Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber
In this work, the double-cladding (DC) structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber (PQF) is investigated. Three PQFs featuring one, two and three rings of inner air holes are considered. Numerical results show that with the increase of inner air...
Saved in:
Published in | Superlattices and microstructures Vol. 130; pp. 61 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0749-6036 1096-3677 |
DOI | 10.1016/j.spmi.2019.03.011 |
Cover
Loading…
Abstract | In this work, the double-cladding (DC) structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber (PQF) is investigated. Three PQFs featuring one, two and three rings of inner air holes are considered. Numerical results show that with the increase of inner air-filling fraction to around 0.65, the confinement loss begins hopping. The confinement loss varies very slightly when the outer air-filling fraction is less than 0.3, and then presents an exponential decrease with the fraction increasing. In addition, the dispersion of DC-PQF can be made flattened and near-zero with the inner air-filling fraction about 0.3–0.4 despite what the ring number is. Three distinct bands of effective area and nonlinear coefficient can be achieved for three types of inner cladding and there exists the same hopping phenomenon as the confinement loss. This investigation is helpful for balancing fiber performance parameters and providing a guidance for engineering specific fiber.
•A new phenomenon of “loss spikes” is reported in six-fold symmetric DC-PQF.•The CL varies very slightly when the outer air-filling fraction is less than 0.3.•The CL presents an exponential decrease with the fraction increasing when the outer air-filling fraction is more than 0.3.•The properties of near-zero flattened dispersion of DC-PQF is verified when inner air-filling fraction is about 0.3 ∼ 0.4.•The influences of inner and outer air-filling fraction on effective area are investigated respectively. |
---|---|
AbstractList | In this work, the double-cladding (DC) structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber (PQF) is investigated. Three PQFs featuring one, two and three rings of inner air holes are considered. Numerical results show that with the increase of inner air-filling fraction to around 0.65, the confinement loss begins hopping. The confinement loss varies very slightly when the outer air-filling fraction is less than 0.3, and then presents an exponential decrease with the fraction increasing. In addition, the dispersion of DC-PQF can be made flattened and near-zero with the inner air-filling fraction about 0.3–0.4 despite what the ring number is. Three distinct bands of effective area and nonlinear coefficient can be achieved for three types of inner cladding and there exists the same hopping phenomenon as the confinement loss. This investigation is helpful for balancing fiber performance parameters and providing a guidance for engineering specific fiber.
•A new phenomenon of “loss spikes” is reported in six-fold symmetric DC-PQF.•The CL varies very slightly when the outer air-filling fraction is less than 0.3.•The CL presents an exponential decrease with the fraction increasing when the outer air-filling fraction is more than 0.3.•The properties of near-zero flattened dispersion of DC-PQF is verified when inner air-filling fraction is about 0.3 ∼ 0.4.•The influences of inner and outer air-filling fraction on effective area are investigated respectively. |
Author | Liu, Exian Liang, Shuwei Liu, Jianjun |
Author_xml | – sequence: 1 givenname: Exian surname: Liu fullname: Liu, Exian – sequence: 2 givenname: Shuwei surname: Liang fullname: Liang, Shuwei – sequence: 3 givenname: Jianjun surname: Liu fullname: Liu, Jianjun email: jianjun.liu@hnu.edu.cn |
BookMark | eNp9kM1KAzEUhYNUsFVfwFVeYMabSZvpgBvxHwpudB0yyU17y3RSk4zYt7e1rly4ugcu34HzTdioDz0ydiWgFCDU9bpM2w2VFYimBFmCECdsLKBRhVR1PWJjqKdNoUCqMzZJaQ0AzVTUYxbvw9B2WNjOOEf9kqccB5uHiNzhFnuHvUUePF8O9PO3KxONzRgpZbKJU88TfRU-dI6n3WaDOZLl21XIod-Hj8EkKmzcpWw67qnFeMFOvekSXv7ec_b--PB291wsXp9e7m4XhZUAuZDSzedCedNUHqsaEUB4o6b1DBVUlfEOKuWEr2tpsBUKG9FaaWamVco3U5DnrDr22hhSiuj1NtLGxJ0WoA_W9FofrOmDNQ1S763tofkfyFI2mUKfo6Huf_TmiOJ-1Cdh1MnSQZ-jiDZrF-g__Btu5I48 |
CitedBy_id | crossref_primary_10_1016_j_ijleo_2020_165779 crossref_primary_10_1080_09500340_2022_2093416 crossref_primary_10_1007_s11082_022_03750_4 crossref_primary_10_3788_IRLA20220551 crossref_primary_10_1016_j_ijleo_2021_168446 crossref_primary_10_1142_S0217984921500779 crossref_primary_10_1364_OE_444323 crossref_primary_10_1016_j_optcom_2023_130026 crossref_primary_10_3788_IRLA20240007 crossref_primary_10_1016_j_ijleo_2022_169981 crossref_primary_10_1016_j_rinp_2021_104537 crossref_primary_10_1016_j_rinp_2020_103240 crossref_primary_10_1117_1_OE_61_7_076108 crossref_primary_10_1364_JOSAA_474692 crossref_primary_10_1039_D2CP02778J crossref_primary_10_1016_j_rinp_2020_102951 crossref_primary_10_1364_JOSAA_485814 crossref_primary_10_1016_j_rinp_2021_104082 crossref_primary_10_1016_j_ijleo_2021_166935 crossref_primary_10_35848_1882_0786_ab6934 crossref_primary_10_1016_j_physe_2019_113840 crossref_primary_10_1016_j_optmat_2020_109800 crossref_primary_10_1088_1674_1056_accd54 crossref_primary_10_1364_JOSAA_453467 crossref_primary_10_1007_s12596_023_01118_9 crossref_primary_10_1016_j_rio_2020_100027 crossref_primary_10_1142_S0217984923502160 crossref_primary_10_1016_j_ijleo_2019_163850 crossref_primary_10_1016_j_ijleo_2022_169471 crossref_primary_10_1016_j_ijleo_2021_168440 crossref_primary_10_1016_j_rinp_2020_103418 crossref_primary_10_1109_JPHOT_2019_2961110 crossref_primary_10_1007_s12596_022_00876_2 crossref_primary_10_1016_j_optcom_2020_126003 crossref_primary_10_1016_j_rinp_2022_105876 crossref_primary_10_1088_1402_4896_adb79e crossref_primary_10_1016_j_optlastec_2020_106261 crossref_primary_10_1364_OE_459088 crossref_primary_10_1364_AO_483504 crossref_primary_10_1007_s11082_019_2125_0 crossref_primary_10_3390_photonics9100783 crossref_primary_10_1016_j_rinp_2019_102590 crossref_primary_10_1007_s12596_022_00937_6 crossref_primary_10_1016_j_ijleo_2020_164466 crossref_primary_10_1016_j_ijleo_2020_165556 crossref_primary_10_1016_j_ijleo_2023_170941 crossref_primary_10_1364_JOSAA_499894 crossref_primary_10_1007_s11433_021_1776_8 crossref_primary_10_1016_j_ijleo_2020_164708 crossref_primary_10_1088_1402_4896_acf961 crossref_primary_10_1142_S0217984921502298 crossref_primary_10_1016_j_ijleo_2023_171312 crossref_primary_10_1364_AO_462961 crossref_primary_10_1103_PhysRevApplied_12_044004 crossref_primary_10_1364_JOSAB_435571 crossref_primary_10_3788_COL202321_060603 crossref_primary_10_3390_nano10020207 crossref_primary_10_1364_JOSAA_36_001663 crossref_primary_10_1016_j_rio_2020_100004 crossref_primary_10_1016_j_ijleo_2021_168386 crossref_primary_10_1016_j_rinp_2021_104707 crossref_primary_10_3390_nano10010095 crossref_primary_10_1088_1361_6463_ab59f4 crossref_primary_10_1364_JOSAB_402357 crossref_primary_10_1016_j_optcom_2020_125496 crossref_primary_10_1088_2040_8986_ab92b5 crossref_primary_10_1364_JOSAA_387492 crossref_primary_10_1117_1_OE_61_9_096101 crossref_primary_10_1117_1_OE_61_7_076111 |
Cites_doi | 10.1109/LPT.2012.2190981 10.1109/50.241933 10.1088/1361-6463/aab4ce 10.1109/JLT.2010.2089600 10.1364/JOSAA.35.000431 10.1109/JLT.2014.2380439 10.1016/j.ijleo.2017.10.166 10.1117/1.OE.55.3.036101 10.1016/j.yofte.2018.03.003 10.1109/LPT.2011.2157817 10.1134/S1054660X11190340 10.1016/j.spmi.2018.01.014 10.1364/OE.15.013221 10.1364/JOSAA.33.002108 10.1088/0256-307X/29/11/114205 10.1002/andp.18712190612 10.1364/OPEX.12.001990 10.1364/AO.56.006993 10.1016/j.photonics.2016.01.004 10.1364/OE.10.000341 10.1109/JSEN.2016.2514850 10.1364/OPEX.13.003728 10.1364/OE.11.002982 10.1109/JLT.2006.889668 10.1016/j.optcom.2011.08.075 10.1016/j.ijleo.2016.01.134 10.1016/j.snb.2016.07.100 10.1364/OL.26.001660 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2019.03.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
EndPage | 67 |
ExternalDocumentID | 10_1016_j_spmi_2019_03_011 S0749603618324698 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-33d8816fa92fe27ee001fa6475e6022afd026d1f773aeb16e91bc3a5ab66f9403 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:12 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 23 02:44:55 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Double-cladding Confinement loss Effective area Photonic quasi-crystal fiber Dispersion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-33d8816fa92fe27ee001fa6475e6022afd026d1f773aeb16e91bc3a5ab66f9403 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2019_03_011 crossref_citationtrail_10_1016_j_spmi_2019_03_011 elsevier_sciencedirect_doi_10_1016_j_spmi_2019_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Hou, Lu, Zhou (bib15) 2009; 26 Yuan, Sang, Yu, Jin, Shen, Zhou, Li, Hou (bib16) 2011; 284 Mortensen (bib27) 2002; 10 Lee, Lee, Kim (bib3) 2018; 157 Liu, Tan, Yan, Xie, Ge, Liu (bib23) 2018; 35 Limpert, Schreiber, Liem, Nolte, Zellmer, Peschel, Guyenot, Tünnermann (bib6) 2003; 11 Liu, Yan, Tan, Xie, Ge, Liu (bib11) 2018; 115 Zhang, Hou, Liu, Jin, Jiang (bib20) 2011; 21 Kerrinckx, Bigot, Douay, Quiquempois (bib12) 2004; 12 Kim, Kee, Lee (bib22) 2007; 15 Luo, Tian, Qu, Li, Zhang, Yang, Yuan (bib29) 2017; 56 Sivabalan, Raina (bib1) 2011; 23 Matsui, Sakamoto, Tsujikawa, Tomita, Tsubokawa (bib14) 2011; 29 White, McPhedran, de Sterke, Botten, Steel (bib24) 2001; 26 Hsu, Ye (bib17) 2011 Yan, Wang, Liu, Tan, Xie, Ge, Liu (bib10) 2018; 51 Matsui, Nakajima, Sankawa (bib7) 2007; 25 Zenteno (bib19) 1993; 11 Cai, Liu, Feng, Xiao, Liu, Wang, Wang, Liang, Liu, Liu (bib4) 2016; 33 Sellmeier (bib25) 1871; 219 Yin, Ruan, Liu, Jiang, Wang, Wei, Yan (bib21) 2017; 238 Cai, Liu, Feng, Liu, Wang, Xiao, Liang, Wang, Liu, Liu (bib2) 2016; 127 Hsu, Yao, Chen (bib8) 2015; 33 Islam, Alam (bib18) 2012; 24 Maji, Chaudhuri (bib28) 2016; 19 Poletti, Finazzi, Monro, Broderick, Tse, Richardson (bib13) 2005; 13 Hoang, Siwicki, Franczyk, Stepniewski, Van, Long, Klimczak, Buczyński (bib30) 2018; 42 Agrawal (bib26) 2007 Liu, Xiao, Cai, Liu, Feng, Wang, Liang, Wang, Liu (bib5) 2016; 55 Gandhi, Sivabalan, Babu, Senthilnathan (bib9) 2016; 16 Cai (10.1016/j.spmi.2019.03.011_bib2) 2016; 127 Yan (10.1016/j.spmi.2019.03.011_bib10) 2018; 51 Zenteno (10.1016/j.spmi.2019.03.011_bib19) 1993; 11 Zhang (10.1016/j.spmi.2019.03.011_bib20) 2011; 21 Matsui (10.1016/j.spmi.2019.03.011_bib7) 2007; 25 Hsu (10.1016/j.spmi.2019.03.011_bib8) 2015; 33 Agrawal (10.1016/j.spmi.2019.03.011_bib26) 2007 Hoang (10.1016/j.spmi.2019.03.011_bib30) 2018; 42 Liu (10.1016/j.spmi.2019.03.011_bib5) 2016; 55 Wang (10.1016/j.spmi.2019.03.011_bib15) 2009; 26 Kim (10.1016/j.spmi.2019.03.011_bib22) 2007; 15 Liu (10.1016/j.spmi.2019.03.011_bib23) 2018; 35 Sivabalan (10.1016/j.spmi.2019.03.011_bib1) 2011; 23 Kerrinckx (10.1016/j.spmi.2019.03.011_bib12) 2004; 12 Maji (10.1016/j.spmi.2019.03.011_bib28) 2016; 19 Lee (10.1016/j.spmi.2019.03.011_bib3) 2018; 157 Liu (10.1016/j.spmi.2019.03.011_bib11) 2018; 115 Yuan (10.1016/j.spmi.2019.03.011_bib16) 2011; 284 Poletti (10.1016/j.spmi.2019.03.011_bib13) 2005; 13 Mortensen (10.1016/j.spmi.2019.03.011_bib27) 2002; 10 Matsui (10.1016/j.spmi.2019.03.011_bib14) 2011; 29 Hsu (10.1016/j.spmi.2019.03.011_bib17) 2011 Luo (10.1016/j.spmi.2019.03.011_bib29) 2017; 56 Islam (10.1016/j.spmi.2019.03.011_bib18) 2012; 24 Limpert (10.1016/j.spmi.2019.03.011_bib6) 2003; 11 Yin (10.1016/j.spmi.2019.03.011_bib21) 2017; 238 Cai (10.1016/j.spmi.2019.03.011_bib4) 2016; 33 Gandhi (10.1016/j.spmi.2019.03.011_bib9) 2016; 16 White (10.1016/j.spmi.2019.03.011_bib24) 2001; 26 Sellmeier (10.1016/j.spmi.2019.03.011_bib25) 1871; 219 |
References_xml | – volume: 25 start-page: 757 year: 2007 end-page: 762 ident: bib7 article-title: Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber publication-title: J. Light. Technol. – volume: 51 start-page: 155105 year: 2018 ident: bib10 article-title: Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber publication-title: J. Phys. D Appl. Phys. – volume: 11 start-page: 1435 year: 1993 end-page: 1446 ident: bib19 article-title: High-power double-clad fiber lasers publication-title: J. Light. Technol. – volume: 219 start-page: 272 year: 1871 end-page: 282 ident: bib25 article-title: Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen publication-title: Ann. Phys. – volume: 284 start-page: 5847 year: 2011 end-page: 5852 ident: bib16 article-title: Large negative dispersion in dual-concentric-core photonic crystal fiber with hybrid cladding structure based on complete leaky mode coupling publication-title: Optic Commun. – volume: 21 start-page: 1895 year: 2011 end-page: 1898 ident: bib20 article-title: Flat supercontinuum generation covering C-band to U-band in two-stage Er/Yb co-doped double-clad fiber amplifier publication-title: Laser Phys. – volume: 19 start-page: 12 year: 2016 end-page: 23 ident: bib28 article-title: Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications publication-title: Photonics Nanostruct. Fundam. Appl. – volume: 10 start-page: 341 year: 2002 end-page: 348 ident: bib27 article-title: Effective area of photonic crystal fibers publication-title: Optic Express – start-page: 3669 year: 2011 end-page: 3671 ident: bib17 article-title: Dispersion-compensation improvement for dualconcentric-core photonic crystal fibers publication-title: 2011 International Conference on Electronics, Communications and Control (ICECC) – volume: 12 start-page: 1990 year: 2004 end-page: 1995 ident: bib12 article-title: Photonic crystal fiber design by means of a genetic algorithm publication-title: Optic Express – volume: 35 start-page: 431 year: 2018 end-page: 436 ident: bib23 article-title: Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber publication-title: J. Opt. Soc. Am. A – start-page: I989 year: 2007 ident: bib26 article-title: Nonlinear Fiber Optics – volume: 29 start-page: 511 year: 2011 end-page: 515 ident: bib14 article-title: Singlemode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission publication-title: J. Light. Technol. – volume: 15 start-page: 13221 year: 2007 end-page: 13226 ident: bib22 article-title: Novel optical properties of six-fold symmetric photonic quasicrystal fibers publication-title: Optic Express – volume: 56 start-page: 6993 year: 2017 end-page: 7001 ident: bib29 article-title: Design and numerical analysis of a thz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence publication-title: Appl. Opt. – volume: 23 start-page: 1139 year: 2011 end-page: 1141 ident: bib1 article-title: High normal dispersion and large mode area photonic quasi-crystal fiber stretcher publication-title: IEEE Photonics Technol. Lett. – volume: 33 start-page: 2108 year: 2016 end-page: 2114 ident: bib4 article-title: Dodecagonal photonic quasi-crystal fiber with high birefringence publication-title: J. Opt. Soc. Am. A – volume: 33 start-page: 2240 year: 2015 end-page: 2245 ident: bib8 article-title: Wavelength-tunable dispersion compensating photonic crystal fibers suitable for conventional/coarse wavelength division multiplexing systems publication-title: J. Light. Technol. – volume: 42 start-page: 119 year: 2018 end-page: 125 ident: bib30 article-title: Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery publication-title: Opt. Fiber Technol. – volume: 16 start-page: 2425 year: 2016 end-page: 2430 ident: bib9 article-title: Designing a biosensor using a photonic quasi-crystal fiber publication-title: IEEE Sens. J. – volume: 157 start-page: 141 year: 2018 end-page: 147 ident: bib3 article-title: Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity publication-title: Optik – volume: 11 start-page: 2982 year: 2003 end-page: 2990 ident: bib6 article-title: Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation publication-title: Optic Express – volume: 26 start-page: 114205 year: 2009 ident: bib15 article-title: Design of double cladding nearly zero dispersion flattened nonlinear photonic crystal fiber publication-title: Chin. Phys. Lett. – volume: 13 start-page: 3728 year: 2005 end-page: 3736 ident: bib13 article-title: Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers publication-title: Optic Express – volume: 26 start-page: 1660 year: 2001 end-page: 1662 ident: bib24 article-title: Confinement losses in microstructured optical fibers publication-title: Optic Lett. – volume: 55 year: 2016 ident: bib5 article-title: Photonic quasi-crystal fiber with high birefringence publication-title: Opt. Eng. – volume: 238 start-page: 518 year: 2017 end-page: 524 ident: bib21 article-title: All-fiberoptic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber publication-title: Sensor. Actuator. B Chem. – volume: 24 start-page: 930 year: 2012 end-page: 932 ident: bib18 article-title: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E+S+C+L+U wavelength bands publication-title: IEEE Photonics Technol. Lett. – volume: 115 start-page: 123 year: 2018 end-page: 129 ident: bib11 article-title: Guiding characteristics of sunflower-type fiber publication-title: Superlattice. Microst. – volume: 127 start-page: 4438 year: 2016 end-page: 4442 ident: bib2 article-title: Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes publication-title: Optik – volume: 24 start-page: 930 year: 2012 ident: 10.1016/j.spmi.2019.03.011_bib18 article-title: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E+S+C+L+U wavelength bands publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2012.2190981 – volume: 11 start-page: 1435 issue: 9 year: 1993 ident: 10.1016/j.spmi.2019.03.011_bib19 article-title: High-power double-clad fiber lasers publication-title: J. Light. Technol. doi: 10.1109/50.241933 – volume: 51 start-page: 155105 issue: 15 year: 2018 ident: 10.1016/j.spmi.2019.03.011_bib10 article-title: Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aab4ce – volume: 29 start-page: 511 issue: 4 year: 2011 ident: 10.1016/j.spmi.2019.03.011_bib14 article-title: Singlemode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission publication-title: J. Light. Technol. doi: 10.1109/JLT.2010.2089600 – volume: 35 start-page: 431 issue: 3 year: 2018 ident: 10.1016/j.spmi.2019.03.011_bib23 article-title: Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.35.000431 – volume: 33 start-page: 2240 issue: 11 year: 2015 ident: 10.1016/j.spmi.2019.03.011_bib8 article-title: Wavelength-tunable dispersion compensating photonic crystal fibers suitable for conventional/coarse wavelength division multiplexing systems publication-title: J. Light. Technol. doi: 10.1109/JLT.2014.2380439 – volume: 157 start-page: 141 year: 2018 ident: 10.1016/j.spmi.2019.03.011_bib3 article-title: Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity publication-title: Optik doi: 10.1016/j.ijleo.2017.10.166 – volume: 55 year: 2016 ident: 10.1016/j.spmi.2019.03.011_bib5 article-title: Photonic quasi-crystal fiber with high birefringence publication-title: Opt. Eng. doi: 10.1117/1.OE.55.3.036101 – volume: 42 start-page: 119 year: 2018 ident: 10.1016/j.spmi.2019.03.011_bib30 article-title: Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2018.03.003 – volume: 23 start-page: 1139 issue: 16 year: 2011 ident: 10.1016/j.spmi.2019.03.011_bib1 article-title: High normal dispersion and large mode area photonic quasi-crystal fiber stretcher publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2011.2157817 – volume: 21 start-page: 1895 issue: 11 year: 2011 ident: 10.1016/j.spmi.2019.03.011_bib20 article-title: Flat supercontinuum generation covering C-band to U-band in two-stage Er/Yb co-doped double-clad fiber amplifier publication-title: Laser Phys. doi: 10.1134/S1054660X11190340 – volume: 115 start-page: 123 year: 2018 ident: 10.1016/j.spmi.2019.03.011_bib11 article-title: Guiding characteristics of sunflower-type fiber publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2018.01.014 – volume: 15 start-page: 13221 year: 2007 ident: 10.1016/j.spmi.2019.03.011_bib22 article-title: Novel optical properties of six-fold symmetric photonic quasicrystal fibers publication-title: Optic Express doi: 10.1364/OE.15.013221 – volume: 33 start-page: 2108 year: 2016 ident: 10.1016/j.spmi.2019.03.011_bib4 article-title: Dodecagonal photonic quasi-crystal fiber with high birefringence publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.33.002108 – volume: 26 start-page: 114205 issue: 11 year: 2009 ident: 10.1016/j.spmi.2019.03.011_bib15 article-title: Design of double cladding nearly zero dispersion flattened nonlinear photonic crystal fiber publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/11/114205 – volume: 219 start-page: 272 issue: 6 year: 1871 ident: 10.1016/j.spmi.2019.03.011_bib25 article-title: Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen publication-title: Ann. Phys. doi: 10.1002/andp.18712190612 – start-page: I989 year: 2007 ident: 10.1016/j.spmi.2019.03.011_bib26 – volume: 12 start-page: 1990 issue: 9 year: 2004 ident: 10.1016/j.spmi.2019.03.011_bib12 article-title: Photonic crystal fiber design by means of a genetic algorithm publication-title: Optic Express doi: 10.1364/OPEX.12.001990 – volume: 56 start-page: 6993 issue: 24 year: 2017 ident: 10.1016/j.spmi.2019.03.011_bib29 article-title: Design and numerical analysis of a thz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence publication-title: Appl. Opt. doi: 10.1364/AO.56.006993 – volume: 19 start-page: 12 year: 2016 ident: 10.1016/j.spmi.2019.03.011_bib28 article-title: Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications publication-title: Photonics Nanostruct. Fundam. Appl. doi: 10.1016/j.photonics.2016.01.004 – start-page: 3669 year: 2011 ident: 10.1016/j.spmi.2019.03.011_bib17 article-title: Dispersion-compensation improvement for dualconcentric-core photonic crystal fibers – volume: 10 start-page: 341 issue: 7 year: 2002 ident: 10.1016/j.spmi.2019.03.011_bib27 article-title: Effective area of photonic crystal fibers publication-title: Optic Express doi: 10.1364/OE.10.000341 – volume: 16 start-page: 2425 issue: 8 year: 2016 ident: 10.1016/j.spmi.2019.03.011_bib9 article-title: Designing a biosensor using a photonic quasi-crystal fiber publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2514850 – volume: 13 start-page: 3728 issue: 10 year: 2005 ident: 10.1016/j.spmi.2019.03.011_bib13 article-title: Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers publication-title: Optic Express doi: 10.1364/OPEX.13.003728 – volume: 11 start-page: 2982 issue: 22 year: 2003 ident: 10.1016/j.spmi.2019.03.011_bib6 article-title: Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation publication-title: Optic Express doi: 10.1364/OE.11.002982 – volume: 25 start-page: 757 issue: 3 year: 2007 ident: 10.1016/j.spmi.2019.03.011_bib7 article-title: Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber publication-title: J. Light. Technol. doi: 10.1109/JLT.2006.889668 – volume: 284 start-page: 5847 issue: 24 year: 2011 ident: 10.1016/j.spmi.2019.03.011_bib16 article-title: Large negative dispersion in dual-concentric-core photonic crystal fiber with hybrid cladding structure based on complete leaky mode coupling publication-title: Optic Commun. doi: 10.1016/j.optcom.2011.08.075 – volume: 127 start-page: 4438 year: 2016 ident: 10.1016/j.spmi.2019.03.011_bib2 article-title: Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes publication-title: Optik doi: 10.1016/j.ijleo.2016.01.134 – volume: 238 start-page: 518 year: 2017 ident: 10.1016/j.spmi.2019.03.011_bib21 article-title: All-fiberoptic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.07.100 – volume: 26 start-page: 1660 issue: 21 year: 2001 ident: 10.1016/j.spmi.2019.03.011_bib24 article-title: Confinement losses in microstructured optical fibers publication-title: Optic Lett. doi: 10.1364/OL.26.001660 |
SSID | ssj0009417 |
Score | 2.138383 |
Snippet | In this work, the double-cladding (DC) structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber (PQF) is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 61 |
SubjectTerms | Confinement loss Dispersion Double-cladding Effective area Photonic quasi-crystal fiber |
Title | Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber |
URI | https://dx.doi.org/10.1016/j.spmi.2019.03.011 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IVsX6Yg_eZG02m26SYylKVfSigrew2YdG0rSaFvTib3cmDx8gHrwl2RkIs8t8k_DNfIQcCctNqJVhykr8W-V8BlVGn7ko9mQMeM8DbHC-upaju-Divn-_QIZtLwzSKpvcX-f0Kls3T3pNNHvTLOvdAPhB-S0kHkrUQcQO9iBEWt_J-xfNIw4q1V00ZmjdNM7UHK9yOs6Q3lUPOuX8d3D6Bjhn62StqRTpoH6ZDbJgiw5ZGbYCbR2yXLE3dblJACrmaW6ZzpEeVDzQeirs_MXSVuRWWzpx9GGeVev655hmmhW0zF6Zm-SGlm_jMcpsaTp9nMxwci59nqsyY_rlDUrJnDokmWyRu7PT2-GINWIKTAvPmzEhTBRx6VTsO-uH1gI-OSUhYFYCjitn4GvMcBeGQkH-ljbmqRaqr1IpXRx4YpssFpPC7hDqq9T5jktjoyAwXqisM7DLUWThMoj8LuFtFBPdTBpHwYs8aSllTwlGPsHIJ55IIPJdcvzpM63nbPxp3W83J_lxWhIAgj_8dv_pt0dW8a6miO2TRdhEewDFyCw9rE7bIVkanF-Orj8ADW_hKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3RRYheEAUqPgr40FtlbRw7TnJEq6KlwF4KEjfL8QcEZbML2ZXKv8ezSdoiVRx6i2yPFI2teZPo-T2Ar9wxmxptqXYS_1b5mIYuI6E-yyOZB7xnAi84X0_k-Fb8uEvu1mDU34VBWmVX-9uavqrW3ciwy-ZwXpbDnwH8QvvNJR5K9EH8AOuoTiUGsH52cTme_NHeFSvjXVxPMaC7O9PSvJr5tESGV6t1yti_8ekvzDnfhq2uWSRn7ft8gjVX78DmqPdo24GNFYHTNLsQ0GJZVI6aChlC9T1phWGXz470PrfGkZkn98tyNW_eKjWTsiZN-Yv6WWVJ8zKdotOWIfOH2QLFc8nTUjclNc8voZusiEeeyR7cnn-_GY1p56dADY-iBeXcZhmTXuexd3HqXIAor6VIEycDlGtvwweZZT5NuQ4lXLqcFYbrRBdS-lxE_DMM6lnt9oHEuvCxZ9K6TAgbpdp5GzY6y1x4FFl8AKzPojKd2Dh6XlSqZ5U9Ksy8wsyriKuQ-QP49jtm3kptvLs66TdHvTkwKmDBO3GH_xl3Cpvjm-srdXUxuTyCjzjTMsa-wCBsqDsOvcmiOOnO3ivGwuPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-cladding+structure+dependence+of+guiding+characteristics+in+six-fold+symmetric+photonic+quasi-crystal+fiber&rft.jtitle=Superlattices+and+microstructures&rft.au=Liu%2C+Exian&rft.au=Liang%2C+Shuwei&rft.au=Liu%2C+Jianjun&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6036&rft.eissn=1096-3677&rft.volume=130&rft.spage=61&rft.epage=67&rft_id=info:doi/10.1016%2Fj.spmi.2019.03.011&rft.externalDocID=S0749603618324698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |