Hybrid visual information analysis for on-site occupational hazards identification: A case study on stairway safety

Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increas...

Full description

Saved in:
Bibliographic Details
Published inSafety science Vol. 159; p. 106043
Main Authors Chen, Shi, Dong, Feiyan, Demachi, Kazuyuki
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increasingly important for on-site occupational safety management. However, construction site scenes generally contain a variety of different entities (e.g., individuals, facilities), which places a higher demand on the hybrid visual information understanding capability of the scenes of computer-aided monitoring systems. This paper presents a novel hybrid visual information analysis framework. First, a visual information extraction module integrating the state-of-the-art instance segmentation and pose estimation models is proposed to obtain hybrid on-site entities information. Subsequently, hazards are identified with an original geometric relationship analysis algorithm and the identification performance is further enhanced using time series analysis. Two hybrid visual information analysis frameworks, i.e., HVIA-BU and HVIA-TD, are proposed based on bottom-up and top-down pose estimation models, respectively. We implemented and experimentally evaluated different architectures of each framework in terms of both identification performance and inference speed to address the different on-site hardware requirements. As an initial application of the proposed framework for on-site occupational hazards identification, we performed the experiments with handrail-related compliance as a case study. The proposed hybrid visual information analysis framework HVIA-TD achieved high precision (0.9826) and recall (0.9535), outperforming the single visual information analysis framework SVIA (with a precision of 0.9551 and a recall of 0.9121). [Display omitted] •Hybrid visual information analysis framework for occupational hazards identification.•Instance segmentation and pose estimation models for visual information extraction.•Different architectures are implemented for various on-site hardware requirements.•The proposed framework achieved high precision and recall with real-time performance.
AbstractList Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increasingly important for on-site occupational safety management. However, construction site scenes generally contain a variety of different entities (e.g., individuals, facilities), which places a higher demand on the hybrid visual information understanding capability of the scenes of computer-aided monitoring systems. This paper presents a novel hybrid visual information analysis framework. First, a visual information extraction module integrating the state-of-the-art instance segmentation and pose estimation models is proposed to obtain hybrid on-site entities information. Subsequently, hazards are identified with an original geometric relationship analysis algorithm and the identification performance is further enhanced using time series analysis. Two hybrid visual information analysis frameworks, i.e., HVIA-BU and HVIA-TD, are proposed based on bottom-up and top-down pose estimation models, respectively. We implemented and experimentally evaluated different architectures of each framework in terms of both identification performance and inference speed to address the different on-site hardware requirements. As an initial application of the proposed framework for on-site occupational hazards identification, we performed the experiments with handrail-related compliance as a case study. The proposed hybrid visual information analysis framework HVIA-TD achieved high precision (0.9826) and recall (0.9535), outperforming the single visual information analysis framework SVIA (with a precision of 0.9551 and a recall of 0.9121). [Display omitted] •Hybrid visual information analysis framework for occupational hazards identification.•Instance segmentation and pose estimation models for visual information extraction.•Different architectures are implemented for various on-site hardware requirements.•The proposed framework achieved high precision and recall with real-time performance.
ArticleNumber 106043
Author Demachi, Kazuyuki
Chen, Shi
Dong, Feiyan
Author_xml – sequence: 1
  givenname: Shi
  orcidid: 0000-0002-3524-3577
  surname: Chen
  fullname: Chen, Shi
  email: shichen@g.ecc.u-tokyo.ac.jp
– sequence: 2
  givenname: Feiyan
  surname: Dong
  fullname: Dong, Feiyan
– sequence: 3
  givenname: Kazuyuki
  surname: Demachi
  fullname: Demachi, Kazuyuki
BookMark eNp9kM1OAjEQxxuDiYC-gKe-wGK_YY0XQlRMSLzouRm601gCXdIumPXpLeDZ00z-H5PJb0QGsY1IyD1nE864edhMcnZhIpgQRTBMySsy5LNpXXGmxIAMWS10NdVS35BRzhvGGJeGD0le9usUGnoM-QBbGqJv0w660EYKEbZ9DpkWibaxyqFD2jp32J_9kv6CH0hNpqHB2AUf3Nl4pHPqICPN3aHpS7MsENI39DSDx66_Jdcethnv_uaYfL48fyyW1er99W0xX1VOMtZVUuNUMaY51Ep6ruuZc8YbVyOYmUQjPBOg5HpqlKtdrVErJcBo3yBXDtZyTMTlrkttzgm93aewg9RbzuwJm93YEzZ7wmYv2Erp6VLC8tkxYLIlgdFhExK6zjZt-K_-C5qIeoo
CitedBy_id crossref_primary_10_3390_buildings13082093
crossref_primary_10_1016_j_jlp_2024_105387
Cites_doi 10.1016/j.comcom.2012.01.005
10.1016/j.autcon.2020.103334
10.1109/TPAMI.2018.2844175
10.1016/j.ssci.2021.105646
10.1016/j.autcon.2022.104312
10.1109/TPAMI.2019.2929257
10.1016/j.ssci.2022.105689
10.1109/ICCV.2019.00925
10.1109/TPAMI.2020.2983686
10.1016/j.autcon.2022.104191
10.1016/j.jsr.2012.08.020
10.1061/(ASCE)CP.1943-5487.0000900
10.1016/j.autcon.2013.08.009
10.1016/j.autcon.2017.05.002
10.1016/j.autcon.2019.102894
10.1016/j.aei.2019.100966
10.1016/j.autcon.2022.104253
10.1016/j.imavis.2008.04.021
10.1109/TPAMI.2016.2577031
10.1111/mice.12579
10.1016/j.autcon.2017.09.018
10.1016/j.autcon.2018.05.022
10.1016/j.autcon.2020.103310
10.1016/j.autcon.2021.103619
10.1007/s00138-022-01273-2
10.1016/j.procs.2020.10.054
10.1002/ajim.20698
10.1007/s00354-021-00137-z
10.1016/j.autcon.2021.103828
10.1109/TPAMI.2019.2956516
10.1016/j.autcon.2020.103085
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ssci.2022.106043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Public Health
EISSN 1879-1042
ExternalDocumentID 10_1016_j_ssci_2022_106043
S0925753522003824
GroupedDBID ---
--K
--M
.~1
0R~
123
13V
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABKBG
ABLVK
ABMAC
ABMMH
ABMVD
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACIWK
ACJTP
ACNNM
ACNTT
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXBA
AFXIZ
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AISVY
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
NAHTW
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SES
SEW
SNG
SPC
SPCBC
SSB
SSG
SSH
SSL
SSO
SSS
SST
SSZ
T5K
UHS
WH7
WUQ
YHZ
~02
~G-
0SF
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c300t-35e740051a943f1598cc6f6c9ea683e62f02a43b764c9c95e5442a65fde14cab3
IEDL.DBID AIKHN
ISSN 0925-7535
IngestDate Thu Sep 26 18:06:00 EDT 2024
Fri Feb 23 02:39:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Instance segmentation
Occupational hazards identification
Construction worker
Stairway safety
Pose estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-35e740051a943f1598cc6f6c9ea683e62f02a43b764c9c95e5442a65fde14cab3
ORCID 0000-0002-3524-3577
ParticipantIDs crossref_primary_10_1016_j_ssci_2022_106043
elsevier_sciencedirect_doi_10_1016_j_ssci_2022_106043
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Safety science
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vukicevic, Djapan, Isailovic, Milasinovic, Savkovic, Milosevic (b40) 2022; 148
Chen, Demachi, Dong (b9) 2022; 137
Liu, Wang, Huang, He, Skitmore, Luo (b29) 2020; 119
Nakano, Chen, Demachi (b30) 2021
Fang, Li, Luo, Ding, Luo, Rose, An (b14) 2018; 85
Hamada, Kitamura, Nishida (b17) 2021
He, Gkioxari, Dollár, Girshick (b18) 2018; 42
Kaskutas, Dale, Lipscomb, Evanoff (b22) 2013; 44
Jiao, Lei, Zong, Cai, Zhong (b21) 2022; 33
Yan, Xiong, Lin (b46) 2018
Cheng, Wong, Luo, Wang, Leung (b11) 2022; 139
Zhang, Zhu, Zhao (b49) 2020; 34
Snoek, Hoey, Stewart, Zemel, Mihailidis (b38) 2009; 27
Occupational Safety and Health Administration (b34) 2022
Dong, He, Li, Yin (b12) 2015
Wu, Cai, Chen, Wang, Wang (b42) 2019; 106
Banno, Shinomiya (b1) 2019
Xiong, Song, Li, Wang (b44) 2019; 42
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang (b41) 2021; 43
.
Yang, Yu, Shirowzhan, Li (b47) 2020; 32
Yu, Guo, Ding, Li, Skitmore (b48) 2017; 82
Lee, Lee, Lee, Ahn (b25) 2022; 139
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b27) 2014
Bureau of Labor Statistics, U.S. Department of Labor (b5) 2022
Japan Industrial Safety and Health Association (b20) 2022
Cai, Vasconcelos (b6) 2019; 43
Chen, Dong, Demachi (b10) 2021
Chen, Demachi (b8) 2021; 125
Fang, Li, Luo, Ding, Luo, Li (b13) 2018; 93
Kelm, Laußat, Meins-Becker, Platz, Khazaee, Costin, Helmus, Teizer (b24) 2013; 36
Occupational Safety and Health Administration (b33) 2022
Li, Zhao, Zhou, Zhang (b26) 2022; 150
Takahashi, Nishida, Kitamura, Mizoguchi (b39) 2017
Bureau of Labor Statistics, U.S. Department of Labor (b4) 2022
Higuchi, Taniguchi, Kawasaki, Sonoda (b19) 2021; 39
Hamada, Kitamura, Nishida (b16) 2020; 177
Cao, Hidalgo, Simon, Wei, Sheikh (b7) 2021; 43
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J., YOLACT: Real-Time Instance Segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, IEEE, pp. 9156–9165.
Fang, Ma, Love, Luo, Ding, Zhou (b15) 2020; 119
Kaskutas, Dale, Nolan, Patterson, Lipscomb, Evanoff (b23) 2009; 52
Barro-Torres, Fernández-Caramés, Pérez-Iglesias, Escudero (b2) 2012; 36
Osokin (b35) 2018
NVIDIA (b32) 2022
Wu, Zhong, Li, Love, Pan, Zhao (b43) 2021; 42
Shen, Xiong, Li, He, Li, Zheng (b37) 2021; 36
Linux Foundation (b28) 2022
Xiong, Tang (b45) 2021; 130
Nath, Behzadan, Paal (b31) 2020; 112
Ren, He, Girshick, Sun (b36) 2016; 39
Chen (10.1016/j.ssci.2022.106043_b8) 2021; 125
Yu (10.1016/j.ssci.2022.106043_b48) 2017; 82
Occupational Safety and Health Administration (10.1016/j.ssci.2022.106043_b34) 2022
Japan Industrial Safety and Health Association (10.1016/j.ssci.2022.106043_b20) 2022
Vukicevic (10.1016/j.ssci.2022.106043_b40) 2022; 148
Wu (10.1016/j.ssci.2022.106043_b43) 2021; 42
Yan (10.1016/j.ssci.2022.106043_b46) 2018
Takahashi (10.1016/j.ssci.2022.106043_b39) 2017
NVIDIA (10.1016/j.ssci.2022.106043_b32) 2022
Nakano (10.1016/j.ssci.2022.106043_b30) 2021
Yang (10.1016/j.ssci.2022.106043_b47) 2020; 32
Bureau of Labor Statistics, U.S. Department of Labor (10.1016/j.ssci.2022.106043_b4) 2022
Li (10.1016/j.ssci.2022.106043_b26) 2022; 150
Cheng (10.1016/j.ssci.2022.106043_b11) 2022; 139
Higuchi (10.1016/j.ssci.2022.106043_b19) 2021; 39
Xiong (10.1016/j.ssci.2022.106043_b45) 2021; 130
Liu (10.1016/j.ssci.2022.106043_b29) 2020; 119
Kelm (10.1016/j.ssci.2022.106043_b24) 2013; 36
Lin (10.1016/j.ssci.2022.106043_b27) 2014
Kaskutas (10.1016/j.ssci.2022.106043_b22) 2013; 44
Jiao (10.1016/j.ssci.2022.106043_b21) 2022; 33
Lee (10.1016/j.ssci.2022.106043_b25) 2022; 139
Nath (10.1016/j.ssci.2022.106043_b31) 2020; 112
Linux Foundation (10.1016/j.ssci.2022.106043_b28) 2022
Wang (10.1016/j.ssci.2022.106043_b41) 2021; 43
Snoek (10.1016/j.ssci.2022.106043_b38) 2009; 27
Chen (10.1016/j.ssci.2022.106043_b9) 2022; 137
Chen (10.1016/j.ssci.2022.106043_b10) 2021
Dong (10.1016/j.ssci.2022.106043_b12) 2015
Ren (10.1016/j.ssci.2022.106043_b36) 2016; 39
Barro-Torres (10.1016/j.ssci.2022.106043_b2) 2012; 36
10.1016/j.ssci.2022.106043_b3
Fang (10.1016/j.ssci.2022.106043_b14) 2018; 85
Banno (10.1016/j.ssci.2022.106043_b1) 2019
Xiong (10.1016/j.ssci.2022.106043_b44) 2019; 42
Wu (10.1016/j.ssci.2022.106043_b42) 2019; 106
Fang (10.1016/j.ssci.2022.106043_b15) 2020; 119
Hamada (10.1016/j.ssci.2022.106043_b17) 2021
Occupational Safety and Health Administration (10.1016/j.ssci.2022.106043_b33) 2022
Zhang (10.1016/j.ssci.2022.106043_b49) 2020; 34
Cao (10.1016/j.ssci.2022.106043_b7) 2021; 43
Shen (10.1016/j.ssci.2022.106043_b37) 2021; 36
Cai (10.1016/j.ssci.2022.106043_b6) 2019; 43
Fang (10.1016/j.ssci.2022.106043_b13) 2018; 93
Osokin (10.1016/j.ssci.2022.106043_b35) 2018
Hamada (10.1016/j.ssci.2022.106043_b16) 2020; 177
Kaskutas (10.1016/j.ssci.2022.106043_b23) 2009; 52
Bureau of Labor Statistics, U.S. Department of Labor (10.1016/j.ssci.2022.106043_b5) 2022
He (10.1016/j.ssci.2022.106043_b18) 2018; 42
References_xml – year: 2022
  ident: b34
  article-title: Safety and health regulations for construction: Stairways
  contributor:
    fullname: Occupational Safety and Health Administration
– volume: 93
  start-page: 148
  year: 2018
  end-page: 164
  ident: b13
  article-title: Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment
  publication-title: Autom. Constr.
  contributor:
    fullname: Li
– start-page: 204
  year: 2015
  end-page: 214
  ident: b12
  article-title: Automated PPE misuse identification and assessment for safety performance enhancement
  publication-title: ICCREM 2015
  contributor:
    fullname: Yin
– start-page: 364
  year: 2017
  end-page: 368
  ident: b39
  article-title: Handrail IoT sensor for precision healthcare of elderly people in smart homes
  publication-title: 2017 IEEE International Symposium on Robotics and Intelligent Sensors
  contributor:
    fullname: Mizoguchi
– volume: 43
  start-page: 3349
  year: 2021
  end-page: 3364
  ident: b41
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Wang
– year: 2021
  ident: b30
  article-title: Cross-task consistency learning framework for multi-task learning
  contributor:
    fullname: Demachi
– volume: 36
  start-page: 38
  year: 2013
  end-page: 52
  ident: b24
  article-title: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites
  publication-title: Autom. Constr.
  contributor:
    fullname: Teizer
– volume: 27
  start-page: 153
  year: 2009
  end-page: 166
  ident: b38
  article-title: Automated detection of unusual events on stairs
  publication-title: Image Vis. Comput.
  contributor:
    fullname: Mihailidis
– start-page: 1
  year: 2019
  end-page: 2
  ident: b1
  article-title: Safety management system in staircase with passive RFID sensor tags
  publication-title: 2019 IEEE International Conference on Consumer Electronics-Taiwan
  contributor:
    fullname: Shinomiya
– volume: 43
  start-page: 172
  year: 2021
  end-page: 186
  ident: b7
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Sheikh
– volume: 36
  start-page: 180
  year: 2021
  end-page: 196
  ident: b37
  article-title: Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  contributor:
    fullname: Zheng
– year: 2022
  ident: b33
  article-title: Commonly used statistics
  contributor:
    fullname: Occupational Safety and Health Administration
– volume: 44
  start-page: 111
  year: 2013
  end-page: 118
  ident: b22
  article-title: Fall prevention and safety communication training for foremen: Report of a pilot project designed to improve residential construction safety
  publication-title: J. Saf. Res.
  contributor:
    fullname: Evanoff
– year: 2018
  ident: b35
  article-title: Real-time 2D multi-person pose estimation on CPU: Lightweight openpose
  contributor:
    fullname: Osokin
– volume: 119
  year: 2020
  ident: b29
  article-title: Manifesting construction activity scenes via image captioning
  publication-title: Autom. Constr.
  contributor:
    fullname: Luo
– volume: 148
  year: 2022
  ident: b40
  article-title: Generic compliance of industrial PPE by using deep learning techniques
  publication-title: Saf. Sci.
  contributor:
    fullname: Milosevic
– start-page: 740
  year: 2014
  end-page: 755
  ident: b27
  article-title: Microsoft COCO: Common objects in context
  publication-title: European Conference on Computer Vision
  contributor:
    fullname: Zitnick
– volume: 42
  year: 2019
  ident: b44
  article-title: Onsite video mining for construction hazards identification with visual relationships
  publication-title: Adv. Eng. Inform.
  contributor:
    fullname: Wang
– volume: 130
  year: 2021
  ident: b45
  article-title: Pose guided anchoring for detecting proper use of personal protective equipment
  publication-title: Autom. Constr.
  contributor:
    fullname: Tang
– volume: 177
  start-page: 405
  year: 2020
  end-page: 414
  ident: b16
  article-title: Ambient understanding of stairway ascension and descension by the elderly using a handrail-based force sensor
  publication-title: Procedia Comput. Sci.
  contributor:
    fullname: Nishida
– volume: 33
  start-page: 1
  year: 2022
  end-page: 12
  ident: b21
  article-title: Potential escalator-related injury identification and prevention based on multi-module integrated system for public health
  publication-title: Mach. Vis. Appl.
  contributor:
    fullname: Zhong
– volume: 32
  year: 2020
  ident: b47
  article-title: Automated PPE-tool pair check system for construction safety using smart IoT
  publication-title: J. Build. Eng.
  contributor:
    fullname: Li
– volume: 42
  year: 2021
  ident: b43
  article-title: Combining computer vision with semantic reasoning for on-site safety management in construction
  publication-title: J. Build. Eng.
  contributor:
    fullname: Zhao
– volume: 137
  year: 2022
  ident: b9
  article-title: Graph-based linguistic and visual information integration for on-site occupational hazards identification
  publication-title: Autom. Constr.
  contributor:
    fullname: Dong
– volume: 125
  year: 2021
  ident: b8
  article-title: Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph
  publication-title: Autom. Constr.
  contributor:
    fullname: Demachi
– volume: 119
  year: 2020
  ident: b15
  article-title: Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology
  publication-title: Autom. Constr.
  contributor:
    fullname: Zhou
– start-page: 1
  year: 2021
  end-page: 4
  ident: b17
  article-title: Individual and longitudinal trend analysis of stairway gait via ambient measurement using handrail-shaped force sensor
  publication-title: IEEE Sensors
  contributor:
    fullname: Nishida
– volume: 42
  start-page: 386
  year: 2018
  end-page: 397
  ident: b18
  article-title: Mask R-CNN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Girshick
– year: 2022
  ident: b32
  article-title: TensorRT
  contributor:
    fullname: NVIDIA
– volume: 43
  start-page: 1483
  year: 2019
  end-page: 1498
  ident: b6
  article-title: Cascade R-CNN: High quality object detection and instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Vasconcelos
– volume: 52
  start-page: 491
  year: 2009
  end-page: 499
  ident: b23
  article-title: Fall hazard control observed on residential construction sites
  publication-title: Am. J. Ind. Med.
  contributor:
    fullname: Evanoff
– year: 2022
  ident: b5
  article-title: The economics daily, fatal and nonfatal falls, slips, and trips in the construction industry
  contributor:
    fullname: Bureau of Labor Statistics, U.S. Department of Labor
– volume: 112
  year: 2020
  ident: b31
  article-title: Deep learning for site safety: Real-time detection of personal protective equipment
  publication-title: Autom. Constr.
  contributor:
    fullname: Paal
– volume: 139
  year: 2022
  ident: b25
  article-title: Assessing exposure to slip, trip, and fall hazards based on abnormal gait patterns predicted from confidence interval estimation
  publication-title: Autom. Constr.
  contributor:
    fullname: Ahn
– volume: 36
  start-page: 42
  year: 2012
  end-page: 50
  ident: b2
  article-title: Real-time personal protective equipment monitoring system
  publication-title: Comput. Commun.
  contributor:
    fullname: Escudero
– year: 2022
  ident: b20
  article-title: OSH Statistics in Japan
  contributor:
    fullname: Japan Industrial Safety and Health Association
– year: 2018
  ident: b46
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
  contributor:
    fullname: Lin
– volume: 39
  start-page: 439
  year: 2021
  end-page: 452
  ident: b19
  article-title: Image processing for the prevention of infectious diseases
  publication-title: New Gener. Comput.
  contributor:
    fullname: Sonoda
– volume: 85
  start-page: 1
  year: 2018
  end-page: 9
  ident: b14
  article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos
  publication-title: Autom. Constr.
  contributor:
    fullname: An
– year: 2022
  ident: b4
  article-title: Census of fatal occupational injuries summary, 2020
  contributor:
    fullname: Bureau of Labor Statistics, U.S. Department of Labor
– start-page: 529
  year: 2021
  end-page: 536
  ident: b10
  article-title: A dynamic graph-based time series analysis framework for on-site occupational hazards identification
  publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 38
  contributor:
    fullname: Demachi
– volume: 139
  year: 2022
  ident: b11
  article-title: Vision-based monitoring of site safety compliance based on worker re-identification and personal protective equipment classification
  publication-title: Autom. Constr.
  contributor:
    fullname: Leung
– volume: 82
  start-page: 193
  year: 2017
  end-page: 206
  ident: b48
  article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors
  publication-title: Autom. Constr.
  contributor:
    fullname: Skitmore
– volume: 34
  year: 2020
  ident: b49
  article-title: Recognition of high-risk scenarios in building construction based on image semantics
  publication-title: J. Comput. Civ. Eng.
  contributor:
    fullname: Zhao
– volume: 106
  year: 2019
  ident: b42
  article-title: Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset
  publication-title: Autom. Constr.
  contributor:
    fullname: Wang
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: b36
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Sun
– volume: 150
  year: 2022
  ident: b26
  article-title: Standardized use inspection of workers’ personal protective equipment based on deep learning
  publication-title: Saf. Sci.
  contributor:
    fullname: Zhang
– year: 2022
  ident: b28
  article-title: Open Neural Network Exchange (ONNX)
  contributor:
    fullname: Linux Foundation
– year: 2021
  ident: 10.1016/j.ssci.2022.106043_b30
  contributor:
    fullname: Nakano
– year: 2018
  ident: 10.1016/j.ssci.2022.106043_b35
  contributor:
    fullname: Osokin
– volume: 36
  start-page: 42
  issue: 1
  year: 2012
  ident: 10.1016/j.ssci.2022.106043_b2
  article-title: Real-time personal protective equipment monitoring system
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2012.01.005
  contributor:
    fullname: Barro-Torres
– year: 2018
  ident: 10.1016/j.ssci.2022.106043_b46
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  contributor:
    fullname: Yan
– volume: 119
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b29
  article-title: Manifesting construction activity scenes via image captioning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103334
  contributor:
    fullname: Liu
– start-page: 529
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b10
  article-title: A dynamic graph-based time series analysis framework for on-site occupational hazards identification
  contributor:
    fullname: Chen
– volume: 42
  start-page: 386
  issue: 2
  year: 2018
  ident: 10.1016/j.ssci.2022.106043_b18
  article-title: Mask R-CNN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2844175
  contributor:
    fullname: He
– volume: 148
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b40
  article-title: Generic compliance of industrial PPE by using deep learning techniques
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105646
  contributor:
    fullname: Vukicevic
– volume: 42
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b43
  article-title: Combining computer vision with semantic reasoning for on-site safety management in construction
  publication-title: J. Build. Eng.
  contributor:
    fullname: Wu
– volume: 139
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b11
  article-title: Vision-based monitoring of site safety compliance based on worker re-identification and personal protective equipment classification
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104312
  contributor:
    fullname: Cheng
– start-page: 1
  year: 2019
  ident: 10.1016/j.ssci.2022.106043_b1
  article-title: Safety management system in staircase with passive RFID sensor tags
  contributor:
    fullname: Banno
– volume: 43
  start-page: 172
  issue: 01
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b7
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929257
  contributor:
    fullname: Cao
– volume: 150
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b26
  article-title: Standardized use inspection of workers’ personal protective equipment based on deep learning
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2022.105689
  contributor:
    fullname: Li
– volume: 32
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b47
  article-title: Automated PPE-tool pair check system for construction safety using smart IoT
  publication-title: J. Build. Eng.
  contributor:
    fullname: Yang
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b4
  contributor:
    fullname: Bureau of Labor Statistics, U.S. Department of Labor
– ident: 10.1016/j.ssci.2022.106043_b3
  doi: 10.1109/ICCV.2019.00925
– start-page: 204
  year: 2015
  ident: 10.1016/j.ssci.2022.106043_b12
  article-title: Automated PPE misuse identification and assessment for safety performance enhancement
  contributor:
    fullname: Dong
– volume: 43
  start-page: 3349
  issue: 10
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b41
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
  contributor:
    fullname: Wang
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b28
  contributor:
    fullname: Linux Foundation
– volume: 137
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b9
  article-title: Graph-based linguistic and visual information integration for on-site occupational hazards identification
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104191
  contributor:
    fullname: Chen
– start-page: 740
  year: 2014
  ident: 10.1016/j.ssci.2022.106043_b27
  article-title: Microsoft COCO: Common objects in context
  contributor:
    fullname: Lin
– volume: 44
  start-page: 111
  year: 2013
  ident: 10.1016/j.ssci.2022.106043_b22
  article-title: Fall prevention and safety communication training for foremen: Report of a pilot project designed to improve residential construction safety
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2012.08.020
  contributor:
    fullname: Kaskutas
– volume: 34
  issue: 4
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b49
  article-title: Recognition of high-risk scenarios in building construction based on image semantics
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000900
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 38
  year: 2013
  ident: 10.1016/j.ssci.2022.106043_b24
  article-title: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.08.009
  contributor:
    fullname: Kelm
– volume: 82
  start-page: 193
  year: 2017
  ident: 10.1016/j.ssci.2022.106043_b48
  article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.05.002
  contributor:
    fullname: Yu
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b32
  contributor:
    fullname: NVIDIA
– volume: 106
  year: 2019
  ident: 10.1016/j.ssci.2022.106043_b42
  article-title: Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102894
  contributor:
    fullname: Wu
– volume: 42
  year: 2019
  ident: 10.1016/j.ssci.2022.106043_b44
  article-title: Onsite video mining for construction hazards identification with visual relationships
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100966
  contributor:
    fullname: Xiong
– volume: 139
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b25
  article-title: Assessing exposure to slip, trip, and fall hazards based on abnormal gait patterns predicted from confidence interval estimation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104253
  contributor:
    fullname: Lee
– volume: 27
  start-page: 153
  issue: 1–2
  year: 2009
  ident: 10.1016/j.ssci.2022.106043_b38
  article-title: Automated detection of unusual events on stairs
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.021
  contributor:
    fullname: Snoek
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 10.1016/j.ssci.2022.106043_b36
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
  contributor:
    fullname: Ren
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b34
  contributor:
    fullname: Occupational Safety and Health Administration
– volume: 36
  start-page: 180
  issue: 2
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b37
  article-title: Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12579
  contributor:
    fullname: Shen
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b5
  contributor:
    fullname: Bureau of Labor Statistics, U.S. Department of Labor
– start-page: 1
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b17
  article-title: Individual and longitudinal trend analysis of stairway gait via ambient measurement using handrail-shaped force sensor
  contributor:
    fullname: Hamada
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.ssci.2022.106043_b14
  article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.09.018
  contributor:
    fullname: Fang
– volume: 93
  start-page: 148
  year: 2018
  ident: 10.1016/j.ssci.2022.106043_b13
  article-title: Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.05.022
  contributor:
    fullname: Fang
– volume: 119
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b15
  article-title: Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103310
  contributor:
    fullname: Fang
– volume: 125
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b8
  article-title: Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103619
  contributor:
    fullname: Chen
– volume: 33
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.ssci.2022.106043_b21
  article-title: Potential escalator-related injury identification and prevention based on multi-module integrated system for public health
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01273-2
  contributor:
    fullname: Jiao
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b33
  contributor:
    fullname: Occupational Safety and Health Administration
– volume: 177
  start-page: 405
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b16
  article-title: Ambient understanding of stairway ascension and descension by the elderly using a handrail-based force sensor
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.10.054
  contributor:
    fullname: Hamada
– start-page: 364
  year: 2017
  ident: 10.1016/j.ssci.2022.106043_b39
  article-title: Handrail IoT sensor for precision healthcare of elderly people in smart homes
  contributor:
    fullname: Takahashi
– volume: 52
  start-page: 491
  issue: 6
  year: 2009
  ident: 10.1016/j.ssci.2022.106043_b23
  article-title: Fall hazard control observed on residential construction sites
  publication-title: Am. J. Ind. Med.
  doi: 10.1002/ajim.20698
  contributor:
    fullname: Kaskutas
– volume: 39
  start-page: 439
  issue: 3
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b19
  article-title: Image processing for the prevention of infectious diseases
  publication-title: New Gener. Comput.
  doi: 10.1007/s00354-021-00137-z
  contributor:
    fullname: Higuchi
– year: 2022
  ident: 10.1016/j.ssci.2022.106043_b20
  contributor:
    fullname: Japan Industrial Safety and Health Association
– volume: 130
  year: 2021
  ident: 10.1016/j.ssci.2022.106043_b45
  article-title: Pose guided anchoring for detecting proper use of personal protective equipment
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103828
  contributor:
    fullname: Xiong
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  ident: 10.1016/j.ssci.2022.106043_b6
  article-title: Cascade R-CNN: High quality object detection and instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
  contributor:
    fullname: Cai
– volume: 112
  year: 2020
  ident: 10.1016/j.ssci.2022.106043_b31
  article-title: Deep learning for site safety: Real-time detection of personal protective equipment
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103085
  contributor:
    fullname: Nath
SSID ssj0001361
Score 2.4194143
Snippet Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106043
SubjectTerms Construction worker
Deep learning
Instance segmentation
Occupational hazards identification
Pose estimation
Stairway safety
Title Hybrid visual information analysis for on-site occupational hazards identification: A case study on stairway safety
URI https://dx.doi.org/10.1016/j.ssci.2022.106043
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7odlAQ0an4c-TgTeLS_LL1NoYyFb3owFtJ0wTrYRt2KvPg327SpjJBPHhN80r5eHnvpXnfF4BjoQ0heZTjRGqOOY0sVtQwrGJpc6ayWBp_ont7J4cjfv0oHpdg0HBhfFtliP11TK-idRjpBTR706Lo3ZPEuZtXJ_H9VTHly9B26YjGLWj3r26Gd98BOWKVbKqfj71B4M7UbV6le7fbJlLqBiTh7Pf8tJBzLjdgPRSLqF9_zyYsmXEHVhoucdmBtfqvG6rJRFtQDueegYXeivLVGQZVVI89UkF9BLkhNBljf2qMJgsaw-hJfXgGFiry0EFUPThHfaRdqkOVEK2zRJ5x9fKu5qhU1szm2zC6vHgYDHG4VgFrRsgMM2HOuF-MKuHMunIm1lpaqROjZMyMpJZQxVl2JrlOdCKM4JwqKWxuIq5VxnagNZ6MzS6ghOksN3HuNkWKK5ElVgtL3FyVe50ysgcnDZjptFbPSJu2sufUQ5966NMa-j0QDd7pDx9IXXj_w27_n3YHsOovj687yg6hNXt5NUeuxJhlXVg-_Yy6wZG-ANpM0fE
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB2qHiqIaFWsnzl4k9B089GNtyLKarUXW-htyWYTrIe2uFWpv96km5UK4sFrNrMsj8nMZDPvBeCCa0NI3s6xFJphFrUtVpGhWMXC5lRlsTD-RPexL5Ihux_xUQ2uKy6Mb6sMsb-M6ctoHUZaAc3WbDxuPRHp3M2rk_j-qjhia7DhqgHpVudG966X9L8DcpsuZVP9fOwNAnembPMq3LvdNjGK3IAgjP6en1Zyzu0ObIdiEXXL79mFmpk0oF5xiYsGbJV_3VBJJtqDIll4BhZ6HxdvzjCoonrskQrqI8gNoekE-1NjNF3RGEbP6tMzsNA4Dx1EywdXqIu0S3VoKUTrLJFnXL1-qAUqlDXzxT4Mb28G1wkO1ypgTQmZY8pNh_nFqCSj1pUzsdbCCi2NEjE1IrIkUoxmHcG01JIbzlikBLe5aTOtMnoA65PpxBwCklRnuYlztylSTPFMWs0tcXNV7nXKSBMuKzDTWamekVZtZS-phz710Kcl9E3gFd7pDx9IXXj_w-7on3bnUE8Gjw_pw12_dwyb_iL5srvsBNbnr2_m1JUb8-wsuNMX8ijT5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+visual+information+analysis+for+on-site+occupational+hazards+identification%3A+A+case+study+on+stairway+safety&rft.jtitle=Safety+science&rft.au=Chen%2C+Shi&rft.au=Dong%2C+Feiyan&rft.au=Demachi%2C+Kazuyuki&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=159&rft_id=info:doi/10.1016%2Fj.ssci.2022.106043&rft.externalDocID=S0925753522003824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon