Bayesian Optimization for auto-tuning GPU kernels
Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good can...
Saved in:
Published in | 2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) pp. 106 - 117 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good candidate for Bayesian Optimization, which has not been applied to this problem before. However, the application of Bayesian Optimization to this problem is challenging. We demonstrate how to deal with the rough, discrete, constrained search spaces, containing invalid configurations. We introduce a novel contextual variance exploration factor, as well as new acquisition functions with improved scalability, combined with an informed acquisition function selection mechanism. By comparing the performance of our Bayesian Optimization implementation on various test cases to the existing search strategies in Kernel Tuner, as well as other Bayesian Optimization implementations, we demonstrate that our search strategies generalize well and consistently outperform other search strategies by a wide margin. |
---|---|
AbstractList | Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good candidate for Bayesian Optimization, which has not been applied to this problem before. However, the application of Bayesian Optimization to this problem is challenging. We demonstrate how to deal with the rough, discrete, constrained search spaces, containing invalid configurations. We introduce a novel contextual variance exploration factor, as well as new acquisition functions with improved scalability, combined with an informed acquisition function selection mechanism. By comparing the performance of our Bayesian Optimization implementation on various test cases to the existing search strategies in Kernel Tuner, as well as other Bayesian Optimization implementations, we demonstrate that our search strategies generalize well and consistently outperform other search strategies by a wide margin. |
Author | Willemsen, Floris-Jan van Nieuwpoort, Rob van Werkhoven, Ben |
Author_xml | – sequence: 1 givenname: Floris-Jan orcidid: 0000-0003-2295-8263 surname: Willemsen fullname: Willemsen, Floris-Jan organization: Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands – sequence: 2 givenname: Rob orcidid: 0000-0002-2947-9444 surname: van Nieuwpoort fullname: van Nieuwpoort, Rob organization: Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands – sequence: 3 givenname: Ben orcidid: 0000-0002-7508-3272 surname: van Werkhoven fullname: van Werkhoven, Ben organization: Netherlands eScience Center,Amsterdam,the Netherlands |
BookMark | eNotzE1OwzAQQGEjwYIWTgALXyBhxj-JvaQVtEhFrQSV2FWTZIwsWqdK3EU5PUiweqvvTcRl6hMLcY9QIoJ_2LzO3qyxRpcKFJYAgPWFmGBVWYOI7uNa4IzOPEZKcn3M8RC_Kcc-ydAPkk65L_IpxfQpF5ut_OIh8X68EVeB9iPf_ncqts9P7_NlsVovXuaPq6LVALnQ2tfBKa85IHkkdoYdekdVhxZ857jtgJQzrWfU2DSmcdyQ1RDcL1F6Ku7-vpGZd8chHmg473xlVe1r_QMvQEE_ |
CODEN | IEEPAD |
CitedBy_id | crossref_primary_10_1016_j_future_2024_05_021 crossref_primary_10_1088_1402_4896_ad0434 crossref_primary_10_1080_10618600_2024_2308216 crossref_primary_10_1109_TCC_2024_3361070 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PMBS54543.2021.00017 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 166541118X 9781665411189 |
EndPage | 117 |
ExternalDocumentID | 9652797 |
Genre | orig-research |
GrantInformation_xml | – fundername: NWO grantid: NWA.1160.18.316 funderid: 10.13039/501100003246 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-c300t-3397f8293ef1a91ae84e8198a6d1509d8ecd0a284c9e131bb4b8eba530f8ef123 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:46 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-3397f8293ef1a91ae84e8198a6d1509d8ecd0a284c9e131bb4b8eba530f8ef123 |
ORCID | 0000-0002-7508-3272 0000-0002-2947-9444 0000-0003-2295-8263 |
OpenAccessLink | https://pure.uva.nl/ws/files/71693538/Bayesian_Optimization_for_auto_tuning_GPU_kernels.pdf |
PageCount | 12 |
ParticipantIDs | ieee_primary_9652797 |
PublicationCentury | 2000 |
PublicationDate | 2021-Nov. |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov. |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) |
PublicationTitleAbbrev | PMBS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9171653 |
Snippet | Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 106 |
SubjectTerms | auto-tuning Bayes methods Bayesian Optimization Computational modeling Convolution GPU Computing Graphics processing units machine learning Optimization Scalability Search problems Tuners |
Title | Bayesian Optimization for auto-tuning GPU kernels |
URI | https://ieeexplore.ieee.org/document/9652797 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UrPhmDx7NNq_Nbq4VaxGqBS30VvKYvRS3UnYP-uudfVhRPHgLgZDMDOSbmeSbIeRay6CkTAJ1IHOqUmmpQxyhNvAguNWBNU37Zo96ulAPy2TZIzc7LgwANJ_PIK6HzVt-2PiqTpWNjE5EatI-6afGtFytjg3HmRnNZ-Nn9AeUxKhP8LgpBfOjZ0oDGZN9MvvarP0pso6r0sX-41cdxv-e5oAMv8l50XwHO4ekB8UR4WP7DjUfMnrCO-C1I1dG6JFGtio3tKzq_Ed0P19Ea9gWCIhDspjcvdxOadcNgXrJWEkleg55hugMObeGW8gUIJxnqE906kzIwAdmEW28AS65c8pl4GwiWZ7hEiGPyaDYFHBCIid9qo0OFjCaUJBYwdBkWnkWDBNWnJKjWtzVW1vwYtVJevb39DnZqxXeEvQuyKDcVnCJSF26q8ZEn4nYlJo |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeZGDEqR07TrwWUQo0pRKt1K2y4-uCSFGVDPDruTwoAjGwWZYsP07y993Z3x0hV0o4KUToqAWxpDIShlrEEWocdwE3yrGqaF8yVsOZfJiH8xa53mhhAKD6fAZ-2aze8t0qLcpQWU-rMIh0tEW2kVfHqlZrNXo4znRvkvSfkRFIgX5fwP0qGcyPqikVaAz2SPI1Xf1X5MUvcuunH78yMf53Pfuk-y3P8yYb4DkgLcg6hPfNO5SKSO8Jb4HXRl7pISf1TJGvaF6UERDvbjLzXmCdISR2yWxwO70Z0qYeAk0FYzkVyB2WMeIzLLnR3EAsAQE9xhNFWqddDKljBvEm1cAFt1baGKwJBVvGOCQQh6SdrTI4Ip4VaaS0cgbQn5AQmoCh0ZRMmdMsMMEx6ZTbXbzVKS8WzU5P_u6-JDvDaTJajO7Hj6dktzz8Wq53Rtr5uoBzxO3cXlTm-gSB-pfl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Workshop+on+Performance+Modeling%2C+Benchmarking+and+Simulation+of+High+Performance+Computer+Systems+%28PMBS%29&rft.atitle=Bayesian+Optimization+for+auto-tuning+GPU+kernels&rft.au=Willemsen%2C+Floris-Jan&rft.au=van+Nieuwpoort%2C+Rob&rft.au=van+Werkhoven%2C+Ben&rft.date=2021-11-01&rft.pub=IEEE&rft.spage=106&rft.epage=117&rft_id=info:doi/10.1109%2FPMBS54543.2021.00017&rft.externalDocID=9652797 |