Electrocardiogram soft computing using hybrid deep learning CNN-ELM
Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore...
Saved in:
Published in | Applied soft computing Vol. 86; p. 105778 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore, automatic recognition and classification of ECG signals is an important and indispensable task. Since the beginning of the 21 st century, deep learning has developed rapidly and has shown the most advanced performance in various fields. This paper presents a method of combining (Convolutional neural network) CNN and ELM (extreme learning machine). The accuracy rate is 97.50%. Compared with the state-of-the-art methods, this method improves the accuracy of ECG automatic classification and has good generalization ability. |
---|---|
AbstractList | Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore, automatic recognition and classification of ECG signals is an important and indispensable task. Since the beginning of the 21 st century, deep learning has developed rapidly and has shown the most advanced performance in various fields. This paper presents a method of combining (Convolutional neural network) CNN and ELM (extreme learning machine). The accuracy rate is 97.50%. Compared with the state-of-the-art methods, this method improves the accuracy of ECG automatic classification and has good generalization ability. |
ArticleNumber | 105778 |
Author | Tan, Bo Zhou, Shuren |
Author_xml | – sequence: 1 givenname: Shuren surname: Zhou fullname: Zhou, Shuren email: zsr@csust.edu.cn – sequence: 2 givenname: Bo surname: Tan fullname: Tan, Bo |
BookMark | eNp9kMtqwzAQRUVJoUnaH-jKP-DUkixLhm6KcR-Qppt2LWRpnCo4VpCUQv6-Mumqi2zuDBfOwJwFmo1uBITucbHCBa4edisVnF6RAtepYJyLKzTHgpO8rgSepZ1VIi_rsrpBixB2RYJqIuaoaQfQ0TutvLFu69U-C66PmXb7wzHacZsdw5Tfp85bkxmAQzaA8uNUNptN3q7fb9F1r4YAd39zib6e28_mNV9_vLw1T-tc06KIORW0NJqzujek6_qaGcEZTWmUMCA6oYliDJTinEBfUgE1lJXBqiMUA-vpEonzXe1dCB56qW1U0boxemUHiQs5yZA7OcmQkwx5lpFQ8g89eLtX_nQZejxDkJ76seBl0BZGDcb6JE0aZy_hv0ire4g |
CitedBy_id | crossref_primary_10_1007_s13748_021_00243_5 crossref_primary_10_3233_JIFS_189327 crossref_primary_10_3390_electronics10182214 crossref_primary_10_32604_iasc_2023_031202 crossref_primary_10_3233_JIFS_219104 crossref_primary_10_3390_s21155246 crossref_primary_10_3390_app14167233 crossref_primary_10_32604_iasc_2023_031165 crossref_primary_10_1007_s11063_022_10933_3 crossref_primary_10_3390_math12172693 crossref_primary_10_1111_exsy_13376 crossref_primary_10_32604_iasc_2021_017654 crossref_primary_10_1016_j_bspc_2023_105119 crossref_primary_10_3390_biomimetics8070535 crossref_primary_10_1007_s13146_021_00728_3 crossref_primary_10_32604_csse_2023_030849 crossref_primary_10_3390_fractalfract6070370 crossref_primary_10_1016_j_bbe_2021_09_001 crossref_primary_10_3233_JIFS_189321 crossref_primary_10_1016_j_asoc_2022_109970 crossref_primary_10_3390_math11030562 crossref_primary_10_3233_JIFS_189324 crossref_primary_10_3233_JIFS_189326 crossref_primary_10_1002_dac_4517 crossref_primary_10_1016_j_bbe_2021_02_007 crossref_primary_10_1109_ACCESS_2020_3015541 crossref_primary_10_1016_j_asoc_2021_107319 crossref_primary_10_1007_s11042_021_10714_5 crossref_primary_10_1007_s12530_022_09429_1 crossref_primary_10_3390_electronics12010209 crossref_primary_10_1016_j_jtice_2024_105522 crossref_primary_10_1016_j_microc_2022_108075 crossref_primary_10_1016_j_phycom_2020_101167 crossref_primary_10_1016_j_compeleceng_2022_108011 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_32604_iasc_2021_012077 crossref_primary_10_3390_app10175902 crossref_primary_10_1016_j_egyr_2021_07_043 crossref_primary_10_1155_2021_6691943 crossref_primary_10_32604_cmc_2021_012252 crossref_primary_10_3233_JIFS_189332 crossref_primary_10_3390_ijerph191710707 crossref_primary_10_1016_j_asoc_2020_106573 crossref_primary_10_3233_JIFS_189334 crossref_primary_10_1016_j_oceaneng_2022_111527 crossref_primary_10_3233_JIFS_189336 crossref_primary_10_3233_JIFS_189337 crossref_primary_10_32604_cmc_2023_031177 crossref_primary_10_3390_a15070244 crossref_primary_10_1016_j_neucom_2022_09_079 crossref_primary_10_3390_su13179990 crossref_primary_10_1016_j_measurement_2023_114094 crossref_primary_10_3233_JIFS_189341 crossref_primary_10_3233_JIFS_189344 crossref_primary_10_3390_diagnostics13182867 crossref_primary_10_1007_s10586_023_04086_8 crossref_primary_10_32604_iasc_2020_011988 crossref_primary_10_32604_cmc_2021_014924 crossref_primary_10_1109_ACCESS_2020_3020879 crossref_primary_10_32604_iasc_2023_031039 crossref_primary_10_32604_cmc_2020_012441 crossref_primary_10_1515_jisys_2022_0015 crossref_primary_10_1016_j_asoc_2023_110191 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1140_epjp_s13360_022_02652_4 crossref_primary_10_32604_cmc_2022_031303 crossref_primary_10_32604_cmc_2023_030996 crossref_primary_10_32604_cmc_2020_012448 crossref_primary_10_1109_ACCESS_2022_3192390 crossref_primary_10_1007_s00521_020_04999_0 crossref_primary_10_1155_2022_8996453 crossref_primary_10_1016_j_bspc_2021_102659 crossref_primary_10_3233_JIFS_189351 crossref_primary_10_32604_iasc_2023_033971 crossref_primary_10_3233_JIFS_189354 crossref_primary_10_3233_JIFS_189357 crossref_primary_10_3389_fphys_2021_727210 crossref_primary_10_32604_cmc_2021_012315 crossref_primary_10_1007_s11042_023_17773_w crossref_primary_10_3389_fcvm_2022_857019 crossref_primary_10_32604_cmc_2023_031519 crossref_primary_10_1155_2023_5684914 crossref_primary_10_3390_s23115204 crossref_primary_10_3233_JIFS_189360 crossref_primary_10_3233_JIFS_189361 crossref_primary_10_1007_s00170_023_12654_w crossref_primary_10_3233_JIFS_189362 crossref_primary_10_1007_s13721_024_00487_w crossref_primary_10_3390_electronics11172708 crossref_primary_10_1590_1517_8692202329012022_0150 crossref_primary_10_52756_ijerr_2024_v45spl_001 crossref_primary_10_3390_info11120556 crossref_primary_10_32604_cmc_2020_012423 crossref_primary_10_1080_00150193_2021_1902779 crossref_primary_10_1016_j_asoc_2021_107917 crossref_primary_10_1109_JSEN_2023_3257867 crossref_primary_10_32604_cmc_2023_031227 crossref_primary_10_3390_jimaging6090089 crossref_primary_10_1109_ACCESS_2021_3099489 crossref_primary_10_1109_TNSE_2021_3083263 crossref_primary_10_1016_j_compag_2023_108253 crossref_primary_10_3390_math9121417 crossref_primary_10_1007_s11277_024_10877_y crossref_primary_10_1186_s12874_024_02223_4 crossref_primary_10_1007_s11042_020_10367_w crossref_primary_10_1016_j_engappai_2023_106700 crossref_primary_10_1109_ACCESS_2024_3354706 crossref_primary_10_32604_cmc_2020_012257 crossref_primary_10_1080_00150193_2021_1902781 crossref_primary_10_1109_ACCESS_2021_3128736 crossref_primary_10_1155_2022_2894426 crossref_primary_10_1155_2022_3281039 crossref_primary_10_32604_cmc_2020_011969 crossref_primary_10_1016_j_compbiomed_2022_105249 crossref_primary_10_1155_2022_5168886 crossref_primary_10_1007_s12652_021_03324_4 crossref_primary_10_32604_csse_2023_031553 crossref_primary_10_1002_ett_4159 crossref_primary_10_1155_2022_8982881 crossref_primary_10_1155_2022_2219602 crossref_primary_10_29130_dubited_1236072 crossref_primary_10_3233_JIFS_189318 crossref_primary_10_32604_cmc_2020_012364 crossref_primary_10_1515_ijcre_2021_0152 crossref_primary_10_1016_j_asoc_2024_111380 crossref_primary_10_1007_s13198_021_01548_3 crossref_primary_10_1007_s11069_022_05325_8 crossref_primary_10_1016_j_patrec_2022_03_003 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_1007_s00521_020_05260_4 crossref_primary_10_3389_fphy_2022_847385 crossref_primary_10_32604_iasc_2021_016457 crossref_primary_10_1109_TIM_2023_3241997 crossref_primary_10_32604_iasc_2021_014437 crossref_primary_10_3233_JIFS_189312 crossref_primary_10_32604_csse_2023_031720 crossref_primary_10_1007_s11431_023_2460_2 crossref_primary_10_3233_JIFS_189315 |
Cites_doi | 10.1007/s11042-017-4829-0 10.1007/s11063-018-9892-7 10.1186/1475-925X-8-31 10.1155/2018/9472075 10.1016/j.eswa.2006.05.014 10.1109/TBME.1983.325039 10.1109/10.959322 10.1109/10.740882 10.1109/TBME.2015.2468589 10.1109/TBME.2008.921150 10.1109/TBME.2004.827359 10.1109/TIM.2016.2642758 10.1016/j.eswa.2012.04.072 10.1016/j.cmpb.2011.10.002 10.3390/s18020560 10.1007/s11554-017-0727-y 10.1109/TBME.1985.325532 10.1109/TBME.1982.324973 10.1080/03772063.2016.1221744 10.1109/10.126604 10.1109/10.469381 10.1109/BIBM.2014.6999249 10.1016/j.compbiomed.2017.08.022 10.1016/j.eswa.2009.06.022 10.1109/TBME.2009.2013934 10.1109/RBME.2014.2310831 10.1016/j.bspc.2013.01.005 10.1016/j.ins.2016.01.082 10.1007/s00371-019-01633-6 10.1016/j.eswa.2007.12.016 10.1016/S0169-2607(00)00133-4 10.3390/e18080285 10.1016/j.eswa.2007.05.008 10.1088/0967-3334/37/12/2093 10.1186/1475-925X-13-90 10.1016/j.measurement.2008.08.004 10.1142/S0129065713500147 10.1007/s11042-018-6562-8 10.1016/j.dsp.2009.10.016 10.1088/0967-3334/33/9/1517 10.1109/10.771194 10.1109/TITB.2009.2031638 10.1109/10.623058 10.1016/j.eswa.2007.05.006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105778 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105778 S1568494619305599 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-3834dc759fd2bbf95d87535d8da8de8b8c2a55eaa772ef438e9e46d1ab231e5f3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 01:50:04 EDT 2025 Fri Feb 23 02:49:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MIT-BIH dataset Extreme learning machine Electrocardiogram (ECG) signals Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3834dc759fd2bbf95d87535d8da8de8b8c2a55eaa772ef438e9e46d1ab231e5f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105778 crossref_primary_10_1016_j_asoc_2019_105778 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kim, Shin, Shin, Lee (b21) 2009; 8 Martis, Acharya, Min (b48) 2013; 8 Lingyun Xiang, Xiaobo Shen, Jiaohua Qin, Wei Hao, Discrete Multi-Graph Hashing for Large-scale Visual Search, Neural Process. Lett. Long, Peng, Li (b43) 2018; 14 Sayadi, Shamsollahi (b4) 2007; 2007 Principe (b31) 2014; 7 Huang, Liu, Zhu, Wang, Hu (b35) 2014; 13 Poli, Cagnoni, Valli (b12) 1995; 42 Yan Gui, Guang Zeng, Joint learning of visual and spatial features for edit propagation from a single image, Vis. Comput. Iglesias, Gutiérrez, Cos (b15) 2018; 18 De Chazal, O’Dwyer, Reilly (b42) 2004; 51 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (b53) 2017; 89 Zeng, Dai, Li, Simon Sherratt, Wang (b37) 2018; 55 Ceylan, Özbay (b20) 2007; 33 Zhang, Jin, Sun (b46) 2018 Yu, Chou (b25) 2009; 36 Jin Wang, Yu Gao, Xiang Yin, Feng Li, Hye-Jin Kim, An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks, Wirel. Commun. Mob. Comput. Kiranyaz, Ince, Gabbouj (b54) 2016; 63 Lin, Du, Chen (b26) 2008; 34 M. Sarfraz, A.A. Khan, F.F. Li, Using independent component analysis to obtain feature space for reliable ECG arrhythmia classification, in: IEEE International Conferenceon Bioinformatics and Biomedicine (BIBM), 2014, pp. 62-67. Yelderman, Widrow, Cioffi, Hesler, Leddy (b44) 1983; 30 Martis, Acharya, Lim, Mandana, Ray, Chakraborty (b49) 2013; 23 Yu, Chou (b24) 2008; 34 Özbay, Tezel (b19) 2010; 20 Y. Jung, W.J. Tompkins, Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 3, 2003, pp. 2390-2393. Ince, Kiranyaz, Gabbouj (b52) 2009; 56 Dokur, Ölmez (b28) 2001; 66 . Redmond, Xie, Chang (b40) 2012; 33 Übeyli (b50) 2010; 37 Lin, Yang (b17) 2014; 2014 Hu, Palreddy, Tompkins (b51) 1997; 44 Annam, Surampudi (b5) 2017 Osowski, Linh (b34) 2001; 48 Martis, Acharya, Min (b38) 2013; 8 Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b41) 2016; 345 Kadambe, Murray, Boudreaux-Bartels (b13) 1999; 46 Pan, Tompkins (b7) 1985; 32 Kim, Yazicioglu, Merken, van Hoof, Yoo (b16) 2010; 14 Li, Zhou (b30) 2016; 18 Kutlu, Kuntalp (b27) 2012; 105 Afonso, Tompkins, Nguyen, Luo (b9) 1999; 46 Hu, Tompkins, Urrusti, Afonso (b8) 1990; 26 Kiranyaz, Ince, Gabbouj (b29) 2015; 63 De Chazal, O’Dwyer, Reilly (b39) 2004; 51 Xue, Hu, Tompkins (b2) 1992; 39 Chen, Xia, Wang, Zhang, Yang, Cao (b22) 2019 Wen, Lin, Chang, Huang (b18) 2009; 42 Dengyong, Zaoshan, Gaobo, Qingguo, Leida, Xingming (b36) 2018; 77 Ferrara, Widraw (b32) 1982; 29 Zhou, Hu, Tang (b11) 2016; 37 Sayadi, Shamsollahi (b6) 2008; 55 Martis, Acharya, Mandana, Ray, Chakraborty (b47) 2012; 39 Raj, Ray (b3) 2017; 66 Lih, Ng, San (b1) 2018 Sharma, Sharma (b10) 2016; 62 Lih (10.1016/j.asoc.2019.105778_b1) 2018 Kiranyaz (10.1016/j.asoc.2019.105778_b29) 2015; 63 Martis (10.1016/j.asoc.2019.105778_b49) 2013; 23 10.1016/j.asoc.2019.105778_b55 Lin (10.1016/j.asoc.2019.105778_b17) 2014; 2014 Martis (10.1016/j.asoc.2019.105778_b47) 2012; 39 Redmond (10.1016/j.asoc.2019.105778_b40) 2012; 33 Long (10.1016/j.asoc.2019.105778_b43) 2018; 14 10.1016/j.asoc.2019.105778_b14 Lin (10.1016/j.asoc.2019.105778_b26) 2008; 34 Sharma (10.1016/j.asoc.2019.105778_b10) 2016; 62 Yelderman (10.1016/j.asoc.2019.105778_b44) 1983; 30 Osowski (10.1016/j.asoc.2019.105778_b34) 2001; 48 Pan (10.1016/j.asoc.2019.105778_b7) 1985; 32 Yu (10.1016/j.asoc.2019.105778_b24) 2008; 34 10.1016/j.asoc.2019.105778_b45 Dengyong (10.1016/j.asoc.2019.105778_b36) 2018; 77 Übeyli (10.1016/j.asoc.2019.105778_b50) 2010; 37 Principe (10.1016/j.asoc.2019.105778_b31) 2014; 7 Acharya (10.1016/j.asoc.2019.105778_b53) 2017; 89 Afonso (10.1016/j.asoc.2019.105778_b9) 1999; 46 Sayadi (10.1016/j.asoc.2019.105778_b6) 2008; 55 Kutlu (10.1016/j.asoc.2019.105778_b27) 2012; 105 De Chazal (10.1016/j.asoc.2019.105778_b42) 2004; 51 Kim (10.1016/j.asoc.2019.105778_b21) 2009; 8 Martis (10.1016/j.asoc.2019.105778_b48) 2013; 8 Wen (10.1016/j.asoc.2019.105778_b18) 2009; 42 De Chazal (10.1016/j.asoc.2019.105778_b39) 2004; 51 Özbay (10.1016/j.asoc.2019.105778_b19) 2010; 20 10.1016/j.asoc.2019.105778_b33 Zhang (10.1016/j.asoc.2019.105778_b46) 2018 Huang (10.1016/j.asoc.2019.105778_b35) 2014; 13 Al Rahhal (10.1016/j.asoc.2019.105778_b41) 2016; 345 Yu (10.1016/j.asoc.2019.105778_b25) 2009; 36 Martis (10.1016/j.asoc.2019.105778_b38) 2013; 8 Sayadi (10.1016/j.asoc.2019.105778_b4) 2007; 2007 Kadambe (10.1016/j.asoc.2019.105778_b13) 1999; 46 Annam (10.1016/j.asoc.2019.105778_b5) 2017 Chen (10.1016/j.asoc.2019.105778_b22) 2019 Ceylan (10.1016/j.asoc.2019.105778_b20) 2007; 33 Li (10.1016/j.asoc.2019.105778_b30) 2016; 18 Ferrara (10.1016/j.asoc.2019.105778_b32) 1982; 29 Raj (10.1016/j.asoc.2019.105778_b3) 2017; 66 Poli (10.1016/j.asoc.2019.105778_b12) 1995; 42 10.1016/j.asoc.2019.105778_b23 Ince (10.1016/j.asoc.2019.105778_b52) 2009; 56 Iglesias (10.1016/j.asoc.2019.105778_b15) 2018; 18 Hu (10.1016/j.asoc.2019.105778_b51) 1997; 44 Zhou (10.1016/j.asoc.2019.105778_b11) 2016; 37 Kiranyaz (10.1016/j.asoc.2019.105778_b54) 2016; 63 Xue (10.1016/j.asoc.2019.105778_b2) 1992; 39 Hu (10.1016/j.asoc.2019.105778_b8) 1990; 26 Dokur (10.1016/j.asoc.2019.105778_b28) 2001; 66 Kim (10.1016/j.asoc.2019.105778_b16) 2010; 14 Zeng (10.1016/j.asoc.2019.105778_b37) 2018; 55 |
References_xml | – volume: 18 start-page: 560 year: 2018 ident: b15 article-title: Analysis of the high-frequency content in human QRS complexes by the continuous wavelet transform: An automatized analysis for the prediction of sudden cardiac death publication-title: Sensors – volume: 56 start-page: 1415 year: 2009 end-page: 1426 ident: b52 article-title: A generic and robust system for automated patient-specific classification of ECG signals publication-title: Biomed. Eng. IEEE Trans. – volume: 7 start-page: 1 year: 2014 end-page: 2 ident: b31 article-title: Editorial publication-title: IEEE Rev. Biomed. Eng. – volume: 37 start-page: 1192 year: 2010 end-page: 1199 ident: b50 article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals publication-title: Expert Syst. Appl. – volume: 26 start-page: 66 year: 1990 end-page: 73 ident: b8 article-title: Application of artificial neural networks for ECG signal detection and classification publication-title: J. Eletrocardiol. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: b7 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. – reference: Lingyun Xiang, Xiaobo Shen, Jiaohua Qin, Wei Hao, Discrete Multi-Graph Hashing for Large-scale Visual Search, Neural Process. Lett., – volume: 63 start-page: 664 year: 2016 end-page: 675 ident: b54 article-title: Real-time patient-specific ECG classification by 1- D convolutional neural networks publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: b53 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 8 start-page: 437 year: 2013 end-page: 448 ident: b48 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process Control – volume: 29 start-page: 458 year: 1982 end-page: 460 ident: b32 article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering publication-title: IEEE Trans. Biomed. Eng. – volume: 46 start-page: 192 year: 1999 end-page: 202 ident: b9 article-title: ECG beat detection using filter banks publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 93 year: 2010 end-page: 100 ident: b16 article-title: ECG signal compression and classification algorithm with quad level vector for ECG holter system publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 55 start-page: 121 year: 2018 end-page: 136 ident: b37 article-title: Adversarial learning for distant supervised relation extraction publication-title: Comput. Mater. Contin. – volume: 42 start-page: 1137 year: 1995 end-page: 1141 ident: b12 article-title: Genetic design of optimum linear and nonlinear QRS detectors publication-title: IEEE Trans. Biomed. Eng. – volume: 39 start-page: 11792 year: 2012 end-page: 11800 ident: b47 article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health publication-title: Expert Syst. Appl. – volume: 46 start-page: 838 year: 1999 end-page: 848 ident: b13 article-title: Wavelet transform-based QRS complex detector publication-title: IEEE Trans. Biomed. Eng. – volume: 36 start-page: 2088 year: 2009 end-page: 2096 ident: b25 article-title: Selection of significant independent components for ECG beat classification publication-title: Expert Syst. Appl. – reference: Yan Gui, Guang Zeng, Joint learning of visual and spatial features for edit propagation from a single image, Vis. Comput., – volume: 8 start-page: 1 year: 2009 end-page: 12 ident: b21 article-title: Robust algorithm for arrhythmia classification in ECG using extreme learning machine publication-title: BioMed. Eng. Online – volume: 20 start-page: 1040 year: 2010 end-page: 1049 ident: b19 article-title: A new method for classification of ECG arrhythmias using neural network with adaptive activation function publication-title: Digit. Signal Process. – volume: 8 start-page: 437 year: 2013 end-page: 448 ident: b38 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process. Control – volume: 23 year: 2013 ident: b49 article-title: Application of higher order cumulant features for cardiac health diagnosis using ECG signals publication-title: Int. J. Neural Syst. – volume: 44 start-page: 891 year: 1997 end-page: 900 ident: b51 article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach publication-title: Biomed. Eng. IEEE Trans. – volume: 37 start-page: 2093 year: 2016 ident: b11 article-title: Sparse representation-based ECG signal enhancement and QRS detection publication-title: Physiol. Meas. – volume: 105 start-page: 257 year: 2012 end-page: 267 ident: b27 article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients publication-title: Comput. Method Program Biomed. – year: 2019 ident: b22 article-title: The visual saliency detection algorithm research based on hierarchical principle component analysis method publication-title: Multimedia Tools Appl. – volume: 66 start-page: 470 year: 2017 end-page: 478 ident: b3 article-title: ECG signal analysis using DCT-based DOST and PSO optimized SVM publication-title: IEEE Trans. Instrum. Meas. – reference: Jin Wang, Yu Gao, Xiang Yin, Feng Li, Hye-Jin Kim, An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks, Wirel. Commun. Mob. Comput., – reference: Y. Jung, W.J. Tompkins, Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 3, 2003, pp. 2390-2393. – volume: 34 start-page: 2601 year: 2008 end-page: 2611 ident: b26 article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition publication-title: Expert Syst. Appl. – volume: 51 start-page: 1196 year: 2004 end-page: 1206 ident: b42 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. – volume: 34 start-page: 2841 year: 2008 end-page: 2846 ident: b24 article-title: Integration of independent component analysis and neural networks for ECG beat classification publication-title: Expert Syst. Appl. – volume: 345 start-page: 340 year: 2016 end-page: 354 ident: b41 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inform. Sci. – volume: 14 start-page: 171 year: 2018 end-page: 182 ident: b43 article-title: Separable reversible data hiding and encryption for HEVC video publication-title: J. Real-Time Image Process. – volume: 48 start-page: 1265 year: 2001 end-page: 1271 ident: b34 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: Biomed. Eng. IEEE Trans. – reference: M. Sarfraz, A.A. Khan, F.F. Li, Using independent component analysis to obtain feature space for reliable ECG arrhythmia classification, in: IEEE International Conferenceon Bioinformatics and Biomedicine (BIBM), 2014, pp. 62-67. – volume: 66 start-page: 167 year: 2001 end-page: 181 ident: b28 article-title: ECG beat classification by a novel hybrid neural network publication-title: Comput. Method Program Biomed. – volume: 51 start-page: 1196 year: 2004 end-page: 1206 ident: b39 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. – volume: 2007 start-page: 1 year: 2007 end-page: 11 ident: b4 article-title: Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction publication-title: EURASIP J. Adv. Signal Process. – year: 2018 ident: b46 article-title: Spatial and semantic convolutional features for robust visual object tracking publication-title: Multimedia Tools Appl. – volume: 42 start-page: 399 year: 2009 end-page: 407 ident: b18 article-title: Classification of ECG complexes using self-organizing CMAC publication-title: Measurement – volume: 33 start-page: 286 year: 2007 end-page: 295 ident: b20 article-title: Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network publication-title: Expert Syst. Appl. – volume: 62 start-page: 1 year: 2016 end-page: 8 ident: b10 article-title: QRS complex detection in ECG signals using the synchrosqueezed wavelet transform publication-title: IETE J. Res. – volume: 13 start-page: 1 year: 2014 end-page: 26 ident: b35 article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals publication-title: Biomed. Eng. Online – volume: 33 start-page: 1517 year: 2012 ident: b40 article-title: Electrocardiogram signal quality measures for unsupervised telehealth environments publication-title: Physiol. Meas. – year: 2018 ident: b1 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – volume: 18 start-page: 285 year: 2016 ident: b30 article-title: ECG classification using wavelet packet entropy and random forests publication-title: Entropy – volume: 77 start-page: 11823 year: 2018 end-page: 11842 ident: b36 article-title: A robust forgery detection algorithm for object removal by exemplar-based image inpainting publication-title: Multimedia Tools Appl. – year: 2017 ident: b5 article-title: Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule publication-title: Int. Conf. Signal Inf. Process. – volume: 39 start-page: 317 year: 1992 end-page: 329 ident: b2 article-title: Neural-network-based adaptive matched filtering for QRS detection publication-title: IEEE Trans. Biomed. Eng. – reference: . – volume: 55 start-page: 2240 year: 2008 end-page: 2248 ident: b6 article-title: ECG denoising and compression using a modified extended Kalman filter structure publication-title: IEEE Trans. Biomed. Eng. – volume: 30 start-page: 392 year: 1983 end-page: 398 ident: b44 article-title: ECG enhancement by adaptive cancellation of electrosurgical interference publication-title: IEEE Trans. Biomed. Eng. – volume: 2014 start-page: 1 year: 2014 end-page: 11 ident: b17 article-title: Heartbeat classification using normalized RR intervals and morphological features publication-title: Math. Problem Eng. – volume: 63 start-page: 664 year: 2015 end-page: 675 ident: b29 article-title: Real-time patient-specific ECG classification by 1d convolutional neural networks publication-title: IEEE Trans. Bio-Med. Eng. – year: 2019 ident: 10.1016/j.asoc.2019.105778_b22 article-title: The visual saliency detection algorithm research based on hierarchical principle component analysis method publication-title: Multimedia Tools Appl. – ident: 10.1016/j.asoc.2019.105778_b14 – volume: 77 start-page: 11823 issue: 10 year: 2018 ident: 10.1016/j.asoc.2019.105778_b36 article-title: A robust forgery detection algorithm for object removal by exemplar-based image inpainting publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-017-4829-0 – ident: 10.1016/j.asoc.2019.105778_b45 doi: 10.1007/s11063-018-9892-7 – volume: 8 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105778_b21 article-title: Robust algorithm for arrhythmia classification in ECG using extreme learning machine publication-title: BioMed. Eng. Online doi: 10.1186/1475-925X-8-31 – ident: 10.1016/j.asoc.2019.105778_b33 doi: 10.1155/2018/9472075 – volume: 33 start-page: 286 issue: 2 year: 2007 ident: 10.1016/j.asoc.2019.105778_b20 article-title: Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.05.014 – year: 2017 ident: 10.1016/j.asoc.2019.105778_b5 article-title: Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule publication-title: Int. Conf. Signal Inf. Process. – volume: 30 start-page: 392 issue: 7 year: 1983 ident: 10.1016/j.asoc.2019.105778_b44 article-title: ECG enhancement by adaptive cancellation of electrosurgical interference publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1983.325039 – volume: 48 start-page: 1265 issue: 11 year: 2001 ident: 10.1016/j.asoc.2019.105778_b34 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/10.959322 – volume: 46 start-page: 192 issue: 2 year: 1999 ident: 10.1016/j.asoc.2019.105778_b9 article-title: ECG beat detection using filter banks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.740882 – volume: 63 start-page: 664 issue: 3 year: 2015 ident: 10.1016/j.asoc.2019.105778_b29 article-title: Real-time patient-specific ECG classification by 1d convolutional neural networks publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 55 start-page: 2240 issue: 9 year: 2008 ident: 10.1016/j.asoc.2019.105778_b6 article-title: ECG denoising and compression using a modified extended Kalman filter structure publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.921150 – volume: 51 start-page: 1196 year: 2004 ident: 10.1016/j.asoc.2019.105778_b42 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – volume: 66 start-page: 470 issue: 3 year: 2017 ident: 10.1016/j.asoc.2019.105778_b3 article-title: ECG signal analysis using DCT-based DOST and PSO optimized SVM publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2642758 – year: 2018 ident: 10.1016/j.asoc.2019.105778_b1 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – volume: 39 start-page: 11792 year: 2012 ident: 10.1016/j.asoc.2019.105778_b47 article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.072 – volume: 105 start-page: 257 issue: 3 year: 2012 ident: 10.1016/j.asoc.2019.105778_b27 article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients publication-title: Comput. Method Program Biomed. doi: 10.1016/j.cmpb.2011.10.002 – volume: 18 start-page: 560 issue: 2 year: 2018 ident: 10.1016/j.asoc.2019.105778_b15 article-title: Analysis of the high-frequency content in human QRS complexes by the continuous wavelet transform: An automatized analysis for the prediction of sudden cardiac death publication-title: Sensors doi: 10.3390/s18020560 – volume: 55 start-page: 121 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105778_b37 article-title: Adversarial learning for distant supervised relation extraction publication-title: Comput. Mater. Contin. – volume: 51 start-page: 1196 year: 2004 ident: 10.1016/j.asoc.2019.105778_b39 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – volume: 14 start-page: 171 year: 2018 ident: 10.1016/j.asoc.2019.105778_b43 article-title: Separable reversible data hiding and encryption for HEVC video publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-017-0727-y – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.asoc.2019.105778_b7 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 29 start-page: 458 issue: 6 year: 1982 ident: 10.1016/j.asoc.2019.105778_b32 article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1982.324973 – volume: 62 start-page: 1 issue: 6 year: 2016 ident: 10.1016/j.asoc.2019.105778_b10 article-title: QRS complex detection in ECG signals using the synchrosqueezed wavelet transform publication-title: IETE J. Res. doi: 10.1080/03772063.2016.1221744 – volume: 39 start-page: 317 issue: 4 year: 1992 ident: 10.1016/j.asoc.2019.105778_b2 article-title: Neural-network-based adaptive matched filtering for QRS detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.126604 – volume: 42 start-page: 1137 issue: 11 year: 1995 ident: 10.1016/j.asoc.2019.105778_b12 article-title: Genetic design of optimum linear and nonlinear QRS detectors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.469381 – ident: 10.1016/j.asoc.2019.105778_b23 doi: 10.1109/BIBM.2014.6999249 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.asoc.2019.105778_b53 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 26 start-page: 66 issue: Suppl. year: 1990 ident: 10.1016/j.asoc.2019.105778_b8 article-title: Application of artificial neural networks for ECG signal detection and classification publication-title: J. Eletrocardiol. – volume: 37 start-page: 1192 year: 2010 ident: 10.1016/j.asoc.2019.105778_b50 article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.022 – volume: 56 start-page: 1415 issue: 5 year: 2009 ident: 10.1016/j.asoc.2019.105778_b52 article-title: A generic and robust system for automated patient-specific classification of ECG signals publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2009.2013934 – volume: 2007 start-page: 1 issue: 14 year: 2007 ident: 10.1016/j.asoc.2019.105778_b4 article-title: Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction publication-title: EURASIP J. Adv. Signal Process. – volume: 7 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2019.105778_b31 article-title: Editorial publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2014.2310831 – volume: 8 start-page: 437 year: 2013 ident: 10.1016/j.asoc.2019.105778_b48 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2013.01.005 – volume: 63 start-page: 664 year: 2016 ident: 10.1016/j.asoc.2019.105778_b54 article-title: Real-time patient-specific ECG classification by 1- D convolutional neural networks publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2019.105778_b17 article-title: Heartbeat classification using normalized RR intervals and morphological features publication-title: Math. Problem Eng. – volume: 345 start-page: 340 year: 2016 ident: 10.1016/j.asoc.2019.105778_b41 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.01.082 – ident: 10.1016/j.asoc.2019.105778_b55 doi: 10.1007/s00371-019-01633-6 – volume: 36 start-page: 2088 issue: 2 year: 2009 ident: 10.1016/j.asoc.2019.105778_b25 article-title: Selection of significant independent components for ECG beat classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.016 – volume: 66 start-page: 167 issue: 2–3 year: 2001 ident: 10.1016/j.asoc.2019.105778_b28 article-title: ECG beat classification by a novel hybrid neural network publication-title: Comput. Method Program Biomed. doi: 10.1016/S0169-2607(00)00133-4 – volume: 18 start-page: 285 issue: 8 year: 2016 ident: 10.1016/j.asoc.2019.105778_b30 article-title: ECG classification using wavelet packet entropy and random forests publication-title: Entropy doi: 10.3390/e18080285 – volume: 34 start-page: 2601 issue: 4 year: 2008 ident: 10.1016/j.asoc.2019.105778_b26 article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.008 – volume: 37 start-page: 2093 issue: 12 year: 2016 ident: 10.1016/j.asoc.2019.105778_b11 article-title: Sparse representation-based ECG signal enhancement and QRS detection publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2093 – volume: 8 start-page: 437 issue: 5 year: 2013 ident: 10.1016/j.asoc.2019.105778_b38 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.01.005 – volume: 13 start-page: 1 year: 2014 ident: 10.1016/j.asoc.2019.105778_b35 article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-13-90 – volume: 42 start-page: 399 issue: 3 year: 2009 ident: 10.1016/j.asoc.2019.105778_b18 article-title: Classification of ECG complexes using self-organizing CMAC publication-title: Measurement doi: 10.1016/j.measurement.2008.08.004 – volume: 23 year: 2013 ident: 10.1016/j.asoc.2019.105778_b49 article-title: Application of higher order cumulant features for cardiac health diagnosis using ECG signals publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065713500147 – year: 2018 ident: 10.1016/j.asoc.2019.105778_b46 article-title: Spatial and semantic convolutional features for robust visual object tracking publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-6562-8 – volume: 20 start-page: 1040 issue: 4 year: 2010 ident: 10.1016/j.asoc.2019.105778_b19 article-title: A new method for classification of ECG arrhythmias using neural network with adaptive activation function publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.10.016 – volume: 33 start-page: 1517 issue: 9 year: 2012 ident: 10.1016/j.asoc.2019.105778_b40 article-title: Electrocardiogram signal quality measures for unsupervised telehealth environments publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/9/1517 – volume: 46 start-page: 838 issue: 7 year: 1999 ident: 10.1016/j.asoc.2019.105778_b13 article-title: Wavelet transform-based QRS complex detector publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.771194 – volume: 14 start-page: 93 issue: 1 year: 2010 ident: 10.1016/j.asoc.2019.105778_b16 article-title: ECG signal compression and classification algorithm with quad level vector for ECG holter system publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2031638 – volume: 44 start-page: 891 issue: 9 year: 1997 ident: 10.1016/j.asoc.2019.105778_b51 article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/10.623058 – volume: 34 start-page: 2841 issue: 4 year: 2008 ident: 10.1016/j.asoc.2019.105778_b24 article-title: Integration of independent component analysis and neural networks for ECG beat classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.006 |
SSID | ssj0016928 |
Score | 2.5950098 |
Snippet | Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105778 |
SubjectTerms | Classification Electrocardiogram (ECG) signals Extreme learning machine MIT-BIH dataset |
Title | Electrocardiogram soft computing using hybrid deep learning CNN-ELM |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105778 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1jN9k9ltBSHy2iFnoL-0qtSC1aD1787e5sNkVBevCSQJiB8GV3diZ8Mx9C5zSz2yg0SSCi0gREJjIQgqogNpEOqYpS4cYXD0fpYEyuJ3TSQHndCwO0Sh_7q5juorV_0vFodhazWefBVh6McGIrAJhaxaGJj5AMVvnl14rmEaXc6auCcQDWvnGm4ngJiwDQu7iTuwWptb8Opx8HTn8HbflMEXerl9lFDTPfQ9u1CgP2m3If5b1KyUY5ZimQrfC7ja1YOUt7MmHgtk_x0yc0Z2FtzAJ7rYgpzkcwz2R4gMb93mM-CLw0QqCSMFwGtq4kWmWUlzqWsuRUQ91hr1owbZhkKhaUGiFs8mxKkjDDDUl1JKTN5wwtk0PUnL_OzRHC3GZgTIRapFwTwUphk7JEyEixkGVxbFooqjEplJ8bDvIVL0VNEHsuAMcCcCwqHFvoYuWzqKZmrLWmNdTFr29f2LC-xu_4n34naDOGqtn9SDlFzeXbhzmzqcVStt3aaaONbn5_ewf3q5vB6BszgM7U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL3iMcDCG1GeHmBCoXnYqT0woELVUtqFIrEFx3ZKESoVFCEWfoof5DpxKpBQBySWDFEcOSfOvedGx_cAHLIafka-iTwZZMajaZR6UjLlhSbQPlNBLPP2xZ1u3Lyhl7fsdgY-y70wVlbpYn8R0_No7c5UHZrV0WBQvcbKg1NBsQKwXauEcMrKtnl_w7rt5bR1ji_5KAwbF71603PWAp6KfH_sYV1GtaoxkekwTTPBtOXteNSSa8NTrkLJmJESyafJaMSNMDTWgUyRDxmWRXjfWZinGC6sbcLJx0RXEsQiN3S1s_Ps9NxOnUJUJhFyqycTub-u9Xb7LRt-y3CNFVhy1JScFU-_CjNmuAbLpe0DcVFgHeoXhXWOyqWsVt1FXjCYE5VfiamQWDF9n9y_291gRBszIs6cok_qXdtApbMBN_8C2CbMDZ-GZguIQMrHpa9lLDSVPJPIAiOZBor7vBaGpgJBiUmiXKNy65fxmJSKtIfE4phYHJMCxwocT8aMijYdU69mJdTJj8WWYB6ZMm77j-MOYKHZ61wlV61uewcWQ1uy539xdmFu_Pxq9pDXjNP9fB0RuPvvhfsFX_QKXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram+soft+computing+using+hybrid+deep+learning+CNN-ELM&rft.jtitle=Applied+soft+computing&rft.au=Zhou%2C+Shuren&rft.au=Tan%2C+Bo&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105778&rft_id=info:doi/10.1016%2Fj.asoc.2019.105778&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |