An optimized deep hybrid learning for multi-channel EEG-based driver drowsiness detection
•Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the...
Saved in:
Published in | Biomedical signal processing and control Vol. 99; p. 106881 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2024.106881 |
Cover
Loading…
Abstract | •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the automatic Hyperparameter tuning framework ‘Optuna’ to identify the optimal set of the CNN hyperparameters.•Fusing the CNN with Machine Learning classifiers (Deep Hybrid Learning).•Benefit from the power of the CNN in automatically extracting EEG features and the advantages of the ML classifiers.
Driver drowsiness is a severe issue that has contributed to numerous fatal accidents and injuries. Thus, detecting driver drowsiness is an important task that has been the subject of intensive research in recent years. There have been numerous proposed physiological signals for detecting driver drowsiness. However, the Electroencephalographic (EEG) signal is the most commonly used due to its direct relationship with drowsiness and its simplicity of acquisition. Recently, different Machine Learning (ML) and Deep Learning (DL) models have been proposed to detect driver drowsiness. This study utilized a publicly accessible dataset containing twelve healthy participants. Reading numerous research papers, we determined no specific EEG-based drowsiness preprocessing parameter values. Consequently, as a first step, and for the first time, to our knowledge in this field, we applied an optimization algorithm to determine the optimal preprocessing parameter values using a CNN model and accuracy as the objective function. The obtained results demonstrated the importance of selecting the correct values, as the mean accuracy score increased from 91% before optimization to 95% after optimization for the proposed CNN. The training time has been reduced. Also, as a second step, we have used the Optuna Hyperparameter optimization framework to select the optimal CNN Hyperparameters, which increased the mean accuracy from 95% to 97%. Finally, to take advantage of Deep Hybrid learning, we have fused the CNN “features extractor” with seven ML classifiers, with the CNN-SVM classifier achieving the highest average accuracy of 99.9%, and the training time has been reduced to a shallow value. |
---|---|
AbstractList | •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing multiple CNN architectures and selected the optimal one based on the mean accuracy of 10-fold cross-validation evaluation method.•Applying the automatic Hyperparameter tuning framework ‘Optuna’ to identify the optimal set of the CNN hyperparameters.•Fusing the CNN with Machine Learning classifiers (Deep Hybrid Learning).•Benefit from the power of the CNN in automatically extracting EEG features and the advantages of the ML classifiers.
Driver drowsiness is a severe issue that has contributed to numerous fatal accidents and injuries. Thus, detecting driver drowsiness is an important task that has been the subject of intensive research in recent years. There have been numerous proposed physiological signals for detecting driver drowsiness. However, the Electroencephalographic (EEG) signal is the most commonly used due to its direct relationship with drowsiness and its simplicity of acquisition. Recently, different Machine Learning (ML) and Deep Learning (DL) models have been proposed to detect driver drowsiness. This study utilized a publicly accessible dataset containing twelve healthy participants. Reading numerous research papers, we determined no specific EEG-based drowsiness preprocessing parameter values. Consequently, as a first step, and for the first time, to our knowledge in this field, we applied an optimization algorithm to determine the optimal preprocessing parameter values using a CNN model and accuracy as the objective function. The obtained results demonstrated the importance of selecting the correct values, as the mean accuracy score increased from 91% before optimization to 95% after optimization for the proposed CNN. The training time has been reduced. Also, as a second step, we have used the Optuna Hyperparameter optimization framework to select the optimal CNN Hyperparameters, which increased the mean accuracy from 95% to 97%. Finally, to take advantage of Deep Hybrid learning, we have fused the CNN “features extractor” with seven ML classifiers, with the CNN-SVM classifier achieving the highest average accuracy of 99.9%, and the training time has been reduced to a shallow value. |
ArticleNumber | 106881 |
Author | Kazar, Okba Harous, Saad Slatnia, Sihem Latreche, Imene |
Author_xml | – sequence: 1 givenname: Imene surname: Latreche fullname: Latreche, Imene email: imene.latreche@univ-biskra.dz organization: Department of Computer Science, University of Biskra, Biskra, Algeria – sequence: 2 givenname: Sihem surname: Slatnia fullname: Slatnia, Sihem email: sihem.slatnia@univ-biskra.dz organization: Department of Computer Science, University of Biskra, Biskra, Algeria – sequence: 3 givenname: Okba surname: Kazar fullname: Kazar, Okba email: Okba.Kazar@ukb.ac.ae organization: College of Arts, Sciences & Information Technology, Department of Computer Science, University of Kalba, Sharjah, United Arab Emirates – sequence: 4 givenname: Saad surname: Harous fullname: Harous, Saad email: harous@sharjah.ac.ae organization: College of Computing and Informatics, Department of Computer Science, University of Sharjah, Sharjah, United Arab Emirates |
BookMark | eNp9kM1OwkAUhWeBiYC-gKu-QPHOT0tJ3BCCSELiRheuJtPprVxSps1MxeDTOw2uXLA6yU2-k3u-CRu51iFjDxxmHHj-eJiVobMzAULFQ14UfMTGfK7ytICFumWTEA4AqphzNWYfS5e0XU9H-sEqqRC7ZH8uPVVJg8Y7cp9J3frk-NX0lNq9cQ6bZL3epKUJA-DphD5G-x3IYQixokfbU-vu2E1tmoD3fzll78_rt9VLunvdbFfLXWolQJ9KyHJuapPzGqTMSqVAVAAgRGnNwmaKxw3KlLVaSMFBQZZVRpbcouBzmedyysSl1_o2BI-17jwdjT9rDnoQog96EKIHIfoiJELFP8hSb4a3e2-ouY4-XVCMo06EXgdL6CxW5ONyXbV0Df8F1ON_yA |
CitedBy_id | crossref_primary_10_1063_5_0233619 |
Cites_doi | 10.1201/9781003326830-3 10.1016/j.ymeth.2021.04.017 10.3390/brainsci9120348 10.3390/app9142870 10.1016/B978-0-12-819593-2.00002-9 10.1109/BCI48061.2020.9061668 10.1109/TNSRE.2019.2945794 10.3389/fphys.2023.1153268 10.36227/techrxiv.171624101.13954925/v1 10.1145/3292500.3330701 10.1109/JSEN.2019.2917850 10.1016/j.bspc.2020.102364 10.3389/fncom.2017.00072 10.1155/2024/9898333 10.1109/TNNLS.2018.2886414 10.1016/j.eswa.2015.05.028 10.1016/j.medengphy.2013.07.011 10.1109/ATSIP.2016.7523132 10.1049/itr2.12041 10.1371/journal.pone.0188756 10.1109/TII.2022.3167470 10.17148/IARJSET.2015.2305 10.1109/TIM.2018.2885608 10.3390/s21051734 10.1109/EIT.2019.8833866 10.1007/s10462-022-10359-2 10.1007/s11571-018-9496-y 10.3390/electronics13112084 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2024.106881 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2024_106881 S174680942400939X |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-30561afa61f0335b4402d00022bca9c5411064abf4932104055da3b1ce2173663 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 01:34:26 EDT 2025 Sat Nov 09 16:00:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Driver drowsiness Deep hybrid learning Preprocessing optimization Electroencephalograph (EEG) Machine learning Optuna Hyperparameters optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-30561afa61f0335b4402d00022bca9c5411064abf4932104055da3b1ce2173663 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_106881 crossref_citationtrail_10_1016_j_bspc_2024_106881 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bhalerao, S. V., & Pachori, R. B. (2023). Automatic detection of motor imagery EEG signals using swarm decomposition for robust BCI systems. In Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (b0110) 2019; 9 (pp. 21-47). Academic Press. Towardsdatascience. https://towardsdatascience.com/python-implementation-of-grid-search-and-random-search-for-hyperparameter-optimization-2d6a82ebf75c. Chaabene, Bouaziz, Boudaya, Hökelmann, Ammar, Chaari (b0005) 2021; 21 Bhalerao, Pachori (b0175) 2023 Min, Wang, Hu (b0095) 2017; 12 Ma, Chen, Li, Wang, Wang, She, Luo, Zhang (b0155) 2019 Rukshan Pramoditha. (June 7, 2021). Bhalerao, S. V., & Pachori, R. B. (2024). Imagined Speech-EEG Detection Using Multivariate Swarm Sparse Decomposition-Based Joint Time-Frequency Analysis for Intuitive BCI. Obaidan, Hussain, AlMajed (b0145) 2024; 13 Belakhdar, W. Kaaniche, R. Djmel, and B. Ouni, “A comparison between ANN and SVM classifier for drowsiness detection based on single EEG channel,” in Turkoglu, Alcin, Aslan, Al-Zebari, Sengur (b0080) 2021; 65 Preprocessing. (2017, May16). NeurotechEDU. http://learn.neurotechedu.com/preprocessing/#filtering. Majumder, S., Guragain, B., Wang, C., & Wilson, N. (2019, May). On-board drowsiness detection using EEG: Current status and future prospects. In Cui, Xu, Wu (b0015) 2019; 27 Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. Alghanim, Attar, Rezaee, Khosravi, Solyman, Kanan (b0140) 2024; 2024 Hu (b0055) 2017; 11 Budak, Bajaj, Akbulut, Atila, Sengur (b0045) 2019; 19 Gary Lu. (Mars 8, 2021). Tuning Hyperparameters with Optuna. Towardsdatascience. https://towardsdatascience.com/tuning-hyperparameters-with-optuna-af342facc549. Chakraborty, D., Ghosh, A., & Saha, S. (2020). A survey on Internet-of-Thing applications using electroencephalogram. In Zeng, Yang, Dai, Qin, Zhang, Kong (b0040) 2018; 12 (pp. 1-3). IEEE. Chen, Zhao, Zhang, Zou (b0065) Nov. 2015; 42 https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739. Wu E. Q., Peng X. Y., Zhang C. Z., Lin J. X., and Sheng R. S. (2019). Pilots’ fatigue status recognition using deep contractive autoencoder network Jeong, Yu, Lee, Lee (b0035) 2019; 9 Gao, Wang, Yang, Mu, Cai, Dang, Zuo (b0070) 2019; 30 Subasi, Saikia, Bagedo, Singh, Hazarika (b0135) 2022; 18 Correa, Orosco, Laciar (b0050) 2014; 36 . (pp. 483-490). IEEE. Ko, W., Oh, K., Jeon, E., & Suk, H. I. (2020, February). Vignet: A deep convolutional neural network for eeg-based driver vigilance estimation. In 2019 Mar. 2016, pp. 443–446. no. 10, 3907–3919. Cui, Lan, Liu, Li, Li, Sourina, Müller-Wittig (b0030) 2022; 202 (pp. 35-64). CRC Press. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework. In (pp. 2623-2631). Arif, Munawar, Ali (b0130) 2023; 14 Balam, Sameer, Chinara (b0075) 2021; 15 Morales-Hernández, A., Van Nieuwenhuyse, I., & Gonzalez, S. R. (2021). A survey on multi-objective hyperparameter optimization algorithms for Machine Learning. Pachori (b0160) 2023 Zeng (10.1016/j.bspc.2024.106881_b0040) 2018; 12 10.1016/j.bspc.2024.106881_b0170 Cui (10.1016/j.bspc.2024.106881_b0030) 2022; 202 Correa (10.1016/j.bspc.2024.106881_b0050) 2014; 36 10.1016/j.bspc.2024.106881_b0090 Pachori (10.1016/j.bspc.2024.106881_b0160) 2023 Obaidan (10.1016/j.bspc.2024.106881_b0145) 2024; 13 Gao (10.1016/j.bspc.2024.106881_b0070) 2019; 30 10.1016/j.bspc.2024.106881_b0150 Oh (10.1016/j.bspc.2024.106881_b0110) 2019; 9 Arif (10.1016/j.bspc.2024.106881_b0130) 2023; 14 Budak (10.1016/j.bspc.2024.106881_b0045) 2019; 19 Min (10.1016/j.bspc.2024.106881_b0095) 2017; 12 Hu (10.1016/j.bspc.2024.106881_b0055) 2017; 11 Jeong (10.1016/j.bspc.2024.106881_b0035) 2019; 9 10.1016/j.bspc.2024.106881_b0100 10.1016/j.bspc.2024.106881_b0120 10.1016/j.bspc.2024.106881_b0105 10.1016/j.bspc.2024.106881_b0025 10.1016/j.bspc.2024.106881_b0125 Cui (10.1016/j.bspc.2024.106881_b0015) 2019; 27 10.1016/j.bspc.2024.106881_b0180 10.1016/j.bspc.2024.106881_b0060 Bhalerao (10.1016/j.bspc.2024.106881_b0175) 2023 10.1016/j.bspc.2024.106881_b0085 Chaabene (10.1016/j.bspc.2024.106881_b0005) 2021; 21 10.1016/j.bspc.2024.106881_b0020 Alghanim (10.1016/j.bspc.2024.106881_b0140) 2024; 2024 Balam (10.1016/j.bspc.2024.106881_b0075) 2021; 15 Ma (10.1016/j.bspc.2024.106881_b0155) 2019 Chen (10.1016/j.bspc.2024.106881_b0065) 2015; 42 10.1016/j.bspc.2024.106881_b0010 Turkoglu (10.1016/j.bspc.2024.106881_b0080) 2021; 65 10.1016/j.bspc.2024.106881_b0115 Subasi (10.1016/j.bspc.2024.106881_b0135) 2022; 18 |
References_xml | – reference: Rukshan Pramoditha. (June 7, 2021). – year: 2023 ident: b0160 article-title: Time-frequency analysis techniques and their applications – volume: 19 start-page: 7624 year: 2019 end-page: 7631 ident: b0045 article-title: An effective hybrid model for EEG-based drowsiness detection publication-title: IEEE Sens. J. – year: 2019 ident: b0155 article-title: Driving fatigue detection from EEG using a modified PCANet method publication-title: Computational Intelligence and – reference: Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. – reference: Wu E. Q., Peng X. Y., Zhang C. Z., Lin J. X., and Sheng R. S. (2019). Pilots’ fatigue status recognition using deep contractive autoencoder network, – reference: Chakraborty, D., Ghosh, A., & Saha, S. (2020). A survey on Internet-of-Thing applications using electroencephalogram. In – reference: Gary Lu. (Mars 8, 2021). Tuning Hyperparameters with Optuna. Towardsdatascience. https://towardsdatascience.com/tuning-hyperparameters-with-optuna-af342facc549. – volume: 13 start-page: 2084 year: 2024 ident: b0145 article-title: EEG_DMNet: A Deep Multi-Scale Convolutional Neural Network for Electroencephalography-Based Driver Drowsiness Detection publication-title: Electronics – reference: (pp. 1-3). IEEE. – reference: , no. 10, 3907–3919. – volume: 12 start-page: 597 year: 2018 end-page: 606 ident: b0040 article-title: EEG classification of driver mental states by deep learning publication-title: Cogn. Neurodyn. – volume: 30 start-page: 2755 year: 2019 end-page: 2763 ident: b0070 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Networks Learn. Syst. – reference: Ko, W., Oh, K., Jeon, E., & Suk, H. I. (2020, February). Vignet: A deep convolutional neural network for eeg-based driver vigilance estimation. In – reference: . (2019) – reference: https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739. – volume: 9 start-page: 2870 year: 2019 ident: b0110 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. – volume: 202 start-page: 173 year: 2022 end-page: 184 ident: b0030 article-title: A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG publication-title: Methods – reference: Belakhdar, W. Kaaniche, R. Djmel, and B. Ouni, “A comparison between ANN and SVM classifier for drowsiness detection based on single EEG channel,” in – reference: Morales-Hernández, A., Van Nieuwenhuyse, I., & Gonzalez, S. R. (2021). A survey on multi-objective hyperparameter optimization algorithms for Machine Learning. – volume: 12 start-page: e0188756 year: 2017 ident: b0095 article-title: Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system publication-title: PLoS One – volume: 15 start-page: 514 year: 2021 end-page: 524 ident: b0075 article-title: Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram publication-title: IET Intel. Transport Syst. – reference: Bhalerao, S. V., & Pachori, R. B. (2024). Imagined Speech-EEG Detection Using Multivariate Swarm Sparse Decomposition-Based Joint Time-Frequency Analysis for Intuitive BCI. – volume: 21 start-page: 1734 year: 2021 ident: b0005 article-title: Convolutional neural network for drowsiness detection using EEG signals publication-title: Sensors – year: 2023 ident: b0175 article-title: Clustering sparse swarm decomposition for automated recognition of upper limb movements from non-homogeneous cross-channel EEG signals publication-title: IEEE Sensors Letters – reference: (pp. 35-64). CRC Press. – reference: Preprocessing. (2017, May16). NeurotechEDU. http://learn.neurotechedu.com/preprocessing/#filtering. – volume: 11 start-page: 72 year: 2017 ident: b0055 article-title: Automated detection of driver fatigue based on adaboost classifier with eeg signals publication-title: Front Comput Neurosci – volume: 42 start-page: 7344 year: Nov. 2015 end-page: 7355 ident: b0065 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning publication-title: Expert Syst. Appl. – reference: (pp. 483-490). IEEE. – reference: (pp. 21-47). Academic Press. – volume: 14 start-page: 1153268 year: 2023 ident: b0130 article-title: Driving drowsiness detection using spectral signatures of EEG-based neurophysiology publication-title: Front. Physiol. – reference: Majumder, S., Guragain, B., Wang, C., & Wilson, N. (2019, May). On-board drowsiness detection using EEG: Current status and future prospects. In – reference: . – reference: Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework. In – volume: 18 start-page: 6602 year: 2022 end-page: 6609 ident: b0135 article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches publication-title: IEEE Trans. Ind. Inf. – volume: 36 start-page: 244 year: 2014 ident: b0050 article-title: Automatic detection of drowsiness in eeg records based on multimodal analysis publication-title: Med Eng Phys – volume: 27 start-page: 2263 year: 2019 end-page: 2273 ident: b0015 article-title: EEG-based driver drowsiness estimation using feature weighted episodic training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2024 start-page: 9898333 year: 2024 ident: b0140 article-title: A Hybrid Deep Neural Network Approach to Recognize Driving Fatigue Based on EEG Signals publication-title: Int. J. Intell. Syst. – volume: 9 start-page: 348 year: 2019 ident: b0035 article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals publication-title: Brain Sci. – reference: (pp. 2623-2631). – reference: Bhalerao, S. V., & Pachori, R. B. (2023). Automatic detection of motor imagery EEG signals using swarm decomposition for robust BCI systems. In – volume: 65 year: 2021 ident: b0080 article-title: Deep rhythm and long short term memory-based drowsiness detection publication-title: Biomed. Signal Process. Control – reference: Towardsdatascience. https://towardsdatascience.com/python-implementation-of-grid-search-and-random-search-for-hyperparameter-optimization-2d6a82ebf75c. – reference: , Mar. 2016, pp. 443–446. – ident: 10.1016/j.bspc.2024.106881_b0170 doi: 10.1201/9781003326830-3 – ident: 10.1016/j.bspc.2024.106881_b0025 – volume: 202 start-page: 173 year: 2022 ident: 10.1016/j.bspc.2024.106881_b0030 article-title: A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG publication-title: Methods doi: 10.1016/j.ymeth.2021.04.017 – volume: 9 start-page: 348 issue: 12 year: 2019 ident: 10.1016/j.bspc.2024.106881_b0035 article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals publication-title: Brain Sci. doi: 10.3390/brainsci9120348 – volume: 9 start-page: 2870 issue: 14 year: 2019 ident: 10.1016/j.bspc.2024.106881_b0110 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. doi: 10.3390/app9142870 – ident: 10.1016/j.bspc.2024.106881_b0020 doi: 10.1016/B978-0-12-819593-2.00002-9 – ident: 10.1016/j.bspc.2024.106881_b0085 doi: 10.1109/BCI48061.2020.9061668 – volume: 27 start-page: 2263 issue: 11 year: 2019 ident: 10.1016/j.bspc.2024.106881_b0015 article-title: EEG-based driver drowsiness estimation using feature weighted episodic training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2945794 – volume: 14 start-page: 1153268 year: 2023 ident: 10.1016/j.bspc.2024.106881_b0130 article-title: Driving drowsiness detection using spectral signatures of EEG-based neurophysiology publication-title: Front. Physiol. doi: 10.3389/fphys.2023.1153268 – ident: 10.1016/j.bspc.2024.106881_b0180 doi: 10.36227/techrxiv.171624101.13954925/v1 – ident: 10.1016/j.bspc.2024.106881_b0125 doi: 10.1145/3292500.3330701 – ident: 10.1016/j.bspc.2024.106881_b0090 – year: 2023 ident: 10.1016/j.bspc.2024.106881_b0175 article-title: Clustering sparse swarm decomposition for automated recognition of upper limb movements from non-homogeneous cross-channel EEG signals publication-title: IEEE Sensors Letters – volume: 19 start-page: 7624 issue: 17 year: 2019 ident: 10.1016/j.bspc.2024.106881_b0045 article-title: An effective hybrid model for EEG-based drowsiness detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917850 – volume: 65 year: 2021 ident: 10.1016/j.bspc.2024.106881_b0080 article-title: Deep rhythm and long short term memory-based drowsiness detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102364 – volume: 11 start-page: 72 year: 2017 ident: 10.1016/j.bspc.2024.106881_b0055 article-title: Automated detection of driver fatigue based on adaboost classifier with eeg signals publication-title: Front Comput Neurosci doi: 10.3389/fncom.2017.00072 – volume: 2024 start-page: 9898333 issue: 1 year: 2024 ident: 10.1016/j.bspc.2024.106881_b0140 article-title: A Hybrid Deep Neural Network Approach to Recognize Driving Fatigue Based on EEG Signals publication-title: Int. J. Intell. Syst. doi: 10.1155/2024/9898333 – volume: 30 start-page: 2755 issue: 9 year: 2019 ident: 10.1016/j.bspc.2024.106881_b0070 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2018.2886414 – volume: 42 start-page: 7344 issue: 21 year: 2015 ident: 10.1016/j.bspc.2024.106881_b0065 article-title: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.028 – ident: 10.1016/j.bspc.2024.106881_b0100 – volume: 36 start-page: 244 issue: 2 year: 2014 ident: 10.1016/j.bspc.2024.106881_b0050 article-title: Automatic detection of drowsiness in eeg records based on multimodal analysis publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.07.011 – year: 2023 ident: 10.1016/j.bspc.2024.106881_b0160 – ident: 10.1016/j.bspc.2024.106881_b0060 doi: 10.1109/ATSIP.2016.7523132 – ident: 10.1016/j.bspc.2024.106881_b0120 – volume: 15 start-page: 514 issue: 4 year: 2021 ident: 10.1016/j.bspc.2024.106881_b0075 article-title: Automated classification system for drowsiness detection using convolutional neural network and electroencephalogram publication-title: IET Intel. Transport Syst. doi: 10.1049/itr2.12041 – volume: 12 start-page: e0188756 issue: 12 year: 2017 ident: 10.1016/j.bspc.2024.106881_b0095 article-title: Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system publication-title: PLoS One doi: 10.1371/journal.pone.0188756 – volume: 18 start-page: 6602 issue: 10 year: 2022 ident: 10.1016/j.bspc.2024.106881_b0135 article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3167470 – ident: 10.1016/j.bspc.2024.106881_b0105 doi: 10.17148/IARJSET.2015.2305 – ident: 10.1016/j.bspc.2024.106881_b0150 doi: 10.1109/TIM.2018.2885608 – volume: 21 start-page: 1734 issue: 5 year: 2021 ident: 10.1016/j.bspc.2024.106881_b0005 article-title: Convolutional neural network for drowsiness detection using EEG signals publication-title: Sensors doi: 10.3390/s21051734 – ident: 10.1016/j.bspc.2024.106881_b0010 doi: 10.1109/EIT.2019.8833866 – ident: 10.1016/j.bspc.2024.106881_b0115 doi: 10.1007/s10462-022-10359-2 – volume: 12 start-page: 597 issue: 6 year: 2018 ident: 10.1016/j.bspc.2024.106881_b0040 article-title: EEG classification of driver mental states by deep learning publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9496-y – volume: 13 start-page: 2084 issue: 11 year: 2024 ident: 10.1016/j.bspc.2024.106881_b0145 article-title: EEG_DMNet: A Deep Multi-Scale Convolutional Neural Network for Electroencephalography-Based Driver Drowsiness Detection publication-title: Electronics doi: 10.3390/electronics13112084 – year: 2019 ident: 10.1016/j.bspc.2024.106881_b0155 article-title: Driving fatigue detection from EEG using a modified PCANet method publication-title: Computational Intelligence and |
SSID | ssj0048714 |
Score | 2.3681126 |
Snippet | •Selecting the optimal set of preprocessing parameters that can enhance the classification results using the Random Search Optimization method.•Implementing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106881 |
SubjectTerms | Deep hybrid learning Deep learning Driver drowsiness Electroencephalograph (EEG) Hyperparameters optimization Machine learning Optuna Preprocessing optimization |
Title | An optimized deep hybrid learning for multi-channel EEG-based driver drowsiness detection |
URI | https://dx.doi.org/10.1016/j.bspc.2024.106881 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-TgTeLaNU2T4xibU2EXHcxTSdpUJ7MrsyJ68G_3JU1lguzgqRDySnkk732vfO97CJ0zwZSvQ0ZElHiE6iAkUnmSKF8pKZVKaUWQHbPRhN5Mw2kD9eteGEOrdLG_iuk2WruVjvNmp5jNOneApRmH6sSwIEUgpqaDnUaG1nf59UPzADxu9b3NZmJ2u8aZiuOlXgsjY9ilsMA49_9OTisJZ7iDth1SxL3qY3ZRQ-d7aGtFP3AfPfRyvIA7_zL71ClOtS7w04dpwcJuGMQjBkyKLWmQmBbfXM_xYHBFTO4Cg6UhZcBj8V6x3-EVpaVm5QdoMhzc90fEzUogSeB5JbGVgMwk8zMvCEJFoS5MrbqNSqRIQgppnlGpMipM1w7AtDCVgfITDTVJALDjEDXzRa6PEPajlGY84lp5nMos5YJDFOAA7TRUH4K2kF87KU6ckLiZZzGPa8bYc2wcGxvHxpVjW-jix6aoZDTW7g5r38e_DkMMcX6N3fE_7U7QZteM9bV_Vk5Rs1y-6TPAGqVq28PURhu969vR-BsuMNG- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe1AP4ifWzz14k6VJs0k3x1JaU1t7sYV6CrvJRis1LTUi-uudTTZSQTx4Ciw7IQy7M2_CmzcAV57vSVu5HvVbkUWZclwqpCWotKUUQsqYFQTZkRdM2O3UnVagU_bCaFqlif1FTM-jtVlpGG82lrNZ4x6xtMexOtEsSN_xpxtQ0-pUrAq1dn8QjMqAjJA8l_jW-6k2ML0zBc1Lvi61kmGT4YLHuf17flrLOb1d2DFgkbSL79mDikr3YXtNQvAAHtopWeC1f5l9qpjESi3J04fuwiJmHsQjQVhKct4g1V2-qZqTbveG6vSFBivNy8DH4r0gwOMrspydlR7CpNcddwJqxiXQyLGsjObFgEiEZyeW47iSYWkY5wI3MhJ-5DLM9B4TMmG-btxBpObGwpF2pLAscRB5HEE1XaTqGIjdilnCW1xJizORxNznGAg4ojuFBYjP6mCXTgojoyWuR1rMw5I09hxqx4basWHh2Dpcf9ssCyWNP3e7pe_DH-chxFD_h93JP-0uYTMY3w3DYX80OIWtpp7ym_9oOYNqtnpT5wg9MnlhjtYXdKvUbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+hybrid+learning+for+multi-channel+EEG-based+driver+drowsiness+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Latreche%2C+Imene&rft.au=Slatnia%2C+Sihem&rft.au=Kazar%2C+Okba&rft.au=Harous%2C+Saad&rft.date=2025-01-01&rft.issn=1746-8094&rft.volume=99&rft.spage=106881&rft_id=info:doi/10.1016%2Fj.bspc.2024.106881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |