Bayesian Optimization for auto-tuning GPU kernels

Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good can...

Full description

Saved in:
Bibliographic Details
Published in2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) pp. 106 - 117
Main Authors Willemsen, Floris-Jan, van Nieuwpoort, Rob, van Werkhoven, Ben
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good candidate for Bayesian Optimization, which has not been applied to this problem before. However, the application of Bayesian Optimization to this problem is challenging. We demonstrate how to deal with the rough, discrete, constrained search spaces, containing invalid configurations. We introduce a novel contextual variance exploration factor, as well as new acquisition functions with improved scalability, combined with an informed acquisition function selection mechanism. By comparing the performance of our Bayesian Optimization implementation on various test cases to the existing search strategies in Kernel Tuner, as well as other Bayesian Optimization implementations, we demonstrate that our search strategies generalize well and consistently outperform other search strategies by a wide margin.
AbstractList Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an optimization task on a nonconvex search space, using an expensive to evaluate function with unknown derivative. These characteristics make a good candidate for Bayesian Optimization, which has not been applied to this problem before. However, the application of Bayesian Optimization to this problem is challenging. We demonstrate how to deal with the rough, discrete, constrained search spaces, containing invalid configurations. We introduce a novel contextual variance exploration factor, as well as new acquisition functions with improved scalability, combined with an informed acquisition function selection mechanism. By comparing the performance of our Bayesian Optimization implementation on various test cases to the existing search strategies in Kernel Tuner, as well as other Bayesian Optimization implementations, we demonstrate that our search strategies generalize well and consistently outperform other search strategies by a wide margin.
Author Willemsen, Floris-Jan
van Nieuwpoort, Rob
van Werkhoven, Ben
Author_xml – sequence: 1
  givenname: Floris-Jan
  orcidid: 0000-0003-2295-8263
  surname: Willemsen
  fullname: Willemsen, Floris-Jan
  organization: Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands
– sequence: 2
  givenname: Rob
  orcidid: 0000-0002-2947-9444
  surname: van Nieuwpoort
  fullname: van Nieuwpoort, Rob
  organization: Netherlands eScience Center University of Amsterdam,Amsterdam,the Netherlands
– sequence: 3
  givenname: Ben
  orcidid: 0000-0002-7508-3272
  surname: van Werkhoven
  fullname: van Werkhoven, Ben
  organization: Netherlands eScience Center,Amsterdam,the Netherlands
BookMark eNotzE1OwzAQQGEjwYIWTgALXyBhxj-JvaQVtEhFrQSV2FWTZIwsWqdK3EU5PUiweqvvTcRl6hMLcY9QIoJ_2LzO3qyxRpcKFJYAgPWFmGBVWYOI7uNa4IzOPEZKcn3M8RC_Kcc-ydAPkk65L_IpxfQpF5ut_OIh8X68EVeB9iPf_ncqts9P7_NlsVovXuaPq6LVALnQ2tfBKa85IHkkdoYdekdVhxZ857jtgJQzrWfU2DSmcdyQ1RDcL1F6Ku7-vpGZd8chHmg473xlVe1r_QMvQEE_
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_future_2024_05_021
crossref_primary_10_1088_1402_4896_ad0434
crossref_primary_10_1080_10618600_2024_2308216
crossref_primary_10_1109_TCC_2024_3361070
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PMBS54543.2021.00017
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 166541118X
9781665411189
EndPage 117
ExternalDocumentID 9652797
Genre orig-research
GrantInformation_xml – fundername: NWO
  grantid: NWA.1160.18.316
  funderid: 10.13039/501100003246
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-c300t-3397f8293ef1a91ae84e8198a6d1509d8ecd0a284c9e131bb4b8eba530f8ef123
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:46 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-3397f8293ef1a91ae84e8198a6d1509d8ecd0a284c9e131bb4b8eba530f8ef123
ORCID 0000-0002-7508-3272
0000-0002-2947-9444
0000-0003-2295-8263
OpenAccessLink https://pure.uva.nl/ws/files/71693538/Bayesian_Optimization_for_auto_tuning_GPU_kernels.pdf
PageCount 12
ParticipantIDs ieee_primary_9652797
PublicationCentury 2000
PublicationDate 2021-Nov.
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationTitle 2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)
PublicationTitleAbbrev PMBS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9171653
Snippet Finding optimal parameter configurations for tunable GPU kernels is a non-trivial exercise for large search spaces, even when automated. This poses an...
SourceID ieee
SourceType Publisher
StartPage 106
SubjectTerms auto-tuning
Bayes methods
Bayesian Optimization
Computational modeling
Convolution
GPU Computing
Graphics processing units
machine learning
Optimization
Scalability
Search problems
Tuners
Title Bayesian Optimization for auto-tuning GPU kernels
URI https://ieeexplore.ieee.org/document/9652797
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UrPhmDx7NNq_Nbq4VaxGqBS30VvKYvRS3UnYP-uudfVhRPHgLgZDMDOSbmeSbIeRay6CkTAJ1IHOqUmmpQxyhNvAguNWBNU37Zo96ulAPy2TZIzc7LgwANJ_PIK6HzVt-2PiqTpWNjE5EatI-6afGtFytjg3HmRnNZ-Nn9AeUxKhP8LgpBfOjZ0oDGZN9MvvarP0pso6r0sX-41cdxv-e5oAMv8l50XwHO4ekB8UR4WP7DjUfMnrCO-C1I1dG6JFGtio3tKzq_Ed0P19Ea9gWCIhDspjcvdxOadcNgXrJWEkleg55hugMObeGW8gUIJxnqE906kzIwAdmEW28AS65c8pl4GwiWZ7hEiGPyaDYFHBCIid9qo0OFjCaUJBYwdBkWnkWDBNWnJKjWtzVW1vwYtVJevb39DnZqxXeEvQuyKDcVnCJSF26q8ZEn4nYlJo
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeZGDEqR07TrwWUQo0pRKt1K2y4-uCSFGVDPDruTwoAjGwWZYsP07y993Z3x0hV0o4KUToqAWxpDIShlrEEWocdwE3yrGqaF8yVsOZfJiH8xa53mhhAKD6fAZ-2aze8t0qLcpQWU-rMIh0tEW2kVfHqlZrNXo4znRvkvSfkRFIgX5fwP0qGcyPqikVaAz2SPI1Xf1X5MUvcuunH78yMf53Pfuk-y3P8yYb4DkgLcg6hPfNO5SKSO8Jb4HXRl7pISf1TJGvaF6UERDvbjLzXmCdISR2yWxwO70Z0qYeAk0FYzkVyB2WMeIzLLnR3EAsAQE9xhNFWqddDKljBvEm1cAFt1baGKwJBVvGOCQQh6SdrTI4Ip4VaaS0cgbQn5AQmoCh0ZRMmdMsMMEx6ZTbXbzVKS8WzU5P_u6-JDvDaTJajO7Hj6dktzz8Wq53Rtr5uoBzxO3cXlTm-gSB-pfl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Workshop+on+Performance+Modeling%2C+Benchmarking+and+Simulation+of+High+Performance+Computer+Systems+%28PMBS%29&rft.atitle=Bayesian+Optimization+for+auto-tuning+GPU+kernels&rft.au=Willemsen%2C+Floris-Jan&rft.au=van+Nieuwpoort%2C+Rob&rft.au=van+Werkhoven%2C+Ben&rft.date=2021-11-01&rft.pub=IEEE&rft.spage=106&rft.epage=117&rft_id=info:doi/10.1109%2FPMBS54543.2021.00017&rft.externalDocID=9652797