Electrocardiogram soft computing using hybrid deep learning CNN-ELM

Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 86; p. 105778
Main Authors Zhou, Shuren, Tan, Bo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore, automatic recognition and classification of ECG signals is an important and indispensable task. Since the beginning of the 21 st century, deep learning has developed rapidly and has shown the most advanced performance in various fields. This paper presents a method of combining (Convolutional neural network) CNN and ELM (extreme learning machine). The accuracy rate is 97.50%. Compared with the state-of-the-art methods, this method improves the accuracy of ECG automatic classification and has good generalization ability.
AbstractList Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very weak, the anti-interference ability is poor, easy to be affected by the noise. Doctors face difficulties in diagnosing arrhythmias. Therefore, automatic recognition and classification of ECG signals is an important and indispensable task. Since the beginning of the 21 st century, deep learning has developed rapidly and has shown the most advanced performance in various fields. This paper presents a method of combining (Convolutional neural network) CNN and ELM (extreme learning machine). The accuracy rate is 97.50%. Compared with the state-of-the-art methods, this method improves the accuracy of ECG automatic classification and has good generalization ability.
ArticleNumber 105778
Author Tan, Bo
Zhou, Shuren
Author_xml – sequence: 1
  givenname: Shuren
  surname: Zhou
  fullname: Zhou, Shuren
  email: zsr@csust.edu.cn
– sequence: 2
  givenname: Bo
  surname: Tan
  fullname: Tan, Bo
BookMark eNp9kMtqwzAQRUVJoUnaH-jKP-DUkixLhm6KcR-Qppt2LWRpnCo4VpCUQv6-Mumqi2zuDBfOwJwFmo1uBITucbHCBa4edisVnF6RAtepYJyLKzTHgpO8rgSepZ1VIi_rsrpBixB2RYJqIuaoaQfQ0TutvLFu69U-C66PmXb7wzHacZsdw5Tfp85bkxmAQzaA8uNUNptN3q7fb9F1r4YAd39zib6e28_mNV9_vLw1T-tc06KIORW0NJqzujek6_qaGcEZTWmUMCA6oYliDJTinEBfUgE1lJXBqiMUA-vpEonzXe1dCB56qW1U0boxemUHiQs5yZA7OcmQkwx5lpFQ8g89eLtX_nQZejxDkJ76seBl0BZGDcb6JE0aZy_hv0ire4g
CitedBy_id crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_3233_JIFS_189327
crossref_primary_10_3390_electronics10182214
crossref_primary_10_32604_iasc_2023_031202
crossref_primary_10_3233_JIFS_219104
crossref_primary_10_3390_s21155246
crossref_primary_10_3390_app14167233
crossref_primary_10_32604_iasc_2023_031165
crossref_primary_10_1007_s11063_022_10933_3
crossref_primary_10_3390_math12172693
crossref_primary_10_1111_exsy_13376
crossref_primary_10_32604_iasc_2021_017654
crossref_primary_10_1016_j_bspc_2023_105119
crossref_primary_10_3390_biomimetics8070535
crossref_primary_10_1007_s13146_021_00728_3
crossref_primary_10_32604_csse_2023_030849
crossref_primary_10_3390_fractalfract6070370
crossref_primary_10_1016_j_bbe_2021_09_001
crossref_primary_10_3233_JIFS_189321
crossref_primary_10_1016_j_asoc_2022_109970
crossref_primary_10_3390_math11030562
crossref_primary_10_3233_JIFS_189324
crossref_primary_10_3233_JIFS_189326
crossref_primary_10_1002_dac_4517
crossref_primary_10_1016_j_bbe_2021_02_007
crossref_primary_10_1109_ACCESS_2020_3015541
crossref_primary_10_1016_j_asoc_2021_107319
crossref_primary_10_1007_s11042_021_10714_5
crossref_primary_10_1007_s12530_022_09429_1
crossref_primary_10_3390_electronics12010209
crossref_primary_10_1016_j_jtice_2024_105522
crossref_primary_10_1016_j_microc_2022_108075
crossref_primary_10_1016_j_phycom_2020_101167
crossref_primary_10_1016_j_compeleceng_2022_108011
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_32604_iasc_2021_012077
crossref_primary_10_3390_app10175902
crossref_primary_10_1016_j_egyr_2021_07_043
crossref_primary_10_1155_2021_6691943
crossref_primary_10_32604_cmc_2021_012252
crossref_primary_10_3233_JIFS_189332
crossref_primary_10_3390_ijerph191710707
crossref_primary_10_1016_j_asoc_2020_106573
crossref_primary_10_3233_JIFS_189334
crossref_primary_10_1016_j_oceaneng_2022_111527
crossref_primary_10_3233_JIFS_189336
crossref_primary_10_3233_JIFS_189337
crossref_primary_10_32604_cmc_2023_031177
crossref_primary_10_3390_a15070244
crossref_primary_10_1016_j_neucom_2022_09_079
crossref_primary_10_3390_su13179990
crossref_primary_10_1016_j_measurement_2023_114094
crossref_primary_10_3233_JIFS_189341
crossref_primary_10_3233_JIFS_189344
crossref_primary_10_3390_diagnostics13182867
crossref_primary_10_1007_s10586_023_04086_8
crossref_primary_10_32604_iasc_2020_011988
crossref_primary_10_32604_cmc_2021_014924
crossref_primary_10_1109_ACCESS_2020_3020879
crossref_primary_10_32604_iasc_2023_031039
crossref_primary_10_32604_cmc_2020_012441
crossref_primary_10_1515_jisys_2022_0015
crossref_primary_10_1016_j_asoc_2023_110191
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1140_epjp_s13360_022_02652_4
crossref_primary_10_32604_cmc_2022_031303
crossref_primary_10_32604_cmc_2023_030996
crossref_primary_10_32604_cmc_2020_012448
crossref_primary_10_1109_ACCESS_2022_3192390
crossref_primary_10_1007_s00521_020_04999_0
crossref_primary_10_1155_2022_8996453
crossref_primary_10_1016_j_bspc_2021_102659
crossref_primary_10_3233_JIFS_189351
crossref_primary_10_32604_iasc_2023_033971
crossref_primary_10_3233_JIFS_189354
crossref_primary_10_3233_JIFS_189357
crossref_primary_10_3389_fphys_2021_727210
crossref_primary_10_32604_cmc_2021_012315
crossref_primary_10_1007_s11042_023_17773_w
crossref_primary_10_3389_fcvm_2022_857019
crossref_primary_10_32604_cmc_2023_031519
crossref_primary_10_1155_2023_5684914
crossref_primary_10_3390_s23115204
crossref_primary_10_3233_JIFS_189360
crossref_primary_10_3233_JIFS_189361
crossref_primary_10_1007_s00170_023_12654_w
crossref_primary_10_3233_JIFS_189362
crossref_primary_10_1007_s13721_024_00487_w
crossref_primary_10_3390_electronics11172708
crossref_primary_10_1590_1517_8692202329012022_0150
crossref_primary_10_52756_ijerr_2024_v45spl_001
crossref_primary_10_3390_info11120556
crossref_primary_10_32604_cmc_2020_012423
crossref_primary_10_1080_00150193_2021_1902779
crossref_primary_10_1016_j_asoc_2021_107917
crossref_primary_10_1109_JSEN_2023_3257867
crossref_primary_10_32604_cmc_2023_031227
crossref_primary_10_3390_jimaging6090089
crossref_primary_10_1109_ACCESS_2021_3099489
crossref_primary_10_1109_TNSE_2021_3083263
crossref_primary_10_1016_j_compag_2023_108253
crossref_primary_10_3390_math9121417
crossref_primary_10_1007_s11277_024_10877_y
crossref_primary_10_1186_s12874_024_02223_4
crossref_primary_10_1007_s11042_020_10367_w
crossref_primary_10_1016_j_engappai_2023_106700
crossref_primary_10_1109_ACCESS_2024_3354706
crossref_primary_10_32604_cmc_2020_012257
crossref_primary_10_1080_00150193_2021_1902781
crossref_primary_10_1109_ACCESS_2021_3128736
crossref_primary_10_1155_2022_2894426
crossref_primary_10_1155_2022_3281039
crossref_primary_10_32604_cmc_2020_011969
crossref_primary_10_1016_j_compbiomed_2022_105249
crossref_primary_10_1155_2022_5168886
crossref_primary_10_1007_s12652_021_03324_4
crossref_primary_10_32604_csse_2023_031553
crossref_primary_10_1002_ett_4159
crossref_primary_10_1155_2022_8982881
crossref_primary_10_1155_2022_2219602
crossref_primary_10_29130_dubited_1236072
crossref_primary_10_3233_JIFS_189318
crossref_primary_10_32604_cmc_2020_012364
crossref_primary_10_1515_ijcre_2021_0152
crossref_primary_10_1016_j_asoc_2024_111380
crossref_primary_10_1007_s13198_021_01548_3
crossref_primary_10_1007_s11069_022_05325_8
crossref_primary_10_1016_j_patrec_2022_03_003
crossref_primary_10_1109_TBME_2021_3129459
crossref_primary_10_1007_s00521_020_05260_4
crossref_primary_10_3389_fphy_2022_847385
crossref_primary_10_32604_iasc_2021_016457
crossref_primary_10_1109_TIM_2023_3241997
crossref_primary_10_32604_iasc_2021_014437
crossref_primary_10_3233_JIFS_189312
crossref_primary_10_32604_csse_2023_031720
crossref_primary_10_1007_s11431_023_2460_2
crossref_primary_10_3233_JIFS_189315
Cites_doi 10.1007/s11042-017-4829-0
10.1007/s11063-018-9892-7
10.1186/1475-925X-8-31
10.1155/2018/9472075
10.1016/j.eswa.2006.05.014
10.1109/TBME.1983.325039
10.1109/10.959322
10.1109/10.740882
10.1109/TBME.2015.2468589
10.1109/TBME.2008.921150
10.1109/TBME.2004.827359
10.1109/TIM.2016.2642758
10.1016/j.eswa.2012.04.072
10.1016/j.cmpb.2011.10.002
10.3390/s18020560
10.1007/s11554-017-0727-y
10.1109/TBME.1985.325532
10.1109/TBME.1982.324973
10.1080/03772063.2016.1221744
10.1109/10.126604
10.1109/10.469381
10.1109/BIBM.2014.6999249
10.1016/j.compbiomed.2017.08.022
10.1016/j.eswa.2009.06.022
10.1109/TBME.2009.2013934
10.1109/RBME.2014.2310831
10.1016/j.bspc.2013.01.005
10.1016/j.ins.2016.01.082
10.1007/s00371-019-01633-6
10.1016/j.eswa.2007.12.016
10.1016/S0169-2607(00)00133-4
10.3390/e18080285
10.1016/j.eswa.2007.05.008
10.1088/0967-3334/37/12/2093
10.1186/1475-925X-13-90
10.1016/j.measurement.2008.08.004
10.1142/S0129065713500147
10.1007/s11042-018-6562-8
10.1016/j.dsp.2009.10.016
10.1088/0967-3334/33/9/1517
10.1109/10.771194
10.1109/TITB.2009.2031638
10.1109/10.623058
10.1016/j.eswa.2007.05.006
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105778
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105778
S1568494619305599
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-3834dc759fd2bbf95d87535d8da8de8b8c2a55eaa772ef438e9e46d1ab231e5f3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 01:50:04 EDT 2025
Fri Feb 23 02:49:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MIT-BIH dataset
Extreme learning machine
Electrocardiogram (ECG) signals
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3834dc759fd2bbf95d87535d8da8de8b8c2a55eaa772ef438e9e46d1ab231e5f3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105778
crossref_primary_10_1016_j_asoc_2019_105778
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Shin, Shin, Lee (b21) 2009; 8
Martis, Acharya, Min (b48) 2013; 8
Lingyun Xiang, Xiaobo Shen, Jiaohua Qin, Wei Hao, Discrete Multi-Graph Hashing for Large-scale Visual Search, Neural Process. Lett.
Long, Peng, Li (b43) 2018; 14
Sayadi, Shamsollahi (b4) 2007; 2007
Principe (b31) 2014; 7
Huang, Liu, Zhu, Wang, Hu (b35) 2014; 13
Poli, Cagnoni, Valli (b12) 1995; 42
Yan Gui, Guang Zeng, Joint learning of visual and spatial features for edit propagation from a single image, Vis. Comput.
Iglesias, Gutiérrez, Cos (b15) 2018; 18
De Chazal, O’Dwyer, Reilly (b42) 2004; 51
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, San Tan (b53) 2017; 89
Zeng, Dai, Li, Simon Sherratt, Wang (b37) 2018; 55
Ceylan, Özbay (b20) 2007; 33
Zhang, Jin, Sun (b46) 2018
Yu, Chou (b25) 2009; 36
Jin Wang, Yu Gao, Xiang Yin, Feng Li, Hye-Jin Kim, An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks, Wirel. Commun. Mob. Comput.
Kiranyaz, Ince, Gabbouj (b54) 2016; 63
Lin, Du, Chen (b26) 2008; 34
M. Sarfraz, A.A. Khan, F.F. Li, Using independent component analysis to obtain feature space for reliable ECG arrhythmia classification, in: IEEE International Conferenceon Bioinformatics and Biomedicine (BIBM), 2014, pp. 62-67.
Yelderman, Widrow, Cioffi, Hesler, Leddy (b44) 1983; 30
Martis, Acharya, Lim, Mandana, Ray, Chakraborty (b49) 2013; 23
Yu, Chou (b24) 2008; 34
Özbay, Tezel (b19) 2010; 20
Y. Jung, W.J. Tompkins, Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 3, 2003, pp. 2390-2393.
Ince, Kiranyaz, Gabbouj (b52) 2009; 56
Dokur, Ölmez (b28) 2001; 66
.
Redmond, Xie, Chang (b40) 2012; 33
Übeyli (b50) 2010; 37
Lin, Yang (b17) 2014; 2014
Hu, Palreddy, Tompkins (b51) 1997; 44
Annam, Surampudi (b5) 2017
Osowski, Linh (b34) 2001; 48
Martis, Acharya, Min (b38) 2013; 8
Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b41) 2016; 345
Kadambe, Murray, Boudreaux-Bartels (b13) 1999; 46
Pan, Tompkins (b7) 1985; 32
Kim, Yazicioglu, Merken, van Hoof, Yoo (b16) 2010; 14
Li, Zhou (b30) 2016; 18
Kutlu, Kuntalp (b27) 2012; 105
Afonso, Tompkins, Nguyen, Luo (b9) 1999; 46
Hu, Tompkins, Urrusti, Afonso (b8) 1990; 26
Kiranyaz, Ince, Gabbouj (b29) 2015; 63
De Chazal, O’Dwyer, Reilly (b39) 2004; 51
Xue, Hu, Tompkins (b2) 1992; 39
Chen, Xia, Wang, Zhang, Yang, Cao (b22) 2019
Wen, Lin, Chang, Huang (b18) 2009; 42
Dengyong, Zaoshan, Gaobo, Qingguo, Leida, Xingming (b36) 2018; 77
Ferrara, Widraw (b32) 1982; 29
Zhou, Hu, Tang (b11) 2016; 37
Sayadi, Shamsollahi (b6) 2008; 55
Martis, Acharya, Mandana, Ray, Chakraborty (b47) 2012; 39
Raj, Ray (b3) 2017; 66
Lih, Ng, San (b1) 2018
Sharma, Sharma (b10) 2016; 62
Lih (10.1016/j.asoc.2019.105778_b1) 2018
Kiranyaz (10.1016/j.asoc.2019.105778_b29) 2015; 63
Martis (10.1016/j.asoc.2019.105778_b49) 2013; 23
10.1016/j.asoc.2019.105778_b55
Lin (10.1016/j.asoc.2019.105778_b17) 2014; 2014
Martis (10.1016/j.asoc.2019.105778_b47) 2012; 39
Redmond (10.1016/j.asoc.2019.105778_b40) 2012; 33
Long (10.1016/j.asoc.2019.105778_b43) 2018; 14
10.1016/j.asoc.2019.105778_b14
Lin (10.1016/j.asoc.2019.105778_b26) 2008; 34
Sharma (10.1016/j.asoc.2019.105778_b10) 2016; 62
Yelderman (10.1016/j.asoc.2019.105778_b44) 1983; 30
Osowski (10.1016/j.asoc.2019.105778_b34) 2001; 48
Pan (10.1016/j.asoc.2019.105778_b7) 1985; 32
Yu (10.1016/j.asoc.2019.105778_b24) 2008; 34
10.1016/j.asoc.2019.105778_b45
Dengyong (10.1016/j.asoc.2019.105778_b36) 2018; 77
Übeyli (10.1016/j.asoc.2019.105778_b50) 2010; 37
Principe (10.1016/j.asoc.2019.105778_b31) 2014; 7
Acharya (10.1016/j.asoc.2019.105778_b53) 2017; 89
Afonso (10.1016/j.asoc.2019.105778_b9) 1999; 46
Sayadi (10.1016/j.asoc.2019.105778_b6) 2008; 55
Kutlu (10.1016/j.asoc.2019.105778_b27) 2012; 105
De Chazal (10.1016/j.asoc.2019.105778_b42) 2004; 51
Kim (10.1016/j.asoc.2019.105778_b21) 2009; 8
Martis (10.1016/j.asoc.2019.105778_b48) 2013; 8
Wen (10.1016/j.asoc.2019.105778_b18) 2009; 42
De Chazal (10.1016/j.asoc.2019.105778_b39) 2004; 51
Özbay (10.1016/j.asoc.2019.105778_b19) 2010; 20
10.1016/j.asoc.2019.105778_b33
Zhang (10.1016/j.asoc.2019.105778_b46) 2018
Huang (10.1016/j.asoc.2019.105778_b35) 2014; 13
Al Rahhal (10.1016/j.asoc.2019.105778_b41) 2016; 345
Yu (10.1016/j.asoc.2019.105778_b25) 2009; 36
Martis (10.1016/j.asoc.2019.105778_b38) 2013; 8
Sayadi (10.1016/j.asoc.2019.105778_b4) 2007; 2007
Kadambe (10.1016/j.asoc.2019.105778_b13) 1999; 46
Annam (10.1016/j.asoc.2019.105778_b5) 2017
Chen (10.1016/j.asoc.2019.105778_b22) 2019
Ceylan (10.1016/j.asoc.2019.105778_b20) 2007; 33
Li (10.1016/j.asoc.2019.105778_b30) 2016; 18
Ferrara (10.1016/j.asoc.2019.105778_b32) 1982; 29
Raj (10.1016/j.asoc.2019.105778_b3) 2017; 66
Poli (10.1016/j.asoc.2019.105778_b12) 1995; 42
10.1016/j.asoc.2019.105778_b23
Ince (10.1016/j.asoc.2019.105778_b52) 2009; 56
Iglesias (10.1016/j.asoc.2019.105778_b15) 2018; 18
Hu (10.1016/j.asoc.2019.105778_b51) 1997; 44
Zhou (10.1016/j.asoc.2019.105778_b11) 2016; 37
Kiranyaz (10.1016/j.asoc.2019.105778_b54) 2016; 63
Xue (10.1016/j.asoc.2019.105778_b2) 1992; 39
Hu (10.1016/j.asoc.2019.105778_b8) 1990; 26
Dokur (10.1016/j.asoc.2019.105778_b28) 2001; 66
Kim (10.1016/j.asoc.2019.105778_b16) 2010; 14
Zeng (10.1016/j.asoc.2019.105778_b37) 2018; 55
References_xml – volume: 18
  start-page: 560
  year: 2018
  ident: b15
  article-title: Analysis of the high-frequency content in human QRS complexes by the continuous wavelet transform: An automatized analysis for the prediction of sudden cardiac death
  publication-title: Sensors
– volume: 56
  start-page: 1415
  year: 2009
  end-page: 1426
  ident: b52
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: Biomed. Eng. IEEE Trans.
– volume: 7
  start-page: 1
  year: 2014
  end-page: 2
  ident: b31
  article-title: Editorial
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 37
  start-page: 1192
  year: 2010
  end-page: 1199
  ident: b50
  article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 66
  year: 1990
  end-page: 73
  ident: b8
  article-title: Application of artificial neural networks for ECG signal detection and classification
  publication-title: J. Eletrocardiol.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: b7
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Lingyun Xiang, Xiaobo Shen, Jiaohua Qin, Wei Hao, Discrete Multi-Graph Hashing for Large-scale Visual Search, Neural Process. Lett.,
– volume: 63
  start-page: 664
  year: 2016
  end-page: 675
  ident: b54
  article-title: Real-time patient-specific ECG classification by 1- D convolutional neural networks
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b53
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 437
  year: 2013
  end-page: 448
  ident: b48
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process Control
– volume: 29
  start-page: 458
  year: 1982
  end-page: 460
  ident: b32
  article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 46
  start-page: 192
  year: 1999
  end-page: 202
  ident: b9
  article-title: ECG beat detection using filter banks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 93
  year: 2010
  end-page: 100
  ident: b16
  article-title: ECG signal compression and classification algorithm with quad level vector for ECG holter system
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 55
  start-page: 121
  year: 2018
  end-page: 136
  ident: b37
  article-title: Adversarial learning for distant supervised relation extraction
  publication-title: Comput. Mater. Contin.
– volume: 42
  start-page: 1137
  year: 1995
  end-page: 1141
  ident: b12
  article-title: Genetic design of optimum linear and nonlinear QRS detectors
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 39
  start-page: 11792
  year: 2012
  end-page: 11800
  ident: b47
  article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 838
  year: 1999
  end-page: 848
  ident: b13
  article-title: Wavelet transform-based QRS complex detector
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 36
  start-page: 2088
  year: 2009
  end-page: 2096
  ident: b25
  article-title: Selection of significant independent components for ECG beat classification
  publication-title: Expert Syst. Appl.
– reference: Yan Gui, Guang Zeng, Joint learning of visual and spatial features for edit propagation from a single image, Vis. Comput.,
– volume: 8
  start-page: 1
  year: 2009
  end-page: 12
  ident: b21
  article-title: Robust algorithm for arrhythmia classification in ECG using extreme learning machine
  publication-title: BioMed. Eng. Online
– volume: 20
  start-page: 1040
  year: 2010
  end-page: 1049
  ident: b19
  article-title: A new method for classification of ECG arrhythmias using neural network with adaptive activation function
  publication-title: Digit. Signal Process.
– volume: 8
  start-page: 437
  year: 2013
  end-page: 448
  ident: b38
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
– volume: 23
  year: 2013
  ident: b49
  article-title: Application of higher order cumulant features for cardiac health diagnosis using ECG signals
  publication-title: Int. J. Neural Syst.
– volume: 44
  start-page: 891
  year: 1997
  end-page: 900
  ident: b51
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: Biomed. Eng. IEEE Trans.
– volume: 37
  start-page: 2093
  year: 2016
  ident: b11
  article-title: Sparse representation-based ECG signal enhancement and QRS detection
  publication-title: Physiol. Meas.
– volume: 105
  start-page: 257
  year: 2012
  end-page: 267
  ident: b27
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Comput. Method Program Biomed.
– year: 2019
  ident: b22
  article-title: The visual saliency detection algorithm research based on hierarchical principle component analysis method
  publication-title: Multimedia Tools Appl.
– volume: 66
  start-page: 470
  year: 2017
  end-page: 478
  ident: b3
  article-title: ECG signal analysis using DCT-based DOST and PSO optimized SVM
  publication-title: IEEE Trans. Instrum. Meas.
– reference: Jin Wang, Yu Gao, Xiang Yin, Feng Li, Hye-Jin Kim, An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks, Wirel. Commun. Mob. Comput.,
– reference: Y. Jung, W.J. Tompkins, Detecting and classifying life-threatening ECG ventricular arrythmias using wavelet decomposition, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 3, 2003, pp. 2390-2393.
– volume: 34
  start-page: 2601
  year: 2008
  end-page: 2611
  ident: b26
  article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition
  publication-title: Expert Syst. Appl.
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: b42
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 2841
  year: 2008
  end-page: 2846
  ident: b24
  article-title: Integration of independent component analysis and neural networks for ECG beat classification
  publication-title: Expert Syst. Appl.
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: b41
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inform. Sci.
– volume: 14
  start-page: 171
  year: 2018
  end-page: 182
  ident: b43
  article-title: Separable reversible data hiding and encryption for HEVC video
  publication-title: J. Real-Time Image Process.
– volume: 48
  start-page: 1265
  year: 2001
  end-page: 1271
  ident: b34
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: Biomed. Eng. IEEE Trans.
– reference: M. Sarfraz, A.A. Khan, F.F. Li, Using independent component analysis to obtain feature space for reliable ECG arrhythmia classification, in: IEEE International Conferenceon Bioinformatics and Biomedicine (BIBM), 2014, pp. 62-67.
– volume: 66
  start-page: 167
  year: 2001
  end-page: 181
  ident: b28
  article-title: ECG beat classification by a novel hybrid neural network
  publication-title: Comput. Method Program Biomed.
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: b39
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2007
  start-page: 1
  year: 2007
  end-page: 11
  ident: b4
  article-title: Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction
  publication-title: EURASIP J. Adv. Signal Process.
– year: 2018
  ident: b46
  article-title: Spatial and semantic convolutional features for robust visual object tracking
  publication-title: Multimedia Tools Appl.
– volume: 42
  start-page: 399
  year: 2009
  end-page: 407
  ident: b18
  article-title: Classification of ECG complexes using self-organizing CMAC
  publication-title: Measurement
– volume: 33
  start-page: 286
  year: 2007
  end-page: 295
  ident: b20
  article-title: Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network
  publication-title: Expert Syst. Appl.
– volume: 62
  start-page: 1
  year: 2016
  end-page: 8
  ident: b10
  article-title: QRS complex detection in ECG signals using the synchrosqueezed wavelet transform
  publication-title: IETE J. Res.
– volume: 13
  start-page: 1
  year: 2014
  end-page: 26
  ident: b35
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed. Eng. Online
– volume: 33
  start-page: 1517
  year: 2012
  ident: b40
  article-title: Electrocardiogram signal quality measures for unsupervised telehealth environments
  publication-title: Physiol. Meas.
– year: 2018
  ident: b1
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 285
  year: 2016
  ident: b30
  article-title: ECG classification using wavelet packet entropy and random forests
  publication-title: Entropy
– volume: 77
  start-page: 11823
  year: 2018
  end-page: 11842
  ident: b36
  article-title: A robust forgery detection algorithm for object removal by exemplar-based image inpainting
  publication-title: Multimedia Tools Appl.
– year: 2017
  ident: b5
  article-title: Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule
  publication-title: Int. Conf. Signal Inf. Process.
– volume: 39
  start-page: 317
  year: 1992
  end-page: 329
  ident: b2
  article-title: Neural-network-based adaptive matched filtering for QRS detection
  publication-title: IEEE Trans. Biomed. Eng.
– reference: .
– volume: 55
  start-page: 2240
  year: 2008
  end-page: 2248
  ident: b6
  article-title: ECG denoising and compression using a modified extended Kalman filter structure
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 30
  start-page: 392
  year: 1983
  end-page: 398
  ident: b44
  article-title: ECG enhancement by adaptive cancellation of electrosurgical interference
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  ident: b17
  article-title: Heartbeat classification using normalized RR intervals and morphological features
  publication-title: Math. Problem Eng.
– volume: 63
  start-page: 664
  year: 2015
  end-page: 675
  ident: b29
  article-title: Real-time patient-specific ECG classification by 1d convolutional neural networks
  publication-title: IEEE Trans. Bio-Med. Eng.
– year: 2019
  ident: 10.1016/j.asoc.2019.105778_b22
  article-title: The visual saliency detection algorithm research based on hierarchical principle component analysis method
  publication-title: Multimedia Tools Appl.
– ident: 10.1016/j.asoc.2019.105778_b14
– volume: 77
  start-page: 11823
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2019.105778_b36
  article-title: A robust forgery detection algorithm for object removal by exemplar-based image inpainting
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4829-0
– ident: 10.1016/j.asoc.2019.105778_b45
  doi: 10.1007/s11063-018-9892-7
– volume: 8
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2019.105778_b21
  article-title: Robust algorithm for arrhythmia classification in ECG using extreme learning machine
  publication-title: BioMed. Eng. Online
  doi: 10.1186/1475-925X-8-31
– ident: 10.1016/j.asoc.2019.105778_b33
  doi: 10.1155/2018/9472075
– volume: 33
  start-page: 286
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2019.105778_b20
  article-title: Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.05.014
– year: 2017
  ident: 10.1016/j.asoc.2019.105778_b5
  article-title: Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule
  publication-title: Int. Conf. Signal Inf. Process.
– volume: 30
  start-page: 392
  issue: 7
  year: 1983
  ident: 10.1016/j.asoc.2019.105778_b44
  article-title: ECG enhancement by adaptive cancellation of electrosurgical interference
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1983.325039
– volume: 48
  start-page: 1265
  issue: 11
  year: 2001
  ident: 10.1016/j.asoc.2019.105778_b34
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.959322
– volume: 46
  start-page: 192
  issue: 2
  year: 1999
  ident: 10.1016/j.asoc.2019.105778_b9
  article-title: ECG beat detection using filter banks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.740882
– volume: 63
  start-page: 664
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2019.105778_b29
  article-title: Real-time patient-specific ECG classification by 1d convolutional neural networks
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 55
  start-page: 2240
  issue: 9
  year: 2008
  ident: 10.1016/j.asoc.2019.105778_b6
  article-title: ECG denoising and compression using a modified extended Kalman filter structure
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.921150
– volume: 51
  start-page: 1196
  year: 2004
  ident: 10.1016/j.asoc.2019.105778_b42
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– volume: 66
  start-page: 470
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2019.105778_b3
  article-title: ECG signal analysis using DCT-based DOST and PSO optimized SVM
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2642758
– year: 2018
  ident: 10.1016/j.asoc.2019.105778_b1
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 39
  start-page: 11792
  year: 2012
  ident: 10.1016/j.asoc.2019.105778_b47
  article-title: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.072
– volume: 105
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2019.105778_b27
  article-title: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
  publication-title: Comput. Method Program Biomed.
  doi: 10.1016/j.cmpb.2011.10.002
– volume: 18
  start-page: 560
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2019.105778_b15
  article-title: Analysis of the high-frequency content in human QRS complexes by the continuous wavelet transform: An automatized analysis for the prediction of sudden cardiac death
  publication-title: Sensors
  doi: 10.3390/s18020560
– volume: 55
  start-page: 121
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105778_b37
  article-title: Adversarial learning for distant supervised relation extraction
  publication-title: Comput. Mater. Contin.
– volume: 51
  start-page: 1196
  year: 2004
  ident: 10.1016/j.asoc.2019.105778_b39
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– volume: 14
  start-page: 171
  year: 2018
  ident: 10.1016/j.asoc.2019.105778_b43
  article-title: Separable reversible data hiding and encryption for HEVC video
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-017-0727-y
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.asoc.2019.105778_b7
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 29
  start-page: 458
  issue: 6
  year: 1982
  ident: 10.1016/j.asoc.2019.105778_b32
  article-title: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1982.324973
– volume: 62
  start-page: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2019.105778_b10
  article-title: QRS complex detection in ECG signals using the synchrosqueezed wavelet transform
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2016.1221744
– volume: 39
  start-page: 317
  issue: 4
  year: 1992
  ident: 10.1016/j.asoc.2019.105778_b2
  article-title: Neural-network-based adaptive matched filtering for QRS detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.126604
– volume: 42
  start-page: 1137
  issue: 11
  year: 1995
  ident: 10.1016/j.asoc.2019.105778_b12
  article-title: Genetic design of optimum linear and nonlinear QRS detectors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.469381
– ident: 10.1016/j.asoc.2019.105778_b23
  doi: 10.1109/BIBM.2014.6999249
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.asoc.2019.105778_b53
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 26
  start-page: 66
  issue: Suppl.
  year: 1990
  ident: 10.1016/j.asoc.2019.105778_b8
  article-title: Application of artificial neural networks for ECG signal detection and classification
  publication-title: J. Eletrocardiol.
– volume: 37
  start-page: 1192
  year: 2010
  ident: 10.1016/j.asoc.2019.105778_b50
  article-title: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.022
– volume: 56
  start-page: 1415
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2019.105778_b52
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2009.2013934
– volume: 2007
  start-page: 1
  issue: 14
  year: 2007
  ident: 10.1016/j.asoc.2019.105778_b4
  article-title: Multiadaptive bionic wavelet transform: application to ECG denoising and baseline wandering reduction
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105778_b31
  article-title: Editorial
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2014.2310831
– volume: 8
  start-page: 437
  year: 2013
  ident: 10.1016/j.asoc.2019.105778_b48
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 63
  start-page: 664
  year: 2016
  ident: 10.1016/j.asoc.2019.105778_b54
  article-title: Real-time patient-specific ECG classification by 1- D convolutional neural networks
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105778_b17
  article-title: Heartbeat classification using normalized RR intervals and morphological features
  publication-title: Math. Problem Eng.
– volume: 345
  start-page: 340
  year: 2016
  ident: 10.1016/j.asoc.2019.105778_b41
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.082
– ident: 10.1016/j.asoc.2019.105778_b55
  doi: 10.1007/s00371-019-01633-6
– volume: 36
  start-page: 2088
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2019.105778_b25
  article-title: Selection of significant independent components for ECG beat classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.016
– volume: 66
  start-page: 167
  issue: 2–3
  year: 2001
  ident: 10.1016/j.asoc.2019.105778_b28
  article-title: ECG beat classification by a novel hybrid neural network
  publication-title: Comput. Method Program Biomed.
  doi: 10.1016/S0169-2607(00)00133-4
– volume: 18
  start-page: 285
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2019.105778_b30
  article-title: ECG classification using wavelet packet entropy and random forests
  publication-title: Entropy
  doi: 10.3390/e18080285
– volume: 34
  start-page: 2601
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2019.105778_b26
  article-title: Adaptive wavelet network for multiple cardiac arrhythmias recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.008
– volume: 37
  start-page: 2093
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2019.105778_b11
  article-title: Sparse representation-based ECG signal enhancement and QRS detection
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2093
– volume: 8
  start-page: 437
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2019.105778_b38
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 13
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105778_b35
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-90
– volume: 42
  start-page: 399
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2019.105778_b18
  article-title: Classification of ECG complexes using self-organizing CMAC
  publication-title: Measurement
  doi: 10.1016/j.measurement.2008.08.004
– volume: 23
  year: 2013
  ident: 10.1016/j.asoc.2019.105778_b49
  article-title: Application of higher order cumulant features for cardiac health diagnosis using ECG signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500147
– year: 2018
  ident: 10.1016/j.asoc.2019.105778_b46
  article-title: Spatial and semantic convolutional features for robust visual object tracking
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6562-8
– volume: 20
  start-page: 1040
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2019.105778_b19
  article-title: A new method for classification of ECG arrhythmias using neural network with adaptive activation function
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.10.016
– volume: 33
  start-page: 1517
  issue: 9
  year: 2012
  ident: 10.1016/j.asoc.2019.105778_b40
  article-title: Electrocardiogram signal quality measures for unsupervised telehealth environments
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/33/9/1517
– volume: 46
  start-page: 838
  issue: 7
  year: 1999
  ident: 10.1016/j.asoc.2019.105778_b13
  article-title: Wavelet transform-based QRS complex detector
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.771194
– volume: 14
  start-page: 93
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2019.105778_b16
  article-title: ECG signal compression and classification algorithm with quad level vector for ECG holter system
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2031638
– volume: 44
  start-page: 891
  issue: 9
  year: 1997
  ident: 10.1016/j.asoc.2019.105778_b51
  article-title: A patient-adaptable ECG beat classifier using a mixture of experts approach
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.623058
– volume: 34
  start-page: 2841
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2019.105778_b24
  article-title: Integration of independent component analysis and neural networks for ECG beat classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.006
SSID ssj0016928
Score 2.5950098
Snippet Electrocardiogram (ECG) can reflect the state of human heart and is widely used in clinical cardiac examination. However, the electrocardiogram signal is very...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105778
SubjectTerms Classification
Electrocardiogram (ECG) signals
Extreme learning machine
MIT-BIH dataset
Title Electrocardiogram soft computing using hybrid deep learning CNN-ELM
URI https://dx.doi.org/10.1016/j.asoc.2019.105778
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3ic1jN9k9ltBSHy2iFnoL-0qtSC1aD1787e5sNkVBevCSQJiB8GV3diZ8Mx9C5zSz2yg0SSCi0gREJjIQgqogNpEOqYpS4cYXD0fpYEyuJ3TSQHndCwO0Sh_7q5juorV_0vFodhazWefBVh6McGIrAJhaxaGJj5AMVvnl14rmEaXc6auCcQDWvnGm4ngJiwDQu7iTuwWptb8Opx8HTn8HbflMEXerl9lFDTPfQ9u1CgP2m3If5b1KyUY5ZimQrfC7ja1YOUt7MmHgtk_x0yc0Z2FtzAJ7rYgpzkcwz2R4gMb93mM-CLw0QqCSMFwGtq4kWmWUlzqWsuRUQ91hr1owbZhkKhaUGiFs8mxKkjDDDUl1JKTN5wwtk0PUnL_OzRHC3GZgTIRapFwTwUphk7JEyEixkGVxbFooqjEplJ8bDvIVL0VNEHsuAMcCcCwqHFvoYuWzqKZmrLWmNdTFr29f2LC-xu_4n34naDOGqtn9SDlFzeXbhzmzqcVStt3aaaONbn5_ewf3q5vB6BszgM7U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL3iMcDCG1GeHmBCoXnYqT0woELVUtqFIrEFx3ZKESoVFCEWfoof5DpxKpBQBySWDFEcOSfOvedGx_cAHLIafka-iTwZZMajaZR6UjLlhSbQPlNBLPP2xZ1u3Lyhl7fsdgY-y70wVlbpYn8R0_No7c5UHZrV0WBQvcbKg1NBsQKwXauEcMrKtnl_w7rt5bR1ji_5KAwbF71603PWAp6KfH_sYV1GtaoxkekwTTPBtOXteNSSa8NTrkLJmJESyafJaMSNMDTWgUyRDxmWRXjfWZinGC6sbcLJx0RXEsQiN3S1s_Ps9NxOnUJUJhFyqycTub-u9Xb7LRt-y3CNFVhy1JScFU-_CjNmuAbLpe0DcVFgHeoXhXWOyqWsVt1FXjCYE5VfiamQWDF9n9y_291gRBszIs6cok_qXdtApbMBN_8C2CbMDZ-GZguIQMrHpa9lLDSVPJPIAiOZBor7vBaGpgJBiUmiXKNy65fxmJSKtIfE4phYHJMCxwocT8aMijYdU69mJdTJj8WWYB6ZMm77j-MOYKHZ61wlV61uewcWQ1uy539xdmFu_Pxq9pDXjNP9fB0RuPvvhfsFX_QKXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram+soft+computing+using+hybrid+deep+learning+CNN-ELM&rft.jtitle=Applied+soft+computing&rft.au=Zhou%2C+Shuren&rft.au=Tan%2C+Bo&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105778&rft_id=info:doi/10.1016%2Fj.asoc.2019.105778&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon