A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem

•An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances. This paper presents an end-to-end deep reinforcement framework t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 205; p. 117796
Main Authors Lei, Kun, Guo, Peng, Zhao, Wenchao, Wang, Yi, Qian, Linmao, Meng, Xiangyin, Tang, Liansheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances. This paper presents an end-to-end deep reinforcement framework to automatically learn a policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural network. In the FJSP environment, the reinforcement agent needs to schedule an operation belonging to a job on an eligible machine among a set of compatible machines at each timestep. This means that an agent needs to control multiple actions simultaneously. Such a problem with multi-actions is formulated as a multiple Markov decision process (MMDP). For solving the MMDPs, we propose a multi-pointer graph networks (MPGN) architecture and a training algorithm called multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy to assign a job operation to a machine. The MPGN architecture consists of two encoder-decoder components, which define the job operation action policy and the machine action policy for predicting probability distributions over different operations and machines, respectively. We introduce a disjunctive graph representation of FJSP and use a graph neural network to embed the local state encountered during scheduling. The computational experiment results show that the agent can learn a high-quality dispatching policy and outperforms handcrafted heuristic dispatching rules in solution quality and meta-heuristic algorithm in running time. Moreover, the results achieved on random and benchmark instances demonstrate that the learned policies have a good generalization performance on real-world instances and significantly larger scale instances with up to 2000 operations.
AbstractList •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances. This paper presents an end-to-end deep reinforcement framework to automatically learn a policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural network. In the FJSP environment, the reinforcement agent needs to schedule an operation belonging to a job on an eligible machine among a set of compatible machines at each timestep. This means that an agent needs to control multiple actions simultaneously. Such a problem with multi-actions is formulated as a multiple Markov decision process (MMDP). For solving the MMDPs, we propose a multi-pointer graph networks (MPGN) architecture and a training algorithm called multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy to assign a job operation to a machine. The MPGN architecture consists of two encoder-decoder components, which define the job operation action policy and the machine action policy for predicting probability distributions over different operations and machines, respectively. We introduce a disjunctive graph representation of FJSP and use a graph neural network to embed the local state encountered during scheduling. The computational experiment results show that the agent can learn a high-quality dispatching policy and outperforms handcrafted heuristic dispatching rules in solution quality and meta-heuristic algorithm in running time. Moreover, the results achieved on random and benchmark instances demonstrate that the learned policies have a good generalization performance on real-world instances and significantly larger scale instances with up to 2000 operations.
ArticleNumber 117796
Author Wang, Yi
Meng, Xiangyin
Guo, Peng
Lei, Kun
Qian, Linmao
Zhao, Wenchao
Tang, Liansheng
Author_xml – sequence: 1
  givenname: Kun
  surname: Lei
  fullname: Lei, Kun
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China
– sequence: 2
  givenname: Peng
  surname: Guo
  fullname: Guo, Peng
  email: pengguo318@swjtu.edu.cn
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China
– sequence: 3
  givenname: Wenchao
  surname: Zhao
  fullname: Zhao, Wenchao
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China
– sequence: 4
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: Department of Mathematics, Auburn University at Montgomery, Montgomery, AL 36124-4023 USA
– sequence: 5
  givenname: Linmao
  surname: Qian
  fullname: Qian, Linmao
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China
– sequence: 6
  givenname: Xiangyin
  surname: Meng
  fullname: Meng, Xiangyin
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China
– sequence: 7
  givenname: Liansheng
  surname: Tang
  fullname: Tang, Liansheng
  organization: School of Economics and Management, Ningbo University of Technology, Ningbo 315211 China
BookMark eNp9kL1OwzAUhS1UJNrCCzD5BRLsOI4TiaWq-FUlFhiR5Tg31CWxIzul8PbEKhNDpzuc813pfAs0s84CQteUpJTQ4maXQjioNCNZllIqRFWcoTktBUsKUbEZmpOKiySnIr9AixB2hFBBiJij9xXu991oEqVH4yxuAAbswdjWeQ092BF3oLw19gO3XvVwcP4TTyFuO_g2dQf42dVJ2LoBB72FZt_F6uDdFPWX6LxVXYCrv7tEb_d3r-vHZPPy8LRebRLNCBkTxjgraFEUOeGc6pwD0IxpUSkoc6bbWtSal7TkZaVVyes6E7HRVDXEqYQtUXb8q70LwUMrB2965X8kJTIKkjsZBckoSB4FTVD5D9JmVNHC6JXpTqO3RxSmUV8GvAzagNXQGA96lI0zp_BftOOEfA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123970
crossref_primary_10_1007_s10696_024_09540_2
crossref_primary_10_1016_j_engappai_2022_105710
crossref_primary_10_1016_j_mlwa_2023_100485
crossref_primary_10_3390_pr11061826
crossref_primary_10_1038_s41598_024_79593_8
crossref_primary_10_3390_jmse13020197
crossref_primary_10_1016_j_cie_2024_110155
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_1016_j_aei_2024_102872
crossref_primary_10_1016_j_engappai_2024_109488
crossref_primary_10_3390_app131810134
crossref_primary_10_1016_j_eswa_2025_126441
crossref_primary_10_1007_s00521_024_09654_6
crossref_primary_10_1016_j_cie_2024_110325
crossref_primary_10_1016_j_cie_2025_110948
crossref_primary_10_1007_s10696_024_09574_6
crossref_primary_10_1007_s40747_024_01772_x
crossref_primary_10_1016_j_eswa_2023_122092
crossref_primary_10_1016_j_jmsy_2024_09_011
crossref_primary_10_1016_j_knosys_2024_112569
crossref_primary_10_1016_j_cie_2023_109718
crossref_primary_10_1109_TEVC_2023_3334626
crossref_primary_10_1007_s13042_024_02504_w
crossref_primary_10_1016_j_cor_2023_106401
crossref_primary_10_1007_s12530_025_09668_y
crossref_primary_10_1016_j_jmsy_2024_10_026
crossref_primary_10_3390_electronics13224452
crossref_primary_10_1080_0951192X_2025_2452981
crossref_primary_10_1007_s10791_024_09474_1
crossref_primary_10_1016_j_eswa_2024_125189
crossref_primary_10_1016_j_cie_2024_110855
crossref_primary_10_1016_j_eswa_2024_125895
crossref_primary_10_1016_j_ins_2025_121906
crossref_primary_10_23919_CSMS_2024_0010
crossref_primary_10_3390_machines12080584
crossref_primary_10_1007_s10696_024_09587_1
crossref_primary_10_1007_s11227_025_07030_2
crossref_primary_10_1016_j_cie_2024_109903
crossref_primary_10_1016_j_jmsy_2024_11_010
crossref_primary_10_1109_JIOT_2024_3485748
crossref_primary_10_1016_j_cor_2024_106914
crossref_primary_10_1080_00207543_2024_2335663
crossref_primary_10_1016_j_swevo_2024_101617
crossref_primary_10_3390_pr11010267
crossref_primary_10_1109_ACCESS_2024_3384923
crossref_primary_10_1007_s10845_023_02161_w
crossref_primary_10_1111_exsy_13727
crossref_primary_10_1109_ACCESS_2023_3277529
crossref_primary_10_1109_TII_2024_3371489
crossref_primary_10_1109_TNNLS_2023_3306421
crossref_primary_10_1109_TII_2023_3272661
crossref_primary_10_1109_TITS_2024_3424205
crossref_primary_10_3390_machines12080579
crossref_primary_10_1016_j_asoc_2024_111342
crossref_primary_10_1016_j_cie_2025_111060
crossref_primary_10_1016_j_jmsy_2024_03_012
crossref_primary_10_1016_j_trc_2024_104970
crossref_primary_10_1016_j_asoc_2024_111699
crossref_primary_10_1016_j_swevo_2024_101605
crossref_primary_10_1155_2024_7777050
crossref_primary_10_3390_sym15071409
crossref_primary_10_1007_s00500_024_09763_3
crossref_primary_10_1080_0305215X_2024_2413646
crossref_primary_10_1016_j_aej_2024_08_105
crossref_primary_10_1016_j_cie_2023_109802
crossref_primary_10_1007_s00500_023_08342_2
crossref_primary_10_1016_j_engappai_2024_109557
crossref_primary_10_1007_s10696_024_09543_z
crossref_primary_10_1016_j_jmsy_2023_06_007
crossref_primary_10_1080_09544828_2025_2450759
crossref_primary_10_1016_j_rcim_2023_102605
crossref_primary_10_3390_electronics13183696
crossref_primary_10_1016_j_knosys_2025_113335
crossref_primary_10_1016_j_eswa_2023_121756
crossref_primary_10_1016_j_eswa_2023_123019
crossref_primary_10_1061_JCCEE5_CPENG_6042
crossref_primary_10_3934_mbe_2023429
crossref_primary_10_3390_pr13010062
crossref_primary_10_1109_ACCESS_2025_3530558
crossref_primary_10_1016_j_cie_2024_110646
crossref_primary_10_3390_biomimetics8060478
crossref_primary_10_1016_j_cie_2024_110768
crossref_primary_10_1109_TR_2023_3311625
crossref_primary_10_1016_j_engappai_2024_108699
crossref_primary_10_3390_pr11072018
crossref_primary_10_1016_j_jmsy_2024_08_006
crossref_primary_10_1016_j_aei_2023_101975
crossref_primary_10_1109_ACCESS_2024_3384252
crossref_primary_10_1016_j_engappai_2023_107790
crossref_primary_10_3390_sym17040487
crossref_primary_10_1016_j_compeleceng_2024_110044
crossref_primary_10_1016_j_engappai_2024_107893
crossref_primary_10_1109_TETCI_2024_3354111
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1016_j_eswa_2023_121050
crossref_primary_10_1016_j_swevo_2024_101660
crossref_primary_10_1016_j_eswa_2024_123556
crossref_primary_10_1080_00207543_2024_2373426
crossref_primary_10_1007_s42524_025_4079_1
crossref_primary_10_1016_j_cie_2024_110095
crossref_primary_10_1016_j_psep_2024_11_127
crossref_primary_10_1016_j_jmsy_2024_04_028
crossref_primary_10_1155_2023_4573352
crossref_primary_10_1016_j_simpat_2024_102948
crossref_primary_10_3390_s25051428
crossref_primary_10_59782_aai_v1i2_304
crossref_primary_10_1007_s11227_024_06741_2
crossref_primary_10_1016_j_cie_2025_110856
crossref_primary_10_1016_j_cie_2024_109950
crossref_primary_10_48084_etasr_7934
crossref_primary_10_1109_JIOT_2024_3358403
crossref_primary_10_1016_j_engappai_2023_107762
crossref_primary_10_1016_j_engappai_2024_109688
crossref_primary_10_1007_s40747_025_01828_6
crossref_primary_10_1080_00207543_2025_2481184
crossref_primary_10_1016_j_knosys_2024_111940
crossref_primary_10_1016_j_ifacol_2024_09_176
crossref_primary_10_3390_s24072251
Cites_doi 10.1016/j.procir.2020.05.163
10.1016/j.engappai.2021.104490
10.1007/s10845-007-0026-8
10.1007/s10951-017-0526-0
10.1016/j.eswa.2019.04.056
10.1016/j.comnet.2021.107969
10.1007/BF01719451
10.1023/A:1018930406487
10.1016/j.cie.2010.05.004
10.1016/j.cor.2013.11.011
10.1016/j.asoc.2020.106208
10.1007/s10845-014-0869-8
10.1007/s00170-011-3437-9
10.1111/itor.12199
10.1016/j.ijpe.2012.03.034
10.1016/j.apm.2009.09.002
10.1016/j.procir.2018.03.212
10.1109/TII.2019.2908210
10.1007/978-3-030-16711-0_3
10.1016/S0377-2217(98)00113-1
10.1049/iet-cim.2018.0009
10.1016/j.cie.2017.05.026
10.1109/TASE.2014.2316193
10.1016/j.ejor.2015.02.052
10.1016/j.asoc.2009.10.006
10.1080/00207540210147043
10.1016/j.cie.2010.07.014
10.1007/BF02238804
10.1016/j.eswa.2009.06.007
10.1609/socs.v12i1.18556
10.1016/j.cie.2007.04.010
10.1080/00207543.2013.765074
10.1007/s00170-010-3140-2
10.1016/j.neucom.2022.08.005
10.1016/j.cor.2007.02.014
10.1016/j.cie.2008.07.021
10.1016/j.apm.2012.03.020
10.1016/j.cie.2020.106605
10.1016/j.jmsy.2020.02.004
10.1287/moor.1.2.117
10.1016/j.ejor.2020.07.063
10.1007/978-3-319-42911-3_48
10.1016/j.cie.2020.106778
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117796
S0957417422010624
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-33536166640551c45ee123c79ae843cfb7bc5818589ca85bb27ee12d9be779603
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:02 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Fri Feb 23 02:38:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flexible job-shop scheduling problem
Markov decision process
Graph neural network
Multi-proximal policy optimization
Multi-action deep reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-33536166640551c45ee123c79ae843cfb7bc5818589ca85bb27ee12d9be779603
ParticipantIDs crossref_primary_10_1016_j_eswa_2022_117796
crossref_citationtrail_10_1016_j_eswa_2022_117796
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References X. Chen Y. Tian Learning to perform local rewriting for combinatorial optimization In Proceedings of the 33rd International Conference on Neural Information Processing Systems 2019 6281 6292 URL.
Kacem, Hammadi, Borne (b0150) 2002; 32
Gao, Gen, Sun, Zhao (b0095) 2007; 53
Li, Pan, Gao (b0170) 2011; 55
9861-9871. URL
Liu, Chang, Tseng (b0190) 2020; 8
Chiang, Lin (b0050) 2013; 141
Dauzère-Pérès, Paulli (b0070) 1997; 70
Garey, Johnson, Sethi (b0110) 1976; 1
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms.
Jain, Meeran (b0140) 1999; 113
Pezzella, Morganti, Ciaschetti (b0240) 2008; 35
Chen, Yang, Li, Wang (b0040) 2020; 149
Naderi, Roshanaei (b0215) 2021; 4
Demir, Kürşat İşleyen (b0080) 2013; 37
Luo (b0205) 2020; 91
S. Amizadeh S. Matusevych M. Weimer Learning to solve circuit-SAT: An unsupervised differentiable approach In International Conference on Learning Representations 2018 URL.
Brucker, Schlie (b0030) 1990; 45
Defersha, Rooyani (b0075) 2020; 147
Han, Yang (b0125) 2020; 8
.
K. Xu W. Hu J. Leskovec S. Jegelka How Powerful are Graph Neural Networks? In International Conference on Learning Representations 2018 URL.
574-587.
Chaudhry, Khan (b0035) 2016; 23
Corman, D'Ariano, Pacciarelli, Pranzo (b0060) 2014; 44
Bożejko, Uchroński, Wodecki (b0025) 2010; 59
Wu, Song, Cao, Zhang, Lim (b0290) 2019; 1–13
Jurisch (b0145) 1992
Rahmati, Zandieh (b0245) 2012; 58
Li, Pan, Liang (b0175) 2010; 59
Zhang, Shao, Li, Gao (b0325) 2009; 56
Behnke, Geiger (b0015) 2012
Doh, Yu, Kim, Lee, Nam (b0085) 2013; 51
Fattahi, Saidi Mehrabad, Jolai (b0090) 2007; 18
González, Vela, Varela (b0115) 2015; 245
Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In
Lange, Werner (b0160) 2018; 21
Solozabal, R., Ceberio, J., & Takáč, M. (2020). Constrained combinatorial optimization with reinforcement learning.
Chou, Chien, Gen (b0055) 2014; 11
Park, Huh, Kim, Park (b0235) 2020; 17
Wang, Hu, Wang, Xu, Ma, Yang, Wang (b0280) 2021; 190
Bengio, Lodi, Prouvost (b0020) 2021; 290
Xing, Chen, Wang, Zhao, Xiong (b0300) 2010; 10
URL
Zhang, Mei, Zhang (b0320) 2019; 33–49
Hu, Liu, Hu, Wang, Tan, Wu (b0130) 2020; 55
Zhu, Zhang, Xiao, Cui, Bai, Ji (b0340) 2021; 106
Baykasoglu (b0010) 2002; 40
D. Selsam M. Lamm B. Benedikt P. Liang L. de Moura D.L. Dill Learning a SAT Solver from Single-Bit Supervision In International Conference on Learning Representations 2018 URL.
Zhao, Li, Gao, Wang, Xiao (b0330) 2019
Gao, L.-y., Wang, R., Liu, C., & Jia, Z.-h. (2022). Multi-objective Pointer Network for Combinatorial Optimization.
Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. (2018). Reinforcement learning for solving the vehicle routing problem. In
Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0285) 2018; 72
M. Hameed A. Schwung Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks. arXiv e-prints 2020 arXiv:2009.03836.
Shahrabi, Adibi, Mahootchi (b0260) 2017; 110
Hurink, Jurisch, Thole (b0135) 1994; 15
31, 537-546. URL
H. Lu X. Zhang S. Yang A learning-based iterative method for solving vehicle routing problems In International Conference on Learning Representations 2019 URL.
Lopes Silva, de Souza, Freitas Souza, Bazzan (b0195) 2019; 131
H. Dai E. Khalil Y. Zhang B. Dilkina L. Song Learning Combinatorial Optimization Algorithms over Graphs In 31st Conference on Neural Information Processing Systems 2017 URL:https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf.
Mastrolilli, Gambardella (b0210) 2000; 3
Özgüven, Özbakır, Yavuz (b0230) 2010; 34
arXiv:2105.02730.
W. Kool H. van Hoof M. Welling Attention, Learn to Solve Routing Problems! In International Conference on Learning Representations 2019 URL.
Wang, H., & Yu, Y. (2016). Exploring Multi-action Relationship in Reinforcement Learning. In R. Booth & M.-L. Zhang (Eds.)
Gao, Suganthan, Pan, Chua, Cai, Chong (b0100) 2016; 27
Oren, Ross, Lefarov, Richter, Taitler, Feldman, Daniel (b0225) 2021; 12
Zhang, Song, Cao, Zhang, Tan, Chi (b0315) 2020; 33
arXiv:1707.06347.
Lin, Deng, Chih, Chiu (b0185) 2019; 15
Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks.
Zhou, Zhang, Horn (b0335) 2020; 93
Lei, K., Guo, P., Wang, Y., Wu, X., & Zhao, W. (2021). Solve routing problems with a residual edge-graph attention neural network.
arXiv:2006.11984.
Yazdani, Amiri, Zandieh (b0310) 2010; 37
Xie, Gao, Peng, Li, Li (b0295) 2019; 1
González (10.1016/j.eswa.2022.117796_b0115) 2015; 245
10.1016/j.eswa.2022.117796_b0250
Zhou (10.1016/j.eswa.2022.117796_b0335) 2020; 93
Lange (10.1016/j.eswa.2022.117796_b0160) 2018; 21
Kacem (10.1016/j.eswa.2022.117796_b0150) 2002; 32
Yazdani (10.1016/j.eswa.2022.117796_b0310) 2010; 37
Jurisch (10.1016/j.eswa.2022.117796_b0145) 1992
Mastrolilli (10.1016/j.eswa.2022.117796_b0210) 2000; 3
Oren (10.1016/j.eswa.2022.117796_b0225) 2021; 12
Park (10.1016/j.eswa.2022.117796_b0235) 2020; 17
Fattahi (10.1016/j.eswa.2022.117796_b0090) 2007; 18
Corman (10.1016/j.eswa.2022.117796_b0060) 2014; 44
Li (10.1016/j.eswa.2022.117796_b0175) 2010; 59
10.1016/j.eswa.2022.117796_b0255
Xing (10.1016/j.eswa.2022.117796_b0300) 2010; 10
Dauzère-Pérès (10.1016/j.eswa.2022.117796_b0070) 1997; 70
Bożejko (10.1016/j.eswa.2022.117796_b0025) 2010; 59
Pezzella (10.1016/j.eswa.2022.117796_b0240) 2008; 35
Chou (10.1016/j.eswa.2022.117796_b0055) 2014; 11
Lopes Silva (10.1016/j.eswa.2022.117796_b0195) 2019; 131
Garey (10.1016/j.eswa.2022.117796_b0110) 1976; 1
10.1016/j.eswa.2022.117796_b0165
Waschneck (10.1016/j.eswa.2022.117796_b0285) 2018; 72
10.1016/j.eswa.2022.117796_b0045
10.1016/j.eswa.2022.117796_b0120
Zhang (10.1016/j.eswa.2022.117796_b0320) 2019; 33–49
Doh (10.1016/j.eswa.2022.117796_b0085) 2013; 51
10.1016/j.eswa.2022.117796_b0005
10.1016/j.eswa.2022.117796_b0200
Shahrabi (10.1016/j.eswa.2022.117796_b0260) 2017; 110
Lin (10.1016/j.eswa.2022.117796_b0185) 2019; 15
Xie (10.1016/j.eswa.2022.117796_b0295) 2019; 1
Gao (10.1016/j.eswa.2022.117796_b0100) 2016; 27
Baykasoglu (10.1016/j.eswa.2022.117796_b0010) 2002; 40
Chaudhry (10.1016/j.eswa.2022.117796_b0035) 2016; 23
Rahmati (10.1016/j.eswa.2022.117796_b0245) 2012; 58
Li (10.1016/j.eswa.2022.117796_b0170) 2011; 55
Luo (10.1016/j.eswa.2022.117796_b0205) 2020; 91
Naderi (10.1016/j.eswa.2022.117796_b0215) 2021; 4
Demir (10.1016/j.eswa.2022.117796_b0080) 2013; 37
Gao (10.1016/j.eswa.2022.117796_b0095) 2007; 53
Jain (10.1016/j.eswa.2022.117796_b0140) 1999; 113
10.1016/j.eswa.2022.117796_b0270
10.1016/j.eswa.2022.117796_b0275
10.1016/j.eswa.2022.117796_b0155
Liu (10.1016/j.eswa.2022.117796_b0190) 2020; 8
Han (10.1016/j.eswa.2022.117796_b0125) 2020; 8
Özgüven (10.1016/j.eswa.2022.117796_b0230) 2010; 34
10.1016/j.eswa.2022.117796_b0305
10.1016/j.eswa.2022.117796_b0105
Zhang (10.1016/j.eswa.2022.117796_b0325) 2009; 56
Behnke (10.1016/j.eswa.2022.117796_b0015) 2012
Defersha (10.1016/j.eswa.2022.117796_b0075) 2020; 147
10.1016/j.eswa.2022.117796_b0180
Chiang (10.1016/j.eswa.2022.117796_b0050) 2013; 141
Brucker (10.1016/j.eswa.2022.117796_b0030) 1990; 45
10.1016/j.eswa.2022.117796_b0220
10.1016/j.eswa.2022.117796_b0265
10.1016/j.eswa.2022.117796_b0065
Wang (10.1016/j.eswa.2022.117796_b0280) 2021; 190
Zhang (10.1016/j.eswa.2022.117796_b0315) 2020; 33
Hu (10.1016/j.eswa.2022.117796_b0130) 2020; 55
Zhao (10.1016/j.eswa.2022.117796_b0330) 2019
Chen (10.1016/j.eswa.2022.117796_b0040) 2020; 149
Zhu (10.1016/j.eswa.2022.117796_b0340) 2021; 106
Bengio (10.1016/j.eswa.2022.117796_b0020) 2021; 290
Wu (10.1016/j.eswa.2022.117796_b0290) 2019; 1–13
Hurink (10.1016/j.eswa.2022.117796_b0135) 1994; 15
References_xml – volume: 51
  year: 2013
  ident: b0085
  article-title: A priority scheduling approach for flexible job shops with multiple process plans
  publication-title: International Journal of Production Research
– reference: K. Xu W. Hu J. Leskovec S. Jegelka How Powerful are Graph Neural Networks? In International Conference on Learning Representations 2018 URL.
– year: 1992
  ident: b0145
  article-title: Scheduling jobs in shops with multi-purpose machines
– reference: , 574-587.
– volume: 141
  year: 2013
  ident: b0050
  article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling
  publication-title: International Journal of Production Economics
– reference: Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks.
– volume: 59
  start-page: 647
  year: 2010
  end-page: 662
  ident: b0175
  article-title: An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems
  publication-title: In
– reference: S. Amizadeh S. Matusevych M. Weimer Learning to solve circuit-SAT: An unsupervised differentiable approach In International Conference on Learning Representations 2018 URL.
– volume: 113
  year: 1999
  ident: b0140
  article-title: Deterministic job-shop scheduling: Past, present and future
  publication-title: European Journal of Operational Research
– volume: 3
  year: 2000
  ident: b0210
  publication-title: Effective neighbourhood functions for the flexible job shop problem.
– reference: Gao, L.-y., Wang, R., Liu, C., & Jia, Z.-h. (2022). Multi-objective Pointer Network for Combinatorial Optimization.
– reference: Lei, K., Guo, P., Wang, Y., Wu, X., & Zhao, W. (2021). Solve routing problems with a residual edge-graph attention neural network.
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: b0110
  article-title: The Complexity of Flowshop and Jobshop Scheduling
  publication-title: Mathematics of Operations Research
– volume: 17
  year: 2020
  ident: b0235
  article-title: A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 18
  year: 2007
  ident: b0090
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 40
  year: 2002
  ident: b0010
  article-title: Linguistic-based meta-heuristic optimization model for flexible job shop scheduling
  publication-title: International Journal of Production Research
– reference: , 31, 537-546. URL:
– volume: 290
  year: 2021
  ident: b0020
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
– start-page: 331
  year: 2019
  end-page: 337
  ident: b0330
  article-title: An improved Q-learning based rescheduling method for flexible job-shops with machine failures
  publication-title: In
– reference: H. Lu X. Zhang S. Yang A learning-based iterative method for solving vehicle routing problems In International Conference on Learning Representations 2019 URL.
– reference: Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms.
– volume: 70
  year: 1997
  ident: b0070
  article-title: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search
  publication-title: Annals of Operations Research
– volume: 245
  year: 2015
  ident: b0115
  article-title: Scatter search with path relinking for the flexible job shop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 15
  year: 1994
  ident: b0135
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: OR Spektrum
– volume: 12
  start-page: 97
  year: 2021
  end-page: 105
  ident: b0225
  article-title: SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems
  publication-title: In
– volume: 93
  year: 2020
  ident: b0335
  article-title: Deep reinforcement learning-based dynamic scheduling in smart manufacturing
  publication-title: Procedia CIRP
– volume: 15
  year: 2019
  ident: b0185
  article-title: Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 33–49
  year: 2019
  ident: b0320
  article-title: A New Representation in Genetic Programming for Evolving Dispatching Rules for Dynamic Flexible Job Shop Scheduling
  publication-title: Evolutionary Computation in Combinatorial Optimization
– volume: 53
  year: 2007
  ident: b0095
  article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
– volume: 59
  year: 2010
  ident: b0025
  article-title: Parallel hybrid metaheuristics for the flexible job shop problem
  publication-title: Computers & Industrial Engineering
– volume: 106
  year: 2021
  ident: b0340
  article-title: Deep reinforcement learning-based radio function deployment for secure and resource-efficient NG-RAN slicing
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 55
  year: 2020
  ident: b0130
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: Journal of Manufacturing Systems
– volume: 4
  start-page: 1
  year: 2021
  end-page: 28
  ident: b0215
  article-title: Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling
  publication-title: INFORMS Journal on Optimization.http://dx.doi.org/10.1287/ijoo.2021.0056.
– volume: 8
  year: 2020
  ident: b0190
  article-title: Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems.
  publication-title: Access
– volume: 11
  year: 2014
  ident: b0055
  article-title: A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 32
  year: 2002
  ident: b0150
  article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 35
  year: 2008
  ident: b0240
  article-title: A genetic algorithm for the Flexible Job-shop Scheduling Problem
  publication-title: Computers & Operations Research
– volume: 23
  year: 2016
  ident: b0035
  article-title: A research survey: Review of flexible job shop scheduling techniques
  publication-title: International Transactions in Operational Research
– volume: 1–13
  year: 2019
  ident: b0290
  article-title: Learning Improvement Heuristics for Solving Routing Problems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 56
  year: 2009
  ident: b0325
  article-title: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 149
  year: 2020
  ident: b0040
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– reference: H. Dai E. Khalil Y. Zhang B. Dilkina L. Song Learning Combinatorial Optimization Algorithms over Graphs In 31st Conference on Neural Information Processing Systems 2017 URL:https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf.
– volume: 37
  year: 2013
  ident: b0080
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems
  publication-title: Applied Mathematical Modelling
– volume: 91
  year: 2020
  ident: b0205
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
– reference: W. Kool H. van Hoof M. Welling Attention, Learn to Solve Routing Problems! In International Conference on Learning Representations 2019 URL.
– volume: 131
  year: 2019
  ident: b0195
  article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
  publication-title: Expert Systems with Applications
– volume: 190
  year: 2021
  ident: b0280
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
– volume: 55
  year: 2011
  ident: b0170
  article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
  publication-title: The International Journal of Advanced Manufacturing Technology
– reference: D. Selsam M. Lamm B. Benedikt P. Liang L. de Moura D.L. Dill Learning a SAT Solver from Single-Bit Supervision In International Conference on Learning Representations 2018 URL.
– volume: 10
  year: 2010
  ident: b0300
  article-title: A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems
  publication-title: Applied Soft Computing
– reference: , arXiv:2006.11984.
– volume: 45
  year: 1990
  ident: b0030
  article-title: Job-shop scheduling with multi-purpose machines
  publication-title: Computing
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
  ident: b0315
  article-title: Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
  publication-title: In
– reference: URL:
– volume: 37
  year: 2010
  ident: b0310
  article-title: Flexible job-shop scheduling with parallel variable neighborhood search algorithm
  publication-title: Expert Systems with Applications
– volume: 58
  start-page: 1115
  year: 2012
  end-page: 1129
  ident: b0245
  article-title: A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem
  publication-title: The International Journal of Advanced Manufacturing Technology
– reference: Solozabal, R., Ceberio, J., & Takáč, M. (2020). Constrained combinatorial optimization with reinforcement learning.
– volume: 27
  year: 2016
  ident: b0100
  article-title: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives
  publication-title: Journal of Intelligent Manufacturing
– volume: 8
  year: 2020
  ident: b0125
  article-title: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN.
  publication-title: Access
– volume: 44
  year: 2014
  ident: b0060
  article-title: Dispatching and coordination in multi-area railway traffic management
  publication-title: Computers & Operations Research
– reference: , arXiv:1707.06347.
– reference: , 9861-9871. URL:
– volume: 72
  year: 2018
  ident: b0285
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Procedia CIRP
– reference: M. Hameed A. Schwung Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks. arXiv e-prints 2020 arXiv:2009.03836.
– volume: 110
  year: 2017
  ident: b0260
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
– start-page: 1
  year: 2012
  end-page: 31
  ident: b0015
  article-title: Test instances for the flexible job shop scheduling problem with work centers
  publication-title: Research Report
– volume: 21
  year: 2018
  ident: b0160
  article-title: Approaches to modeling train scheduling problems as job-shop problems with blocking constraints
  publication-title: Journal of Scheduling
– reference: .
– reference: Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In
– reference: X. Chen Y. Tian Learning to perform local rewriting for combinatorial optimization In Proceedings of the 33rd International Conference on Neural Information Processing Systems 2019 6281 6292 URL.
– volume: 1
  start-page: 67
  year: 2019
  end-page: 77
  ident: b0295
  article-title: Review on flexible job shop scheduling
  publication-title: IET Collaborative Intelligent Manufacturing
– reference: Wang, H., & Yu, Y. (2016). Exploring Multi-action Relationship in Reinforcement Learning. In R. Booth & M.-L. Zhang (Eds.),
– volume: 147
  year: 2020
  ident: b0075
  article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time
  publication-title: Computers & Industrial Engineering
– reference: , arXiv:2105.02730.
– volume: 34
  year: 2010
  ident: b0230
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility
  publication-title: Applied Mathematical Modelling
– reference: Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. (2018). Reinforcement learning for solving the vehicle routing problem. In
– volume: 93
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0335
  article-title: Deep reinforcement learning-based dynamic scheduling in smart manufacturing
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.05.163
– volume: 106
  year: 2021
  ident: 10.1016/j.eswa.2022.117796_b0340
  article-title: Deep reinforcement learning-based radio function deployment for secure and resource-efficient NG-RAN slicing
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104490
– volume: 18
  year: 2007
  ident: 10.1016/j.eswa.2022.117796_b0090
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-007-0026-8
– volume: 21
  year: 2018
  ident: 10.1016/j.eswa.2022.117796_b0160
  article-title: Approaches to modeling train scheduling problems as job-shop problems with blocking constraints
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-017-0526-0
– volume: 131
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0195
  article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.056
– volume: 190
  year: 2021
  ident: 10.1016/j.eswa.2022.117796_b0280
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.107969
– volume: 15
  year: 1994
  ident: 10.1016/j.eswa.2022.117796_b0135
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: OR Spektrum
  doi: 10.1007/BF01719451
– volume: 1–13
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0290
  article-title: Learning Improvement Heuristics for Solving Routing Problems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 3
  year: 2000
  ident: 10.1016/j.eswa.2022.117796_b0210
  publication-title: Effective neighbourhood functions for the flexible job shop problem.
– volume: 70
  year: 1997
  ident: 10.1016/j.eswa.2022.117796_b0070
  article-title: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1018930406487
– volume: 59
  year: 2010
  ident: 10.1016/j.eswa.2022.117796_b0025
  article-title: Parallel hybrid metaheuristics for the flexible job shop problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.05.004
– volume: 44
  year: 2014
  ident: 10.1016/j.eswa.2022.117796_b0060
  article-title: Dispatching and coordination in multi-area railway traffic management
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.11.011
– ident: 10.1016/j.eswa.2022.117796_b0265
– volume: 91
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0205
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106208
– ident: 10.1016/j.eswa.2022.117796_b0005
– ident: 10.1016/j.eswa.2022.117796_b0270
– volume: 27
  year: 2016
  ident: 10.1016/j.eswa.2022.117796_b0100
  article-title: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-0869-8
– ident: 10.1016/j.eswa.2022.117796_b0180
– volume: 17
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0235
  article-title: A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 58
  start-page: 1115
  year: 2012
  ident: 10.1016/j.eswa.2022.117796_b0245
  article-title: A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3437-9
– ident: 10.1016/j.eswa.2022.117796_b0255
– ident: 10.1016/j.eswa.2022.117796_b0065
– volume: 23
  year: 2016
  ident: 10.1016/j.eswa.2022.117796_b0035
  article-title: A research survey: Review of flexible job shop scheduling techniques
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12199
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2022.117796_b0015
  article-title: Test instances for the flexible job shop scheduling problem with work centers
  publication-title: Research Report
– volume: 141
  year: 2013
  ident: 10.1016/j.eswa.2022.117796_b0050
  article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2012.03.034
– volume: 34
  year: 2010
  ident: 10.1016/j.eswa.2022.117796_b0230
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2009.09.002
– volume: 72
  year: 2018
  ident: 10.1016/j.eswa.2022.117796_b0285
  article-title: Optimization of global production scheduling with deep reinforcement learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.212
– volume: 15
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0185
  article-title: Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2908210
– volume: 33–49
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0320
  article-title: A New Representation in Genetic Programming for Evolving Dispatching Rules for Dynamic Flexible Job Shop Scheduling
  publication-title: Evolutionary Computation in Combinatorial Optimization
  doi: 10.1007/978-3-030-16711-0_3
– ident: 10.1016/j.eswa.2022.117796_b0200
– volume: 113
  year: 1999
  ident: 10.1016/j.eswa.2022.117796_b0140
  article-title: Deterministic job-shop scheduling: Past, present and future
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00113-1
– ident: 10.1016/j.eswa.2022.117796_b0105
– volume: 1
  start-page: 67
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0295
  article-title: Review on flexible job shop scheduling
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/iet-cim.2018.0009
– year: 1992
  ident: 10.1016/j.eswa.2022.117796_b0145
– start-page: 331
  year: 2019
  ident: 10.1016/j.eswa.2022.117796_b0330
  article-title: An improved Q-learning based rescheduling method for flexible job-shops with machine failures
– volume: 110
  year: 2017
  ident: 10.1016/j.eswa.2022.117796_b0260
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.026
– ident: 10.1016/j.eswa.2022.117796_b0045
– volume: 11
  year: 2014
  ident: 10.1016/j.eswa.2022.117796_b0055
  article-title: A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2014.2316193
– volume: 33
  start-page: 1621
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0315
  article-title: Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
  publication-title: In Advances in Neural Information Processing Systems
– volume: 245
  year: 2015
  ident: 10.1016/j.eswa.2022.117796_b0115
  article-title: Scatter search with path relinking for the flexible job shop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.02.052
– volume: 10
  year: 2010
  ident: 10.1016/j.eswa.2022.117796_b0300
  article-title: A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.10.006
– volume: 40
  year: 2002
  ident: 10.1016/j.eswa.2022.117796_b0010
  article-title: Linguistic-based meta-heuristic optimization model for flexible job shop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540210147043
– volume: 32
  year: 2002
  ident: 10.1016/j.eswa.2022.117796_b0150
  article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 59
  start-page: 647
  year: 2010
  ident: 10.1016/j.eswa.2022.117796_b0175
  article-title: An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems
  publication-title: In Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.07.014
– volume: 45
  year: 1990
  ident: 10.1016/j.eswa.2022.117796_b0030
  article-title: Job-shop scheduling with multi-purpose machines
  publication-title: Computing
  doi: 10.1007/BF02238804
– ident: 10.1016/j.eswa.2022.117796_b0220
– volume: 37
  year: 2010
  ident: 10.1016/j.eswa.2022.117796_b0310
  article-title: Flexible job-shop scheduling with parallel variable neighborhood search algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.007
– volume: 12
  start-page: 97
  year: 2021
  ident: 10.1016/j.eswa.2022.117796_b0225
  article-title: SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems
  publication-title: In Proceedings of the International Symposium on Combinatorial Search
  doi: 10.1609/socs.v12i1.18556
– volume: 53
  year: 2007
  ident: 10.1016/j.eswa.2022.117796_b0095
  article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2007.04.010
– ident: 10.1016/j.eswa.2022.117796_b0305
– volume: 51
  year: 2013
  ident: 10.1016/j.eswa.2022.117796_b0085
  article-title: A priority scheduling approach for flexible job shops with multiple process plans
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.765074
– volume: 55
  year: 2011
  ident: 10.1016/j.eswa.2022.117796_b0170
  article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-010-3140-2
– ident: 10.1016/j.eswa.2022.117796_b0165
  doi: 10.1016/j.neucom.2022.08.005
– volume: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0190
  article-title: Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems. IEEE
  publication-title: Access
– volume: 35
  year: 2008
  ident: 10.1016/j.eswa.2022.117796_b0240
  article-title: A genetic algorithm for the Flexible Job-shop Scheduling Problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.02.014
– volume: 56
  year: 2009
  ident: 10.1016/j.eswa.2022.117796_b0325
  article-title: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2008.07.021
– volume: 37
  year: 2013
  ident: 10.1016/j.eswa.2022.117796_b0080
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.03.020
– ident: 10.1016/j.eswa.2022.117796_b0155
– volume: 147
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0075
  article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106605
– volume: 55
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0130
  article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.02.004
– volume: 1
  start-page: 117
  year: 1976
  ident: 10.1016/j.eswa.2022.117796_b0110
  article-title: The Complexity of Flowshop and Jobshop Scheduling
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1.2.117
– volume: 290
  year: 2021
  ident: 10.1016/j.eswa.2022.117796_b0020
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.063
– ident: 10.1016/j.eswa.2022.117796_b0275
  doi: 10.1007/978-3-319-42911-3_48
– volume: 149
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0040
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106778
– ident: 10.1016/j.eswa.2022.117796_b0120
– ident: 10.1016/j.eswa.2022.117796_b0250
– volume: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.117796_b0125
  article-title: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN. IEEE
  publication-title: Access
– volume: 4
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.117796_b0215
  article-title: Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling
  publication-title: INFORMS Journal on Optimization.http://dx.doi.org/10.1287/ijoo.2021.0056.
SSID ssj0017007
Score 2.6794882
Snippet •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117796
SubjectTerms Flexible job-shop scheduling problem
Graph neural network
Markov decision process
Multi-action deep reinforcement learning
Multi-proximal policy optimization
Title A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
URI https://dx.doi.org/10.1016/j.eswa.2022.117796
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3ieuapmmPYzjmxF10sIuUfFUnYy3bxJt_u3lNOhRkBy-FtnklvLy-j-S930PoWvLEpKJLibCLTyLDNUmoEkRrlsZ5oGVSbeY8juPhJBpN2bSB-nUtDKRVet3vdHqlrf2Tjudmp5zNOk_WObDm0IZ2cKAbh4AJGkUcpPz2a5PmAfBz3OHtcQKjfeGMy_Eyq0_AHgrD6uwSgPv_Mk4_DM7gAO15TxH33GQOUcMsjtB-3YUB-5_yGL30cJUVSFyJAtbGlHhpKkRUVW3-Yd8a4hXndSoWti9xDmCYcm7wqJBk9VaU2Ia61vRAhTr2nWZO0GRw99wfEt80gSgaBGtCKaMxnAVaT4x1VcSMscZJ8VSYJKIql1wqBlY6SZVImJQhhxE6lQY4ENBT1FwUC3OGsNaBsvGX1kKISIb2okRuP01Dk6cqEC3UrbmVKY8oDo0t5lmdOvaeAYcz4HDmONxCNxua0uFpbB3N6kXIfklFZhX-Frrzf9JdoF24c7WGl6i5Xn6YK-t0rGW7kqo22undPwzH39Ug14c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sANReuapo_jNDHtfWGTdkFRXoWhaau2If4-SZtOICEOXHpo7KpyEtuJ7c8ADyKKdcKbBHMz-TjQkcIxkRwrRZMw9ZSI88uc0TjsToP-jM4q0C5rYWxapdP9hU7PtbV703DSbGTzeePZOAfGHJqjnQ3ohn6wBzWLTkWrUGv1Bt3xLpgQeUXVtKHHlsHVzhRpXnrzaeGHfD8PX1rs_t_s0zeb0zmGQ-csolbxPydQ0ctTOCobMSC3L8_gpYXyxEBcVCkgpXWG1joHRZX5_R9y3SFeUVpmYyEziFKLhykWGvVXAm_eVhkyp11jfWyROnLNZs5h2nmatLvY9U3AknjeFhNCSWjDgcYZo00ZUK2NfZJRwnUcEJmKSEhqDXWcSB5TIfzIUqhEaCsBj1xAdbla6ktASnnSHMGU4pwHwjcPyVPzaeLrNJEer0OzlBaTDlTc9rZYsDJ77J1ZCTMrYVZIuA6PO56sgNT4k5qWk8B-LAxmdP4ffFf_5LuH_e5kNGTD3nhwDQd2pCg9vIHqdv2hb40PshV3bo19AUQO2jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-action+deep+reinforcement+learning+framework+for+flexible+Job-shop+scheduling+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Lei%2C+Kun&rft.au=Guo%2C+Peng&rft.au=Zhao%2C+Wenchao&rft.au=Wang%2C+Yi&rft.date=2022-11-01&rft.issn=0957-4174&rft.volume=205&rft.spage=117796&rft_id=info:doi/10.1016%2Fj.eswa.2022.117796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon