.1016/j.cmpb.2016.10.007 10.1155/2021/5514839 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.119709 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_119709 S0957417423002105 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-38a67aa737bf579481801d2910e29a1f031ae7758da0c1db8f5c9ba95e735cf73 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:08 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Fri Feb 23 02:37:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alzheimer's Disease Classification Convolutional Neural Networks (CNN) Explainable Deep Learning Genetic Algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-38a67aa737bf579481801d2910e29a1f031ae7758da0c1db8f5c9ba95e735cf73 |
ORCID | 0000-0001-9289-6841 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_119709 crossref_citationtrail_10_1016_j_eswa_2023_119709 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Franc (b0085) 2019; 290 Tekin, Mega, Masterman, Chow, Garakian, Vinters, Cummings (b0310) 2001; 49 Bron, Klein, Papma, Jiskoot, Venkatraghavan, Linders, van der Lugt (b0065) 2021; 31 Jenkinson, Beckmann, Behrens, Woolrich, Smith (b0165) 2012; 62 Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual explanations from deep networks via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV). Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE. https://doi.org/10.1109/iccv.2017.74. Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Weiner (b0250) 2010; 74 Tang, Chuang, DeCarli, Jin, Beckett, Keiser, Dugger (b0305) 2019; 10 Böhle, Eitel, Weygandt, Ritter (b0050) 2019; 11 Cajanus, Solje, Koikkalainen, Lötjönen, Suhonen, Hallikainen, Hall (b0075) 2019; 10 Ebrahimighahnavieh, Luo, Chiong (b0100) 2020; 187 Montavon, Lapuschkin, Binder, Samek, Müller (b0200) 2017; 65 K. Sudar P. Nagaraj S. Nithisaa R. Aishwarya M. Aakash S. Lakshmi Alzheimer's Disease Analysis using Explainable Artificial Intelligence (XAI). 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) 2022 10.1109/icscds53736.2022.9760858. Bae, Lee, Jung, Park, Kim, Oh, Kim (b0030) 2020; 10 Galli, Piscitelli, Moscato, Capozzoli (b0135) 2022; 206 Wang, Roussos, McKenzie, Zhou, Kajiwara, Brennand, Zhang (b0325) 2016; 8 Buhrmester, Münch, Arens (b0070) 2021; 3 Eitel, Soehler, Bellmann-Strobl, Brandt, Ruprecht, Giess, Ritter (b0110) 2019; 24 Iizuka, Fukasawa, Kameyama (b0155) 2019; 9 Yu, Shi (b0355) 2018; 2 Hu, Qian, Liu, Koh, Sim, Jiang, Zhou (b0145) 2022; 243 Folego, Weiler, Casseb, Pires, Rocha (b0130) 2020; 8 Zeiler, Fergus (b0360) 2014 Li, Liu, Yang, Peng, Zhou (b0185) 2021 Feng, Yang, Lipton, Small, Provenzano (b0120) 2018 Organisciak, Shum, Nwoye, Woo (b0225) 2022; 201 Zhu, Jiang, Tong, Xie, Zaharchuk, Wintermark (b0375) 2019; 10 Amini, Pedram, Moradi, Ouchani (b0010) 2021; 2021 Finger, E., Zhang, J., Dickerson, B., Bureau, Y., Masellis, M., Alzheimer’s Disease Neuroimaging Initiative, 2017. Disinhibition in Alzheimer’s disease is associated with reduced right frontal pole cortical thickness. J. Alzheimers. Dis. 60, 1161–1170. https://doi.org/10.3233/JAD-170348. Braak, Braak (b0060) 1990; 80 Erhan, Bengio, Courville, Vincent (b0115) 2009; 1341 Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929. Yagis, E., Citi, L., Diciotti, S., Marzi, C., Workalemahu Atnafu, S., G. Seco De Herrera, A., 2020. 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI, in: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). Presented at the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), IEEE. https://doi.org/10.1109/cbms49503.2020.00020. Alber, Lapuschkin, Seegerer, Hägele, Schütt, Montavon, Kindermans (b0005) 2019; 20 Gao, Hui, Tian (b0140) 2017; 138 Bowman (b0055) 2014; 1 Oh, Kim, Shen, Piao, Kang, Oh, Chung (b0220) 2019; 212 Arnold, Hyman, Van Hoesen (b0015) 1994; 51 Yılmaz Acar, Başçiftçi, Ekmekci (b0345) 2022; 35 Shahamat, Saniee Abadeh (b0275) 2020; 126 Joshi, Walambe, Kotecha (b0175) 2021; 1–1 Pei, Wan, Zhang, Wang, Leng, Yang (b0235) 2022; 131 Narayana, Coronado, Sujit, Wolinsky, Lublin, Gabr (b0215) 2020; 294 Venugopalan, Tong, Hassanzadeh, Wang (b0320) 2021; 11 Nag, Yu, Boyle, Leurgans, Bennett, Schneider (b0205) 2018; 6 Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M., 2017. SmoothGrad: removing noise by adding noise. https://doi.org/10.48550/arXiv.1706.03825. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for Simplicity: The All Convolutional Net. https://doi.org/10.48550/arXiv.1412.6806. Berger (b0045) 2002; 324 Zhang, Hong, McClement, Oladosu, Pridham, Slaney (b0365) 2021; 353 Liu, M., Cheng, D., Yan, W., Alzheimer’s Disease Neuroimaging Initiative, 2018. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12, 35. https://doi.org/10.3389/fninf.2018.00035. Yang, Xu, Li, Jin, Jiang, Wang, Wang (b0340) 2019; 32 Qian, Schweizer, Churchill, Millikin, Ismail, Smith, Fischer (b0260) 2019; 27 Barbero-Gómez, Gutiérrez, Vargas, Vallejo-Casas, Hervás-Martínez (b0035) 2021; 182 Chakraborty, Sain, Park, Aich (b0080) 2021 Bae, J., Stocks, J., Heywood, A., Jung, Y., Jenkins, L., Hill, V., Katsaggelos, A., Popuri, K., Rosen, H., Beg, M.F., Wang, L., Alzheimer’s Disease Neuroimaging Initiative, 2021. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network. Neurobiol. Aging 99, 53–64. https://doi.org/10.1016/j.neurobiolaging.2020.12.005. Kromer, P., Snael, V., Zelinka, I., 2013. Randomness and chaos in genetic algorithms and differential evolution, in: 2013 5th International Conference on Intelligent Networking and Collaborative Systems. Presented at the 2013 International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE. https://doi.org/10.1109/incos.2013.36. Bach, Binder, Montavon, Klauschen, Müller, Samek (b0020) 2015; 10 Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic Attribution for Deep Networks, in: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, pp. 3319–3328. Peters, Collette, Degueldre, Sterpenich, Majerus, Salmon (b0245) 2009; 132 Pan, Zeng, Jia, Huang, Frizzell, Song (b0230) 2020; 14 Tinauer, Heber, Pirpamer, Damulina, Schmidt, Stollberger, Langkammer (b0315) 2021 Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. https://doi.org/10.48550/arXiv.1312.6034. Echávarri, Aalten, Uylings, Jacobs, Visser, Gronenschild, Burgmans (b0105) 2011; 215 Lin, Niu, Sui, Zhao, Zhuo, Calhoun (b0190) 2022; 79 Pouyanfar, Sadiq, Yan, Tian, Tao, Reyes, Iyengar (b0255) 2018; 51 Pereira, M., Fantini, I., Lotufo, R., Rittner, L., 2020. An extended-2D CNN for multiclass Alzheimer’s Disease diagnosis through structural MRI, in: Medical Imaging 2020: Computer-Aided Diagnosis. Presented at the Medical Imaging 2020: Computer-Aided Diagnosis, SPIE, pp. 438–444. https://doi.org/10.1117/12.2550753. Duc, Ryu, Qureshi, Choi, Lee, Lee (b0090) 2020; 18 Jo, T., Nho, K., Risacher, S.L., Saykin, A.J., Alzheimer’s Neuroimaging Initiative, 2020. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 21, 496. https://doi.org/10.1186/s12859-020-03848-0. [dataset]Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L. Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., De-Carli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging, 27, pp. 685–691. doi:https://doi.org/10.1002/jmri.21049. Huang, Y., Xu, J., Zhou, Y., Tong, T., Zhuang, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI), 2019. Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network. Front. Neurosci. 13, 509. https://doi.org/10.3389/fnins.2019.00509. Ying, Q., Xing, X., Liu, L., Lin, A.-L., Jacobs, N., Liang, G., 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis: An Ensemble Model Using Imagery and Genetic Features. bioRxiv. https://doi.org/10.1101/2021.05.07.443184. Sarvamangala, Kulkarni (b0265) 2021; 1–22 Yang, Rangarajan, Ranka (b0335) 2018; 2018 Nakagawa, T., Ishida, M., Naito, J., Nagai, A., Yamaguchi, S., Onoda, K., on behalf of the Alzheimer’s Disease Neuroimaging Initiative (b0210) 2020 Nag (10.1016/j.eswa.2023.119709_b0205) 2018; 6 Folego (10.1016/j.eswa.2023.119709_b0130) 2020; 8 Yang (10.1016/j.eswa.2023.119709_b0335) 2018; 2018 Zeiler (10.1016/j.eswa.2023.119709_b0360) 2014 Braak (10.1016/j.eswa.2023.119709_b0060) 1990; 80 Joshi (10.1016/j.eswa.2023.119709_b0175) 2021; 1–1 Shahamat (10.1016/j.eswa.2023.119709_b0275) 2020; 126 10.1016/j.eswa.2023.119709_b0285 10.1016/j.eswa.2023.119709_b0240 10.1016/j.eswa.2023.119709_b0125 Gao (10.1016/j.eswa.2023.119709_b0140) 2017; 138 Peters (10.1016/j.eswa.2023.119709_b0245) 2009; 132 10.1016/j.eswa.2023.119709_b0370 Galli (10.1016/j.eswa.2023.119709_b0135) 2022; 206 10.1016/j.eswa.2023.119709_b0170 10.1016/j.eswa.2023.119709_b0290 Amini (10.1016/j.eswa.2023.119709_b0010) 2021; 2021 Buhrmester (10.1016/j.eswa.2023.119709_b0070) 2021; 3 Sarvamangala (10.1016/j.eswa.2023.119709_b0265) 2021; 1–22 Chakraborty (10.1016/j.eswa.2023.119709_b0080) 2021 10.1016/j.eswa.2023.119709_b0350 10.1016/j.eswa.2023.119709_b0195 Böhle (10.1016/j.eswa.2023.119709_b0050) 2019; 11 Zhang (10.1016/j.eswa.2023.119709_b0365) 2021; 353 10.1016/j.eswa.2023.119709_b0160 Echávarri (10.1016/j.eswa.2023.119709_b0105) 2011; 215 10.1016/j.eswa.2023.119709_b0280 Tinauer (10.1016/j.eswa.2023.119709_b0315) 2021 Venugopalan (10.1016/j.eswa.2023.119709_b0320) 2021; 11 Ebrahimighahnavieh (10.1016/j.eswa.2023.119709_b0100) 2020; 187 Bach (10.1016/j.eswa.2023.119709_b0020) 2015; 10 Nakagawa, T., Ishida, M., Naito, J., Nagai, A., Yamaguchi, S., Onoda, K., on behalf of the Alzheimer’s Disease Neuroimaging Initiative (10.1016/j.eswa.2023.119709_b0210) 2020 Yang (10.1016/j.eswa.2023.119709_b0340) 2019; 32 Qian (10.1016/j.eswa.2023.119709_b0260) 2019; 27 Iizuka (10.1016/j.eswa.2023.119709_b0155) 2019; 9 10.1016/j.eswa.2023.119709_b0025 10.1016/j.eswa.2023.119709_b0300 Cajanus (10.1016/j.eswa.2023.119709_b0075) 2019; 10 Ding (10.1016/j.eswa.2023.119709_b0085) 2019; 290 Pei (10.1016/j.eswa.2023.119709_b0235) 2022; 131 10.1016/j.eswa.2023.119709_b0150 Pouyanfar (10.1016/j.eswa.2023.119709_b0255) 2018; 51 10.1016/j.eswa.2023.119709_b0270 Yu (10.1016/j.eswa.2023.119709_b0355) 2018; 2 Duc (10.1016/j.eswa.2023.119709_b0090) 2020; 18 Yılmaz Acar (10.1016/j.eswa.2023.119709_b0345) 2022; 35 Arnold (10.1016/j.eswa.2023.119709_b0015) 1994; 51 Barbero-Gómez (10.1016/j.eswa.2023.119709_b0035) 2021; 182 Hu (10.1016/j.eswa.2023.119709_b0145) 2022; 243 Oh (10.1016/j.eswa.2023.119709_b0220) 2019; 212 Organisciak (10.1016/j.eswa.2023.119709_b0225) 2022; 201 Tekin (10.1016/j.eswa.2023.119709_b0310) 2001; 49 10.1016/j.eswa.2023.119709_b0330 Narayana (10.1016/j.eswa.2023.119709_b0215) 2020; 294 Petersen (10.1016/j.eswa.2023.119709_b0250) 2010; 74 10.1016/j.eswa.2023.119709_b0295 Jenkinson (10.1016/j.eswa.2023.119709_b0165) 2012; 62 Pan (10.1016/j.eswa.2023.119709_b0230) 2020; 14 Alber (10.1016/j.eswa.2023.119709_b0005) 2019; 20 Bae (10.1016/j.eswa.2023.119709_b0030) 2020; 10 Bron (10.1016/j.eswa.2023.119709_b0065) 2021; 31 Eitel (10.1016/j.eswa.2023.119709_b0110) 2019; 24 Lin (10.1016/j.eswa.2023.119709_b0190) 2022; 79 Wang (10.1016/j.eswa.2023.119709_b0325) 2016; 8 Bowman (10.1016/j.eswa.2023.119709_b0055) 2014; 1 10.1016/j.eswa.2023.119709_b0180 Feng (10.1016/j.eswa.2023.119709_b0120) 2018 Montavon (10.1016/j.eswa.2023.119709_b0200) 2017; 65 Li (10.1016/j.eswa.2023.119709_b0185) 2021 Erhan (10.1016/j.eswa.2023.119709_b0115) 2009; 1341 Zhu (10.1016/j.eswa.2023.119709_b0375) 2019; 10 Berger (10.1016/j.eswa.2023.119709_b0045) 2002; 324 Tang (10.1016/j.eswa.2023.119709_b0305) 2019; 10 |
References_xml | – volume: 187 year: 2020 ident: b0100 article-title: Deep learning to detect alzheimer's disease from neuroimaging: A systematic literature review publication-title: Computer Methods and Programs in Biomedicine – volume: 215 start-page: 265 year: 2011 end-page: 271 ident: b0105 article-title: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease publication-title: Brain Struct. Funct. – volume: 131 year: 2022 ident: b0235 article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI publication-title: Pattern Recognition – reference: Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2921–2929. – volume: 1–1 year: 2021 ident: b0175 article-title: A Review on Explainability in Multimodal Deep Neural Nets publication-title: IEEE Access – volume: 126 start-page: 218 year: 2020 end-page: 234 ident: b0275 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Netw. – volume: 24 year: 2019 ident: b0110 article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation publication-title: Neuroimage Clin – volume: 49 start-page: 355 year: 2001 end-page: 361 ident: b0310 article-title: Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease publication-title: Ann. Neurol. – volume: 10 start-page: 22252 year: 2020 ident: b0030 article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging publication-title: Sci. Rep. – reference: Kromer, P., Snael, V., Zelinka, I., 2013. Randomness and chaos in genetic algorithms and differential evolution, in: 2013 5th International Conference on Intelligent Networking and Collaborative Systems. Presented at the 2013 International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE. https://doi.org/10.1109/incos.2013.36. – volume: 132 start-page: 1833 year: 2009 end-page: 1846 ident: b0245 article-title: The neural correlates of verbal short-term memory in Alzheimer’s disease: An fMRI study publication-title: Brain – volume: 243 start-page: 330 year: 2022 end-page: 341 ident: b0145 article-title: Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks publication-title: Schizophrenia Research – volume: 79 year: 2022 ident: b0190 article-title: SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data publication-title: Medical Image Analysis – reference: Huang, Y., Xu, J., Zhou, Y., Tong, T., Zhuang, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI), 2019. Diagnosis of Alzheimer’s Disease via Multi-Modality 3D Convolutional Neural Network. Front. Neurosci. 13, 509. https://doi.org/10.3389/fnins.2019.00509. – volume: 6 year: 2018 ident: b0205 article-title: TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease publication-title: Acta Neuropathol. Commun. – reference: K. Sudar P. Nagaraj S. Nithisaa R. Aishwarya M. Aakash S. Lakshmi Alzheimer's Disease Analysis using Explainable Artificial Intelligence (XAI). 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) 2022 10.1109/icscds53736.2022.9760858. – volume: 353 year: 2021 ident: b0365 article-title: Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging publication-title: Journal of Neuroscience Methods – volume: 10 start-page: 2173 year: 2019 ident: b0305 article-title: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline publication-title: Nat. Commun. – volume: 324 start-page: 35 year: 2002 ident: b0045 article-title: Magnetic resonance imaging publication-title: BMJ – volume: 1341 start-page: 1 year: 2009 ident: b0115 article-title: Visualizing higher-layer features of a deep network publication-title: University of Montreal – volume: 2021 start-page: 5514839 year: 2021 ident: b0010 article-title: Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN) publication-title: Comput. Math. Methods Med. – year: 2018 ident: b0120 article-title: Deep Learning on MRI Affirms the Prominence of the Hippocampal Formation in Alzheimer’s Disease Classification. bioRxiv publication-title: Alzheimer’s Disease Neuroimaging Initiative – volume: 138 start-page: 49 year: 2017 end-page: 56 ident: b0140 article-title: Classification of CT brain images based on deep learning networks publication-title: Comput. Methods Programs Biomed. – reference: Bae, J., Stocks, J., Heywood, A., Jung, Y., Jenkins, L., Hill, V., Katsaggelos, A., Popuri, K., Rosen, H., Beg, M.F., Wang, L., Alzheimer’s Disease Neuroimaging Initiative, 2021. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer’s type based on a three-dimensional convolutional neural network. Neurobiol. Aging 99, 53–64. https://doi.org/10.1016/j.neurobiolaging.2020.12.005. – volume: 206 year: 2022 ident: b0135 article-title: Bridging the gap between complexity and interpretability of a data analytics-based process for benchmarking energy performance of buildings publication-title: Expert Systems with Applications – volume: 51 start-page: 145 year: 1994 end-page: 150 ident: b0015 article-title: Neuropathologic changes of the temporal pole in Alzheimer’s disease and Pick’s disease publication-title: Arch. Neurol. – volume: 2 start-page: 147 year: 2018 end-page: 154 ident: b0355 article-title: A user-based taxonomy for deep learning visualization publication-title: Visual Informatics – volume: 31 year: 2021 ident: b0065 article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease publication-title: NeuroImage: Clinical – reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for Simplicity: The All Convolutional Net. https://doi.org/10.48550/arXiv.1412.6806. – volume: 18 start-page: 71 year: 2020 end-page: 86 ident: b0090 article-title: 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI publication-title: Neuroinformatics – volume: 8 start-page: 104 year: 2016 ident: b0325 article-title: Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease publication-title: Genome Med. – volume: 212 start-page: 186 year: 2019 end-page: 195 ident: b0220 article-title: Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization publication-title: Schizophr. Res. – reference: [dataset]Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L. Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., De-Carli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging, 27, pp. 685–691. doi:https://doi.org/10.1002/jmri.21049. – volume: 1 start-page: 61 year: 2014 end-page: 85 ident: b0055 article-title: Brain Imaging Analysis publication-title: Annu Rev Stat Appl – volume: 10 start-page: 1059 year: 2019 ident: b0075 article-title: The association between distinct frontal brain volumes and behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and frontotemporal dementia publication-title: Front. Neurol. – reference: Liu, M., Cheng, D., Yan, W., Alzheimer’s Disease Neuroimaging Initiative, 2018. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12, 35. https://doi.org/10.3389/fninf.2018.00035. – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: b0165 publication-title: FSL. – reference: Ying, Q., Xing, X., Liu, L., Lin, A.-L., Jacobs, N., Liang, G., 2021. Multi-Modal Data Analysis for Alzheimer’s Disease Diagnosis: An Ensemble Model Using Imagery and Genetic Features. bioRxiv. https://doi.org/10.1101/2021.05.07.443184. – reference: Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual explanations from deep networks via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV). Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE. https://doi.org/10.1109/iccv.2017.74. – volume: 201 year: 2022 ident: b0225 article-title: RobIn: A robust interpretable deep network for schizophrenia diagnosis publication-title: Expert Systems with Applications – start-page: 6999 year: 2021 end-page: 7019 ident: b0185 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans Neural Netw Learn Syst – volume: 11 start-page: 3254 year: 2021 ident: b0320 article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage publication-title: Sci. Rep. – volume: 20 year: 2019 ident: b0005 article-title: iNNvestigate neural networks! publication-title: Journal of Machine Learning Research – volume: 27 start-page: 490 year: 2019 end-page: 498 ident: b0260 article-title: Gray matter changes associated with the development of delusions in Alzheimer disease publication-title: Am. J. Geriatr. Psychiatry – volume: 80 start-page: 479 year: 1990 end-page: 486 ident: b0060 article-title: Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia publication-title: Acta Neuropathol. – reference: Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M., 2017. SmoothGrad: removing noise by adding noise. https://doi.org/10.48550/arXiv.1706.03825. – volume: 32 start-page: e100005 year: 2019 ident: b0340 article-title: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls publication-title: Gen Psychiatr – volume: 10 start-page: e0130140 year: 2015 ident: b0020 article-title: On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation publication-title: PLoS One – volume: 11 start-page: 194 year: 2019 ident: b0050 article-title: Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease Classification publication-title: Front. Aging Neurosci. – reference: Yagis, E., Citi, L., Diciotti, S., Marzi, C., Workalemahu Atnafu, S., G. Seco De Herrera, A., 2020. 3D convolutional neural networks for diagnosis of Alzheimer’s disease via structural MRI, in: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). Presented at the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), IEEE. https://doi.org/10.1109/cbms49503.2020.00020. – volume: 294 start-page: 398 year: 2020 end-page: 404 ident: b0215 article-title: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI publication-title: Radiology – volume: 8 year: 2020 ident: b0130 article-title: Alzheimer’s Disease Detection Through Whole-Brain 3D-CNN MRI publication-title: Front Bioeng Biotechnol – volume: 2018 start-page: 1571 year: 2018 end-page: 1580 ident: b0335 article-title: Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification publication-title: AMIA Annu. Symp. Proc. – start-page: 818 year: 2014 end-page: 833 ident: b0360 article-title: Visualizing and Understanding Convolutional Networks publication-title: Computer Vision – ECCV 2014 – volume: 51 start-page: 1 year: 2018 end-page: 36 ident: b0255 article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications publication-title: ACM Comput. Surv. – reference: Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. https://doi.org/10.48550/arXiv.1312.6034. – volume: 74 start-page: 201 year: 2010 end-page: 209 ident: b0250 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization publication-title: Neurology – volume: 182 year: 2021 ident: b0035 article-title: An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients publication-title: Expert Systems with Applications – reference: Finger, E., Zhang, J., Dickerson, B., Bureau, Y., Masellis, M., Alzheimer’s Disease Neuroimaging Initiative, 2017. Disinhibition in Alzheimer’s disease is associated with reduced right frontal pole cortical thickness. J. Alzheimers. Dis. 60, 1161–1170. https://doi.org/10.3233/JAD-170348. – volume: 35 year: 2022 ident: b0345 article-title: A Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI publication-title: Sustainable Computing: Informatics and Systems – volume: 3 start-page: 966 year: 2021 end-page: 989 ident: b0070 article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey publication-title: Machine Learning and Knowledge Extraction – volume: 10 start-page: 869 year: 2019 ident: b0375 article-title: Applications of Deep Learning to Neuro-Imaging Techniques publication-title: Front. Neurol. – volume: 65 start-page: 211 year: 2017 end-page: 222 ident: b0200 article-title: Explaining nonlinear classification decisions with deep Taylor decomposition publication-title: Pattern Recognit. – volume: 1–22 year: 2021 ident: b0265 article-title: Convolutional neural networks in medical image understanding: A survey publication-title: Evol. Intell. – reference: Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic Attribution for Deep Networks, in: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR, pp. 3319–3328. – reference: Pereira, M., Fantini, I., Lotufo, R., Rittner, L., 2020. An extended-2D CNN for multiclass Alzheimer’s Disease diagnosis through structural MRI, in: Medical Imaging 2020: Computer-Aided Diagnosis. Presented at the Medical Imaging 2020: Computer-Aided Diagnosis, SPIE, pp. 438–444. https://doi.org/10.1117/12.2550753. – year: 2020 ident: b0210 article-title: Prediction of conversion to Alzheimer’s disease using deep survival analysis of MRI images publication-title: Brain Communications – volume: 14 start-page: 259 year: 2020 ident: b0230 article-title: Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning publication-title: Front. Neurosci. – start-page: 15 year: 2021 end-page: 28 ident: b0080 article-title: Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network, in publication-title: Proceedings of International Conference on Smart Computing and Cyber Security. Springer Singapore – reference: Jo, T., Nho, K., Risacher, S.L., Saykin, A.J., Alzheimer’s Neuroimaging Initiative, 2020. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 21, 496. https://doi.org/10.1186/s12859-020-03848-0. – volume: 9 start-page: 8944 year: 2019 ident: b0155 article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies publication-title: Sci. Rep. – year: 2021 ident: b0315 publication-title: Interpretable Brain Disease Classification and Relevance-Guided Deep Learning. – volume: 290 start-page: 456 year: 2019 end-page: 464 ident: b0085 article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain publication-title: Radiology – volume: 3 start-page: 966 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0070 article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey publication-title: Machine Learning and Knowledge Extraction doi: 10.3390/make3040048 – volume: 79 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0190 article-title: SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data publication-title: Medical Image Analysis doi: 10.1016/j.media.2022.102430 – volume: 51 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.119709_b0255 article-title: A Survey on Deep Learning: Algorithms, Techniques, and Applications publication-title: ACM Comput. Surv. – volume: 324 start-page: 35 year: 2002 ident: 10.1016/j.eswa.2023.119709_b0045 article-title: Magnetic resonance imaging publication-title: BMJ doi: 10.1136/bmj.324.7328.35 – volume: 65 start-page: 211 year: 2017 ident: 10.1016/j.eswa.2023.119709_b0200 article-title: Explaining nonlinear classification decisions with deep Taylor decomposition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.11.008 – start-page: 15 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0080 article-title: Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network, in – ident: 10.1016/j.eswa.2023.119709_b0285 – volume: 212 start-page: 186 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0220 article-title: Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization publication-title: Schizophr. Res. doi: 10.1016/j.schres.2019.07.034 – volume: 2 start-page: 147 year: 2018 ident: 10.1016/j.eswa.2023.119709_b0355 article-title: A user-based taxonomy for deep learning visualization publication-title: Visual Informatics doi: 10.1016/j.visinf.2018.09.001 – year: 2021 ident: 10.1016/j.eswa.2023.119709_b0315 publication-title: Interpretable Brain Disease Classification and Relevance-Guided Deep Learning. – volume: 1–22 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0265 article-title: Convolutional neural networks in medical image understanding: A survey publication-title: Evol. Intell. – ident: 10.1016/j.eswa.2023.119709_b0290 – volume: 187 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0100 article-title: Deep learning to detect alzheimer's disease from neuroimaging: A systematic literature review publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105242 – ident: 10.1016/j.eswa.2023.119709_b0300 – volume: 1–1 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0175 article-title: A Review on Explainability in Multimodal Deep Neural Nets publication-title: IEEE Access – ident: 10.1016/j.eswa.2023.119709_b0125 doi: 10.3233/JAD-170348 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.eswa.2023.119709_b0165 publication-title: FSL. NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 20 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0005 article-title: iNNvestigate neural networks! publication-title: Journal of Machine Learning Research – volume: 9 start-page: 8944 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0155 article-title: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies publication-title: Sci. Rep. doi: 10.1038/s41598-019-45415-5 – volume: 27 start-page: 490 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0260 article-title: Gray matter changes associated with the development of delusions in Alzheimer disease publication-title: Am. J. Geriatr. Psychiatry doi: 10.1016/j.jagp.2018.09.016 – volume: 32 start-page: e100005 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0340 article-title: Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls publication-title: Gen Psychiatr doi: 10.1136/gpsych-2018-100005 – volume: 49 start-page: 355 year: 2001 ident: 10.1016/j.eswa.2023.119709_b0310 article-title: Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease publication-title: Ann. Neurol. doi: 10.1002/ana.72 – ident: 10.1016/j.eswa.2023.119709_b0280 – ident: 10.1016/j.eswa.2023.119709_b0330 doi: 10.1109/CBMS49503.2020.00020 – volume: 14 start-page: 259 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0230 article-title: Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00259 – ident: 10.1016/j.eswa.2023.119709_b0180 doi: 10.1109/INCoS.2013.36 – volume: 201 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0225 article-title: RobIn: A robust interpretable deep network for schizophrenia diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117158 – volume: 11 start-page: 3254 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0320 article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage publication-title: Sci. Rep. doi: 10.1038/s41598-020-74399-w – ident: 10.1016/j.eswa.2023.119709_b0370 doi: 10.1109/CVPR.2016.319 – volume: 10 start-page: 22252 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0030 article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging publication-title: Sci. Rep. doi: 10.1038/s41598-020-79243-9 – volume: 31 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0065 article-title: Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease publication-title: NeuroImage: Clinical – ident: 10.1016/j.eswa.2023.119709_b0195 doi: 10.3389/fninf.2018.00035 – volume: 132 start-page: 1833 year: 2009 ident: 10.1016/j.eswa.2023.119709_b0245 article-title: The neural correlates of verbal short-term memory in Alzheimer’s disease: An fMRI study publication-title: Brain doi: 10.1093/brain/awp075 – volume: 290 start-page: 456 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0085 article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain publication-title: Radiology doi: 10.1148/radiol.2018180958 – volume: 215 start-page: 265 year: 2011 ident: 10.1016/j.eswa.2023.119709_b0105 article-title: Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease publication-title: Brain Struct. Funct. doi: 10.1007/s00429-010-0283-8 – volume: 126 start-page: 218 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0275 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.03.017 – volume: 1 start-page: 61 year: 2014 ident: 10.1016/j.eswa.2023.119709_b0055 article-title: Brain Imaging Analysis publication-title: Annu Rev Stat Appl doi: 10.1146/annurev-statistics-022513-115611 – volume: 353 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0365 article-title: Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2021.109098 – ident: 10.1016/j.eswa.2023.119709_b0025 doi: 10.1016/j.neurobiolaging.2020.12.005 – ident: 10.1016/j.eswa.2023.119709_b0240 doi: 10.1117/12.2550753 – year: 2020 ident: 10.1016/j.eswa.2023.119709_b0210 article-title: Prediction of conversion to Alzheimer’s disease using deep survival analysis of MRI images publication-title: Brain Communications – volume: 6 year: 2018 ident: 10.1016/j.eswa.2023.119709_b0205 article-title: TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-018-0531-3 – volume: 131 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0235 article-title: Multi-scale attention-based pseudo-3D convolution neural network for Alzheimer’s disease diagnosis using structural MRI publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108825 – ident: 10.1016/j.eswa.2023.119709_b0160 doi: 10.1002/jmri.21049 – ident: 10.1016/j.eswa.2023.119709_b0270 doi: 10.1109/ICCV.2017.74 – volume: 2018 start-page: 1571 year: 2018 ident: 10.1016/j.eswa.2023.119709_b0335 article-title: Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification publication-title: AMIA Annu. Symp. Proc. – volume: 18 start-page: 71 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0090 article-title: 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI publication-title: Neuroinformatics doi: 10.1007/s12021-019-09419-w – start-page: 6999 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0185 article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 818 year: 2014 ident: 10.1016/j.eswa.2023.119709_b0360 article-title: Visualizing and Understanding Convolutional Networks – volume: 24 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0110 article-title: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2019.102003 – volume: 10 start-page: e0130140 year: 2015 ident: 10.1016/j.eswa.2023.119709_b0020 article-title: On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation publication-title: PLoS One doi: 10.1371/journal.pone.0130140 – volume: 74 start-page: 201 year: 2010 ident: 10.1016/j.eswa.2023.119709_b0250 article-title: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 80 start-page: 479 year: 1990 ident: 10.1016/j.eswa.2023.119709_b0060 article-title: Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia publication-title: Acta Neuropathol. doi: 10.1007/BF00294607 – ident: 10.1016/j.eswa.2023.119709_b0170 doi: 10.1186/s12859-020-03848-0 – year: 2018 ident: 10.1016/j.eswa.2023.119709_b0120 article-title: Deep Learning on MRI Affirms the Prominence of the Hippocampal Formation in Alzheimer’s Disease Classification. bioRxiv publication-title: Alzheimer’s Disease Neuroimaging Initiative – volume: 206 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0135 article-title: Bridging the gap between complexity and interpretability of a data analytics-based process for benchmarking energy performance of buildings publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117649 – volume: 294 start-page: 398 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0215 article-title: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI publication-title: Radiology doi: 10.1148/radiol.2019191061 – volume: 243 start-page: 330 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0145 article-title: Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks publication-title: Schizophrenia Research doi: 10.1016/j.schres.2021.06.011 – volume: 182 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0035 article-title: An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115271 – volume: 1341 start-page: 1 year: 2009 ident: 10.1016/j.eswa.2023.119709_b0115 article-title: Visualizing higher-layer features of a deep network publication-title: University of Montreal – volume: 8 year: 2020 ident: 10.1016/j.eswa.2023.119709_b0130 article-title: Alzheimer’s Disease Detection Through Whole-Brain 3D-CNN MRI publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.534592 – ident: 10.1016/j.eswa.2023.119709_b0150 doi: 10.3389/fnins.2019.00509 – ident: 10.1016/j.eswa.2023.119709_b0295 doi: 10.1109/ICSCDS53736.2022.9760858 – ident: 10.1016/j.eswa.2023.119709_b0350 doi: 10.1101/2021.05.07.443184 – volume: 10 start-page: 2173 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0305 article-title: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline publication-title: Nat. Commun. doi: 10.1038/s41467-019-10212-1 – volume: 8 start-page: 104 year: 2016 ident: 10.1016/j.eswa.2023.119709_b0325 article-title: Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease publication-title: Genome Med. doi: 10.1186/s13073-016-0355-3 – volume: 10 start-page: 869 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0375 article-title: Applications of Deep Learning to Neuro-Imaging Techniques publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00869 – volume: 10 start-page: 1059 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0075 article-title: The association between distinct frontal brain volumes and behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and frontotemporal dementia publication-title: Front. Neurol. doi: 10.3389/fneur.2019.01059 – volume: 35 year: 2022 ident: 10.1016/j.eswa.2023.119709_b0345 article-title: A Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI publication-title: Sustainable Computing: Informatics and Systems – volume: 51 start-page: 145 year: 1994 ident: 10.1016/j.eswa.2023.119709_b0015 article-title: Neuropathologic changes of the temporal pole in Alzheimer’s disease and Pick’s disease publication-title: Arch. Neurol. doi: 10.1001/archneur.1994.00540140051014 – volume: 11 start-page: 194 year: 2019 ident: 10.1016/j.eswa.2023.119709_b0050 article-title: Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease Classification publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00194 – volume: 138 start-page: 49 year: 2017 ident: 10.1016/j.eswa.2023.119709_b0140 article-title: Classification of CT brain images based on deep learning networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.10.007 – volume: 2021 start-page: 5514839 year: 2021 ident: 10.1016/j.eswa.2023.119709_b0010 article-title: Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN) publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/5514839 |
SSID | ssj0017007 |
Score | 2.53642 |
Snippet | Deep Neural Networks (DNN) are prominent Machine Learning (ML) algorithms widely used, especially in medical tasks. Among them, Convolutional Neural Networks... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119709 |
SubjectTerms | Alzheimer's Disease Classification Convolutional Neural Networks (CNN) Explainable Deep Learning Genetic Algorithm |
Title | An evolutionary explainable deep learning approach for Alzheimer's MRI classification |
URI | https://dx.doi.org/10.1016/j.eswa.2023.119709 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5QGJAaUlD8fNGFVULagdgErdootzgaISqrY8B347vsSpQEIdGDIksqP4cr476777jrFTBdrPJQCWFA6lGYXecxiA5UuVeuD5LRlToXB_4HeH3tVIjCqsXdbCEKzS2P7CpufW2jxpGmk2p-Nx81YHB9odUqYxP7hQobnnSdLyxtcS5kH0c7Lg25MWjTaFMwXGC-dvxD3kuA3KphEo8S_n9MPhdLbYhokUeVh8zDarYLbDNssuDNxsyl02DDOOr0aDYPbB8X06MTVRPEGcctMZ4p6XBOJcR6o8nHw-4PgJZ2dz3r_pcUVxNAGH8n-1x4ady7t21zLNEiyl17-w3Bb4EkC6Mk6FJA4W7XsSR0cD6ARgp3rzAkp9OkjgQtlJ3EqFCmIIBEpXqFS6-6yaPWd4wLivlAzAF14aoKf8BFBfoGLlKk-_wa4xu5RSpAyTODW0mEQlZOwxIslGJNmokGyNnS_nTAsejZWjRSn86Jc2RNrQr5h3-M95R2yd7ggCZotjVl3MXvBEBxuLuJ5rU52thb3r7uAbiTfUUg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45oDEAZWtjzTrsZqYOvY4wCbtVqVpCkOjVNt4_nriNZ1AQjtw6KWNq-qrYzvyZxvgQnDl52LODUYtTDNSteekxw2XicThjttgERYK9_puMHRuR3RUgmZRC4O0Sm37c5u-sNb6Tk2jWcvG49q9Cg6UO8RM4-LgQteggt2paBkqfrsT9JfJBFbPq6bVegMFdO1MTvOSs3dsP2TZ15hQQ17iX_7ph89pbcOmDhaJn3_PDpRkugtbxSAGovflHgz9lMg3rUR8-knkRzbRZVEkljIjejjEAyl6iBMVrBJ_8vUox89yejkjvbs2ERhKI3do8bv2Ydi6GTQDQ89LMISCYG7YDe4yzpnNooQybMOi3E9sqYBAWh43E7V_uWTqgBDzujDjqJFQ4UXco5LZVCTMPoBy-pLKQyCuEMzjLnUSTzrCjblUFxeRsIWj3mBWwSxQCoVuJo4zLSZhwRp7ChHZEJENc2SrcLWUyfJWGitX0wL88JdChMrWr5A7-qfcOawHg1437Lb7nWPYwCfICDPpCZTn01d5qmKPeXSmdesb3XLXAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+explainable+deep+learning+approach+for+Alzheimer%27s+MRI+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Shojaei%2C+Shakila&rft.au=Saniee+Abadeh%2C+Mohammad&rft.au=Momeni%2C+Zahra&rft.date=2023-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=220&rft_id=info:doi/10.1016%2Fj.eswa.2023.119709&rft.externalDocID=S0957417423002105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |