An optimized deep hybrid learning for multi-channel EEG-based driver drowsiness detection

•Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 99; p. 106881
Main Authors Latreche, Imene, Slatnia, Sihem, Kazar, Okba, Harous, Saad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2024.106881

Cover

Loading…
Abstract •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the automatic Hyperparameter tuning framework ‘Optuna’ to identify the optimal set of the CNN hyperparameters.•Fusing the CNN with Machine Learning classifiers (Deep Hybrid Learning).•Benefit from the power of the CNN in automatically extracting EEG features and the advantages of the ML classifiers. Driver drowsiness is a severe issue that has contributed to numerous fatal accidents and injuries. Thus, detecting driver drowsiness is an important task that has been the subject of intensive research in recent years. There have been numerous proposed physiological signals for detecting driver drowsiness. However, the Electroencephalographic (EEG) signal is the most commonly used due to its direct relationship with drowsiness and its simplicity of acquisition. Recently, different Machine Learning (ML) and Deep Learning (DL) models have been proposed to detect driver drowsiness. This study utilized a publicly accessible dataset containing twelve healthy participants. Reading numerous research papers, we determined no specific EEG-based drowsiness preprocessing parameter values. Consequently, as a first step, and for the first time, to our knowledge in this field, we applied an optimization algorithm to determine the optimal preprocessing parameter values using a CNN model and accuracy as the objective function. The obtained results demonstrated the importance of selecting the correct values, as the mean accuracy score increased from 91% before optimization to 95% after optimization for the proposed CNN. The training time has been reduced. Also, as a second step, we have used the Optuna Hyperparameter optimization framework to select the optimal CNN Hyperparameters, which increased the mean accuracy from 95% to 97%. Finally, to take advantage of Deep Hybrid learning, we have fused the CNN “features extractor” with seven ML classifiers, with the CNN-SVM classifier achieving the highest average accuracy of 99.9%, and the training time has been reduced to a shallow value.
AbstractList •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the automatic Hyperparameter tuning framework ‘Optuna’ to identify the optimal set of the CNN hyperparameters.•Fusing the CNN with Machine Learning classifiers (Deep Hybrid Learning).•Benefit from the power of the CNN in automatically extracting EEG features and the advantages of the ML classifiers. Driver drowsiness is a severe issue that has contributed to numerous fatal accidents and injuries. Thus, detecting driver drowsiness is an important task that has been the subject of intensive research in recent years. There have been numerous proposed physiological signals for detecting driver drowsiness. However, the Electroencephalographic (EEG) signal is the most commonly used due to its direct relationship with drowsiness and its simplicity of acquisition. Recently, different Machine Learning (ML) and Deep Learning (DL) models have been proposed to detect driver drowsiness. This study utilized a publicly accessible dataset containing twelve healthy participants. Reading numerous research papers, we determined no specific EEG-based drowsiness preprocessing parameter values. Consequently, as a first step, and for the first time, to our knowledge in this field, we applied an optimization algorithm to determine the optimal preprocessing parameter values using a CNN model and accuracy as the objective function. The obtained results demonstrated the importance of selecting the correct values, as the mean accuracy score increased from 91% before optimization to 95% after optimization for the proposed CNN. The training time has been reduced. Also, as a second step, we have used the Optuna Hyperparameter optimization framework to select the optimal CNN Hyperparameters, which increased the mean accuracy from 95% to 97%. Finally, to take advantage of Deep Hybrid learning, we have fused the CNN “features extractor” with seven ML classifiers, with the CNN-SVM classifier achieving the highest average accuracy of 99.9%, and the training time has been reduced to a shallow value.
ArticleNumber 106881
Author Kazar, Okba
Harous, Saad
Slatnia, Sihem
Latreche, Imene
Author_xml – sequence: 1
  givenname: Imene
  surname: Latreche
  fullname: Latreche, Imene
  email: imene.latreche@univ-biskra.dz
  organization: Department of Computer Science, University of Biskra, Biskra, Algeria
– sequence: 2
  givenname: Sihem
  surname: Slatnia
  fullname: Slatnia, Sihem
  email: sihem.slatnia@univ-biskra.dz
  organization: Department of Computer Science, University of Biskra, Biskra, Algeria
– sequence: 3
  givenname: Okba
  surname: Kazar
  fullname: Kazar, Okba
  email: Okba.Kazar@ukb.ac.ae
  organization: College of Arts, Sciences & Information Technology, Department of Computer Science, University of Kalba, Sharjah, United Arab Emirates
– sequence: 4
  givenname: Saad
  surname: Harous
  fullname: Harous, Saad
  email: harous@sharjah.ac.ae
  organization: College of Computing and Informatics, Department of Computer Science, University of Sharjah, Sharjah, United Arab Emirates
BookMark eNp9kM1OwkAUhWeBiYC-gKu-QPHOT0tJ3BCCSELiRheuJtPprVxSps1MxeDTOw2uXLA6yU2-k3u-CRu51iFjDxxmHHj-eJiVobMzAULFQ14UfMTGfK7ytICFumWTEA4AqphzNWYfS5e0XU9H-sEqqRC7ZH8uPVVJg8Y7cp9J3frk-NX0lNq9cQ6bZL3epKUJA-DphD5G-x3IYQixokfbU-vu2E1tmoD3fzll78_rt9VLunvdbFfLXWolQJ9KyHJuapPzGqTMSqVAVAAgRGnNwmaKxw3KlLVaSMFBQZZVRpbcouBzmedyysSl1_o2BI-17jwdjT9rDnoQog96EKIHIfoiJELFP8hSb4a3e2-ouY4-XVCMo06EXgdL6CxW5ONyXbV0Df8F1ON_yA
CitedBy_id crossref_primary_10_1063_5_0233619
Cites_doi 10.1201/9781003326830-3
10.1016/j.ymeth.2021.04.017
10.3390/brainsci9120348
10.3390/app9142870
10.1016/B978-0-12-819593-2.00002-9
10.1109/BCI48061.2020.9061668
10.1109/TNSRE.2019.2945794
10.3389/fphys.2023.1153268
10.36227/techrxiv.171624101.13954925/v1
10.1145/3292500.3330701
10.1109/JSEN.2019.2917850
10.1016/j.bspc.2020.102364
10.3389/fncom.2017.00072
10.1155/2024/9898333
10.1109/TNNLS.2018.2886414
10.1016/j.eswa.2015.05.028
10.1016/j.medengphy.2013.07.011
10.1109/ATSIP.2016.7523132
10.1049/itr2.12041
10.1371/journal.pone.0188756
10.1109/TII.2022.3167470
10.17148/IARJSET.2015.2305
10.1109/TIM.2018.2885608
10.3390/s21051734
10.1109/EIT.2019.8833866
10.1007/s10462-022-10359-2
10.1007/s11571-018-9496-y
10.3390/electronics13112084
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106881
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106881
S174680942400939X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-30561afa61f0335b4402d00022bca9c5411064abf4932104055da3b1ce2173663
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 01:34:26 EDT 2025
Sat Nov 09 16:00:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Driver drowsiness
Deep hybrid learning
Preprocessing optimization
Electroencephalograph (EEG)
Machine learning
Optuna
Hyperparameters optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-30561afa61f0335b4402d00022bca9c5411064abf4932104055da3b1ce2173663
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106881
crossref_citationtrail_10_1016_j_bspc_2024_106881
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bhalerao, S. V., & Pachori, R. B. (2023). Automatic detection of motor imagery EEG signals using swarm decomposition for robust BCI systems. In
Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (b0110) 2019; 9
(pp. 21-47). Academic Press.
Towardsdatascience. https://towardsdatascience.com/python-implementation-of-grid-search-and-random-search-for-hyperparameter-optimization-2d6a82ebf75c.
Chaabene, Bouaziz, Boudaya, Hökelmann, Ammar, Chaari (b0005) 2021; 21
Bhalerao, Pachori (b0175) 2023
Min, Wang, Hu (b0095) 2017; 12
Ma, Chen, Li, Wang, Wang, She, Luo, Zhang (b0155) 2019
Rukshan Pramoditha. (June 7, 2021).
Bhalerao, S. V., & Pachori, R. B. (2024). Imagined Speech-EEG Detection Using Multivariate Swarm Sparse Decomposition-Based Joint Time-Frequency Analysis for Intuitive BCI.
Obaidan, Hussain, AlMajed (b0145) 2024; 13
Belakhdar, W. Kaaniche, R. Djmel, and B. Ouni, “A comparison between ANN and SVM classifier for drowsiness detection based on single EEG channel,” in
Turkoglu, Alcin, Aslan, Al-Zebari, Sengur (b0080) 2021; 65
Preprocessing. (2017, May16). NeurotechEDU. http://learn.neurotechedu.com/preprocessing/#filtering.
Majumder, S., Guragain, B., Wang, C., & Wilson, N. (2019, May). On-board drowsiness detection using EEG: Current status and future prospects. In
Cui, Xu, Wu (b0015) 2019; 27
Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage.
Alghanim, Attar, Rezaee, Khosravi, Solyman, Kanan (b0140) 2024; 2024
Hu (b0055) 2017; 11
Budak, Bajaj, Akbulut, Atila, Sengur (b0045) 2019; 19
Gary Lu. (Mars 8, 2021). Tuning Hyperparameters with Optuna. Towardsdatascience. https://towardsdatascience.com/tuning-hyperparameters-with-optuna-af342facc549.
Chakraborty, D., Ghosh, A., & Saha, S. (2020). A survey on Internet-of-Thing applications using electroencephalogram. In
Zeng, Yang, Dai, Qin, Zhang, Kong (b0040) 2018; 12
(pp. 1-3). IEEE.
Chen, Zhao, Zhang, Zou (b0065) Nov. 2015; 42
https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739.
Wu E. Q., Peng X. Y., Zhang C. Z., Lin J. X., and Sheng R. S. (2019). Pilots’ fatigue status recognition using deep contractive autoencoder network
Jeong, Yu, Lee, Lee (b0035) 2019; 9
Gao, Wang, Yang, Mu, Cai, Dang, Zuo (b0070) 2019; 30
Subasi, Saikia, Bagedo, Singh, Hazarika (b0135) 2022; 18
Correa, Orosco, Laciar (b0050) 2014; 36
.
(pp. 483-490). IEEE.
Ko, W., Oh, K., Jeon, E., & Suk, H. I. (2020, February). Vignet: A deep convolutional neural network for eeg-based driver vigilance estimation. In
2019
Mar. 2016, pp. 443–446.
no. 10, 3907–3919.
Cui, Lan, Liu, Li, Li, Sourina, Müller-Wittig (b0030) 2022; 202
(pp. 35-64). CRC Press.
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework. In
(pp. 2623-2631).
Arif, Munawar, Ali (b0130) 2023; 14
Balam, Sameer, Chinara (b0075) 2021; 15
Morales-Hernández, A., Van Nieuwenhuyse, I., & Gonzalez, S. R. (2021). A survey on multi-objective hyperparameter optimization algorithms for Machine Learning.
Pachori (b0160) 2023
Zeng (10.1016/j.bspc.2024.106881_b0040) 2018; 12
10.1016/j.bspc.2024.106881_b0170
Cui (10.1016/j.bspc.2024.106881_b0030) 2022; 202
Correa (10.1016/j.bspc.2024.106881_b0050) 2014; 36
10.1016/j.bspc.2024.106881_b0090
Pachori (10.1016/j.bspc.2024.106881_b0160) 2023
Obaidan (10.1016/j.bspc.2024.106881_b0145) 2024; 13
Gao (10.1016/j.bspc.2024.106881_b0070) 2019; 30
10.1016/j.bspc.2024.106881_b0150
Oh (10.1016/j.bspc.2024.106881_b0110) 2019; 9
Arif (10.1016/j.bspc.2024.106881_b0130) 2023; 14
Budak (10.1016/j.bspc.2024.106881_b0045) 2019; 19
Min (10.1016/j.bspc.2024.106881_b0095) 2017; 12
Hu (10.1016/j.bspc.2024.106881_b0055) 2017; 11
Jeong (10.1016/j.bspc.2024.106881_b0035) 2019; 9
10.1016/j.bspc.2024.106881_b0100
10.1016/j.bspc.2024.106881_b0120
10.1016/j.bspc.2024.106881_b0105
10.1016/j.bspc.2024.106881_b0025
10.1016/j.bspc.2024.106881_b0125
Cui (10.1016/j.bspc.2024.106881_b0015) 2019; 27
10.1016/j.bspc.2024.106881_b0180
10.1016/j.bspc.2024.106881_b0060
Bhalerao (10.1016/j.bspc.2024.106881_b0175) 2023
10.1016/j.bspc.2024.106881_b0085
Chaabene (10.1016/j.bspc.2024.106881_b0005) 2021; 21
10.1016/j.bspc.2024.106881_b0020
Alghanim (10.1016/j.bspc.2024.106881_b0140) 2024; 2024
Balam (10.1016/j.bspc.2024.106881_b0075) 2021; 15
Ma (10.1016/j.bspc.2024.106881_b0155) 2019
Chen (10.1016/j.bspc.2024.106881_b0065) 2015; 42
10.1016/j.bspc.2024.106881_b0010
Turkoglu (10.1016/j.bspc.2024.106881_b0080) 2021; 65
10.1016/j.bspc.2024.106881_b0115
Subasi (10.1016/j.bspc.2024.106881_b0135) 2022; 18
References_xml – reference: Rukshan Pramoditha. (June 7, 2021).
– year: 2023
  ident: b0160
  article-title: Time-frequency analysis techniques and their applications
– volume: 19
  start-page: 7624
  year: 2019
  end-page: 7631
  ident: b0045
  article-title: An effective hybrid model for EEG-based drowsiness detection
  publication-title: IEEE Sens. J.
– year: 2019
  ident: b0155
  article-title: Driving fatigue detection from EEG using a modified PCANet method
  publication-title: Computational Intelligence and
– reference: Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage.
– reference: Wu E. Q., Peng X. Y., Zhang C. Z., Lin J. X., and Sheng R. S. (2019). Pilots’ fatigue status recognition using deep contractive autoencoder network,
– reference: Chakraborty, D., Ghosh, A., & Saha, S. (2020). A survey on Internet-of-Thing applications using electroencephalogram. In
– reference: Gary Lu. (Mars 8, 2021). Tuning Hyperparameters with Optuna. Towardsdatascience. https://towardsdatascience.com/tuning-hyperparameters-with-optuna-af342facc549.
– volume: 13
  start-page: 2084
  year: 2024
  ident: b0145
  article-title: EEG_DMNet: A Deep Multi-Scale Convolutional Neural Network for Electroencephalography-Based Driver Drowsiness Detection
  publication-title: Electronics
– reference: (pp. 1-3). IEEE.
– reference: , no. 10, 3907–3919.
– volume: 12
  start-page: 597
  year: 2018
  end-page: 606
  ident: b0040
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cogn. Neurodyn.
– volume: 30
  start-page: 2755
  year: 2019
  end-page: 2763
  ident: b0070
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– reference: Ko, W., Oh, K., Jeon, E., & Suk, H. I. (2020, February). Vignet: A deep convolutional neural network for eeg-based driver vigilance estimation. In
– reference: . (2019)
– reference: https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739.
– volume: 9
  start-page: 2870
  year: 2019
  ident: b0110
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
– volume: 202
  start-page: 173
  year: 2022
  end-page: 184
  ident: b0030
  article-title: A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG
  publication-title: Methods
– reference: Belakhdar, W. Kaaniche, R. Djmel, and B. Ouni, “A comparison between ANN and SVM classifier for drowsiness detection based on single EEG channel,” in
– reference: Morales-Hernández, A., Van Nieuwenhuyse, I., & Gonzalez, S. R. (2021). A survey on multi-objective hyperparameter optimization algorithms for Machine Learning.
– volume: 12
  start-page: e0188756
  year: 2017
  ident: b0095
  article-title: Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system
  publication-title: PLoS One
– volume: 15
  start-page: 514
  year: 2021
  end-page: 524
  ident: b0075
  article-title: Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram
  publication-title: IET Intel. Transport Syst.
– reference: Bhalerao, S. V., & Pachori, R. B. (2024). Imagined Speech-EEG Detection Using Multivariate Swarm Sparse Decomposition-Based Joint Time-Frequency Analysis for Intuitive BCI.
– volume: 21
  start-page: 1734
  year: 2021
  ident: b0005
  article-title: Convolutional neural network for drowsiness detection using EEG signals
  publication-title: Sensors
– year: 2023
  ident: b0175
  article-title: Clustering sparse swarm decomposition for automated recognition of upper limb movements from non-homogeneous cross-channel EEG signals
  publication-title: IEEE Sensors Letters
– reference: (pp. 35-64). CRC Press.
– reference: Preprocessing. (2017, May16). NeurotechEDU. http://learn.neurotechedu.com/preprocessing/#filtering.
– volume: 11
  start-page: 72
  year: 2017
  ident: b0055
  article-title: Automated detection of driver fatigue based on adaboost classifier with eeg signals
  publication-title: Front Comput Neurosci
– volume: 42
  start-page: 7344
  year: Nov. 2015
  end-page: 7355
  ident: b0065
  article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning
  publication-title: Expert Syst. Appl.
– reference: (pp. 483-490). IEEE.
– reference: (pp. 21-47). Academic Press.
– volume: 14
  start-page: 1153268
  year: 2023
  ident: b0130
  article-title: Driving drowsiness detection using spectral signatures of EEG-based neurophysiology
  publication-title: Front. Physiol.
– reference: Majumder, S., Guragain, B., Wang, C., & Wilson, N. (2019, May). On-board drowsiness detection using EEG: Current status and future prospects. In
– reference: .
– reference: Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework. In
– volume: 18
  start-page: 6602
  year: 2022
  end-page: 6609
  ident: b0135
  article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches
  publication-title: IEEE Trans. Ind. Inf.
– volume: 36
  start-page: 244
  year: 2014
  ident: b0050
  article-title: Automatic detection of drowsiness in eeg records based on multimodal analysis
  publication-title: Med Eng Phys
– volume: 27
  start-page: 2263
  year: 2019
  end-page: 2273
  ident: b0015
  article-title: EEG-based driver drowsiness estimation using feature weighted episodic training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2024
  start-page: 9898333
  year: 2024
  ident: b0140
  article-title: A Hybrid Deep Neural Network Approach to Recognize Driving Fatigue Based on EEG Signals
  publication-title: Int. J. Intell. Syst.
– volume: 9
  start-page: 348
  year: 2019
  ident: b0035
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
– reference: (pp. 2623-2631).
– reference: Bhalerao, S. V., & Pachori, R. B. (2023). Automatic detection of motor imagery EEG signals using swarm decomposition for robust BCI systems. In
– volume: 65
  year: 2021
  ident: b0080
  article-title: Deep rhythm and long short term memory-based drowsiness detection
  publication-title: Biomed. Signal Process. Control
– reference: Towardsdatascience. https://towardsdatascience.com/python-implementation-of-grid-search-and-random-search-for-hyperparameter-optimization-2d6a82ebf75c.
– reference: , Mar. 2016, pp. 443–446.
– ident: 10.1016/j.bspc.2024.106881_b0170
  doi: 10.1201/9781003326830-3
– ident: 10.1016/j.bspc.2024.106881_b0025
– volume: 202
  start-page: 173
  year: 2022
  ident: 10.1016/j.bspc.2024.106881_b0030
  article-title: A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.04.017
– volume: 9
  start-page: 348
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0035
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9120348
– volume: 9
  start-page: 2870
  issue: 14
  year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0110
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
  doi: 10.3390/app9142870
– ident: 10.1016/j.bspc.2024.106881_b0020
  doi: 10.1016/B978-0-12-819593-2.00002-9
– ident: 10.1016/j.bspc.2024.106881_b0085
  doi: 10.1109/BCI48061.2020.9061668
– volume: 27
  start-page: 2263
  issue: 11
  year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0015
  article-title: EEG-based driver drowsiness estimation using feature weighted episodic training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2945794
– volume: 14
  start-page: 1153268
  year: 2023
  ident: 10.1016/j.bspc.2024.106881_b0130
  article-title: Driving drowsiness detection using spectral signatures of EEG-based neurophysiology
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2023.1153268
– ident: 10.1016/j.bspc.2024.106881_b0180
  doi: 10.36227/techrxiv.171624101.13954925/v1
– ident: 10.1016/j.bspc.2024.106881_b0125
  doi: 10.1145/3292500.3330701
– ident: 10.1016/j.bspc.2024.106881_b0090
– year: 2023
  ident: 10.1016/j.bspc.2024.106881_b0175
  article-title: Clustering sparse swarm decomposition for automated recognition of upper limb movements from non-homogeneous cross-channel EEG signals
  publication-title: IEEE Sensors Letters
– volume: 19
  start-page: 7624
  issue: 17
  year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0045
  article-title: An effective hybrid model for EEG-based drowsiness detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2917850
– volume: 65
  year: 2021
  ident: 10.1016/j.bspc.2024.106881_b0080
  article-title: Deep rhythm and long short term memory-based drowsiness detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102364
– volume: 11
  start-page: 72
  year: 2017
  ident: 10.1016/j.bspc.2024.106881_b0055
  article-title: Automated detection of driver fatigue based on adaboost classifier with eeg signals
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2017.00072
– volume: 2024
  start-page: 9898333
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2024.106881_b0140
  article-title: A Hybrid Deep Neural Network Approach to Recognize Driving Fatigue Based on EEG Signals
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2024/9898333
– volume: 30
  start-page: 2755
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0070
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886414
– volume: 42
  start-page: 7344
  issue: 21
  year: 2015
  ident: 10.1016/j.bspc.2024.106881_b0065
  article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.028
– ident: 10.1016/j.bspc.2024.106881_b0100
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2024.106881_b0050
  article-title: Automatic detection of drowsiness in eeg records based on multimodal analysis
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.07.011
– year: 2023
  ident: 10.1016/j.bspc.2024.106881_b0160
– ident: 10.1016/j.bspc.2024.106881_b0060
  doi: 10.1109/ATSIP.2016.7523132
– ident: 10.1016/j.bspc.2024.106881_b0120
– volume: 15
  start-page: 514
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.106881_b0075
  article-title: Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram
  publication-title: IET Intel. Transport Syst.
  doi: 10.1049/itr2.12041
– volume: 12
  start-page: e0188756
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2024.106881_b0095
  article-title: Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188756
– volume: 18
  start-page: 6602
  issue: 10
  year: 2022
  ident: 10.1016/j.bspc.2024.106881_b0135
  article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3167470
– ident: 10.1016/j.bspc.2024.106881_b0105
  doi: 10.17148/IARJSET.2015.2305
– ident: 10.1016/j.bspc.2024.106881_b0150
  doi: 10.1109/TIM.2018.2885608
– volume: 21
  start-page: 1734
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2024.106881_b0005
  article-title: Convolutional neural network for drowsiness detection using EEG signals
  publication-title: Sensors
  doi: 10.3390/s21051734
– ident: 10.1016/j.bspc.2024.106881_b0010
  doi: 10.1109/EIT.2019.8833866
– ident: 10.1016/j.bspc.2024.106881_b0115
  doi: 10.1007/s10462-022-10359-2
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2024.106881_b0040
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-018-9496-y
– volume: 13
  start-page: 2084
  issue: 11
  year: 2024
  ident: 10.1016/j.bspc.2024.106881_b0145
  article-title: EEG_DMNet: A Deep Multi-Scale Convolutional Neural Network for Electroencephalography-Based Driver Drowsiness Detection
  publication-title: Electronics
  doi: 10.3390/electronics13112084
– year: 2019
  ident: 10.1016/j.bspc.2024.106881_b0155
  article-title: Driving fatigue detection from EEG using a modified PCANet method
  publication-title: Computational Intelligence and
SSID ssj0048714
Score 2.3681126
Snippet •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106881
SubjectTerms Deep hybrid learning
Deep learning
Driver drowsiness
Electroencephalograph (EEG)
Hyperparameters optimization
Machine learning
Optuna
Preprocessing optimization
Title An optimized deep hybrid learning for multi-channel EEG-based driver drowsiness detection
URI https://dx.doi.org/10.1016/j.bspc.2024.106881
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-TgTeLaNU2T4xibU2EXHcxTSdpUJ7MrsyJ68G_3JU1lguzgqRDySnkk732vfO97CJ0zwZSvQ0ZElHiE6iAkUnmSKF8pKZVKaUWQHbPRhN5Mw2kD9eteGEOrdLG_iuk2WruVjvNmp5jNOneApRmH6sSwIEUgpqaDnUaG1nf59UPzADxu9b3NZmJ2u8aZiuOlXgsjY9ilsMA49_9OTisJZ7iDth1SxL3qY3ZRQ-d7aGtFP3AfPfRyvIA7_zL71ClOtS7w04dpwcJuGMQjBkyKLWmQmBbfXM_xYHBFTO4Cg6UhZcBj8V6x3-EVpaVm5QdoMhzc90fEzUogSeB5JbGVgMwk8zMvCEJFoS5MrbqNSqRIQgppnlGpMipM1w7AtDCVgfITDTVJALDjEDXzRa6PEPajlGY84lp5nMos5YJDFOAA7TRUH4K2kF87KU6ckLiZZzGPa8bYc2wcGxvHxpVjW-jix6aoZDTW7g5r38e_DkMMcX6N3fE_7U7QZteM9bV_Vk5Rs1y-6TPAGqVq28PURhu969vR-BsuMNG-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe1AP4ifWzz14k6VJs0k3x1JaU1t7sYV6CrvJRis1LTUi-uudTTZSQTx4Ciw7IQy7M2_CmzcAV57vSVu5HvVbkUWZclwqpCWotKUUQsqYFQTZkRdM2O3UnVagU_bCaFqlif1FTM-jtVlpGG82lrNZ4x6xtMexOtEsSN_xpxtQ0-pUrAq1dn8QjMqAjJA8l_jW-6k2ML0zBc1Lvi61kmGT4YLHuf17flrLOb1d2DFgkbSL79mDikr3YXtNQvAAHtopWeC1f5l9qpjESi3J04fuwiJmHsQjQVhKct4g1V2-qZqTbveG6vSFBivNy8DH4r0gwOMrspydlR7CpNcddwJqxiXQyLGsjObFgEiEZyeW47iSYWkY5wI3MhJ-5DLM9B4TMmG-btxBpObGwpF2pLAscRB5HEE1XaTqGIjdilnCW1xJizORxNznGAg4ojuFBYjP6mCXTgojoyWuR1rMw5I09hxqx4basWHh2Dpcf9ssCyWNP3e7pe_DH-chxFD_h93JP-0uYTMY3w3DYX80OIWtpp7ym_9oOYNqtnpT5wg9MnlhjtYXdKvUbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+hybrid+learning+for+multi-channel+EEG-based+driver+drowsiness+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Latreche%2C+Imene&rft.au=Slatnia%2C+Sihem&rft.au=Kazar%2C+Okba&rft.au=Harous%2C+Saad&rft.date=2025-01-01&rft.issn=1746-8094&rft.volume=99&rft.spage=106881&rft_id=info:doi/10.1016%2Fj.bspc.2024.106881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon