A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
•An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances. This paper presents an end-to-end deep reinforcement framework t...
Saved in:
Published in | Expert systems with applications Vol. 205; p. 117796 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances.
This paper presents an end-to-end deep reinforcement framework to automatically learn a policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural network. In the FJSP environment, the reinforcement agent needs to schedule an operation belonging to a job on an eligible machine among a set of compatible machines at each timestep. This means that an agent needs to control multiple actions simultaneously. Such a problem with multi-actions is formulated as a multiple Markov decision process (MMDP). For solving the MMDPs, we propose a multi-pointer graph networks (MPGN) architecture and a training algorithm called multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy to assign a job operation to a machine. The MPGN architecture consists of two encoder-decoder components, which define the job operation action policy and the machine action policy for predicting probability distributions over different operations and machines, respectively. We introduce a disjunctive graph representation of FJSP and use a graph neural network to embed the local state encountered during scheduling. The computational experiment results show that the agent can learn a high-quality dispatching policy and outperforms handcrafted heuristic dispatching rules in solution quality and meta-heuristic algorithm in running time. Moreover, the results achieved on random and benchmark instances demonstrate that the learned policies have a good generalization performance on real-world instances and significantly larger scale instances with up to 2000 operations. |
---|---|
AbstractList | •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in MPGN.•The proposed DRL shows its robustness via random and benchmark test instances.
This paper presents an end-to-end deep reinforcement framework to automatically learn a policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural network. In the FJSP environment, the reinforcement agent needs to schedule an operation belonging to a job on an eligible machine among a set of compatible machines at each timestep. This means that an agent needs to control multiple actions simultaneously. Such a problem with multi-actions is formulated as a multiple Markov decision process (MMDP). For solving the MMDPs, we propose a multi-pointer graph networks (MPGN) architecture and a training algorithm called multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy to assign a job operation to a machine. The MPGN architecture consists of two encoder-decoder components, which define the job operation action policy and the machine action policy for predicting probability distributions over different operations and machines, respectively. We introduce a disjunctive graph representation of FJSP and use a graph neural network to embed the local state encountered during scheduling. The computational experiment results show that the agent can learn a high-quality dispatching policy and outperforms handcrafted heuristic dispatching rules in solution quality and meta-heuristic algorithm in running time. Moreover, the results achieved on random and benchmark instances demonstrate that the learned policies have a good generalization performance on real-world instances and significantly larger scale instances with up to 2000 operations. |
ArticleNumber | 117796 |
Author | Wang, Yi Meng, Xiangyin Guo, Peng Lei, Kun Qian, Linmao Zhao, Wenchao Tang, Liansheng |
Author_xml | – sequence: 1 givenname: Kun surname: Lei fullname: Lei, Kun organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China – sequence: 2 givenname: Peng surname: Guo fullname: Guo, Peng email: pengguo318@swjtu.edu.cn organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China – sequence: 3 givenname: Wenchao surname: Zhao fullname: Zhao, Wenchao organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China – sequence: 4 givenname: Yi surname: Wang fullname: Wang, Yi organization: Department of Mathematics, Auburn University at Montgomery, Montgomery, AL 36124-4023 USA – sequence: 5 givenname: Linmao surname: Qian fullname: Qian, Linmao organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China – sequence: 6 givenname: Xiangyin surname: Meng fullname: Meng, Xiangyin organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 China – sequence: 7 givenname: Liansheng surname: Tang fullname: Tang, Liansheng organization: School of Economics and Management, Ningbo University of Technology, Ningbo 315211 China |
BookMark | eNp9kL1OwzAUhS1UJNrCCzD5BRLsOI4TiaWq-FUlFhiR5Tg31CWxIzul8PbEKhNDpzuc813pfAs0s84CQteUpJTQ4maXQjioNCNZllIqRFWcoTktBUsKUbEZmpOKiySnIr9AixB2hFBBiJij9xXu991oEqVH4yxuAAbswdjWeQ092BF3oLw19gO3XvVwcP4TTyFuO_g2dQf42dVJ2LoBB72FZt_F6uDdFPWX6LxVXYCrv7tEb_d3r-vHZPPy8LRebRLNCBkTxjgraFEUOeGc6pwD0IxpUSkoc6bbWtSal7TkZaVVyes6E7HRVDXEqYQtUXb8q70LwUMrB2965X8kJTIKkjsZBckoSB4FTVD5D9JmVNHC6JXpTqO3RxSmUV8GvAzagNXQGA96lI0zp_BftOOEfA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123970 crossref_primary_10_1007_s10696_024_09540_2 crossref_primary_10_1016_j_engappai_2022_105710 crossref_primary_10_1016_j_mlwa_2023_100485 crossref_primary_10_3390_pr11061826 crossref_primary_10_1038_s41598_024_79593_8 crossref_primary_10_3390_jmse13020197 crossref_primary_10_1016_j_cie_2024_110155 crossref_primary_10_1007_s10462_024_11059_9 crossref_primary_10_1016_j_aei_2024_102872 crossref_primary_10_1016_j_engappai_2024_109488 crossref_primary_10_3390_app131810134 crossref_primary_10_1016_j_eswa_2025_126441 crossref_primary_10_1007_s00521_024_09654_6 crossref_primary_10_1016_j_cie_2024_110325 crossref_primary_10_1016_j_cie_2025_110948 crossref_primary_10_1007_s10696_024_09574_6 crossref_primary_10_1007_s40747_024_01772_x crossref_primary_10_1016_j_eswa_2023_122092 crossref_primary_10_1016_j_jmsy_2024_09_011 crossref_primary_10_1016_j_knosys_2024_112569 crossref_primary_10_1016_j_cie_2023_109718 crossref_primary_10_1109_TEVC_2023_3334626 crossref_primary_10_1007_s13042_024_02504_w crossref_primary_10_1016_j_cor_2023_106401 crossref_primary_10_1007_s12530_025_09668_y crossref_primary_10_1016_j_jmsy_2024_10_026 crossref_primary_10_3390_electronics13224452 crossref_primary_10_1080_0951192X_2025_2452981 crossref_primary_10_1007_s10791_024_09474_1 crossref_primary_10_1016_j_eswa_2024_125189 crossref_primary_10_1016_j_cie_2024_110855 crossref_primary_10_1016_j_eswa_2024_125895 crossref_primary_10_1016_j_ins_2025_121906 crossref_primary_10_23919_CSMS_2024_0010 crossref_primary_10_3390_machines12080584 crossref_primary_10_1007_s10696_024_09587_1 crossref_primary_10_1007_s11227_025_07030_2 crossref_primary_10_1016_j_cie_2024_109903 crossref_primary_10_1016_j_jmsy_2024_11_010 crossref_primary_10_1109_JIOT_2024_3485748 crossref_primary_10_1016_j_cor_2024_106914 crossref_primary_10_1080_00207543_2024_2335663 crossref_primary_10_1016_j_swevo_2024_101617 crossref_primary_10_3390_pr11010267 crossref_primary_10_1109_ACCESS_2024_3384923 crossref_primary_10_1007_s10845_023_02161_w crossref_primary_10_1111_exsy_13727 crossref_primary_10_1109_ACCESS_2023_3277529 crossref_primary_10_1109_TII_2024_3371489 crossref_primary_10_1109_TNNLS_2023_3306421 crossref_primary_10_1109_TII_2023_3272661 crossref_primary_10_1109_TITS_2024_3424205 crossref_primary_10_3390_machines12080579 crossref_primary_10_1016_j_asoc_2024_111342 crossref_primary_10_1016_j_cie_2025_111060 crossref_primary_10_1016_j_jmsy_2024_03_012 crossref_primary_10_1016_j_trc_2024_104970 crossref_primary_10_1016_j_asoc_2024_111699 crossref_primary_10_1016_j_swevo_2024_101605 crossref_primary_10_1155_2024_7777050 crossref_primary_10_3390_sym15071409 crossref_primary_10_1007_s00500_024_09763_3 crossref_primary_10_1080_0305215X_2024_2413646 crossref_primary_10_1016_j_aej_2024_08_105 crossref_primary_10_1016_j_cie_2023_109802 crossref_primary_10_1007_s00500_023_08342_2 crossref_primary_10_1016_j_engappai_2024_109557 crossref_primary_10_1007_s10696_024_09543_z crossref_primary_10_1016_j_jmsy_2023_06_007 crossref_primary_10_1080_09544828_2025_2450759 crossref_primary_10_1016_j_rcim_2023_102605 crossref_primary_10_3390_electronics13183696 crossref_primary_10_1016_j_knosys_2025_113335 crossref_primary_10_1016_j_eswa_2023_121756 crossref_primary_10_1016_j_eswa_2023_123019 crossref_primary_10_1061_JCCEE5_CPENG_6042 crossref_primary_10_3934_mbe_2023429 crossref_primary_10_3390_pr13010062 crossref_primary_10_1109_ACCESS_2025_3530558 crossref_primary_10_1016_j_cie_2024_110646 crossref_primary_10_3390_biomimetics8060478 crossref_primary_10_1016_j_cie_2024_110768 crossref_primary_10_1109_TR_2023_3311625 crossref_primary_10_1016_j_engappai_2024_108699 crossref_primary_10_3390_pr11072018 crossref_primary_10_1016_j_jmsy_2024_08_006 crossref_primary_10_1016_j_aei_2023_101975 crossref_primary_10_1109_ACCESS_2024_3384252 crossref_primary_10_1016_j_engappai_2023_107790 crossref_primary_10_3390_sym17040487 crossref_primary_10_1016_j_compeleceng_2024_110044 crossref_primary_10_1016_j_engappai_2024_107893 crossref_primary_10_1109_TETCI_2024_3354111 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1016_j_eswa_2023_121050 crossref_primary_10_1016_j_swevo_2024_101660 crossref_primary_10_1016_j_eswa_2024_123556 crossref_primary_10_1080_00207543_2024_2373426 crossref_primary_10_1007_s42524_025_4079_1 crossref_primary_10_1016_j_cie_2024_110095 crossref_primary_10_1016_j_psep_2024_11_127 crossref_primary_10_1016_j_jmsy_2024_04_028 crossref_primary_10_1155_2023_4573352 crossref_primary_10_1016_j_simpat_2024_102948 crossref_primary_10_3390_s25051428 crossref_primary_10_59782_aai_v1i2_304 crossref_primary_10_1007_s11227_024_06741_2 crossref_primary_10_1016_j_cie_2025_110856 crossref_primary_10_1016_j_cie_2024_109950 crossref_primary_10_48084_etasr_7934 crossref_primary_10_1109_JIOT_2024_3358403 crossref_primary_10_1016_j_engappai_2023_107762 crossref_primary_10_1016_j_engappai_2024_109688 crossref_primary_10_1007_s40747_025_01828_6 crossref_primary_10_1080_00207543_2025_2481184 crossref_primary_10_1016_j_knosys_2024_111940 crossref_primary_10_1016_j_ifacol_2024_09_176 crossref_primary_10_3390_s24072251 |
Cites_doi | 10.1016/j.procir.2020.05.163 10.1016/j.engappai.2021.104490 10.1007/s10845-007-0026-8 10.1007/s10951-017-0526-0 10.1016/j.eswa.2019.04.056 10.1016/j.comnet.2021.107969 10.1007/BF01719451 10.1023/A:1018930406487 10.1016/j.cie.2010.05.004 10.1016/j.cor.2013.11.011 10.1016/j.asoc.2020.106208 10.1007/s10845-014-0869-8 10.1007/s00170-011-3437-9 10.1111/itor.12199 10.1016/j.ijpe.2012.03.034 10.1016/j.apm.2009.09.002 10.1016/j.procir.2018.03.212 10.1109/TII.2019.2908210 10.1007/978-3-030-16711-0_3 10.1016/S0377-2217(98)00113-1 10.1049/iet-cim.2018.0009 10.1016/j.cie.2017.05.026 10.1109/TASE.2014.2316193 10.1016/j.ejor.2015.02.052 10.1016/j.asoc.2009.10.006 10.1080/00207540210147043 10.1016/j.cie.2010.07.014 10.1007/BF02238804 10.1016/j.eswa.2009.06.007 10.1609/socs.v12i1.18556 10.1016/j.cie.2007.04.010 10.1080/00207543.2013.765074 10.1007/s00170-010-3140-2 10.1016/j.neucom.2022.08.005 10.1016/j.cor.2007.02.014 10.1016/j.cie.2008.07.021 10.1016/j.apm.2012.03.020 10.1016/j.cie.2020.106605 10.1016/j.jmsy.2020.02.004 10.1287/moor.1.2.117 10.1016/j.ejor.2020.07.063 10.1007/978-3-319-42911-3_48 10.1016/j.cie.2020.106778 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.117796 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_117796 S0957417422010624 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-33536166640551c45ee123c79ae843cfb7bc5818589ca85bb27ee12d9be779603 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:02 EDT 2025 Thu Apr 24 22:51:47 EDT 2025 Fri Feb 23 02:38:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flexible job-shop scheduling problem Markov decision process Graph neural network Multi-proximal policy optimization Multi-action deep reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-33536166640551c45ee123c79ae843cfb7bc5818589ca85bb27ee12d9be779603 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2022_117796 crossref_citationtrail_10_1016_j_eswa_2022_117796 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | X. Chen Y. Tian Learning to perform local rewriting for combinatorial optimization In Proceedings of the 33rd International Conference on Neural Information Processing Systems 2019 6281 6292 URL. Kacem, Hammadi, Borne (b0150) 2002; 32 Gao, Gen, Sun, Zhao (b0095) 2007; 53 Li, Pan, Gao (b0170) 2011; 55 9861-9871. URL Liu, Chang, Tseng (b0190) 2020; 8 Chiang, Lin (b0050) 2013; 141 Dauzère-Pérès, Paulli (b0070) 1997; 70 Garey, Johnson, Sethi (b0110) 1976; 1 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. Jain, Meeran (b0140) 1999; 113 Pezzella, Morganti, Ciaschetti (b0240) 2008; 35 Chen, Yang, Li, Wang (b0040) 2020; 149 Naderi, Roshanaei (b0215) 2021; 4 Demir, Kürşat İşleyen (b0080) 2013; 37 Luo (b0205) 2020; 91 S. Amizadeh S. Matusevych M. Weimer Learning to solve circuit-SAT: An unsupervised differentiable approach In International Conference on Learning Representations 2018 URL. Brucker, Schlie (b0030) 1990; 45 Defersha, Rooyani (b0075) 2020; 147 Han, Yang (b0125) 2020; 8 . K. Xu W. Hu J. Leskovec S. Jegelka How Powerful are Graph Neural Networks? In International Conference on Learning Representations 2018 URL. 574-587. Chaudhry, Khan (b0035) 2016; 23 Corman, D'Ariano, Pacciarelli, Pranzo (b0060) 2014; 44 Bożejko, Uchroński, Wodecki (b0025) 2010; 59 Wu, Song, Cao, Zhang, Lim (b0290) 2019; 1–13 Jurisch (b0145) 1992 Rahmati, Zandieh (b0245) 2012; 58 Li, Pan, Liang (b0175) 2010; 59 Zhang, Shao, Li, Gao (b0325) 2009; 56 Behnke, Geiger (b0015) 2012 Doh, Yu, Kim, Lee, Nam (b0085) 2013; 51 Fattahi, Saidi Mehrabad, Jolai (b0090) 2007; 18 González, Vela, Varela (b0115) 2015; 245 Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In Lange, Werner (b0160) 2018; 21 Solozabal, R., Ceberio, J., & Takáč, M. (2020). Constrained combinatorial optimization with reinforcement learning. Chou, Chien, Gen (b0055) 2014; 11 Park, Huh, Kim, Park (b0235) 2020; 17 Wang, Hu, Wang, Xu, Ma, Yang, Wang (b0280) 2021; 190 Bengio, Lodi, Prouvost (b0020) 2021; 290 Xing, Chen, Wang, Zhao, Xiong (b0300) 2010; 10 URL Zhang, Mei, Zhang (b0320) 2019; 33–49 Hu, Liu, Hu, Wang, Tan, Wu (b0130) 2020; 55 Zhu, Zhang, Xiao, Cui, Bai, Ji (b0340) 2021; 106 Baykasoglu (b0010) 2002; 40 D. Selsam M. Lamm B. Benedikt P. Liang L. de Moura D.L. Dill Learning a SAT Solver from Single-Bit Supervision In International Conference on Learning Representations 2018 URL. Zhao, Li, Gao, Wang, Xiao (b0330) 2019 Gao, L.-y., Wang, R., Liu, C., & Jia, Z.-h. (2022). Multi-objective Pointer Network for Combinatorial Optimization. Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. (2018). Reinforcement learning for solving the vehicle routing problem. In Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp, Kyek (b0285) 2018; 72 M. Hameed A. Schwung Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks. arXiv e-prints 2020 arXiv:2009.03836. Shahrabi, Adibi, Mahootchi (b0260) 2017; 110 Hurink, Jurisch, Thole (b0135) 1994; 15 31, 537-546. URL H. Lu X. Zhang S. Yang A learning-based iterative method for solving vehicle routing problems In International Conference on Learning Representations 2019 URL. Lopes Silva, de Souza, Freitas Souza, Bazzan (b0195) 2019; 131 H. Dai E. Khalil Y. Zhang B. Dilkina L. Song Learning Combinatorial Optimization Algorithms over Graphs In 31st Conference on Neural Information Processing Systems 2017 URL:https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf. Mastrolilli, Gambardella (b0210) 2000; 3 Özgüven, Özbakır, Yavuz (b0230) 2010; 34 arXiv:2105.02730. W. Kool H. van Hoof M. Welling Attention, Learn to Solve Routing Problems! In International Conference on Learning Representations 2019 URL. Wang, H., & Yu, Y. (2016). Exploring Multi-action Relationship in Reinforcement Learning. In R. Booth & M.-L. Zhang (Eds.) Gao, Suganthan, Pan, Chua, Cai, Chong (b0100) 2016; 27 Oren, Ross, Lefarov, Richter, Taitler, Feldman, Daniel (b0225) 2021; 12 Zhang, Song, Cao, Zhang, Tan, Chi (b0315) 2020; 33 arXiv:1707.06347. Lin, Deng, Chih, Chiu (b0185) 2019; 15 Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. Zhou, Zhang, Horn (b0335) 2020; 93 Lei, K., Guo, P., Wang, Y., Wu, X., & Zhao, W. (2021). Solve routing problems with a residual edge-graph attention neural network. arXiv:2006.11984. Yazdani, Amiri, Zandieh (b0310) 2010; 37 Xie, Gao, Peng, Li, Li (b0295) 2019; 1 González (10.1016/j.eswa.2022.117796_b0115) 2015; 245 10.1016/j.eswa.2022.117796_b0250 Zhou (10.1016/j.eswa.2022.117796_b0335) 2020; 93 Lange (10.1016/j.eswa.2022.117796_b0160) 2018; 21 Kacem (10.1016/j.eswa.2022.117796_b0150) 2002; 32 Yazdani (10.1016/j.eswa.2022.117796_b0310) 2010; 37 Jurisch (10.1016/j.eswa.2022.117796_b0145) 1992 Mastrolilli (10.1016/j.eswa.2022.117796_b0210) 2000; 3 Oren (10.1016/j.eswa.2022.117796_b0225) 2021; 12 Park (10.1016/j.eswa.2022.117796_b0235) 2020; 17 Fattahi (10.1016/j.eswa.2022.117796_b0090) 2007; 18 Corman (10.1016/j.eswa.2022.117796_b0060) 2014; 44 Li (10.1016/j.eswa.2022.117796_b0175) 2010; 59 10.1016/j.eswa.2022.117796_b0255 Xing (10.1016/j.eswa.2022.117796_b0300) 2010; 10 Dauzère-Pérès (10.1016/j.eswa.2022.117796_b0070) 1997; 70 Bożejko (10.1016/j.eswa.2022.117796_b0025) 2010; 59 Pezzella (10.1016/j.eswa.2022.117796_b0240) 2008; 35 Chou (10.1016/j.eswa.2022.117796_b0055) 2014; 11 Lopes Silva (10.1016/j.eswa.2022.117796_b0195) 2019; 131 Garey (10.1016/j.eswa.2022.117796_b0110) 1976; 1 10.1016/j.eswa.2022.117796_b0165 Waschneck (10.1016/j.eswa.2022.117796_b0285) 2018; 72 10.1016/j.eswa.2022.117796_b0045 10.1016/j.eswa.2022.117796_b0120 Zhang (10.1016/j.eswa.2022.117796_b0320) 2019; 33–49 Doh (10.1016/j.eswa.2022.117796_b0085) 2013; 51 10.1016/j.eswa.2022.117796_b0005 10.1016/j.eswa.2022.117796_b0200 Shahrabi (10.1016/j.eswa.2022.117796_b0260) 2017; 110 Lin (10.1016/j.eswa.2022.117796_b0185) 2019; 15 Xie (10.1016/j.eswa.2022.117796_b0295) 2019; 1 Gao (10.1016/j.eswa.2022.117796_b0100) 2016; 27 Baykasoglu (10.1016/j.eswa.2022.117796_b0010) 2002; 40 Chaudhry (10.1016/j.eswa.2022.117796_b0035) 2016; 23 Rahmati (10.1016/j.eswa.2022.117796_b0245) 2012; 58 Li (10.1016/j.eswa.2022.117796_b0170) 2011; 55 Luo (10.1016/j.eswa.2022.117796_b0205) 2020; 91 Naderi (10.1016/j.eswa.2022.117796_b0215) 2021; 4 Demir (10.1016/j.eswa.2022.117796_b0080) 2013; 37 Gao (10.1016/j.eswa.2022.117796_b0095) 2007; 53 Jain (10.1016/j.eswa.2022.117796_b0140) 1999; 113 10.1016/j.eswa.2022.117796_b0270 10.1016/j.eswa.2022.117796_b0275 10.1016/j.eswa.2022.117796_b0155 Liu (10.1016/j.eswa.2022.117796_b0190) 2020; 8 Han (10.1016/j.eswa.2022.117796_b0125) 2020; 8 Özgüven (10.1016/j.eswa.2022.117796_b0230) 2010; 34 10.1016/j.eswa.2022.117796_b0305 10.1016/j.eswa.2022.117796_b0105 Zhang (10.1016/j.eswa.2022.117796_b0325) 2009; 56 Behnke (10.1016/j.eswa.2022.117796_b0015) 2012 Defersha (10.1016/j.eswa.2022.117796_b0075) 2020; 147 10.1016/j.eswa.2022.117796_b0180 Chiang (10.1016/j.eswa.2022.117796_b0050) 2013; 141 Brucker (10.1016/j.eswa.2022.117796_b0030) 1990; 45 10.1016/j.eswa.2022.117796_b0220 10.1016/j.eswa.2022.117796_b0265 10.1016/j.eswa.2022.117796_b0065 Wang (10.1016/j.eswa.2022.117796_b0280) 2021; 190 Zhang (10.1016/j.eswa.2022.117796_b0315) 2020; 33 Hu (10.1016/j.eswa.2022.117796_b0130) 2020; 55 Zhao (10.1016/j.eswa.2022.117796_b0330) 2019 Chen (10.1016/j.eswa.2022.117796_b0040) 2020; 149 Zhu (10.1016/j.eswa.2022.117796_b0340) 2021; 106 Bengio (10.1016/j.eswa.2022.117796_b0020) 2021; 290 Wu (10.1016/j.eswa.2022.117796_b0290) 2019; 1–13 Hurink (10.1016/j.eswa.2022.117796_b0135) 1994; 15 |
References_xml | – volume: 51 year: 2013 ident: b0085 article-title: A priority scheduling approach for flexible job shops with multiple process plans publication-title: International Journal of Production Research – reference: K. Xu W. Hu J. Leskovec S. Jegelka How Powerful are Graph Neural Networks? In International Conference on Learning Representations 2018 URL. – year: 1992 ident: b0145 article-title: Scheduling jobs in shops with multi-purpose machines – reference: , 574-587. – volume: 141 year: 2013 ident: b0050 article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling publication-title: International Journal of Production Economics – reference: Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. – volume: 59 start-page: 647 year: 2010 end-page: 662 ident: b0175 article-title: An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems publication-title: In – reference: S. Amizadeh S. Matusevych M. Weimer Learning to solve circuit-SAT: An unsupervised differentiable approach In International Conference on Learning Representations 2018 URL. – volume: 113 year: 1999 ident: b0140 article-title: Deterministic job-shop scheduling: Past, present and future publication-title: European Journal of Operational Research – volume: 3 year: 2000 ident: b0210 publication-title: Effective neighbourhood functions for the flexible job shop problem. – reference: Gao, L.-y., Wang, R., Liu, C., & Jia, Z.-h. (2022). Multi-objective Pointer Network for Combinatorial Optimization. – reference: Lei, K., Guo, P., Wang, Y., Wu, X., & Zhao, W. (2021). Solve routing problems with a residual edge-graph attention neural network. – volume: 1 start-page: 117 year: 1976 end-page: 129 ident: b0110 article-title: The Complexity of Flowshop and Jobshop Scheduling publication-title: Mathematics of Operations Research – volume: 17 year: 2020 ident: b0235 article-title: A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities publication-title: IEEE Transactions on Automation Science and Engineering – volume: 18 year: 2007 ident: b0090 article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems publication-title: Journal of Intelligent Manufacturing – volume: 40 year: 2002 ident: b0010 article-title: Linguistic-based meta-heuristic optimization model for flexible job shop scheduling publication-title: International Journal of Production Research – reference: , 31, 537-546. URL: – volume: 290 year: 2021 ident: b0020 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research – start-page: 331 year: 2019 end-page: 337 ident: b0330 article-title: An improved Q-learning based rescheduling method for flexible job-shops with machine failures publication-title: In – reference: H. Lu X. Zhang S. Yang A learning-based iterative method for solving vehicle routing problems In International Conference on Learning Representations 2019 URL. – reference: Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. – volume: 70 year: 1997 ident: b0070 article-title: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search publication-title: Annals of Operations Research – volume: 245 year: 2015 ident: b0115 article-title: Scatter search with path relinking for the flexible job shop scheduling problem publication-title: European Journal of Operational Research – volume: 15 year: 1994 ident: b0135 article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines publication-title: OR Spektrum – volume: 12 start-page: 97 year: 2021 end-page: 105 ident: b0225 article-title: SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems publication-title: In – volume: 93 year: 2020 ident: b0335 article-title: Deep reinforcement learning-based dynamic scheduling in smart manufacturing publication-title: Procedia CIRP – volume: 15 year: 2019 ident: b0185 article-title: Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network publication-title: IEEE Transactions on Industrial Informatics – volume: 33–49 year: 2019 ident: b0320 article-title: A New Representation in Genetic Programming for Evolving Dispatching Rules for Dynamic Flexible Job Shop Scheduling publication-title: Evolutionary Computation in Combinatorial Optimization – volume: 53 year: 2007 ident: b0095 article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems publication-title: Computers & Industrial Engineering – volume: 59 year: 2010 ident: b0025 article-title: Parallel hybrid metaheuristics for the flexible job shop problem publication-title: Computers & Industrial Engineering – volume: 106 year: 2021 ident: b0340 article-title: Deep reinforcement learning-based radio function deployment for secure and resource-efficient NG-RAN slicing publication-title: Engineering Applications of Artificial Intelligence – volume: 55 year: 2020 ident: b0130 article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network publication-title: Journal of Manufacturing Systems – volume: 4 start-page: 1 year: 2021 end-page: 28 ident: b0215 article-title: Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling publication-title: INFORMS Journal on Optimization.http://dx.doi.org/10.1287/ijoo.2021.0056. – volume: 8 year: 2020 ident: b0190 article-title: Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems. publication-title: Access – volume: 11 year: 2014 ident: b0055 article-title: A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling publication-title: IEEE Transactions on Automation Science and Engineering – volume: 32 year: 2002 ident: b0150 article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 35 year: 2008 ident: b0240 article-title: A genetic algorithm for the Flexible Job-shop Scheduling Problem publication-title: Computers & Operations Research – volume: 23 year: 2016 ident: b0035 article-title: A research survey: Review of flexible job shop scheduling techniques publication-title: International Transactions in Operational Research – volume: 1–13 year: 2019 ident: b0290 article-title: Learning Improvement Heuristics for Solving Routing Problems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 56 year: 2009 ident: b0325 article-title: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering – volume: 149 year: 2020 ident: b0040 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering – reference: H. Dai E. Khalil Y. Zhang B. Dilkina L. Song Learning Combinatorial Optimization Algorithms over Graphs In 31st Conference on Neural Information Processing Systems 2017 URL:https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf. – volume: 37 year: 2013 ident: b0080 article-title: Evaluation of mathematical models for flexible job-shop scheduling problems publication-title: Applied Mathematical Modelling – volume: 91 year: 2020 ident: b0205 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing – reference: W. Kool H. van Hoof M. Welling Attention, Learn to Solve Routing Problems! In International Conference on Learning Representations 2019 URL. – volume: 131 year: 2019 ident: b0195 article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems publication-title: Expert Systems with Applications – volume: 190 year: 2021 ident: b0280 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks – volume: 55 year: 2011 ident: b0170 article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems publication-title: The International Journal of Advanced Manufacturing Technology – reference: D. Selsam M. Lamm B. Benedikt P. Liang L. de Moura D.L. Dill Learning a SAT Solver from Single-Bit Supervision In International Conference on Learning Representations 2018 URL. – volume: 10 year: 2010 ident: b0300 article-title: A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems publication-title: Applied Soft Computing – reference: , arXiv:2006.11984. – volume: 45 year: 1990 ident: b0030 article-title: Job-shop scheduling with multi-purpose machines publication-title: Computing – volume: 33 start-page: 1621 year: 2020 end-page: 1632 ident: b0315 article-title: Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning publication-title: In – reference: URL: – volume: 37 year: 2010 ident: b0310 article-title: Flexible job-shop scheduling with parallel variable neighborhood search algorithm publication-title: Expert Systems with Applications – volume: 58 start-page: 1115 year: 2012 end-page: 1129 ident: b0245 article-title: A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem publication-title: The International Journal of Advanced Manufacturing Technology – reference: Solozabal, R., Ceberio, J., & Takáč, M. (2020). Constrained combinatorial optimization with reinforcement learning. – volume: 27 year: 2016 ident: b0100 article-title: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives publication-title: Journal of Intelligent Manufacturing – volume: 8 year: 2020 ident: b0125 article-title: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN. publication-title: Access – volume: 44 year: 2014 ident: b0060 article-title: Dispatching and coordination in multi-area railway traffic management publication-title: Computers & Operations Research – reference: , arXiv:1707.06347. – reference: , 9861-9871. URL: – volume: 72 year: 2018 ident: b0285 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Procedia CIRP – reference: M. Hameed A. Schwung Reinforcement Learning on Job Shop Scheduling Problems Using Graph Networks. arXiv e-prints 2020 arXiv:2009.03836. – volume: 110 year: 2017 ident: b0260 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering – start-page: 1 year: 2012 end-page: 31 ident: b0015 article-title: Test instances for the flexible job shop scheduling problem with work centers publication-title: Research Report – volume: 21 year: 2018 ident: b0160 article-title: Approaches to modeling train scheduling problems as job-shop problems with blocking constraints publication-title: Journal of Scheduling – reference: . – reference: Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In – reference: X. Chen Y. Tian Learning to perform local rewriting for combinatorial optimization In Proceedings of the 33rd International Conference on Neural Information Processing Systems 2019 6281 6292 URL. – volume: 1 start-page: 67 year: 2019 end-page: 77 ident: b0295 article-title: Review on flexible job shop scheduling publication-title: IET Collaborative Intelligent Manufacturing – reference: Wang, H., & Yu, Y. (2016). Exploring Multi-action Relationship in Reinforcement Learning. In R. Booth & M.-L. Zhang (Eds.), – volume: 147 year: 2020 ident: b0075 article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time publication-title: Computers & Industrial Engineering – reference: , arXiv:2105.02730. – volume: 34 year: 2010 ident: b0230 article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility publication-title: Applied Mathematical Modelling – reference: Nazari, M., Oroojlooy, A., Takáč, M., & Snyder, L. (2018). Reinforcement learning for solving the vehicle routing problem. In – volume: 93 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0335 article-title: Deep reinforcement learning-based dynamic scheduling in smart manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.05.163 – volume: 106 year: 2021 ident: 10.1016/j.eswa.2022.117796_b0340 article-title: Deep reinforcement learning-based radio function deployment for secure and resource-efficient NG-RAN slicing publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104490 – volume: 18 year: 2007 ident: 10.1016/j.eswa.2022.117796_b0090 article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-007-0026-8 – volume: 21 year: 2018 ident: 10.1016/j.eswa.2022.117796_b0160 article-title: Approaches to modeling train scheduling problems as job-shop problems with blocking constraints publication-title: Journal of Scheduling doi: 10.1007/s10951-017-0526-0 – volume: 131 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0195 article-title: A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.04.056 – volume: 190 year: 2021 ident: 10.1016/j.eswa.2022.117796_b0280 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks doi: 10.1016/j.comnet.2021.107969 – volume: 15 year: 1994 ident: 10.1016/j.eswa.2022.117796_b0135 article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines publication-title: OR Spektrum doi: 10.1007/BF01719451 – volume: 1–13 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0290 article-title: Learning Improvement Heuristics for Solving Routing Problems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 3 year: 2000 ident: 10.1016/j.eswa.2022.117796_b0210 publication-title: Effective neighbourhood functions for the flexible job shop problem. – volume: 70 year: 1997 ident: 10.1016/j.eswa.2022.117796_b0070 article-title: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search publication-title: Annals of Operations Research doi: 10.1023/A:1018930406487 – volume: 59 year: 2010 ident: 10.1016/j.eswa.2022.117796_b0025 article-title: Parallel hybrid metaheuristics for the flexible job shop problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2010.05.004 – volume: 44 year: 2014 ident: 10.1016/j.eswa.2022.117796_b0060 article-title: Dispatching and coordination in multi-area railway traffic management publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.11.011 – ident: 10.1016/j.eswa.2022.117796_b0265 – volume: 91 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0205 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106208 – ident: 10.1016/j.eswa.2022.117796_b0005 – ident: 10.1016/j.eswa.2022.117796_b0270 – volume: 27 year: 2016 ident: 10.1016/j.eswa.2022.117796_b0100 article-title: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-014-0869-8 – ident: 10.1016/j.eswa.2022.117796_b0180 – volume: 17 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0235 article-title: A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing Facilities publication-title: IEEE Transactions on Automation Science and Engineering – volume: 58 start-page: 1115 year: 2012 ident: 10.1016/j.eswa.2022.117796_b0245 article-title: A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-011-3437-9 – ident: 10.1016/j.eswa.2022.117796_b0255 – ident: 10.1016/j.eswa.2022.117796_b0065 – volume: 23 year: 2016 ident: 10.1016/j.eswa.2022.117796_b0035 article-title: A research survey: Review of flexible job shop scheduling techniques publication-title: International Transactions in Operational Research doi: 10.1111/itor.12199 – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2022.117796_b0015 article-title: Test instances for the flexible job shop scheduling problem with work centers publication-title: Research Report – volume: 141 year: 2013 ident: 10.1016/j.eswa.2022.117796_b0050 article-title: A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2012.03.034 – volume: 34 year: 2010 ident: 10.1016/j.eswa.2022.117796_b0230 article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2009.09.002 – volume: 72 year: 2018 ident: 10.1016/j.eswa.2022.117796_b0285 article-title: Optimization of global production scheduling with deep reinforcement learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.212 – volume: 15 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0185 article-title: Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2908210 – volume: 33–49 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0320 article-title: A New Representation in Genetic Programming for Evolving Dispatching Rules for Dynamic Flexible Job Shop Scheduling publication-title: Evolutionary Computation in Combinatorial Optimization doi: 10.1007/978-3-030-16711-0_3 – ident: 10.1016/j.eswa.2022.117796_b0200 – volume: 113 year: 1999 ident: 10.1016/j.eswa.2022.117796_b0140 article-title: Deterministic job-shop scheduling: Past, present and future publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00113-1 – ident: 10.1016/j.eswa.2022.117796_b0105 – volume: 1 start-page: 67 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0295 article-title: Review on flexible job shop scheduling publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/iet-cim.2018.0009 – year: 1992 ident: 10.1016/j.eswa.2022.117796_b0145 – start-page: 331 year: 2019 ident: 10.1016/j.eswa.2022.117796_b0330 article-title: An improved Q-learning based rescheduling method for flexible job-shops with machine failures – volume: 110 year: 2017 ident: 10.1016/j.eswa.2022.117796_b0260 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.026 – ident: 10.1016/j.eswa.2022.117796_b0045 – volume: 11 year: 2014 ident: 10.1016/j.eswa.2022.117796_b0055 article-title: A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2014.2316193 – volume: 33 start-page: 1621 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0315 article-title: Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning publication-title: In Advances in Neural Information Processing Systems – volume: 245 year: 2015 ident: 10.1016/j.eswa.2022.117796_b0115 article-title: Scatter search with path relinking for the flexible job shop scheduling problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.02.052 – volume: 10 year: 2010 ident: 10.1016/j.eswa.2022.117796_b0300 article-title: A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.10.006 – volume: 40 year: 2002 ident: 10.1016/j.eswa.2022.117796_b0010 article-title: Linguistic-based meta-heuristic optimization model for flexible job shop scheduling publication-title: International Journal of Production Research doi: 10.1080/00207540210147043 – volume: 32 year: 2002 ident: 10.1016/j.eswa.2022.117796_b0150 article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 59 start-page: 647 year: 2010 ident: 10.1016/j.eswa.2022.117796_b0175 article-title: An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems publication-title: In Computers & Industrial Engineering doi: 10.1016/j.cie.2010.07.014 – volume: 45 year: 1990 ident: 10.1016/j.eswa.2022.117796_b0030 article-title: Job-shop scheduling with multi-purpose machines publication-title: Computing doi: 10.1007/BF02238804 – ident: 10.1016/j.eswa.2022.117796_b0220 – volume: 37 year: 2010 ident: 10.1016/j.eswa.2022.117796_b0310 article-title: Flexible job-shop scheduling with parallel variable neighborhood search algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.007 – volume: 12 start-page: 97 year: 2021 ident: 10.1016/j.eswa.2022.117796_b0225 article-title: SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems publication-title: In Proceedings of the International Symposium on Combinatorial Search doi: 10.1609/socs.v12i1.18556 – volume: 53 year: 2007 ident: 10.1016/j.eswa.2022.117796_b0095 article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2007.04.010 – ident: 10.1016/j.eswa.2022.117796_b0305 – volume: 51 year: 2013 ident: 10.1016/j.eswa.2022.117796_b0085 article-title: A priority scheduling approach for flexible job shops with multiple process plans publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.765074 – volume: 55 year: 2011 ident: 10.1016/j.eswa.2022.117796_b0170 article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-010-3140-2 – ident: 10.1016/j.eswa.2022.117796_b0165 doi: 10.1016/j.neucom.2022.08.005 – volume: 8 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0190 article-title: Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems. IEEE publication-title: Access – volume: 35 year: 2008 ident: 10.1016/j.eswa.2022.117796_b0240 article-title: A genetic algorithm for the Flexible Job-shop Scheduling Problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2007.02.014 – volume: 56 year: 2009 ident: 10.1016/j.eswa.2022.117796_b0325 article-title: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2008.07.021 – volume: 37 year: 2013 ident: 10.1016/j.eswa.2022.117796_b0080 article-title: Evaluation of mathematical models for flexible job-shop scheduling problems publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.03.020 – ident: 10.1016/j.eswa.2022.117796_b0155 – volume: 147 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0075 article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106605 – volume: 55 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0130 article-title: Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.02.004 – volume: 1 start-page: 117 year: 1976 ident: 10.1016/j.eswa.2022.117796_b0110 article-title: The Complexity of Flowshop and Jobshop Scheduling publication-title: Mathematics of Operations Research doi: 10.1287/moor.1.2.117 – volume: 290 year: 2021 ident: 10.1016/j.eswa.2022.117796_b0020 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.063 – ident: 10.1016/j.eswa.2022.117796_b0275 doi: 10.1007/978-3-319-42911-3_48 – volume: 149 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0040 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106778 – ident: 10.1016/j.eswa.2022.117796_b0120 – ident: 10.1016/j.eswa.2022.117796_b0250 – volume: 8 year: 2020 ident: 10.1016/j.eswa.2022.117796_b0125 article-title: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN. IEEE publication-title: Access – volume: 4 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2022.117796_b0215 article-title: Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling publication-title: INFORMS Journal on Optimization.http://dx.doi.org/10.1287/ijoo.2021.0056. |
SSID | ssj0017007 |
Score | 2.6794882 |
Snippet | •An end-to-end DRL-based framework is introduced to solve the FJSP.•Multi-PPO is used to learn job operation action and machine action sub-policies in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117796 |
SubjectTerms | Flexible job-shop scheduling problem Graph neural network Markov decision process Multi-action deep reinforcement learning Multi-proximal policy optimization |
Title | A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem |
URI | https://dx.doi.org/10.1016/j.eswa.2022.117796 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYM3ieuapmmPYzjmxF10sIuUfFUnYy3bxJt_u3lNOhRkBy-FtnklvLy-j-S930PoWvLEpKJLibCLTyLDNUmoEkRrlsZ5oGVSbeY8juPhJBpN2bSB-nUtDKRVet3vdHqlrf2Tjudmp5zNOk_WObDm0IZ2cKAbh4AJGkUcpPz2a5PmAfBz3OHtcQKjfeGMy_Eyq0_AHgrD6uwSgPv_Mk4_DM7gAO15TxH33GQOUcMsjtB-3YUB-5_yGL30cJUVSFyJAtbGlHhpKkRUVW3-Yd8a4hXndSoWti9xDmCYcm7wqJBk9VaU2Ia61vRAhTr2nWZO0GRw99wfEt80gSgaBGtCKaMxnAVaT4x1VcSMscZJ8VSYJKIql1wqBlY6SZVImJQhhxE6lQY4ENBT1FwUC3OGsNaBsvGX1kKISIb2okRuP01Dk6cqEC3UrbmVKY8oDo0t5lmdOvaeAYcz4HDmONxCNxua0uFpbB3N6kXIfklFZhX-Frrzf9JdoF24c7WGl6i5Xn6YK-t0rGW7kqo22undPwzH39Ug14c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sANReuapo_jNDHtfWGTdkFRXoWhaau2If4-SZtOICEOXHpo7KpyEtuJ7c8ADyKKdcKbBHMz-TjQkcIxkRwrRZMw9ZSI88uc0TjsToP-jM4q0C5rYWxapdP9hU7PtbV703DSbGTzeePZOAfGHJqjnQ3ohn6wBzWLTkWrUGv1Bt3xLpgQeUXVtKHHlsHVzhRpXnrzaeGHfD8PX1rs_t_s0zeb0zmGQ-csolbxPydQ0ctTOCobMSC3L8_gpYXyxEBcVCkgpXWG1joHRZX5_R9y3SFeUVpmYyEziFKLhykWGvVXAm_eVhkyp11jfWyROnLNZs5h2nmatLvY9U3AknjeFhNCSWjDgcYZo00ZUK2NfZJRwnUcEJmKSEhqDXWcSB5TIfzIUqhEaCsBj1xAdbla6ktASnnSHMGU4pwHwjcPyVPzaeLrNJEer0OzlBaTDlTc9rZYsDJ77J1ZCTMrYVZIuA6PO56sgNT4k5qWk8B-LAxmdP4ffFf_5LuH_e5kNGTD3nhwDQd2pCg9vIHqdv2hb40PshV3bo19AUQO2jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-action+deep+reinforcement+learning+framework+for+flexible+Job-shop+scheduling+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Lei%2C+Kun&rft.au=Guo%2C+Peng&rft.au=Zhao%2C+Wenchao&rft.au=Wang%2C+Yi&rft.date=2022-11-01&rft.issn=0957-4174&rft.volume=205&rft.spage=117796&rft_id=info:doi/10.1016%2Fj.eswa.2022.117796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |