Deep learning based enhanced tumor segmentation approach for MR brain images

Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 78; pp. 346 - 354
Main Authors Mittal, Mamta, Goyal, Lalit Mohan, Kaur, Sumit, Kaur, Iqbaldeep, Verma, Amit, Jude Hemanth, D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task. Several methodologies have been developed with an objective to enhance the segmentation efficiency of the automated system. However, there is always scope for improvement in the segmentation process of medical image analysis. In this work, deep learning-based approach is proposed for brain tumor image segmentation. The proposed method includes the concept of Stationary Wavelet Transform (SWT) and new Growing Convolution Neural Network (GCNN). The significant objective of this work is to enhance the accuracy of the conventional system. A comparative analysis with Support Vector Machine (SVM) and Convolution Neural Network (CNN) is carried out in this work. The experimental results prove that the proposed technique has outperformed SVM and CNN in terms of accuracy, PSNR, MSE and other performance parameters. •A Growing Deep Convolutional Network (GCNN) is proposed for Magnetic Resonance brain image segmentation.•The proposed approach is different from the conventional deep learning approach.•Conventional CNN is also implemented for comparative analysis.•An extensive quantitative analysis is performed in terms of accuracy measures to validate the superior nature of the proposed approach.
AbstractList Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task. Several methodologies have been developed with an objective to enhance the segmentation efficiency of the automated system. However, there is always scope for improvement in the segmentation process of medical image analysis. In this work, deep learning-based approach is proposed for brain tumor image segmentation. The proposed method includes the concept of Stationary Wavelet Transform (SWT) and new Growing Convolution Neural Network (GCNN). The significant objective of this work is to enhance the accuracy of the conventional system. A comparative analysis with Support Vector Machine (SVM) and Convolution Neural Network (CNN) is carried out in this work. The experimental results prove that the proposed technique has outperformed SVM and CNN in terms of accuracy, PSNR, MSE and other performance parameters. •A Growing Deep Convolutional Network (GCNN) is proposed for Magnetic Resonance brain image segmentation.•The proposed approach is different from the conventional deep learning approach.•Conventional CNN is also implemented for comparative analysis.•An extensive quantitative analysis is performed in terms of accuracy measures to validate the superior nature of the proposed approach.
Author Mittal, Mamta
Kaur, Sumit
Verma, Amit
Jude Hemanth, D.
Goyal, Lalit Mohan
Kaur, Iqbaldeep
Author_xml – sequence: 1
  givenname: Mamta
  orcidid: 0000-0003-0490-4413
  surname: Mittal
  fullname: Mittal, Mamta
  organization: Department of CSE, G.B. Pant Govt. Engineering College, Okhla, New Delhi, India
– sequence: 2
  givenname: Lalit Mohan
  surname: Goyal
  fullname: Goyal, Lalit Mohan
  organization: Department of Computer Engineering, J.C. Bose, University of Science & Technology, YMCA, Faridabad, India
– sequence: 3
  givenname: Sumit
  surname: Kaur
  fullname: Kaur, Sumit
  organization: Department of CSE, Gurukashi University, Bathinda, Punjab, India
– sequence: 4
  givenname: Iqbaldeep
  surname: Kaur
  fullname: Kaur, Iqbaldeep
  organization: Department of CSE, Chandigarh Group of Colleges, Landran, Punjab, India
– sequence: 5
  givenname: Amit
  surname: Verma
  fullname: Verma, Amit
  organization: Department of CSE, Chandigarh Group of Colleges, Landran, Punjab, India
– sequence: 6
  givenname: D.
  surname: Jude Hemanth
  fullname: Jude Hemanth, D.
  email: judehemanth@karunya.edu
  organization: Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India
BookMark eNp9kMtKAzEUhoNUsK2-gKu8wIy5TDMJuJF6hRFBdB2SzJk2pc0MySj49maoKxddnR8O3-E_3wLNQh8AoWtKSkqouNmVJvWuZISqkrCScHGG5lTWrFBC0lnOKyGLSlXiAi1S2pEMKSbnqLkHGPAeTAw-bLA1CVoMYWuCy2H8OvQRJ9gcIIxm9H3AZhhib9wWd3nz-o5tND5gfzAbSJfovDP7BFd_c4k-Hx8-1s9F8_b0sr5rCscJGQsuDVOGddxyI1hLWwAGUtWsqmXd2po6awVRruJCgeW2WrG6ptA560jHFeNLJI93XexTitBp54_1xtxmrynRkxW905MVPVnRhOlsJaPsHzrEXD7-nIZujxDkp749RJ2ch8mQj-BG3fb-FP4L0P5-lA
CitedBy_id crossref_primary_10_1007_s11042_022_12445_7
crossref_primary_10_1016_j_asoc_2020_106335
crossref_primary_10_3390_jpm12020275
crossref_primary_10_1039_D3LC00935A
crossref_primary_10_1109_ACCESS_2024_3394541
crossref_primary_10_1007_s11042_022_14316_7
crossref_primary_10_1007_s12553_020_00514_6
crossref_primary_10_1080_07038992_2021_2010036
crossref_primary_10_1016_j_mehy_2019_109507
crossref_primary_10_1007_s11837_023_06145_2
crossref_primary_10_1016_j_asoc_2022_109970
crossref_primary_10_1016_j_asoc_2020_106565
crossref_primary_10_1016_j_bspc_2023_105477
crossref_primary_10_3390_cancers13215546
crossref_primary_10_3390_app13063680
crossref_primary_10_1007_s11063_020_10372_y
crossref_primary_10_1371_journal_pone_0302880
crossref_primary_10_1002_ima_22647
crossref_primary_10_1007_s42979_020_00225_9
crossref_primary_10_1002_arp_1763
crossref_primary_10_1007_s41870_024_01937_4
crossref_primary_10_1002_arp_1886
crossref_primary_10_1007_s12652_021_03544_8
crossref_primary_10_1016_j_patrec_2021_01_005
crossref_primary_10_1007_s11227_022_05033_x
crossref_primary_10_1007_s11042_020_10443_1
crossref_primary_10_1016_j_asoc_2021_107164
crossref_primary_10_1016_j_asoc_2020_106573
crossref_primary_10_1016_j_asoc_2025_112909
crossref_primary_10_3233_IDT_240988
crossref_primary_10_32604_cmc_2021_016816
crossref_primary_10_2174_1573405617666210217154446
crossref_primary_10_1016_j_asoc_2021_107248
crossref_primary_10_1007_s11831_024_10128_0
crossref_primary_10_1109_RBME_2021_3131358
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_1016_j_compbiomed_2023_106538
crossref_primary_10_1080_0952813X_2021_1966842
crossref_primary_10_3390_math11071635
crossref_primary_10_1016_j_prime_2024_100498
crossref_primary_10_1007_s11042_023_17789_2
crossref_primary_10_1097_MS9_0000000000001175
crossref_primary_10_1016_j_asoc_2020_106828
crossref_primary_10_1007_s11042_023_15809_9
crossref_primary_10_1007_s11042_024_18489_1
crossref_primary_10_1007_s40747_021_00321_0
crossref_primary_10_3389_fnins_2021_679847
crossref_primary_10_1016_j_matpr_2020_06_548
crossref_primary_10_1016_j_asoc_2021_107386
crossref_primary_10_1016_j_asoc_2020_106672
crossref_primary_10_1016_j_asoc_2020_106311
crossref_primary_10_1016_j_cmpb_2020_105809
crossref_primary_10_1016_j_patrec_2019_11_020
crossref_primary_10_1109_TFUZZ_2021_3052461
crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_1186_s12938_024_01201_7
crossref_primary_10_32604_cmes_2024_051475
crossref_primary_10_13005_bpj_2409
crossref_primary_10_48175_IJARSCT_14211
crossref_primary_10_3390_sym12030416
crossref_primary_10_2174_1573405616666210108122048
crossref_primary_10_1002_ima_22735
crossref_primary_10_1007_s00521_021_06602_6
crossref_primary_10_1002_nbm_70001
crossref_primary_10_1016_j_eswa_2022_119435
crossref_primary_10_48047_z9gth477
crossref_primary_10_1109_ACCESS_2019_2935121
crossref_primary_10_32604_cmc_2021_015154
crossref_primary_10_3233_THC_248016
crossref_primary_10_3390_electronics10172046
crossref_primary_10_3390_jpm10040224
crossref_primary_10_3390_brainsci10020118
crossref_primary_10_1080_09720510_2020_1818451
crossref_primary_10_3389_fnins_2021_687496
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_2139_ssrn_4130959
crossref_primary_10_3390_computers11010010
crossref_primary_10_1016_j_bspc_2021_103090
crossref_primary_10_32604_iasc_2023_026341
crossref_primary_10_31202_ecjse_1169424
crossref_primary_10_1080_0952813X_2021_1949755
crossref_primary_10_1016_j_apples_2023_100153
crossref_primary_10_1155_2021_7265644
crossref_primary_10_1016_j_eswa_2023_119963
crossref_primary_10_1002_ima_22720
crossref_primary_10_1109_RBME_2022_3185292
crossref_primary_10_32604_cmc_2021_014229
crossref_primary_10_1016_j_gep_2022_119248
crossref_primary_10_1142_S0218001423570136
crossref_primary_10_1002_widm_1564
crossref_primary_10_1080_21681163_2023_2199891
crossref_primary_10_3390_diagnostics11061047
crossref_primary_10_1016_j_asoc_2020_106132
crossref_primary_10_1155_2023_6460639
crossref_primary_10_1109_ACCESS_2020_2966879
crossref_primary_10_1109_TFUZZ_2024_3372608
crossref_primary_10_1159_000525929
crossref_primary_10_1186_s12876_021_02055_2
crossref_primary_10_1007_s42979_020_00340_7
crossref_primary_10_3390_app10051894
crossref_primary_10_1002_ima_22831
crossref_primary_10_3233_JIFS_211879
crossref_primary_10_1016_j_procs_2020_03_221
crossref_primary_10_1016_j_ijcce_2021_01_001
crossref_primary_10_1007_s11468_024_02635_4
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_3390_brainsci9100289
crossref_primary_10_1016_j_asoc_2020_106364
crossref_primary_10_1155_2021_6653879
crossref_primary_10_1016_j_eswa_2020_114329
crossref_primary_10_1016_j_patrec_2019_12_024
crossref_primary_10_1016_j_jneumeth_2021_109091
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_3389_fphys_2022_1094743
crossref_primary_10_1142_S0219467822400010
crossref_primary_10_1007_s11227_021_03901_6
crossref_primary_10_1002_ima_22826
crossref_primary_10_1109_ACCESS_2023_3336862
crossref_primary_10_1109_ACCESS_2024_3379136
crossref_primary_10_3233_IDT_220256
crossref_primary_10_1007_s41870_023_01572_5
crossref_primary_10_1016_j_asoc_2020_107046
crossref_primary_10_3390_s20041068
Cites_doi 10.1016/j.eij.2015.01.003
10.1007/978-3-642-02906-6_63
10.1109/TMAG.2011.2158520
10.1109/JBHI.2014.2360515
10.7763/IJCTE.2010.V2.207
10.1016/j.patrec.2017.02.005
10.1016/j.neuroimage.2007.05.018
10.1016/j.asoc.2014.03.019
10.1007/s10278-013-9600-0
10.1109/JSTSP.2008.2011110
10.1142/S0218339010003652
10.1155/2013/930301
10.1002/cpe.4962
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.02.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 354
ExternalDocumentID 10_1016_j_asoc_2019_02_036
S1568494619301000
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-38a29a2f3b3a62d1dee2e89724787db71cbb609c4369eb3b452771efcbc0f3923
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:02 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 23 02:24:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Growing Convolution Neural Network (GCNN)
Random forest
Brain tumor MRI
Segmentation
Stationary Wavelet Transform (SWT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-38a29a2f3b3a62d1dee2e89724787db71cbb609c4369eb3b452771efcbc0f3923
ORCID 0000-0003-0490-4413
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_02_036
crossref_primary_10_1016_j_asoc_2019_02_036
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_02_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abdel-Maksoud, Elmogy, Al-Awadi (b7) 2014; 16
Wang, Xu, Dong, Pan (b15) 2014
Arunkumar, Mohammed, Ghani, Ibrahim, Abdulhay, Ramirez-Gonzalez, de Albuquerque (b21) 2018
Singh, Chetty, Sharma (b2) 2012
Damodharan, Raghavan (b4) 2015; 12
Reboucas Filho, Reboucas, Marinho, Sarmento, Tavares, de Albuquerque (b22) 2017; 94
Kumar, Vijayakumar (b13) 2015; 23
Guo, Zhao, Wu, Li, Xu, Yan (b1) 2011; 47
Sachdeva, Kumar, Gupta, Khandelwal, Ahuja, Segmentation, extraction (b10) 2013; 26
Bouvrie (b27) 2006
Ayachi, Ben Amor (b30) 2009; 5590
Zhao, Xie, Cheung, Wu (b26) 2014
Samper-González, Burgos, Bottani, Fontanella, Lu, Marcoux, Bertrand (b25) 2018
Zanaty (b8) 2012; 45
Kumar, Vijayakumar, Cui, Wang, Fan, Feng, Lei (b14) 2015; 23
Chaddad (b16) 2015
Lal, Chandra (b18) 2014; 11
Ain, Jaffar, Choi (b6) 2014; 21
Guo, Zhao, Wu, Li, Xu, Yan (b11) 2011; 47
Vrooman, Cocosco, Lijn, Stokking, Ikram, Vernooij (b29) 2007; 37
AntoniosMakropoulos, Gousias, Ledig, Aljabar, Serag, Hajnal, Edwards, Counsell, Rueckert (b24) Sept. 2014; 33
Deepa, Arunadevi (b17) 2013; 46
Logeswari, Karnan (b19) 2010; 2
Demirhan, Toru, Guler (b9) 2015; 19
Zhang, Wang, Huo, Wu, Liu (b23) 2010; 18
Alfonse, Salem (b5) 2016; 40
Yao, Chen, Chow (b12) 2009; 3
Arunkumar, Mohammed, Mostafa, Ibrahim, Rodrigues, Albuquerque (b20) 2018
Kumari (b3) 2013; 3
Logeswari, Karnan (b28) 2010; 2
Kharrat, Gasmi, Messaoud, Benamrane, Abid (b31) 2010; 9
C. Neethu Ouseph, K. Shruti, 2017 A Reliable Method for Brain Tumor Detection Using Cnn Technique, National Conference on Emerging Research Trends in Electrical, Electronics & Instrumentation, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 64-68.
Singh (10.1016/j.asoc.2019.02.036_b2) 2012
Arunkumar (10.1016/j.asoc.2019.02.036_b21) 2018
Demirhan (10.1016/j.asoc.2019.02.036_b9) 2015; 19
Chaddad (10.1016/j.asoc.2019.02.036_b16) 2015
Zanaty (10.1016/j.asoc.2019.02.036_b8) 2012; 45
Sachdeva (10.1016/j.asoc.2019.02.036_b10) 2013; 26
AntoniosMakropoulos (10.1016/j.asoc.2019.02.036_b24) 2014; 33
Ayachi (10.1016/j.asoc.2019.02.036_b30) 2009; 5590
Kumar (10.1016/j.asoc.2019.02.036_b13) 2015; 23
Zhao (10.1016/j.asoc.2019.02.036_b26) 2014
Logeswari (10.1016/j.asoc.2019.02.036_b19) 2010; 2
Kumar (10.1016/j.asoc.2019.02.036_rg14a) 2015; 23
Logeswari (10.1016/j.asoc.2019.02.036_b28) 2010; 2
Kumari (10.1016/j.asoc.2019.02.036_b3) 2013; 3
Abdel-Maksoud (10.1016/j.asoc.2019.02.036_b7) 2014; 16
Lal (10.1016/j.asoc.2019.02.036_b18) 2014; 11
Reboucas Filho (10.1016/j.asoc.2019.02.036_b22) 2017; 94
Yao (10.1016/j.asoc.2019.02.036_b12) 2009; 3
Alfonse (10.1016/j.asoc.2019.02.036_b5) 2016; 40
Bouvrie (10.1016/j.asoc.2019.02.036_b27) 2006
Vrooman (10.1016/j.asoc.2019.02.036_b29) 2007; 37
10.1016/j.asoc.2019.02.036_b32
Ain (10.1016/j.asoc.2019.02.036_b6) 2014; 21
Guo (10.1016/j.asoc.2019.02.036_b1) 2011; 47
Guo (10.1016/j.asoc.2019.02.036_b11) 2011; 47
Wang (10.1016/j.asoc.2019.02.036_b15) 2014
Damodharan (10.1016/j.asoc.2019.02.036_b4) 2015; 12
Cui (10.1016/j.asoc.2019.02.036_rg14b) 2013; 2013
Deepa (10.1016/j.asoc.2019.02.036_b17) 2013; 46
Samper-González (10.1016/j.asoc.2019.02.036_b25) 2018
Arunkumar (10.1016/j.asoc.2019.02.036_b20) 2018
Kharrat (10.1016/j.asoc.2019.02.036_b31) 2010; 9
Zhang (10.1016/j.asoc.2019.02.036_b23) 2010; 18
References_xml – year: 2014
  ident: b15
  article-title: Active contour model coupling with higher order diffusion for medical image segmentation
  publication-title: Int. J. Biomed. Imaging
– volume: 26
  start-page: 1141
  year: 2013
  end-page: 1150
  ident: b10
  article-title: Feature extraction and multiclass brain tumor classification
  publication-title: J. Digit. Imaging
– volume: 45
  start-page: 16
  year: 2012
  end-page: 22
  ident: b8
  article-title: Determination of gray matter (gm) and white matter (wm) volume in brain magnetic resonance images (mri)
  publication-title: Int. J. Comput. Appl.
– volume: 2
  start-page: 591
  year: 2010
  ident: b19
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self-organizing map
  publication-title: Int. J. Comput. Theory and Eng.
– volume: 94
  start-page: 211
  year: 2017
  end-page: 218
  ident: b22
  article-title: Analysis of human tissue densities: A new approach to extract features from medical images
  publication-title: Pattern Recognit. Lett.
– volume: 3
  start-page: 94
  year: 2009
  end-page: 100
  ident: b12
  article-title: Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform
  publication-title: IEEE J. Sel. Top. Signal Process.
– reference: C. Neethu Ouseph, K. Shruti, 2017 A Reliable Method for Brain Tumor Detection Using Cnn Technique, National Conference on Emerging Research Trends in Electrical, Electronics & Instrumentation, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 64-68.
– year: 2018
  ident: b25
  article-title: Reproducible evaluation of classification methods in alzheimer’s disease: framework and application to MRI and PET data
– volume: 2
  start-page: 1793
  year: 2010
  end-page: 8201
  ident: b28
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map
  publication-title: Int. J. Comput. Theory and Eng.
– volume: 37
  start-page: 71
  year: 2007
  end-page: 81
  ident: b29
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: NeuroImage
– volume: 40
  start-page: 11
  year: 2016
  end-page: 21
  ident: b5
  article-title: An automatic classification of brain tumors through MRI using support vector machine
  publication-title: Egypt. Comput. Sci. J.
– year: 2006
  ident: b27
  article-title: Notes on convolutional neural networks
– volume: 3
  start-page: 1686
  year: 2013
  end-page: 1690
  ident: b3
  article-title: SVM Classification an approach on detecting abnormality in brain MRI images
  publication-title: Int. J. Eng. Res. Appl.
– year: 2018
  ident: b20
  article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 23
  start-page: 2106
  year: 2015
  end-page: 2116
  ident: b14
  article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine
  publication-title: Middle-East J. Sci. Res.
– start-page: 348
  year: 2014
  end-page: 361
  ident: b26
  article-title: Plant leaf identification via a growing convolution neural network with progressive sample learning
  publication-title: Asian Conference on Computer Vision
– volume: 19
  start-page: 1451
  year: 2015
  end-page: 1458
  ident: b9
  article-title: Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 33
  start-page: 1818
  year: Sept. 2014
  end-page: 1831
  ident: b24
  article-title: Rueckert automatic whole brain MRI segmentation of the developing neonatal brain. medical imaging
  publication-title: IEEE Trans.
– volume: 9
  start-page: 71
  year: 2010
  end-page: 82
  ident: b31
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine
  publication-title: Leonardo J. Sci.
– volume: 46
  start-page: 111
  year: 2013
  end-page: 121
  ident: b17
  article-title: Extreme learning machine for classification of brain tumor in 3d MR images
  publication-title: Informatologia
– volume: 47
  start-page: 3849
  year: 2011
  end-page: 3852
  ident: b1
  article-title: Tumor detection in MR images using one-class immune feature weighted SVMs
  publication-title: IEEE Trans. Magn.
– start-page: 94
  year: 2012
  end-page: 105
  ident: b2
  article-title: A novel machine learning approach for detecting the brain abnormalities from mri structural images
  publication-title: IAPR International Conference on Pattern Recognition in Bioinformatics
– volume: 18
  start-page: 115
  year: 2010
  end-page: 132
  ident: b23
  article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications
  publication-title: J. Biol. Systems
– year: 2015
  ident: b16
  article-title: Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models
  publication-title: Int. J. Biomed. Imaging
– volume: 16
  start-page: 71
  year: 2014
  end-page: 81
  ident: b7
  article-title: Brain tumor segmentation based on a hybrid clustering technique
  publication-title: Egypt. Inform. J.
– volume: 5590
  start-page: 736
  year: 2009
  end-page: 747
  ident: b30
  article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty
  publication-title: Lecture Notes in Comput. Sci.
– volume: 11
  start-page: 95
  year: 2014
  end-page: 102
  ident: b18
  article-title: Efficient algorithm for contrast enhancement of natural images
  publication-title: Int. Arab J. Inform. Technol.
– volume: 21
  start-page: 330
  year: 2014
  end-page: 340
  ident: b6
  article-title: Fuzzy Anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor
  publication-title: Appl. Soft Comput. J.
– volume: 23
  start-page: 2106
  year: 2015
  end-page: 2116
  ident: b13
  article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine
  publication-title: Middle-East J. Sci. Res.
– volume: 12
  start-page: 42
  year: 2015
  end-page: 52
  ident: b4
  article-title: Combining tissue segmentation and neural network for brain tumor detection
  publication-title: Int. Arab J. Inform. Technol.
– volume: 47
  start-page: 3849
  year: 2011
  end-page: 3852
  ident: b11
  article-title: Tumor detection in MR images using one-class immune feature weighted SVMs
  publication-title: IEEE Trans. Magn.
– start-page: 1
  year: 2018
  end-page: 14
  ident: b21
  article-title: K-means clustering and neural network for object detecting and identifying abnormality of brain tumor
  publication-title: Soft Comput.
– issue: 11
  year: 2015
  ident: 10.1016/j.asoc.2019.02.036_b16
  article-title: Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models
  publication-title: Int. J. Biomed. Imaging
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.02.036_b21
  article-title: K-means clustering and neural network for object detecting and identifying abnormality of brain tumor
  publication-title: Soft Comput.
– volume: 16
  start-page: 71
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b7
  article-title: Brain tumor segmentation based on a hybrid clustering technique
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2015.01.003
– volume: 5590
  start-page: 736
  year: 2009
  ident: 10.1016/j.asoc.2019.02.036_b30
  article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-642-02906-6_63
– volume: 47
  start-page: 3849
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2019.02.036_b1
  article-title: Tumor detection in MR images using one-class immune feature weighted SVMs
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2158520
– volume: 23
  start-page: 2106
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2019.02.036_rg14a
  article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine
  publication-title: Middle-East J. Sci. Res.
– ident: 10.1016/j.asoc.2019.02.036_b32
– volume: 46
  start-page: 111
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2019.02.036_b17
  article-title: Extreme learning machine for classification of brain tumor in 3d MR images
  publication-title: Informatologia
– volume: 33
  start-page: 1818
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b24
  article-title: Rueckert automatic whole brain MRI segmentation of the developing neonatal brain. medical imaging
  publication-title: IEEE Trans.
– volume: 19
  start-page: 1451
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2019.02.036_b9
  article-title: Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2360515
– volume: 45
  start-page: 16
  year: 2012
  ident: 10.1016/j.asoc.2019.02.036_b8
  article-title: Determination of gray matter (gm) and white matter (wm) volume in brain magnetic resonance images (mri)
  publication-title: Int. J. Comput. Appl.
– volume: 2
  start-page: 591
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2019.02.036_b19
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self-organizing map
  publication-title: Int. J. Comput. Theory and Eng.
  doi: 10.7763/IJCTE.2010.V2.207
– volume: 9
  start-page: 71
  issue: 17
  year: 2010
  ident: 10.1016/j.asoc.2019.02.036_b31
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine
  publication-title: Leonardo J. Sci.
– volume: 3
  start-page: 1686
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2019.02.036_b3
  article-title: SVM Classification an approach on detecting abnormality in brain MRI images
  publication-title: Int. J. Eng. Res. Appl.
– start-page: 348
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b26
  article-title: Plant leaf identification via a growing convolution neural network with progressive sample learning
– issue: 8
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b15
  article-title: Active contour model coupling with higher order diffusion for medical image segmentation
  publication-title: Int. J. Biomed. Imaging
– year: 2006
  ident: 10.1016/j.asoc.2019.02.036_b27
– start-page: 94
  year: 2012
  ident: 10.1016/j.asoc.2019.02.036_b2
  article-title: A novel machine learning approach for detecting the brain abnormalities from mri structural images
– volume: 40
  start-page: 11
  year: 2016
  ident: 10.1016/j.asoc.2019.02.036_b5
  article-title: An automatic classification of brain tumors through MRI using support vector machine
  publication-title: Egypt. Comput. Sci. J.
– volume: 94
  start-page: 211
  year: 2017
  ident: 10.1016/j.asoc.2019.02.036_b22
  article-title: Analysis of human tissue densities: A new approach to extract features from medical images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.02.005
– volume: 37
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.02.036_b29
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.05.018
– volume: 23
  start-page: 2106
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2019.02.036_b13
  article-title: Brain tumourmr image segmentation and classification using by PCA and RBF kernel based support vector machine
  publication-title: Middle-East J. Sci. Res.
– year: 2018
  ident: 10.1016/j.asoc.2019.02.036_b25
– volume: 21
  start-page: 330
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b6
  article-title: Fuzzy Anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.03.019
– volume: 26
  start-page: 1141
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2019.02.036_b10
  article-title: Feature extraction and multiclass brain tumor classification
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9600-0
– volume: 47
  start-page: 3849
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2019.02.036_b11
  article-title: Tumor detection in MR images using one-class immune feature weighted SVMs
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2158520
– volume: 3
  start-page: 94
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.02.036_b12
  article-title: Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2011110
– volume: 18
  start-page: 115
  issue: spec01
  year: 2010
  ident: 10.1016/j.asoc.2019.02.036_b23
  article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications
  publication-title: J. Biol. Systems
  doi: 10.1142/S0218339010003652
– volume: 2013
  start-page: 930301
  year: 2013
  ident: 10.1016/j.asoc.2019.02.036_rg14b
  article-title: Localized fcm clustering with spatial information for medical image segmentation and bias field estimation
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/2013/930301
– volume: 12
  start-page: 42
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.02.036_b4
  article-title: Combining tissue segmentation and neural network for brain tumor detection
  publication-title: Int. Arab J. Inform. Technol.
– volume: 11
  start-page: 95
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.02.036_b18
  article-title: Efficient algorithm for contrast enhancement of natural images
  publication-title: Int. Arab J. Inform. Technol.
– year: 2018
  ident: 10.1016/j.asoc.2019.02.036_b20
  article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.4962
– volume: 2
  start-page: 1793
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2019.02.036_b28
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map
  publication-title: Int. J. Comput. Theory and Eng.
SSID ssj0016928
Score 2.6045027
Snippet Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 346
SubjectTerms Brain tumor MRI
Growing Convolution Neural Network (GCNN)
Random forest
Segmentation
Stationary Wavelet Transform (SWT)
Title Deep learning based enhanced tumor segmentation approach for MR brain images
URI https://dx.doi.org/10.1016/j.asoc.2019.02.036
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3qUuTNG2OYzqmbkOmg91Ck6Zz4rqxdVf_dpM2FQXZwVNpeA_Kj5f3QX_vPQCuCZUSEapNbYJSj3JGvZhJ5CU45IppilFoG5wHQ9Yb08dJMKmBTtULY2mVzveXPr3w1u6k5dBsLWez1oupPCLKqakAjJGam2072Glorfz285vm4TNe7Fe1wp6Vdo0zJccrNghYehcv5nYWY5r_CE4_Ak73AOy5TBG2y485BDWdHYH9agsDdJfyGPTvtF5Ct_1hCm1YSqDO3opf-zDfzBcruNbTuWsyymA1RhyafBUORlDaLRFwNjeeZX0Cxt37107PczsSPEUQyj0SxZjHOCWSxAwnfqI11hEPsR26k8jQV1IyxBUljJu6WdIAh6GvUyUVSk1uRE5BPVtk-gxAFStmDmUUKhPa0ig2lYbiDPsyQCn1dQP4FThCuQHido_Fh6iYYu_CAiosoAJhYQBtgJtvnWU5PmOrdFBhLn4ZgTD-fYve-T_1LsCufSv5i5egnq82-srkGLlsFkbUBDvtzqj_bJ8PT73hF9CH0dw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXSoGqy6s-wAmFdWyvEx84IMpqyz4OsCv15saOsyxis6t9qOqlf4o_yDhxKpDQHir16sSR82UyD-mb-QDecmEM5cJhbUKLSCgpokwaGuUsUVY6wWjiG5yHI9mbiK8XnYs9-N30wnhaZfD9tU-vvHVYaQc028vZrP0dK49UKIEVABop_tmBWdl311dYt60_np_hR37HWPfL-HMvCtICkeWUbiKeZkxlrOCGZ5Llce4cc6lKmJ9Vk5sktsZIqqzgUmG5aUSHJUnsCmssLTCl4PjcB3Ag0F142YQPN7e8kliqStDVny7yxwudOjWpLEPIPZ9MVYNCq7nQ_4mGf0W47hN4HFJT8ql--yPYc-VTOGxkH0jwAs9gcObckgS5iSnxcTAnrvxRcQnIZjtfrMjaTeehq6kkzdxyggkyGX4jxstSkNkcXdn6OUzuBblj2C8XpTsBYjMrcdGkicVYWqQZljZWSRabDi1E7FoQN-BoGyaWe-GMX7qhpv3UHlDtAdWUaQS0Be9v9yzreR077-40mOt_rE5jQNmx78Ud953Cw954ONCD81H_JTzyV2ry5CvY36y27jUmOBvzpjIoApf3bcF_AAfkDBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+enhanced+tumor+segmentation+approach+for+MR+brain+images&rft.jtitle=Applied+soft+computing&rft.au=Mittal%2C+Mamta&rft.au=Goyal%2C+Lalit+Mohan&rft.au=Kaur%2C+Sumit&rft.au=Kaur%2C+Iqbaldeep&rft.date=2019-05-01&rft.issn=1568-4946&rft.volume=78&rft.spage=346&rft.epage=354&rft_id=info:doi/10.1016%2Fj.asoc.2019.02.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_02_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon