Deep learning based enhanced tumor segmentation approach for MR brain images
Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task...
Saved in:
Published in | Applied soft computing Vol. 78; pp. 346 - 354 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task. Several methodologies have been developed with an objective to enhance the segmentation efficiency of the automated system. However, there is always scope for improvement in the segmentation process of medical image analysis. In this work, deep learning-based approach is proposed for brain tumor image segmentation. The proposed method includes the concept of Stationary Wavelet Transform (SWT) and new Growing Convolution Neural Network (GCNN). The significant objective of this work is to enhance the accuracy of the conventional system. A comparative analysis with Support Vector Machine (SVM) and Convolution Neural Network (CNN) is carried out in this work. The experimental results prove that the proposed technique has outperformed SVM and CNN in terms of accuracy, PSNR, MSE and other performance parameters.
•A Growing Deep Convolutional Network (GCNN) is proposed for Magnetic Resonance brain image segmentation.•The proposed approach is different from the conventional deep learning approach.•Conventional CNN is also implemented for comparative analysis.•An extensive quantitative analysis is performed in terms of accuracy measures to validate the superior nature of the proposed approach. |
---|---|
AbstractList | Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task. Several methodologies have been developed with an objective to enhance the segmentation efficiency of the automated system. However, there is always scope for improvement in the segmentation process of medical image analysis. In this work, deep learning-based approach is proposed for brain tumor image segmentation. The proposed method includes the concept of Stationary Wavelet Transform (SWT) and new Growing Convolution Neural Network (GCNN). The significant objective of this work is to enhance the accuracy of the conventional system. A comparative analysis with Support Vector Machine (SVM) and Convolution Neural Network (CNN) is carried out in this work. The experimental results prove that the proposed technique has outperformed SVM and CNN in terms of accuracy, PSNR, MSE and other performance parameters.
•A Growing Deep Convolutional Network (GCNN) is proposed for Magnetic Resonance brain image segmentation.•The proposed approach is different from the conventional deep learning approach.•Conventional CNN is also implemented for comparative analysis.•An extensive quantitative analysis is performed in terms of accuracy measures to validate the superior nature of the proposed approach. |
Author | Mittal, Mamta Kaur, Sumit Verma, Amit Jude Hemanth, D. Goyal, Lalit Mohan Kaur, Iqbaldeep |
Author_xml | – sequence: 1 givenname: Mamta orcidid: 0000-0003-0490-4413 surname: Mittal fullname: Mittal, Mamta organization: Department of CSE, G.B. Pant Govt. Engineering College, Okhla, New Delhi, India – sequence: 2 givenname: Lalit Mohan surname: Goyal fullname: Goyal, Lalit Mohan organization: Department of Computer Engineering, J.C. Bose, University of Science & Technology, YMCA, Faridabad, India – sequence: 3 givenname: Sumit surname: Kaur fullname: Kaur, Sumit organization: Department of CSE, Gurukashi University, Bathinda, Punjab, India – sequence: 4 givenname: Iqbaldeep surname: Kaur fullname: Kaur, Iqbaldeep organization: Department of CSE, Chandigarh Group of Colleges, Landran, Punjab, India – sequence: 5 givenname: Amit surname: Verma fullname: Verma, Amit organization: Department of CSE, Chandigarh Group of Colleges, Landran, Punjab, India – sequence: 6 givenname: D. surname: Jude Hemanth fullname: Jude Hemanth, D. email: judehemanth@karunya.edu organization: Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India |
BookMark | eNp9kMtKAzEUhoNUsK2-gKu8wIy5TDMJuJF6hRFBdB2SzJk2pc0MySj49maoKxddnR8O3-E_3wLNQh8AoWtKSkqouNmVJvWuZISqkrCScHGG5lTWrFBC0lnOKyGLSlXiAi1S2pEMKSbnqLkHGPAeTAw-bLA1CVoMYWuCy2H8OvQRJ9gcIIxm9H3AZhhib9wWd3nz-o5tND5gfzAbSJfovDP7BFd_c4k-Hx8-1s9F8_b0sr5rCscJGQsuDVOGddxyI1hLWwAGUtWsqmXd2po6awVRruJCgeW2WrG6ptA560jHFeNLJI93XexTitBp54_1xtxmrynRkxW905MVPVnRhOlsJaPsHzrEXD7-nIZujxDkp749RJ2ch8mQj-BG3fb-FP4L0P5-lA |
CitedBy_id | crossref_primary_10_1007_s11042_022_12445_7 crossref_primary_10_1016_j_asoc_2020_106335 crossref_primary_10_3390_jpm12020275 crossref_primary_10_1039_D3LC00935A crossref_primary_10_1109_ACCESS_2024_3394541 crossref_primary_10_1007_s11042_022_14316_7 crossref_primary_10_1007_s12553_020_00514_6 crossref_primary_10_1080_07038992_2021_2010036 crossref_primary_10_1016_j_mehy_2019_109507 crossref_primary_10_1007_s11837_023_06145_2 crossref_primary_10_1016_j_asoc_2022_109970 crossref_primary_10_1016_j_asoc_2020_106565 crossref_primary_10_1016_j_bspc_2023_105477 crossref_primary_10_3390_cancers13215546 crossref_primary_10_3390_app13063680 crossref_primary_10_1007_s11063_020_10372_y crossref_primary_10_1371_journal_pone_0302880 crossref_primary_10_1002_ima_22647 crossref_primary_10_1007_s42979_020_00225_9 crossref_primary_10_1002_arp_1763 crossref_primary_10_1007_s41870_024_01937_4 crossref_primary_10_1002_arp_1886 crossref_primary_10_1007_s12652_021_03544_8 crossref_primary_10_1016_j_patrec_2021_01_005 crossref_primary_10_1007_s11227_022_05033_x crossref_primary_10_1007_s11042_020_10443_1 crossref_primary_10_1016_j_asoc_2021_107164 crossref_primary_10_1016_j_asoc_2020_106573 crossref_primary_10_1016_j_asoc_2025_112909 crossref_primary_10_3233_IDT_240988 crossref_primary_10_32604_cmc_2021_016816 crossref_primary_10_2174_1573405617666210217154446 crossref_primary_10_1016_j_asoc_2021_107248 crossref_primary_10_1007_s11831_024_10128_0 crossref_primary_10_1109_RBME_2021_3131358 crossref_primary_10_1007_s11831_022_09758_z crossref_primary_10_1016_j_compbiomed_2023_106538 crossref_primary_10_1080_0952813X_2021_1966842 crossref_primary_10_3390_math11071635 crossref_primary_10_1016_j_prime_2024_100498 crossref_primary_10_1007_s11042_023_17789_2 crossref_primary_10_1097_MS9_0000000000001175 crossref_primary_10_1016_j_asoc_2020_106828 crossref_primary_10_1007_s11042_023_15809_9 crossref_primary_10_1007_s11042_024_18489_1 crossref_primary_10_1007_s40747_021_00321_0 crossref_primary_10_3389_fnins_2021_679847 crossref_primary_10_1016_j_matpr_2020_06_548 crossref_primary_10_1016_j_asoc_2021_107386 crossref_primary_10_1016_j_asoc_2020_106672 crossref_primary_10_1016_j_asoc_2020_106311 crossref_primary_10_1016_j_cmpb_2020_105809 crossref_primary_10_1016_j_patrec_2019_11_020 crossref_primary_10_1109_TFUZZ_2021_3052461 crossref_primary_10_1186_s40537_024_01050_0 crossref_primary_10_1186_s12938_024_01201_7 crossref_primary_10_32604_cmes_2024_051475 crossref_primary_10_13005_bpj_2409 crossref_primary_10_48175_IJARSCT_14211 crossref_primary_10_3390_sym12030416 crossref_primary_10_2174_1573405616666210108122048 crossref_primary_10_1002_ima_22735 crossref_primary_10_1007_s00521_021_06602_6 crossref_primary_10_1002_nbm_70001 crossref_primary_10_1016_j_eswa_2022_119435 crossref_primary_10_48047_z9gth477 crossref_primary_10_1109_ACCESS_2019_2935121 crossref_primary_10_32604_cmc_2021_015154 crossref_primary_10_3233_THC_248016 crossref_primary_10_3390_electronics10172046 crossref_primary_10_3390_jpm10040224 crossref_primary_10_3390_brainsci10020118 crossref_primary_10_1080_09720510_2020_1818451 crossref_primary_10_3389_fnins_2021_687496 crossref_primary_10_1007_s40747_021_00563_y crossref_primary_10_2139_ssrn_4130959 crossref_primary_10_3390_computers11010010 crossref_primary_10_1016_j_bspc_2021_103090 crossref_primary_10_32604_iasc_2023_026341 crossref_primary_10_31202_ecjse_1169424 crossref_primary_10_1080_0952813X_2021_1949755 crossref_primary_10_1016_j_apples_2023_100153 crossref_primary_10_1155_2021_7265644 crossref_primary_10_1016_j_eswa_2023_119963 crossref_primary_10_1002_ima_22720 crossref_primary_10_1109_RBME_2022_3185292 crossref_primary_10_32604_cmc_2021_014229 crossref_primary_10_1016_j_gep_2022_119248 crossref_primary_10_1142_S0218001423570136 crossref_primary_10_1002_widm_1564 crossref_primary_10_1080_21681163_2023_2199891 crossref_primary_10_3390_diagnostics11061047 crossref_primary_10_1016_j_asoc_2020_106132 crossref_primary_10_1155_2023_6460639 crossref_primary_10_1109_ACCESS_2020_2966879 crossref_primary_10_1109_TFUZZ_2024_3372608 crossref_primary_10_1159_000525929 crossref_primary_10_1186_s12876_021_02055_2 crossref_primary_10_1007_s42979_020_00340_7 crossref_primary_10_3390_app10051894 crossref_primary_10_1002_ima_22831 crossref_primary_10_3233_JIFS_211879 crossref_primary_10_1016_j_procs_2020_03_221 crossref_primary_10_1016_j_ijcce_2021_01_001 crossref_primary_10_1007_s11468_024_02635_4 crossref_primary_10_1007_s11042_024_19313_6 crossref_primary_10_3390_brainsci9100289 crossref_primary_10_1016_j_asoc_2020_106364 crossref_primary_10_1155_2021_6653879 crossref_primary_10_1016_j_eswa_2020_114329 crossref_primary_10_1016_j_patrec_2019_12_024 crossref_primary_10_1016_j_jneumeth_2021_109091 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_3389_fphys_2022_1094743 crossref_primary_10_1142_S0219467822400010 crossref_primary_10_1007_s11227_021_03901_6 crossref_primary_10_1002_ima_22826 crossref_primary_10_1109_ACCESS_2023_3336862 crossref_primary_10_1109_ACCESS_2024_3379136 crossref_primary_10_3233_IDT_220256 crossref_primary_10_1007_s41870_023_01572_5 crossref_primary_10_1016_j_asoc_2020_107046 crossref_primary_10_3390_s20041068 |
Cites_doi | 10.1016/j.eij.2015.01.003 10.1007/978-3-642-02906-6_63 10.1109/TMAG.2011.2158520 10.1109/JBHI.2014.2360515 10.7763/IJCTE.2010.V2.207 10.1016/j.patrec.2017.02.005 10.1016/j.neuroimage.2007.05.018 10.1016/j.asoc.2014.03.019 10.1007/s10278-013-9600-0 10.1109/JSTSP.2008.2011110 10.1142/S0218339010003652 10.1155/2013/930301 10.1002/cpe.4962 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.02.036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 354 |
ExternalDocumentID | 10_1016_j_asoc_2019_02_036 S1568494619301000 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-38a29a2f3b3a62d1dee2e89724787db71cbb609c4369eb3b452771efcbc0f3923 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:02 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 23 02:24:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Growing Convolution Neural Network (GCNN) Random forest Brain tumor MRI Segmentation Stationary Wavelet Transform (SWT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-38a29a2f3b3a62d1dee2e89724787db71cbb609c4369eb3b452771efcbc0f3923 |
ORCID | 0000-0003-0490-4413 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_02_036 crossref_primary_10_1016_j_asoc_2019_02_036 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_02_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Abdel-Maksoud, Elmogy, Al-Awadi (b7) 2014; 16 Wang, Xu, Dong, Pan (b15) 2014 Arunkumar, Mohammed, Ghani, Ibrahim, Abdulhay, Ramirez-Gonzalez, de Albuquerque (b21) 2018 Singh, Chetty, Sharma (b2) 2012 Damodharan, Raghavan (b4) 2015; 12 Reboucas Filho, Reboucas, Marinho, Sarmento, Tavares, de Albuquerque (b22) 2017; 94 Kumar, Vijayakumar (b13) 2015; 23 Guo, Zhao, Wu, Li, Xu, Yan (b1) 2011; 47 Sachdeva, Kumar, Gupta, Khandelwal, Ahuja, Segmentation, extraction (b10) 2013; 26 Bouvrie (b27) 2006 Ayachi, Ben Amor (b30) 2009; 5590 Zhao, Xie, Cheung, Wu (b26) 2014 Samper-González, Burgos, Bottani, Fontanella, Lu, Marcoux, Bertrand (b25) 2018 Zanaty (b8) 2012; 45 Kumar, Vijayakumar, Cui, Wang, Fan, Feng, Lei (b14) 2015; 23 Chaddad (b16) 2015 Lal, Chandra (b18) 2014; 11 Ain, Jaffar, Choi (b6) 2014; 21 Guo, Zhao, Wu, Li, Xu, Yan (b11) 2011; 47 Vrooman, Cocosco, Lijn, Stokking, Ikram, Vernooij (b29) 2007; 37 AntoniosMakropoulos, Gousias, Ledig, Aljabar, Serag, Hajnal, Edwards, Counsell, Rueckert (b24) Sept. 2014; 33 Deepa, Arunadevi (b17) 2013; 46 Logeswari, Karnan (b19) 2010; 2 Demirhan, Toru, Guler (b9) 2015; 19 Zhang, Wang, Huo, Wu, Liu (b23) 2010; 18 Alfonse, Salem (b5) 2016; 40 Yao, Chen, Chow (b12) 2009; 3 Arunkumar, Mohammed, Mostafa, Ibrahim, Rodrigues, Albuquerque (b20) 2018 Kumari (b3) 2013; 3 Logeswari, Karnan (b28) 2010; 2 Kharrat, Gasmi, Messaoud, Benamrane, Abid (b31) 2010; 9 C. Neethu Ouseph, K. Shruti, 2017 A Reliable Method for Brain Tumor Detection Using Cnn Technique, National Conference on Emerging Research Trends in Electrical, Electronics & Instrumentation, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 64-68. Singh (10.1016/j.asoc.2019.02.036_b2) 2012 Arunkumar (10.1016/j.asoc.2019.02.036_b21) 2018 Demirhan (10.1016/j.asoc.2019.02.036_b9) 2015; 19 Chaddad (10.1016/j.asoc.2019.02.036_b16) 2015 Zanaty (10.1016/j.asoc.2019.02.036_b8) 2012; 45 Sachdeva (10.1016/j.asoc.2019.02.036_b10) 2013; 26 AntoniosMakropoulos (10.1016/j.asoc.2019.02.036_b24) 2014; 33 Ayachi (10.1016/j.asoc.2019.02.036_b30) 2009; 5590 Kumar (10.1016/j.asoc.2019.02.036_b13) 2015; 23 Zhao (10.1016/j.asoc.2019.02.036_b26) 2014 Logeswari (10.1016/j.asoc.2019.02.036_b19) 2010; 2 Kumar (10.1016/j.asoc.2019.02.036_rg14a) 2015; 23 Logeswari (10.1016/j.asoc.2019.02.036_b28) 2010; 2 Kumari (10.1016/j.asoc.2019.02.036_b3) 2013; 3 Abdel-Maksoud (10.1016/j.asoc.2019.02.036_b7) 2014; 16 Lal (10.1016/j.asoc.2019.02.036_b18) 2014; 11 Reboucas Filho (10.1016/j.asoc.2019.02.036_b22) 2017; 94 Yao (10.1016/j.asoc.2019.02.036_b12) 2009; 3 Alfonse (10.1016/j.asoc.2019.02.036_b5) 2016; 40 Bouvrie (10.1016/j.asoc.2019.02.036_b27) 2006 Vrooman (10.1016/j.asoc.2019.02.036_b29) 2007; 37 10.1016/j.asoc.2019.02.036_b32 Ain (10.1016/j.asoc.2019.02.036_b6) 2014; 21 Guo (10.1016/j.asoc.2019.02.036_b1) 2011; 47 Guo (10.1016/j.asoc.2019.02.036_b11) 2011; 47 Wang (10.1016/j.asoc.2019.02.036_b15) 2014 Damodharan (10.1016/j.asoc.2019.02.036_b4) 2015; 12 Cui (10.1016/j.asoc.2019.02.036_rg14b) 2013; 2013 Deepa (10.1016/j.asoc.2019.02.036_b17) 2013; 46 Samper-González (10.1016/j.asoc.2019.02.036_b25) 2018 Arunkumar (10.1016/j.asoc.2019.02.036_b20) 2018 Kharrat (10.1016/j.asoc.2019.02.036_b31) 2010; 9 Zhang (10.1016/j.asoc.2019.02.036_b23) 2010; 18 |
References_xml | – year: 2014 ident: b15 article-title: Active contour model coupling with higher order diffusion for medical image segmentation publication-title: Int. J. Biomed. Imaging – volume: 26 start-page: 1141 year: 2013 end-page: 1150 ident: b10 article-title: Feature extraction and multiclass brain tumor classification publication-title: J. Digit. Imaging – volume: 45 start-page: 16 year: 2012 end-page: 22 ident: b8 article-title: Determination of gray matter (gm) and white matter (wm) volume in brain magnetic resonance images (mri) publication-title: Int. J. Comput. Appl. – volume: 2 start-page: 591 year: 2010 ident: b19 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self-organizing map publication-title: Int. J. Comput. Theory and Eng. – volume: 94 start-page: 211 year: 2017 end-page: 218 ident: b22 article-title: Analysis of human tissue densities: A new approach to extract features from medical images publication-title: Pattern Recognit. Lett. – volume: 3 start-page: 94 year: 2009 end-page: 100 ident: b12 article-title: Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform publication-title: IEEE J. Sel. Top. Signal Process. – reference: C. Neethu Ouseph, K. Shruti, 2017 A Reliable Method for Brain Tumor Detection Using Cnn Technique, National Conference on Emerging Research Trends in Electrical, Electronics & Instrumentation, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 64-68. – year: 2018 ident: b25 article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to MRI and PET data – volume: 2 start-page: 1793 year: 2010 end-page: 8201 ident: b28 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map publication-title: Int. J. Comput. Theory and Eng. – volume: 37 start-page: 71 year: 2007 end-page: 81 ident: b29 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: NeuroImage – volume: 40 start-page: 11 year: 2016 end-page: 21 ident: b5 article-title: An automatic classification of brain tumors through MRI using support vector machine publication-title: Egypt. Comput. Sci. J. – year: 2006 ident: b27 article-title: Notes on convolutional neural networks – volume: 3 start-page: 1686 year: 2013 end-page: 1690 ident: b3 article-title: SVM Classification an approach on detecting abnormality in brain MRI images publication-title: Int. J. Eng. Res. Appl. – year: 2018 ident: b20 article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks publication-title: Concurr. Comput.: Pract. Exper. – volume: 23 start-page: 2106 year: 2015 end-page: 2116 ident: b14 article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine publication-title: Middle-East J. Sci. Res. – start-page: 348 year: 2014 end-page: 361 ident: b26 article-title: Plant leaf identification via a growing convolution neural network with progressive sample learning publication-title: Asian Conference on Computer Vision – volume: 19 start-page: 1451 year: 2015 end-page: 1458 ident: b9 article-title: Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks publication-title: IEEE J. Biomed. Health Inf. – volume: 33 start-page: 1818 year: Sept. 2014 end-page: 1831 ident: b24 article-title: Rueckert automatic whole brain MRI segmentation of the developing neonatal brain. medical imaging publication-title: IEEE Trans. – volume: 9 start-page: 71 year: 2010 end-page: 82 ident: b31 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine publication-title: Leonardo J. Sci. – volume: 46 start-page: 111 year: 2013 end-page: 121 ident: b17 article-title: Extreme learning machine for classification of brain tumor in 3d MR images publication-title: Informatologia – volume: 47 start-page: 3849 year: 2011 end-page: 3852 ident: b1 article-title: Tumor detection in MR images using one-class immune feature weighted SVMs publication-title: IEEE Trans. Magn. – start-page: 94 year: 2012 end-page: 105 ident: b2 article-title: A novel machine learning approach for detecting the brain abnormalities from mri structural images publication-title: IAPR International Conference on Pattern Recognition in Bioinformatics – volume: 18 start-page: 115 year: 2010 end-page: 132 ident: b23 article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications publication-title: J. Biol. Systems – year: 2015 ident: b16 article-title: Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models publication-title: Int. J. Biomed. Imaging – volume: 16 start-page: 71 year: 2014 end-page: 81 ident: b7 article-title: Brain tumor segmentation based on a hybrid clustering technique publication-title: Egypt. Inform. J. – volume: 5590 start-page: 736 year: 2009 end-page: 747 ident: b30 article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty publication-title: Lecture Notes in Comput. Sci. – volume: 11 start-page: 95 year: 2014 end-page: 102 ident: b18 article-title: Efficient algorithm for contrast enhancement of natural images publication-title: Int. Arab J. Inform. Technol. – volume: 21 start-page: 330 year: 2014 end-page: 340 ident: b6 article-title: Fuzzy Anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor publication-title: Appl. Soft Comput. J. – volume: 23 start-page: 2106 year: 2015 end-page: 2116 ident: b13 article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine publication-title: Middle-East J. Sci. Res. – volume: 12 start-page: 42 year: 2015 end-page: 52 ident: b4 article-title: Combining tissue segmentation and neural network for brain tumor detection publication-title: Int. Arab J. Inform. Technol. – volume: 47 start-page: 3849 year: 2011 end-page: 3852 ident: b11 article-title: Tumor detection in MR images using one-class immune feature weighted SVMs publication-title: IEEE Trans. Magn. – start-page: 1 year: 2018 end-page: 14 ident: b21 article-title: K-means clustering and neural network for object detecting and identifying abnormality of brain tumor publication-title: Soft Comput. – issue: 11 year: 2015 ident: 10.1016/j.asoc.2019.02.036_b16 article-title: Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models publication-title: Int. J. Biomed. Imaging – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.02.036_b21 article-title: K-means clustering and neural network for object detecting and identifying abnormality of brain tumor publication-title: Soft Comput. – volume: 16 start-page: 71 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b7 article-title: Brain tumor segmentation based on a hybrid clustering technique publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.01.003 – volume: 5590 start-page: 736 year: 2009 ident: 10.1016/j.asoc.2019.02.036_b30 article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty publication-title: Lecture Notes in Comput. Sci. doi: 10.1007/978-3-642-02906-6_63 – volume: 47 start-page: 3849 issue: 10 year: 2011 ident: 10.1016/j.asoc.2019.02.036_b1 article-title: Tumor detection in MR images using one-class immune feature weighted SVMs publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2158520 – volume: 23 start-page: 2106 issue: 9 year: 2015 ident: 10.1016/j.asoc.2019.02.036_rg14a article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine publication-title: Middle-East J. Sci. Res. – ident: 10.1016/j.asoc.2019.02.036_b32 – volume: 46 start-page: 111 issue: 2 year: 2013 ident: 10.1016/j.asoc.2019.02.036_b17 article-title: Extreme learning machine for classification of brain tumor in 3d MR images publication-title: Informatologia – volume: 33 start-page: 1818 issue: 9 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b24 article-title: Rueckert automatic whole brain MRI segmentation of the developing neonatal brain. medical imaging publication-title: IEEE Trans. – volume: 19 start-page: 1451 issue: 4 year: 2015 ident: 10.1016/j.asoc.2019.02.036_b9 article-title: Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2360515 – volume: 45 start-page: 16 year: 2012 ident: 10.1016/j.asoc.2019.02.036_b8 article-title: Determination of gray matter (gm) and white matter (wm) volume in brain magnetic resonance images (mri) publication-title: Int. J. Comput. Appl. – volume: 2 start-page: 591 issue: 4 year: 2010 ident: 10.1016/j.asoc.2019.02.036_b19 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self-organizing map publication-title: Int. J. Comput. Theory and Eng. doi: 10.7763/IJCTE.2010.V2.207 – volume: 9 start-page: 71 issue: 17 year: 2010 ident: 10.1016/j.asoc.2019.02.036_b31 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine publication-title: Leonardo J. Sci. – volume: 3 start-page: 1686 issue: 4 year: 2013 ident: 10.1016/j.asoc.2019.02.036_b3 article-title: SVM Classification an approach on detecting abnormality in brain MRI images publication-title: Int. J. Eng. Res. Appl. – start-page: 348 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b26 article-title: Plant leaf identification via a growing convolution neural network with progressive sample learning – issue: 8 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b15 article-title: Active contour model coupling with higher order diffusion for medical image segmentation publication-title: Int. J. Biomed. Imaging – year: 2006 ident: 10.1016/j.asoc.2019.02.036_b27 – start-page: 94 year: 2012 ident: 10.1016/j.asoc.2019.02.036_b2 article-title: A novel machine learning approach for detecting the brain abnormalities from mri structural images – volume: 40 start-page: 11 year: 2016 ident: 10.1016/j.asoc.2019.02.036_b5 article-title: An automatic classification of brain tumors through MRI using support vector machine publication-title: Egypt. Comput. Sci. J. – volume: 94 start-page: 211 year: 2017 ident: 10.1016/j.asoc.2019.02.036_b22 article-title: Analysis of human tissue densities: A new approach to extract features from medical images publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.02.005 – volume: 37 start-page: 71 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.02.036_b29 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.05.018 – volume: 23 start-page: 2106 issue: 9 year: 2015 ident: 10.1016/j.asoc.2019.02.036_b13 article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine publication-title: Middle-East J. Sci. Res. – year: 2018 ident: 10.1016/j.asoc.2019.02.036_b25 – volume: 21 start-page: 330 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b6 article-title: Fuzzy Anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.03.019 – volume: 26 start-page: 1141 issue: 6 year: 2013 ident: 10.1016/j.asoc.2019.02.036_b10 article-title: Feature extraction and multiclass brain tumor classification publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9600-0 – volume: 47 start-page: 3849 issue: 10 year: 2011 ident: 10.1016/j.asoc.2019.02.036_b11 article-title: Tumor detection in MR images using one-class immune feature weighted SVMs publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2158520 – volume: 3 start-page: 94 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.02.036_b12 article-title: Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2008.2011110 – volume: 18 start-page: 115 issue: spec01 year: 2010 ident: 10.1016/j.asoc.2019.02.036_b23 article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications publication-title: J. Biol. Systems doi: 10.1142/S0218339010003652 – volume: 2013 start-page: 930301 year: 2013 ident: 10.1016/j.asoc.2019.02.036_rg14b article-title: Localized fcm clustering with spatial information for medical image segmentation and bias field estimation publication-title: Int. J. Biomed. Imaging doi: 10.1155/2013/930301 – volume: 12 start-page: 42 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.02.036_b4 article-title: Combining tissue segmentation and neural network for brain tumor detection publication-title: Int. Arab J. Inform. Technol. – volume: 11 start-page: 95 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.02.036_b18 article-title: Efficient algorithm for contrast enhancement of natural images publication-title: Int. Arab J. Inform. Technol. – year: 2018 ident: 10.1016/j.asoc.2019.02.036_b20 article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.4962 – volume: 2 start-page: 1793 issue: 4 year: 2010 ident: 10.1016/j.asoc.2019.02.036_b28 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map publication-title: Int. J. Comput. Theory and Eng. |
SSID | ssj0016928 |
Score | 2.6045027 |
Snippet | Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 346 |
SubjectTerms | Brain tumor MRI Growing Convolution Neural Network (GCNN) Random forest Segmentation Stationary Wavelet Transform (SWT) |
Title | Deep learning based enhanced tumor segmentation approach for MR brain images |
URI | https://dx.doi.org/10.1016/j.asoc.2019.02.036 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3qUuTNG2OYzqmbkOmg91Ck6Zz4rqxdVf_dpM2FQXZwVNpeA_Kj5f3QX_vPQCuCZUSEapNbYJSj3JGvZhJ5CU45IppilFoG5wHQ9Yb08dJMKmBTtULY2mVzveXPr3w1u6k5dBsLWez1oupPCLKqakAjJGam2072Glorfz285vm4TNe7Fe1wp6Vdo0zJccrNghYehcv5nYWY5r_CE4_Ak73AOy5TBG2y485BDWdHYH9agsDdJfyGPTvtF5Ct_1hCm1YSqDO3opf-zDfzBcruNbTuWsyymA1RhyafBUORlDaLRFwNjeeZX0Cxt37107PczsSPEUQyj0SxZjHOCWSxAwnfqI11hEPsR26k8jQV1IyxBUljJu6WdIAh6GvUyUVSk1uRE5BPVtk-gxAFStmDmUUKhPa0ig2lYbiDPsyQCn1dQP4FThCuQHido_Fh6iYYu_CAiosoAJhYQBtgJtvnWU5PmOrdFBhLn4ZgTD-fYve-T_1LsCufSv5i5egnq82-srkGLlsFkbUBDvtzqj_bJ8PT73hF9CH0dw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXSoGqy6s-wAmFdWyvEx84IMpqyz4OsCv15saOsyxis6t9qOqlf4o_yDhxKpDQHir16sSR82UyD-mb-QDecmEM5cJhbUKLSCgpokwaGuUsUVY6wWjiG5yHI9mbiK8XnYs9-N30wnhaZfD9tU-vvHVYaQc028vZrP0dK49UKIEVABop_tmBWdl311dYt60_np_hR37HWPfL-HMvCtICkeWUbiKeZkxlrOCGZ5Llce4cc6lKmJ9Vk5sktsZIqqzgUmG5aUSHJUnsCmssLTCl4PjcB3Ag0F142YQPN7e8kliqStDVny7yxwudOjWpLEPIPZ9MVYNCq7nQ_4mGf0W47hN4HFJT8ql--yPYc-VTOGxkH0jwAs9gcObckgS5iSnxcTAnrvxRcQnIZjtfrMjaTeehq6kkzdxyggkyGX4jxstSkNkcXdn6OUzuBblj2C8XpTsBYjMrcdGkicVYWqQZljZWSRabDi1E7FoQN-BoGyaWe-GMX7qhpv3UHlDtAdWUaQS0Be9v9yzreR077-40mOt_rE5jQNmx78Ud953Cw954ONCD81H_JTzyV2ry5CvY36y27jUmOBvzpjIoApf3bcF_AAfkDBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+enhanced+tumor+segmentation+approach+for+MR+brain+images&rft.jtitle=Applied+soft+computing&rft.au=Mittal%2C+Mamta&rft.au=Goyal%2C+Lalit+Mohan&rft.au=Kaur%2C+Sumit&rft.au=Kaur%2C+Iqbaldeep&rft.date=2019-05-01&rft.issn=1568-4946&rft.volume=78&rft.spage=346&rft.epage=354&rft_id=info:doi/10.1016%2Fj.asoc.2019.02.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_02_036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |