Hybrid visual information analysis for on-site occupational hazards identification: A case study on stairway safety
Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increas...
Saved in:
Published in | Safety science Vol. 159; p. 106043 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increasingly important for on-site occupational safety management. However, construction site scenes generally contain a variety of different entities (e.g., individuals, facilities), which places a higher demand on the hybrid visual information understanding capability of the scenes of computer-aided monitoring systems. This paper presents a novel hybrid visual information analysis framework. First, a visual information extraction module integrating the state-of-the-art instance segmentation and pose estimation models is proposed to obtain hybrid on-site entities information. Subsequently, hazards are identified with an original geometric relationship analysis algorithm and the identification performance is further enhanced using time series analysis. Two hybrid visual information analysis frameworks, i.e., HVIA-BU and HVIA-TD, are proposed based on bottom-up and top-down pose estimation models, respectively. We implemented and experimentally evaluated different architectures of each framework in terms of both identification performance and inference speed to address the different on-site hardware requirements. As an initial application of the proposed framework for on-site occupational hazards identification, we performed the experiments with handrail-related compliance as a case study. The proposed hybrid visual information analysis framework HVIA-TD achieved high precision (0.9826) and recall (0.9535), outperforming the single visual information analysis framework SVIA (with a precision of 0.9551 and a recall of 0.9121).
[Display omitted]
•Hybrid visual information analysis framework for occupational hazards identification.•Instance segmentation and pose estimation models for visual information extraction.•Different architectures are implemented for various on-site hardware requirements.•The proposed framework achieved high precision and recall with real-time performance. |
---|---|
AbstractList | Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction workers unconsciously violate safety rules due to inattentiveness and hastiness. Thus, computer-aided monitoring systems is becoming increasingly important for on-site occupational safety management. However, construction site scenes generally contain a variety of different entities (e.g., individuals, facilities), which places a higher demand on the hybrid visual information understanding capability of the scenes of computer-aided monitoring systems. This paper presents a novel hybrid visual information analysis framework. First, a visual information extraction module integrating the state-of-the-art instance segmentation and pose estimation models is proposed to obtain hybrid on-site entities information. Subsequently, hazards are identified with an original geometric relationship analysis algorithm and the identification performance is further enhanced using time series analysis. Two hybrid visual information analysis frameworks, i.e., HVIA-BU and HVIA-TD, are proposed based on bottom-up and top-down pose estimation models, respectively. We implemented and experimentally evaluated different architectures of each framework in terms of both identification performance and inference speed to address the different on-site hardware requirements. As an initial application of the proposed framework for on-site occupational hazards identification, we performed the experiments with handrail-related compliance as a case study. The proposed hybrid visual information analysis framework HVIA-TD achieved high precision (0.9826) and recall (0.9535), outperforming the single visual information analysis framework SVIA (with a precision of 0.9551 and a recall of 0.9121).
[Display omitted]
•Hybrid visual information analysis framework for occupational hazards identification.•Instance segmentation and pose estimation models for visual information extraction.•Different architectures are implemented for various on-site hardware requirements.•The proposed framework achieved high precision and recall with real-time performance. |
ArticleNumber | 106043 |
Author | Demachi, Kazuyuki Chen, Shi Dong, Feiyan |
Author_xml | – sequence: 1 givenname: Shi orcidid: 0000-0002-3524-3577 surname: Chen fullname: Chen, Shi email: shichen@g.ecc.u-tokyo.ac.jp – sequence: 2 givenname: Feiyan surname: Dong fullname: Dong, Feiyan – sequence: 3 givenname: Kazuyuki surname: Demachi fullname: Demachi, Kazuyuki |
BookMark | eNp9kM1OAjEQxxuDiYC-gKe-wGK_YY0XQlRMSLzouRm601gCXdIumPXpLeDZ00z-H5PJb0QGsY1IyD1nE864edhMcnZhIpgQRTBMySsy5LNpXXGmxIAMWS10NdVS35BRzhvGGJeGD0le9usUGnoM-QBbGqJv0w660EYKEbZ9DpkWibaxyqFD2jp32J_9kv6CH0hNpqHB2AUf3Nl4pHPqICPN3aHpS7MsENI39DSDx66_Jdcethnv_uaYfL48fyyW1er99W0xX1VOMtZVUuNUMaY51Ep6ruuZc8YbVyOYmUQjPBOg5HpqlKtdrVErJcBo3yBXDtZyTMTlrkttzgm93aewg9RbzuwJm93YEzZ7wmYv2Erp6VLC8tkxYLIlgdFhExK6zjZt-K_-C5qIeoo |
CitedBy_id | crossref_primary_10_3390_buildings13082093 crossref_primary_10_1016_j_jlp_2024_105387 |
Cites_doi | 10.1016/j.comcom.2012.01.005 10.1016/j.autcon.2020.103334 10.1109/TPAMI.2018.2844175 10.1016/j.ssci.2021.105646 10.1016/j.autcon.2022.104312 10.1109/TPAMI.2019.2929257 10.1016/j.ssci.2022.105689 10.1109/ICCV.2019.00925 10.1109/TPAMI.2020.2983686 10.1016/j.autcon.2022.104191 10.1016/j.jsr.2012.08.020 10.1061/(ASCE)CP.1943-5487.0000900 10.1016/j.autcon.2013.08.009 10.1016/j.autcon.2017.05.002 10.1016/j.autcon.2019.102894 10.1016/j.aei.2019.100966 10.1016/j.autcon.2022.104253 10.1016/j.imavis.2008.04.021 10.1109/TPAMI.2016.2577031 10.1111/mice.12579 10.1016/j.autcon.2017.09.018 10.1016/j.autcon.2018.05.022 10.1016/j.autcon.2020.103310 10.1016/j.autcon.2021.103619 10.1007/s00138-022-01273-2 10.1016/j.procs.2020.10.054 10.1002/ajim.20698 10.1007/s00354-021-00137-z 10.1016/j.autcon.2021.103828 10.1109/TPAMI.2019.2956516 10.1016/j.autcon.2020.103085 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ssci.2022.106043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Public Health |
EISSN | 1879-1042 |
ExternalDocumentID | 10_1016_j_ssci_2022_106043 S0925753522003824 |
GroupedDBID | --- --K --M .~1 0R~ 123 13V 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABIVO ABJNI ABKBG ABLVK ABMAC ABMMH ABMVD ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHRH ACIWK ACJTP ACNNM ACNTT ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXBA AFXIZ AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AISVY AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A NAHTW O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SAE SDF SDG SES SEW SNG SPC SPCBC SSB SSG SSH SSL SSO SSS SST SSZ T5K UHS WH7 WUQ YHZ ~02 ~G- 0SF AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c300t-35e740051a943f1598cc6f6c9ea683e62f02a43b764c9c95e5442a65fde14cab3 |
IEDL.DBID | AIKHN |
ISSN | 0925-7535 |
IngestDate | Thu Sep 26 18:06:00 EDT 2024 Fri Feb 23 02:39:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Instance segmentation Occupational hazards identification Construction worker Stairway safety Pose estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-35e740051a943f1598cc6f6c9ea683e62f02a43b764c9c95e5442a65fde14cab3 |
ORCID | 0000-0002-3524-3577 |
ParticipantIDs | crossref_primary_10_1016_j_ssci_2022_106043 elsevier_sciencedirect_doi_10_1016_j_ssci_2022_106043 |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Safety science |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vukicevic, Djapan, Isailovic, Milasinovic, Savkovic, Milosevic (b40) 2022; 148 Chen, Demachi, Dong (b9) 2022; 137 Liu, Wang, Huang, He, Skitmore, Luo (b29) 2020; 119 Nakano, Chen, Demachi (b30) 2021 Fang, Li, Luo, Ding, Luo, Rose, An (b14) 2018; 85 Hamada, Kitamura, Nishida (b17) 2021 He, Gkioxari, Dollár, Girshick (b18) 2018; 42 Kaskutas, Dale, Lipscomb, Evanoff (b22) 2013; 44 Jiao, Lei, Zong, Cai, Zhong (b21) 2022; 33 Yan, Xiong, Lin (b46) 2018 Cheng, Wong, Luo, Wang, Leung (b11) 2022; 139 Zhang, Zhu, Zhao (b49) 2020; 34 Snoek, Hoey, Stewart, Zemel, Mihailidis (b38) 2009; 27 Occupational Safety and Health Administration (b34) 2022 Dong, He, Li, Yin (b12) 2015 Wu, Cai, Chen, Wang, Wang (b42) 2019; 106 Banno, Shinomiya (b1) 2019 Xiong, Song, Li, Wang (b44) 2019; 42 Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang (b41) 2021; 43 . Yang, Yu, Shirowzhan, Li (b47) 2020; 32 Yu, Guo, Ding, Li, Skitmore (b48) 2017; 82 Lee, Lee, Lee, Ahn (b25) 2022; 139 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b27) 2014 Bureau of Labor Statistics, U.S. Department of Labor (b5) 2022 Japan Industrial Safety and Health Association (b20) 2022 Cai, Vasconcelos (b6) 2019; 43 Chen, Dong, Demachi (b10) 2021 Chen, Demachi (b8) 2021; 125 Fang, Li, Luo, Ding, Luo, Li (b13) 2018; 93 Kelm, Laußat, Meins-Becker, Platz, Khazaee, Costin, Helmus, Teizer (b24) 2013; 36 Occupational Safety and Health Administration (b33) 2022 Li, Zhao, Zhou, Zhang (b26) 2022; 150 Takahashi, Nishida, Kitamura, Mizoguchi (b39) 2017 Bureau of Labor Statistics, U.S. Department of Labor (b4) 2022 Higuchi, Taniguchi, Kawasaki, Sonoda (b19) 2021; 39 Hamada, Kitamura, Nishida (b16) 2020; 177 Cao, Hidalgo, Simon, Wei, Sheikh (b7) 2021; 43 Bolya, D., Zhou, C., Xiao, F., Lee, Y.J., YOLACT: Real-Time Instance Segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, IEEE, pp. 9156–9165. Fang, Ma, Love, Luo, Ding, Zhou (b15) 2020; 119 Kaskutas, Dale, Nolan, Patterson, Lipscomb, Evanoff (b23) 2009; 52 Barro-Torres, Fernández-Caramés, Pérez-Iglesias, Escudero (b2) 2012; 36 Osokin (b35) 2018 NVIDIA (b32) 2022 Wu, Zhong, Li, Love, Pan, Zhao (b43) 2021; 42 Shen, Xiong, Li, He, Li, Zheng (b37) 2021; 36 Linux Foundation (b28) 2022 Xiong, Tang (b45) 2021; 130 Nath, Behzadan, Paal (b31) 2020; 112 Ren, He, Girshick, Sun (b36) 2016; 39 Chen (10.1016/j.ssci.2022.106043_b8) 2021; 125 Yu (10.1016/j.ssci.2022.106043_b48) 2017; 82 Occupational Safety and Health Administration (10.1016/j.ssci.2022.106043_b34) 2022 Japan Industrial Safety and Health Association (10.1016/j.ssci.2022.106043_b20) 2022 Vukicevic (10.1016/j.ssci.2022.106043_b40) 2022; 148 Wu (10.1016/j.ssci.2022.106043_b43) 2021; 42 Yan (10.1016/j.ssci.2022.106043_b46) 2018 Takahashi (10.1016/j.ssci.2022.106043_b39) 2017 NVIDIA (10.1016/j.ssci.2022.106043_b32) 2022 Nakano (10.1016/j.ssci.2022.106043_b30) 2021 Yang (10.1016/j.ssci.2022.106043_b47) 2020; 32 Bureau of Labor Statistics, U.S. Department of Labor (10.1016/j.ssci.2022.106043_b4) 2022 Li (10.1016/j.ssci.2022.106043_b26) 2022; 150 Cheng (10.1016/j.ssci.2022.106043_b11) 2022; 139 Higuchi (10.1016/j.ssci.2022.106043_b19) 2021; 39 Xiong (10.1016/j.ssci.2022.106043_b45) 2021; 130 Liu (10.1016/j.ssci.2022.106043_b29) 2020; 119 Kelm (10.1016/j.ssci.2022.106043_b24) 2013; 36 Lin (10.1016/j.ssci.2022.106043_b27) 2014 Kaskutas (10.1016/j.ssci.2022.106043_b22) 2013; 44 Jiao (10.1016/j.ssci.2022.106043_b21) 2022; 33 Lee (10.1016/j.ssci.2022.106043_b25) 2022; 139 Nath (10.1016/j.ssci.2022.106043_b31) 2020; 112 Linux Foundation (10.1016/j.ssci.2022.106043_b28) 2022 Wang (10.1016/j.ssci.2022.106043_b41) 2021; 43 Snoek (10.1016/j.ssci.2022.106043_b38) 2009; 27 Chen (10.1016/j.ssci.2022.106043_b9) 2022; 137 Chen (10.1016/j.ssci.2022.106043_b10) 2021 Dong (10.1016/j.ssci.2022.106043_b12) 2015 Ren (10.1016/j.ssci.2022.106043_b36) 2016; 39 Barro-Torres (10.1016/j.ssci.2022.106043_b2) 2012; 36 10.1016/j.ssci.2022.106043_b3 Fang (10.1016/j.ssci.2022.106043_b14) 2018; 85 Banno (10.1016/j.ssci.2022.106043_b1) 2019 Xiong (10.1016/j.ssci.2022.106043_b44) 2019; 42 Wu (10.1016/j.ssci.2022.106043_b42) 2019; 106 Fang (10.1016/j.ssci.2022.106043_b15) 2020; 119 Hamada (10.1016/j.ssci.2022.106043_b17) 2021 Occupational Safety and Health Administration (10.1016/j.ssci.2022.106043_b33) 2022 Zhang (10.1016/j.ssci.2022.106043_b49) 2020; 34 Cao (10.1016/j.ssci.2022.106043_b7) 2021; 43 Shen (10.1016/j.ssci.2022.106043_b37) 2021; 36 Cai (10.1016/j.ssci.2022.106043_b6) 2019; 43 Fang (10.1016/j.ssci.2022.106043_b13) 2018; 93 Osokin (10.1016/j.ssci.2022.106043_b35) 2018 Hamada (10.1016/j.ssci.2022.106043_b16) 2020; 177 Kaskutas (10.1016/j.ssci.2022.106043_b23) 2009; 52 Bureau of Labor Statistics, U.S. Department of Labor (10.1016/j.ssci.2022.106043_b5) 2022 He (10.1016/j.ssci.2022.106043_b18) 2018; 42 |
References_xml | – year: 2022 ident: b34 article-title: Safety and health regulations for construction: Stairways contributor: fullname: Occupational Safety and Health Administration – volume: 93 start-page: 148 year: 2018 end-page: 164 ident: b13 article-title: Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment publication-title: Autom. Constr. contributor: fullname: Li – start-page: 204 year: 2015 end-page: 214 ident: b12 article-title: Automated PPE misuse identification and assessment for safety performance enhancement publication-title: ICCREM 2015 contributor: fullname: Yin – start-page: 364 year: 2017 end-page: 368 ident: b39 article-title: Handrail IoT sensor for precision healthcare of elderly people in smart homes publication-title: 2017 IEEE International Symposium on Robotics and Intelligent Sensors contributor: fullname: Mizoguchi – volume: 43 start-page: 3349 year: 2021 end-page: 3364 ident: b41 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Wang – year: 2021 ident: b30 article-title: Cross-task consistency learning framework for multi-task learning contributor: fullname: Demachi – volume: 36 start-page: 38 year: 2013 end-page: 52 ident: b24 article-title: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites publication-title: Autom. Constr. contributor: fullname: Teizer – volume: 27 start-page: 153 year: 2009 end-page: 166 ident: b38 article-title: Automated detection of unusual events on stairs publication-title: Image Vis. Comput. contributor: fullname: Mihailidis – start-page: 1 year: 2019 end-page: 2 ident: b1 article-title: Safety management system in staircase with passive RFID sensor tags publication-title: 2019 IEEE International Conference on Consumer Electronics-Taiwan contributor: fullname: Shinomiya – volume: 43 start-page: 172 year: 2021 end-page: 186 ident: b7 article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Sheikh – volume: 36 start-page: 180 year: 2021 end-page: 196 ident: b37 article-title: Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning publication-title: Comput.-Aided Civ. Infrastruct. Eng. contributor: fullname: Zheng – year: 2022 ident: b33 article-title: Commonly used statistics contributor: fullname: Occupational Safety and Health Administration – volume: 44 start-page: 111 year: 2013 end-page: 118 ident: b22 article-title: Fall prevention and safety communication training for foremen: Report of a pilot project designed to improve residential construction safety publication-title: J. Saf. Res. contributor: fullname: Evanoff – year: 2018 ident: b35 article-title: Real-time 2D multi-person pose estimation on CPU: Lightweight openpose contributor: fullname: Osokin – volume: 119 year: 2020 ident: b29 article-title: Manifesting construction activity scenes via image captioning publication-title: Autom. Constr. contributor: fullname: Luo – volume: 148 year: 2022 ident: b40 article-title: Generic compliance of industrial PPE by using deep learning techniques publication-title: Saf. Sci. contributor: fullname: Milosevic – start-page: 740 year: 2014 end-page: 755 ident: b27 article-title: Microsoft COCO: Common objects in context publication-title: European Conference on Computer Vision contributor: fullname: Zitnick – volume: 42 year: 2019 ident: b44 article-title: Onsite video mining for construction hazards identification with visual relationships publication-title: Adv. Eng. Inform. contributor: fullname: Wang – volume: 130 year: 2021 ident: b45 article-title: Pose guided anchoring for detecting proper use of personal protective equipment publication-title: Autom. Constr. contributor: fullname: Tang – volume: 177 start-page: 405 year: 2020 end-page: 414 ident: b16 article-title: Ambient understanding of stairway ascension and descension by the elderly using a handrail-based force sensor publication-title: Procedia Comput. Sci. contributor: fullname: Nishida – volume: 33 start-page: 1 year: 2022 end-page: 12 ident: b21 article-title: Potential escalator-related injury identification and prevention based on multi-module integrated system for public health publication-title: Mach. Vis. Appl. contributor: fullname: Zhong – volume: 32 year: 2020 ident: b47 article-title: Automated PPE-tool pair check system for construction safety using smart IoT publication-title: J. Build. Eng. contributor: fullname: Li – volume: 42 year: 2021 ident: b43 article-title: Combining computer vision with semantic reasoning for on-site safety management in construction publication-title: J. Build. Eng. contributor: fullname: Zhao – volume: 137 year: 2022 ident: b9 article-title: Graph-based linguistic and visual information integration for on-site occupational hazards identification publication-title: Autom. Constr. contributor: fullname: Dong – volume: 125 year: 2021 ident: b8 article-title: Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph publication-title: Autom. Constr. contributor: fullname: Demachi – volume: 119 year: 2020 ident: b15 article-title: Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology publication-title: Autom. Constr. contributor: fullname: Zhou – start-page: 1 year: 2021 end-page: 4 ident: b17 article-title: Individual and longitudinal trend analysis of stairway gait via ambient measurement using handrail-shaped force sensor publication-title: IEEE Sensors contributor: fullname: Nishida – volume: 42 start-page: 386 year: 2018 end-page: 397 ident: b18 article-title: Mask R-CNN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Girshick – year: 2022 ident: b32 article-title: TensorRT contributor: fullname: NVIDIA – volume: 43 start-page: 1483 year: 2019 end-page: 1498 ident: b6 article-title: Cascade R-CNN: High quality object detection and instance segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Vasconcelos – volume: 52 start-page: 491 year: 2009 end-page: 499 ident: b23 article-title: Fall hazard control observed on residential construction sites publication-title: Am. J. Ind. Med. contributor: fullname: Evanoff – year: 2022 ident: b5 article-title: The economics daily, fatal and nonfatal falls, slips, and trips in the construction industry contributor: fullname: Bureau of Labor Statistics, U.S. Department of Labor – volume: 112 year: 2020 ident: b31 article-title: Deep learning for site safety: Real-time detection of personal protective equipment publication-title: Autom. Constr. contributor: fullname: Paal – volume: 139 year: 2022 ident: b25 article-title: Assessing exposure to slip, trip, and fall hazards based on abnormal gait patterns predicted from confidence interval estimation publication-title: Autom. Constr. contributor: fullname: Ahn – volume: 36 start-page: 42 year: 2012 end-page: 50 ident: b2 article-title: Real-time personal protective equipment monitoring system publication-title: Comput. Commun. contributor: fullname: Escudero – year: 2022 ident: b20 article-title: OSH Statistics in Japan contributor: fullname: Japan Industrial Safety and Health Association – year: 2018 ident: b46 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Thirty-Second AAAI Conference on Artificial Intelligence contributor: fullname: Lin – volume: 39 start-page: 439 year: 2021 end-page: 452 ident: b19 article-title: Image processing for the prevention of infectious diseases publication-title: New Gener. Comput. contributor: fullname: Sonoda – volume: 85 start-page: 1 year: 2018 end-page: 9 ident: b14 article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos publication-title: Autom. Constr. contributor: fullname: An – year: 2022 ident: b4 article-title: Census of fatal occupational injuries summary, 2020 contributor: fullname: Bureau of Labor Statistics, U.S. Department of Labor – start-page: 529 year: 2021 end-page: 536 ident: b10 article-title: A dynamic graph-based time series analysis framework for on-site occupational hazards identification publication-title: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 38 contributor: fullname: Demachi – volume: 139 year: 2022 ident: b11 article-title: Vision-based monitoring of site safety compliance based on worker re-identification and personal protective equipment classification publication-title: Autom. Constr. contributor: fullname: Leung – volume: 82 start-page: 193 year: 2017 end-page: 206 ident: b48 article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors publication-title: Autom. Constr. contributor: fullname: Skitmore – volume: 34 year: 2020 ident: b49 article-title: Recognition of high-risk scenarios in building construction based on image semantics publication-title: J. Comput. Civ. Eng. contributor: fullname: Zhao – volume: 106 year: 2019 ident: b42 article-title: Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset publication-title: Autom. Constr. contributor: fullname: Wang – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: b36 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Sun – volume: 150 year: 2022 ident: b26 article-title: Standardized use inspection of workers’ personal protective equipment based on deep learning publication-title: Saf. Sci. contributor: fullname: Zhang – year: 2022 ident: b28 article-title: Open Neural Network Exchange (ONNX) contributor: fullname: Linux Foundation – year: 2021 ident: 10.1016/j.ssci.2022.106043_b30 contributor: fullname: Nakano – year: 2018 ident: 10.1016/j.ssci.2022.106043_b35 contributor: fullname: Osokin – volume: 36 start-page: 42 issue: 1 year: 2012 ident: 10.1016/j.ssci.2022.106043_b2 article-title: Real-time personal protective equipment monitoring system publication-title: Comput. Commun. doi: 10.1016/j.comcom.2012.01.005 contributor: fullname: Barro-Torres – year: 2018 ident: 10.1016/j.ssci.2022.106043_b46 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition contributor: fullname: Yan – volume: 119 year: 2020 ident: 10.1016/j.ssci.2022.106043_b29 article-title: Manifesting construction activity scenes via image captioning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103334 contributor: fullname: Liu – start-page: 529 year: 2021 ident: 10.1016/j.ssci.2022.106043_b10 article-title: A dynamic graph-based time series analysis framework for on-site occupational hazards identification contributor: fullname: Chen – volume: 42 start-page: 386 issue: 2 year: 2018 ident: 10.1016/j.ssci.2022.106043_b18 article-title: Mask R-CNN publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2844175 contributor: fullname: He – volume: 148 year: 2022 ident: 10.1016/j.ssci.2022.106043_b40 article-title: Generic compliance of industrial PPE by using deep learning techniques publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105646 contributor: fullname: Vukicevic – volume: 42 year: 2021 ident: 10.1016/j.ssci.2022.106043_b43 article-title: Combining computer vision with semantic reasoning for on-site safety management in construction publication-title: J. Build. Eng. contributor: fullname: Wu – volume: 139 year: 2022 ident: 10.1016/j.ssci.2022.106043_b11 article-title: Vision-based monitoring of site safety compliance based on worker re-identification and personal protective equipment classification publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104312 contributor: fullname: Cheng – start-page: 1 year: 2019 ident: 10.1016/j.ssci.2022.106043_b1 article-title: Safety management system in staircase with passive RFID sensor tags contributor: fullname: Banno – volume: 43 start-page: 172 issue: 01 year: 2021 ident: 10.1016/j.ssci.2022.106043_b7 article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2929257 contributor: fullname: Cao – volume: 150 year: 2022 ident: 10.1016/j.ssci.2022.106043_b26 article-title: Standardized use inspection of workers’ personal protective equipment based on deep learning publication-title: Saf. Sci. doi: 10.1016/j.ssci.2022.105689 contributor: fullname: Li – volume: 32 year: 2020 ident: 10.1016/j.ssci.2022.106043_b47 article-title: Automated PPE-tool pair check system for construction safety using smart IoT publication-title: J. Build. Eng. contributor: fullname: Yang – year: 2022 ident: 10.1016/j.ssci.2022.106043_b4 contributor: fullname: Bureau of Labor Statistics, U.S. Department of Labor – ident: 10.1016/j.ssci.2022.106043_b3 doi: 10.1109/ICCV.2019.00925 – start-page: 204 year: 2015 ident: 10.1016/j.ssci.2022.106043_b12 article-title: Automated PPE misuse identification and assessment for safety performance enhancement contributor: fullname: Dong – volume: 43 start-page: 3349 issue: 10 year: 2021 ident: 10.1016/j.ssci.2022.106043_b41 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 contributor: fullname: Wang – year: 2022 ident: 10.1016/j.ssci.2022.106043_b28 contributor: fullname: Linux Foundation – volume: 137 year: 2022 ident: 10.1016/j.ssci.2022.106043_b9 article-title: Graph-based linguistic and visual information integration for on-site occupational hazards identification publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104191 contributor: fullname: Chen – start-page: 740 year: 2014 ident: 10.1016/j.ssci.2022.106043_b27 article-title: Microsoft COCO: Common objects in context contributor: fullname: Lin – volume: 44 start-page: 111 year: 2013 ident: 10.1016/j.ssci.2022.106043_b22 article-title: Fall prevention and safety communication training for foremen: Report of a pilot project designed to improve residential construction safety publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2012.08.020 contributor: fullname: Kaskutas – volume: 34 issue: 4 year: 2020 ident: 10.1016/j.ssci.2022.106043_b49 article-title: Recognition of high-risk scenarios in building construction based on image semantics publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000900 contributor: fullname: Zhang – volume: 36 start-page: 38 year: 2013 ident: 10.1016/j.ssci.2022.106043_b24 article-title: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.08.009 contributor: fullname: Kelm – volume: 82 start-page: 193 year: 2017 ident: 10.1016/j.ssci.2022.106043_b48 article-title: An experimental study of real-time identification of construction workers’ unsafe behaviors publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.05.002 contributor: fullname: Yu – year: 2022 ident: 10.1016/j.ssci.2022.106043_b32 contributor: fullname: NVIDIA – volume: 106 year: 2019 ident: 10.1016/j.ssci.2022.106043_b42 article-title: Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102894 contributor: fullname: Wu – volume: 42 year: 2019 ident: 10.1016/j.ssci.2022.106043_b44 article-title: Onsite video mining for construction hazards identification with visual relationships publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100966 contributor: fullname: Xiong – volume: 139 year: 2022 ident: 10.1016/j.ssci.2022.106043_b25 article-title: Assessing exposure to slip, trip, and fall hazards based on abnormal gait patterns predicted from confidence interval estimation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104253 contributor: fullname: Lee – volume: 27 start-page: 153 issue: 1–2 year: 2009 ident: 10.1016/j.ssci.2022.106043_b38 article-title: Automated detection of unusual events on stairs publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.04.021 contributor: fullname: Snoek – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 10.1016/j.ssci.2022.106043_b36 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 contributor: fullname: Ren – year: 2022 ident: 10.1016/j.ssci.2022.106043_b34 contributor: fullname: Occupational Safety and Health Administration – volume: 36 start-page: 180 issue: 2 year: 2021 ident: 10.1016/j.ssci.2022.106043_b37 article-title: Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12579 contributor: fullname: Shen – year: 2022 ident: 10.1016/j.ssci.2022.106043_b5 contributor: fullname: Bureau of Labor Statistics, U.S. Department of Labor – start-page: 1 year: 2021 ident: 10.1016/j.ssci.2022.106043_b17 article-title: Individual and longitudinal trend analysis of stairway gait via ambient measurement using handrail-shaped force sensor contributor: fullname: Hamada – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.ssci.2022.106043_b14 article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.09.018 contributor: fullname: Fang – volume: 93 start-page: 148 year: 2018 ident: 10.1016/j.ssci.2022.106043_b13 article-title: Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.05.022 contributor: fullname: Fang – volume: 119 year: 2020 ident: 10.1016/j.ssci.2022.106043_b15 article-title: Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103310 contributor: fullname: Fang – volume: 125 year: 2021 ident: 10.1016/j.ssci.2022.106043_b8 article-title: Towards on-site hazards identification of improper use of personal protective equipment using deep learning-based geometric relationships and hierarchical scene graph publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103619 contributor: fullname: Chen – volume: 33 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.ssci.2022.106043_b21 article-title: Potential escalator-related injury identification and prevention based on multi-module integrated system for public health publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-022-01273-2 contributor: fullname: Jiao – year: 2022 ident: 10.1016/j.ssci.2022.106043_b33 contributor: fullname: Occupational Safety and Health Administration – volume: 177 start-page: 405 year: 2020 ident: 10.1016/j.ssci.2022.106043_b16 article-title: Ambient understanding of stairway ascension and descension by the elderly using a handrail-based force sensor publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.10.054 contributor: fullname: Hamada – start-page: 364 year: 2017 ident: 10.1016/j.ssci.2022.106043_b39 article-title: Handrail IoT sensor for precision healthcare of elderly people in smart homes contributor: fullname: Takahashi – volume: 52 start-page: 491 issue: 6 year: 2009 ident: 10.1016/j.ssci.2022.106043_b23 article-title: Fall hazard control observed on residential construction sites publication-title: Am. J. Ind. Med. doi: 10.1002/ajim.20698 contributor: fullname: Kaskutas – volume: 39 start-page: 439 issue: 3 year: 2021 ident: 10.1016/j.ssci.2022.106043_b19 article-title: Image processing for the prevention of infectious diseases publication-title: New Gener. Comput. doi: 10.1007/s00354-021-00137-z contributor: fullname: Higuchi – year: 2022 ident: 10.1016/j.ssci.2022.106043_b20 contributor: fullname: Japan Industrial Safety and Health Association – volume: 130 year: 2021 ident: 10.1016/j.ssci.2022.106043_b45 article-title: Pose guided anchoring for detecting proper use of personal protective equipment publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103828 contributor: fullname: Xiong – volume: 43 start-page: 1483 issue: 5 year: 2019 ident: 10.1016/j.ssci.2022.106043_b6 article-title: Cascade R-CNN: High quality object detection and instance segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 contributor: fullname: Cai – volume: 112 year: 2020 ident: 10.1016/j.ssci.2022.106043_b31 article-title: Deep learning for site safety: Real-time detection of personal protective equipment publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103085 contributor: fullname: Nath |
SSID | ssj0001361 |
Score | 2.4194143 |
Snippet | Slip, trip and fall (STF) are the leading type of fatalities in the construction industry and most occupational STF accidents on stairs occur when construction... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 106043 |
SubjectTerms | Construction worker Deep learning Instance segmentation Occupational hazards identification Pose estimation Stairway safety |
Title | Hybrid visual information analysis for on-site occupational hazards identification: A case study on stairway safety |
URI | https://dx.doi.org/10.1016/j.ssci.2022.106043 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7odlAQ0an4c-TgTeLS_LL1NoYyFb3owFtJ0wTrYRt2KvPg327SpjJBPHhN80r5eHnvpXnfF4BjoQ0heZTjRGqOOY0sVtQwrGJpc6ayWBp_ont7J4cjfv0oHpdg0HBhfFtliP11TK-idRjpBTR706Lo3ZPEuZtXJ_H9VTHly9B26YjGLWj3r26Gd98BOWKVbKqfj71B4M7UbV6le7fbJlLqBiTh7Pf8tJBzLjdgPRSLqF9_zyYsmXEHVhoucdmBtfqvG6rJRFtQDueegYXeivLVGQZVVI89UkF9BLkhNBljf2qMJgsaw-hJfXgGFiry0EFUPThHfaRdqkOVEK2zRJ5x9fKu5qhU1szm2zC6vHgYDHG4VgFrRsgMM2HOuF-MKuHMunIm1lpaqROjZMyMpJZQxVl2JrlOdCKM4JwqKWxuIq5VxnagNZ6MzS6ghOksN3HuNkWKK5ElVgtL3FyVe50ysgcnDZjptFbPSJu2sufUQ5966NMa-j0QDd7pDx9IXXj_w27_n3YHsOovj687yg6hNXt5NUeuxJhlXVg-_Yy6wZG-ANpM0fE |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB2qHiqIaFWsnzl4k9B089GNtyLKarUXW-htyWYTrIe2uFWpv96km5UK4sFrNrMsj8nMZDPvBeCCa0NI3s6xFJphFrUtVpGhWMXC5lRlsTD-RPexL5Ihux_xUQ2uKy6Mb6sMsb-M6ctoHUZaAc3WbDxuPRHp3M2rk_j-qjhia7DhqgHpVudG966X9L8DcpsuZVP9fOwNAnembPMq3LvdNjGK3IAgjP6en1Zyzu0ObIdiEXXL79mFmpk0oF5xiYsGbJV_3VBJJtqDIll4BhZ6HxdvzjCoonrskQrqI8gNoekE-1NjNF3RGEbP6tMzsNA4Dx1EywdXqIu0S3VoKUTrLJFnXL1-qAUqlDXzxT4Mb28G1wkO1ypgTQmZY8pNh_nFqCSj1pUzsdbCCi2NEjE1IrIkUoxmHcG01JIbzlikBLe5aTOtMnoA65PpxBwCklRnuYlztylSTPFMWs0tcXNV7nXKSBMuKzDTWamekVZtZS-phz710Kcl9E3gFd7pDx9IXXj_w-7on3bnUE8Gjw_pw12_dwyb_iL5srvsBNbnr2_m1JUb8-wsuNMX8ijT5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+visual+information+analysis+for+on-site+occupational+hazards+identification%3A+A+case+study+on+stairway+safety&rft.jtitle=Safety+science&rft.au=Chen%2C+Shi&rft.au=Dong%2C+Feiyan&rft.au=Demachi%2C+Kazuyuki&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0925-7535&rft.eissn=1879-1042&rft.volume=159&rft_id=info:doi/10.1016%2Fj.ssci.2022.106043&rft.externalDocID=S0925753522003824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7535&client=summon |