Feature-filter: Detecting adversarial examples by filtering out recessive features

Deep neural networks (DNNs) have achieved state-of-the-art performance in numerous tasks involving complex analysis of raw data, such as self-driving systems and biometric recognition systems. However, recent works have shown that DNNs are under threat from adversarial example attacks. The adversary...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 124; p. 109027
Main Authors Liu, Hui, Zhao, Bo, Ji, Minzhi, Peng, Yuefeng, Guo, Jiabao, Liu, Peng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in numerous tasks involving complex analysis of raw data, such as self-driving systems and biometric recognition systems. However, recent works have shown that DNNs are under threat from adversarial example attacks. The adversary can easily change the outputs of DNNs by adding small well-designed perturbations to inputs. Adversarial example detection is fundamental for robust DNN-based services. From a human-centric perspective, this paper divides image features into dominant features comprehensible to humans and recessive features incomprehensible to humans yet exploited by DNNs. Based on this perspective, the paper proposes a new viewpoint that imperceptible adversarial examples are the product of recessive features misleading neural networks, and that the adversarial attack enriches these recessive features. The imperceptibility of the adversarial examples indicates that the perturbations enrich recessive features but hardly affect dominant features. Therefore, adversarial examples are sensitive to filtering out recessive features, while benign examples are immune to such operations. Inspired by this idea, we propose a label-only adversarial detector that is referred to as a feature-filter. The feature-filter utilizes the discrete cosine transform (DCT) to approximately separate recessive features from dominant features and obtain a filtered image. A comprehensive user study demonstrates that the DCT-based filter can reliably filter out recessive features from the test image. By comparing only the DNN’s prediction labels on the input and its filtered version, the feature-filter can detect imperceptible adversarial examples in real time with high accuracy and few false-positives. •We reveal the reason for the existence of imperceptible adversarial examples.•We propose a label-only approach to detect imperceptible adversarial examples.•We design a DCT-based filter to reliably filter out recessive features.
AbstractList Deep neural networks (DNNs) have achieved state-of-the-art performance in numerous tasks involving complex analysis of raw data, such as self-driving systems and biometric recognition systems. However, recent works have shown that DNNs are under threat from adversarial example attacks. The adversary can easily change the outputs of DNNs by adding small well-designed perturbations to inputs. Adversarial example detection is fundamental for robust DNN-based services. From a human-centric perspective, this paper divides image features into dominant features comprehensible to humans and recessive features incomprehensible to humans yet exploited by DNNs. Based on this perspective, the paper proposes a new viewpoint that imperceptible adversarial examples are the product of recessive features misleading neural networks, and that the adversarial attack enriches these recessive features. The imperceptibility of the adversarial examples indicates that the perturbations enrich recessive features but hardly affect dominant features. Therefore, adversarial examples are sensitive to filtering out recessive features, while benign examples are immune to such operations. Inspired by this idea, we propose a label-only adversarial detector that is referred to as a feature-filter. The feature-filter utilizes the discrete cosine transform (DCT) to approximately separate recessive features from dominant features and obtain a filtered image. A comprehensive user study demonstrates that the DCT-based filter can reliably filter out recessive features from the test image. By comparing only the DNN’s prediction labels on the input and its filtered version, the feature-filter can detect imperceptible adversarial examples in real time with high accuracy and few false-positives. •We reveal the reason for the existence of imperceptible adversarial examples.•We propose a label-only approach to detect imperceptible adversarial examples.•We design a DCT-based filter to reliably filter out recessive features.
ArticleNumber 109027
Author Liu, Peng
Guo, Jiabao
Liu, Hui
Ji, Minzhi
Peng, Yuefeng
Zhao, Bo
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0003-1345-5736
  surname: Liu
  fullname: Liu, Hui
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0003-4307-9380
  surname: Zhao
  fullname: Zhao, Bo
  email: zhaobo@whu.edu.cn
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
– sequence: 3
  givenname: Minzhi
  surname: Ji
  fullname: Ji, Minzhi
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
– sequence: 4
  givenname: Yuefeng
  surname: Peng
  fullname: Peng, Yuefeng
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
– sequence: 5
  givenname: Jiabao
  surname: Guo
  fullname: Guo, Jiabao
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
– sequence: 6
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  email: pliu@ist.psu.edu
  organization: College of Information Sciences and Technology, Pennsylvania State University, PA, 16801, United States
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B7Ymsx9JxItUq0JBED2HaXZWUra7JUmL_ffusp489DTD8D4vzDNjk7ZribFbwReCi_Juu8DQ2QVwgP6gOcgLNhVKQqpLJSb9XpQqzXVeXrFZCFveQxrUlH2sCOPBU1q7JpK_T54oko2u_U6wOpIP6B02Cf3gbt9QSDanZEwOie4QE0-WQnBHSuqxKVyzyxqbQDd_c86-Vs-fy9d0_f7ytnxcpzbjPKZQiVwiKShK4CSVJs0tAUiOGxDClhurMiwqREJbSUkIlEOeV4UuCwlZNmcw9lrfheCpNnvvduhPRnAzWDFbM1gxgxUzWukh9Q-yLmJ0XRs9uuY8-jCi1D91dORNsI5aS5XrJURTde4c_gvpt4D0
CitedBy_id crossref_primary_10_1109_MIS_2024_3378923
crossref_primary_10_3390_e25020335
crossref_primary_10_1016_j_asoc_2023_110317
Cites_doi 10.1109/TII.2020.3024643
10.1016/j.neucom.2018.04.027
10.1145/3464423
10.1145/3472290
10.1142/S021800142154001X
10.1109/THMS.2019.2913672
10.1109/ACCESS.2020.2974525
10.1109/TEVC.2019.2890858
10.1007/s11263-015-0816-y
10.1109/TNNLS.2018.2886017
10.1016/j.neucom.2021.10.082
10.1016/j.cose.2021.102547
10.1109/TMM.2021.3050057
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_109027
S1568494622003374
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-2d147ae825620e789e90ce2270ab211c6bc83a5daaeacd77ea2e4244d59657233
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:15 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adversarial example
Dominant features
Deep neural networks
Recessive features
Discrete cosine transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2d147ae825620e789e90ce2270ab211c6bc83a5daaeacd77ea2e4244d59657233
ORCID 0000-0003-4307-9380
0000-0003-1345-5736
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_109027
crossref_citationtrail_10_1016_j_asoc_2022_109027
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gu, Chung, Chignell, Valaee, Zhou, Liu (b3) 2022; 54
Fernando, Gammulle, Denman, Sridharan, Fookes (b4) 2022; 54
Goodfellow, Shlens, Szegedy (b8) 2014
Nesti, Biondi, Buttazzo (b42) 2021
Cohen, Sapiro, Giryes (b33) 2020
Wang, Zhao, Yin, Luo, Zheng, Shi, Jha (b12) 2022; 24
Feinman, Curtin, Shintre, Gardner (b35) 2017
Xu, Evans, Qi (b38) 2018
Das, Shanbhogue, Chen, Hohman, Chen, Kounavis, Chau (b29) 2017
Tian, Yang, Cai (b39) 2018
Blanco-Gonzalo, Miguel-Hurtado, Lunerti, Guest, Corsetti, Ellavarason, Sanchez-Reillo (b5) 2019; 49
Crecchi, Melis, Sotgiu, Bacciu, Biggio (b14) 2022; 470
Mahloujifar, Diochnos, Mahmoody (b25) 2018
Yang, Chen, Hsieh, Wang, Jordan (b34) 2020
Shaham, Yamada, Negahban (b17) 2018; 307
Moosavi-Dezfooli, Fawzi, Frossard (b10) 2016
Bubeck, Price, Razenshteyn (b23) 2018
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (b46) 2015; 115
Ilyas, Santurkar, Tsipras, Engstrom, Tran, Madry (b26) 2019
Moosavi-Dezfooli, Fawzi, Fawzi, Frossard (b11) 2017
Bai, Luo, Zhao, Wen, Wang (b30) 2021
Papernot, McDaniel, Sinha, Wellman (b31) 2018
Cohen, Sapiro, Giryes (b22) 2020
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (b1) 2016
Kantaros, Carpenter, Park, Ivanov, Jang, Lee, Weimer (b40) 2020
Tram, Kurakin, Papernot, Goodfellow, Boneh, McDaniel (b19) 2018
Yuan, He, Zhu, Li (b9) 2019; 30
Shafahi (b24) 2019
Rozsa, Rudd, Boult (b13) 2016
Dai, Cheng, Li (b47) 2021; 35
Laidlaw, Singla, Feizi (b16) 2020
Yahya, Hassan, Younis, Shafique (b27) 2020; 8
Xu, Zhang, Li, Wang, Yang, Shen (b15) 2021; 17
Papernot, McDaniel, Wu, Jha, Swami (b32) 2016
Sperl, Kao, Chen, Bottinger (b37) 2020
Su, Vargas, Sakurai (b44) 2019; 23
Carlini, Wagner (b48) 2017
Carlini, Wagner (b21) 2017
Krizhevsky, Hinton (b45) 2009
Bahat, Irani, Shakhnarovich (b41) 2019
Dziugaite, Ghahramani, Roy (b28) 2018
Liu, Zhao, Peng, Li, Liu (b43) 2022
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b7) 2013
Kurakin, Goodfellow, Bengio (b18) 2017
Papernot, McDaniel, Wu, Jha, Swami (b20) 2016
Huang, Liu, Maaten, Weinberger (b2) 2017
Obaidat, Sridhar, Pham, Phung (b6) 2022; 113
Ma, Liu, Tao, Lee, Zhang (b36) 2019
Papernot (10.1016/j.asoc.2022.109027_b32) 2016
Cohen (10.1016/j.asoc.2022.109027_b22) 2020
Kurakin (10.1016/j.asoc.2022.109027_b18) 2017
Yang (10.1016/j.asoc.2022.109027_b34) 2020
Yahya (10.1016/j.asoc.2022.109027_b27) 2020; 8
Carlini (10.1016/j.asoc.2022.109027_b48) 2017
Papernot (10.1016/j.asoc.2022.109027_b20) 2016
Moosavi-Dezfooli (10.1016/j.asoc.2022.109027_b10) 2016
Carlini (10.1016/j.asoc.2022.109027_b21) 2017
Ma (10.1016/j.asoc.2022.109027_b36) 2019
Goodfellow (10.1016/j.asoc.2022.109027_b8) 2014
Moosavi-Dezfooli (10.1016/j.asoc.2022.109027_b11) 2017
Crecchi (10.1016/j.asoc.2022.109027_b14) 2022; 470
Fernando (10.1016/j.asoc.2022.109027_b4) 2022; 54
Wang (10.1016/j.asoc.2022.109027_b12) 2022; 24
Yuan (10.1016/j.asoc.2022.109027_b9) 2019; 30
Xu (10.1016/j.asoc.2022.109027_b38) 2018
Dziugaite (10.1016/j.asoc.2022.109027_b28) 2018
Blanco-Gonzalo (10.1016/j.asoc.2022.109027_b5) 2019; 49
Xu (10.1016/j.asoc.2022.109027_b15) 2021; 17
Tian (10.1016/j.asoc.2022.109027_b39) 2018
Liu (10.1016/j.asoc.2022.109027_b43) 2022
Russakovsky (10.1016/j.asoc.2022.109027_b46) 2015; 115
Dai (10.1016/j.asoc.2022.109027_b47) 2021; 35
Szegedy (10.1016/j.asoc.2022.109027_b7) 2013
Mahloujifar (10.1016/j.asoc.2022.109027_b25) 2018
Ilyas (10.1016/j.asoc.2022.109027_b26) 2019
Bai (10.1016/j.asoc.2022.109027_b30) 2021
Sperl (10.1016/j.asoc.2022.109027_b37) 2020
Obaidat (10.1016/j.asoc.2022.109027_b6) 2022; 113
Bahat (10.1016/j.asoc.2022.109027_b41) 2019
Laidlaw (10.1016/j.asoc.2022.109027_b16) 2020
Szegedy (10.1016/j.asoc.2022.109027_b1) 2016
Papernot (10.1016/j.asoc.2022.109027_b31) 2018
Cohen (10.1016/j.asoc.2022.109027_b33) 2020
Krizhevsky (10.1016/j.asoc.2022.109027_b45) 2009
Gu (10.1016/j.asoc.2022.109027_b3) 2022; 54
Bubeck (10.1016/j.asoc.2022.109027_b23) 2018
Rozsa (10.1016/j.asoc.2022.109027_b13) 2016
Tram (10.1016/j.asoc.2022.109027_b19) 2018
Das (10.1016/j.asoc.2022.109027_b29) 2017
Feinman (10.1016/j.asoc.2022.109027_b35) 2017
Nesti (10.1016/j.asoc.2022.109027_b42) 2021
Su (10.1016/j.asoc.2022.109027_b44) 2019; 23
Huang (10.1016/j.asoc.2022.109027_b2) 2017
Shafahi (10.1016/j.asoc.2022.109027_b24) 2019
Shaham (10.1016/j.asoc.2022.109027_b17) 2018; 307
Kantaros (10.1016/j.asoc.2022.109027_b40) 2020
References_xml – volume: 17
  start-page: 4117
  year: 2021
  end-page: 4126
  ident: b15
  article-title: Adversarial attack against urban scene segmentation for autonomous vehicles
  publication-title: IEEE Trans. Ind. Inf.
– year: 2021
  ident: b42
  article-title: Detecting adversarial examples by input transformations, defense perturbations, and voting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 24
  start-page: 230
  year: 2022
  end-page: 244
  ident: b12
  article-title: SmsNet: A new deep convolutional neural network model for adversarial example detection
  publication-title: IEEE Trans. Multimedia
– start-page: 6639
  year: 2020
  end-page: 6647
  ident: b34
  article-title: ML-LOO: detecting adversarial examples with feature attribution
  publication-title: AAAI Conference on Artificial Intelligence (AAAI)
– year: 2017
  ident: b18
  article-title: Adversarial machine learning at scale
– year: 2016
  ident: b20
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
  publication-title: IEEE Symposium on Security and Privacy (SP)
– year: 2019
  ident: b26
  article-title: Adversarial examples are not bugs, they are features
– start-page: 1
  year: 2020
  end-page: 21
  ident: b37
  article-title: DLA: dense-layer-analysis for adversarial example detection
  publication-title: IEEE Symposium on Security and Privacy (EuroS & P)
– start-page: 86
  year: 2017
  end-page: 94
  ident: b11
  article-title: Universal adversarial perturbations
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 14453
  year: 2020
  end-page: 14462
  ident: b33
  article-title: Detecting adversarial samples using influence functions and nearest neighbors
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b2
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2020
  ident: b16
  article-title: Perceptual adversarial robustness: Defense against unseen threat models
– year: 2017
  ident: b21
  article-title: Towards evaluating the robustness of neural networks
  publication-title: IEEE Symposium on Security and Privacy (SP)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b46
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 4312
  year: 2021
  end-page: 4321
  ident: b30
  article-title: Recent advances in adversarial training for adversarial robustness
  publication-title: International Joint Conference on Artificial Intelligence (IJCAI)
– year: 2017
  ident: b35
  article-title: Detecting adversarial samples from artifacts
– start-page: 1
  year: 2018
  end-page: 24
  ident: b25
  article-title: The curse of concentration in robust learning: Evasion and poisoning attacks from concentration of measure
  publication-title: AAAI Conference on Artificial Intelligence (AAAI)
– start-page: 410
  year: 2016
  end-page: 417
  ident: b13
  article-title: Adversarial diversity and hard positive generation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 8
  start-page: 33855
  year: 2020
  end-page: 33869
  ident: b27
  article-title: Probabilistic analysis of targeted attacks using transform-domain adversarial examples
  publication-title: IEEE Access
– volume: 54
  start-page: 1
  year: 2022
  end-page: 37
  ident: b4
  article-title: Deep learning for medical anomaly detection - a survey
  publication-title: ACM Comput. Surv.
– volume: 23
  start-page: 828
  year: 2019
  end-page: 841
  ident: b44
  article-title: One-pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
– volume: 470
  start-page: 257
  year: 2022
  end-page: 268
  ident: b14
  article-title: FADER: Fast adversarial example rejection
  publication-title: Neurocomputing
– year: 2018
  ident: b23
  article-title: Adversarial examples from computational constraints
– start-page: 1
  year: 2019
  end-page: 15
  ident: b36
  article-title: NIC: detecting adversarial samples with neural network invariant checking
  publication-title: Network and Distributed Systems Security Symposium (NDSS)
– volume: 307
  start-page: 195
  year: 2018
  end-page: 204
  ident: b17
  article-title: Understanding adversarial training: Increasing local stability of supervised models through robust optimization
  publication-title: Neurocomputing
– volume: 54
  start-page: 1
  year: 2022
  end-page: 34
  ident: b3
  article-title: A survey on deep learning for human activity recognition
  publication-title: ACM Comput. Surv.
– start-page: 14453
  year: 2020
  end-page: 14462
  ident: b22
  article-title: Detecting adversarial samples using influence functions and nearest neighbors
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 35
  start-page: 1
  year: 2021
  end-page: 18
  ident: b47
  article-title: A novel steganography algorithm based on quantization table modification and image scrambling in DCT domain
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– start-page: 2574
  year: 2016
  end-page: 2582
  ident: b10
  article-title: Deepfool: A simple and accurate method to fool deep neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2017
  ident: b48
  article-title: Adversarial examples are not easily detected: bypassing ten detection methods
– year: 2014
  ident: b8
  article-title: Explaining and harnessing adversarial examples
– start-page: 399
  year: 2018
  end-page: 414
  ident: b31
  article-title: Sok: towards the science of security and privacy in machine learning
  publication-title: IEEE European Symposium on Security and Privacy (EuroS & P)
– start-page: 1
  year: 2019
  end-page: 17
  ident: b24
  article-title: Are adversarial examples inevitable?
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2019
  ident: b41
  article-title: Natural and adversarial error detection using invariance to image transformations
– year: 2009
  ident: b45
  article-title: Learning multiple layers of features from tiny images
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: b1
  article-title: Rethinking the inception architecture for computer vision
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2013
  ident: b7
  article-title: Intriguing properties of neural networks
– start-page: 582
  year: 2016
  end-page: 597
  ident: b32
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
  publication-title: IEEE Symposium on Security and Privacy (S & P)
– year: 2022
  ident: b43
  article-title: Towards understanding and harnessing the effect of image transformation in adversarial detection
– volume: 49
  start-page: 397
  year: 2019
  end-page: 410
  ident: b5
  article-title: Biometric systems interaction assessment: The state of the art
  publication-title: IEEE Trans. Hum.–Mach. Syst.
– year: 2017
  ident: b29
  article-title: Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression
– start-page: 4139
  year: 2018
  end-page: 4146
  ident: b39
  article-title: Detecting adversarial examples through image transformation
  publication-title: AAAI Conference on Artificial Intelligence (AAAI)
– volume: 30
  start-page: 2805
  year: 2019
  end-page: 2824
  ident: b9
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2018
  end-page: 15
  ident: b38
  article-title: Feature squeezing: detecting adversarial examples in deep neural networks
  publication-title: Network and Distributed Systems Security Symposium (NDSS)
– year: 2020
  ident: b40
  article-title: VisionGuard: Runtime detection of adversarial inputs to perception systems
– year: 2018
  ident: b19
  article-title: Ensemble adversarial training: Attacks and defenses
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 113
  year: 2022
  ident: b6
  article-title: Jadeite: A novel image-behavior-based approach for java malware detection using deep learning
  publication-title: Comput. Secur.
– year: 2018
  ident: b28
  article-title: A study of the effect of JPG compression on adversarial images
– volume: 17
  start-page: 4117
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109027_b15
  article-title: Adversarial attack against urban scene segmentation for autonomous vehicles
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3024643
– start-page: 4700
  year: 2017
  ident: 10.1016/j.asoc.2022.109027_b2
  article-title: Densely connected convolutional networks
– year: 2017
  ident: 10.1016/j.asoc.2022.109027_b21
  article-title: Towards evaluating the robustness of neural networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109027_b24
  article-title: Are adversarial examples inevitable?
– year: 2018
  ident: 10.1016/j.asoc.2022.109027_b28
– volume: 307
  start-page: 195
  year: 2018
  ident: 10.1016/j.asoc.2022.109027_b17
  article-title: Understanding adversarial training: Increasing local stability of supervised models through robust optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.027
– start-page: 399
  year: 2018
  ident: 10.1016/j.asoc.2022.109027_b31
  article-title: Sok: towards the science of security and privacy in machine learning
– volume: 54
  start-page: 1
  issue: 7
  year: 2022
  ident: 10.1016/j.asoc.2022.109027_b4
  article-title: Deep learning for medical anomaly detection - a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3464423
– year: 2020
  ident: 10.1016/j.asoc.2022.109027_b40
– volume: 54
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.asoc.2022.109027_b3
  article-title: A survey on deep learning for human activity recognition
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472290
– start-page: 14453
  year: 2020
  ident: 10.1016/j.asoc.2022.109027_b33
  article-title: Detecting adversarial samples using influence functions and nearest neighbors
– volume: 35
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.109027_b47
  article-title: A novel steganography algorithm based on quantization table modification and image scrambling in DCT domain
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S021800142154001X
– volume: 49
  start-page: 397
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2022.109027_b5
  article-title: Biometric systems interaction assessment: The state of the art
  publication-title: IEEE Trans. Hum.–Mach. Syst.
  doi: 10.1109/THMS.2019.2913672
– year: 2016
  ident: 10.1016/j.asoc.2022.109027_b20
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109027_b38
  article-title: Feature squeezing: detecting adversarial examples in deep neural networks
– year: 2013
  ident: 10.1016/j.asoc.2022.109027_b7
– year: 2009
  ident: 10.1016/j.asoc.2022.109027_b45
– year: 2014
  ident: 10.1016/j.asoc.2022.109027_b8
– year: 2018
  ident: 10.1016/j.asoc.2022.109027_b19
  article-title: Ensemble adversarial training: Attacks and defenses
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109027_b36
  article-title: NIC: detecting adversarial samples with neural network invariant checking
– year: 2022
  ident: 10.1016/j.asoc.2022.109027_b43
– year: 2017
  ident: 10.1016/j.asoc.2022.109027_b48
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.109027_b37
  article-title: DLA: dense-layer-analysis for adversarial example detection
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2022.109027_b25
  article-title: The curse of concentration in robust learning: Evasion and poisoning attacks from concentration of measure
– start-page: 4312
  year: 2021
  ident: 10.1016/j.asoc.2022.109027_b30
  article-title: Recent advances in adversarial training for adversarial robustness
– year: 2017
  ident: 10.1016/j.asoc.2022.109027_b35
– year: 2021
  ident: 10.1016/j.asoc.2022.109027_b42
  article-title: Detecting adversarial examples by input transformations, defense perturbations, and voting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 8
  start-page: 33855
  year: 2020
  ident: 10.1016/j.asoc.2022.109027_b27
  article-title: Probabilistic analysis of targeted attacks using transform-domain adversarial examples
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974525
– year: 2017
  ident: 10.1016/j.asoc.2022.109027_b18
– year: 2017
  ident: 10.1016/j.asoc.2022.109027_b29
– start-page: 2818
  year: 2016
  ident: 10.1016/j.asoc.2022.109027_b1
  article-title: Rethinking the inception architecture for computer vision
– start-page: 2574
  year: 2016
  ident: 10.1016/j.asoc.2022.109027_b10
  article-title: Deepfool: A simple and accurate method to fool deep neural networks
– start-page: 14453
  year: 2020
  ident: 10.1016/j.asoc.2022.109027_b22
  article-title: Detecting adversarial samples using influence functions and nearest neighbors
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2022.109027_b44
  article-title: One-pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– start-page: 6639
  year: 2020
  ident: 10.1016/j.asoc.2022.109027_b34
  article-title: ML-LOO: detecting adversarial examples with feature attribution
– start-page: 410
  year: 2016
  ident: 10.1016/j.asoc.2022.109027_b13
  article-title: Adversarial diversity and hard positive generation
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2022.109027_b46
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 86
  year: 2017
  ident: 10.1016/j.asoc.2022.109027_b11
  article-title: Universal adversarial perturbations
– year: 2019
  ident: 10.1016/j.asoc.2022.109027_b26
– volume: 30
  start-page: 2805
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2022.109027_b9
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886017
– volume: 470
  start-page: 257
  year: 2022
  ident: 10.1016/j.asoc.2022.109027_b14
  article-title: FADER: Fast adversarial example rejection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.082
– year: 2020
  ident: 10.1016/j.asoc.2022.109027_b16
– volume: 113
  year: 2022
  ident: 10.1016/j.asoc.2022.109027_b6
  article-title: Jadeite: A novel image-behavior-based approach for java malware detection using deep learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102547
– volume: 24
  start-page: 230
  year: 2022
  ident: 10.1016/j.asoc.2022.109027_b12
  article-title: SmsNet: A new deep convolutional neural network model for adversarial example detection
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2021.3050057
– start-page: 4139
  year: 2018
  ident: 10.1016/j.asoc.2022.109027_b39
  article-title: Detecting adversarial examples through image transformation
– year: 2018
  ident: 10.1016/j.asoc.2022.109027_b23
– start-page: 582
  year: 2016
  ident: 10.1016/j.asoc.2022.109027_b32
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
– year: 2019
  ident: 10.1016/j.asoc.2022.109027_b41
SSID ssj0016928
Score 2.384085
Snippet Deep neural networks (DNNs) have achieved state-of-the-art performance in numerous tasks involving complex analysis of raw data, such as self-driving systems...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109027
SubjectTerms Adversarial example
Deep neural networks
Discrete cosine transform
Dominant features
Recessive features
Title Feature-filter: Detecting adversarial examples by filtering out recessive features
URI https://dx.doi.org/10.1016/j.asoc.2022.109027
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM32XazSXYTb6Uq9VWkWugtbJINVKQtbSp68bc7k02KgvTgKSTMhuTLZB7sNzOEnAeJjLnxM6YD6THPMTELXV8ziAySGDI58IJYjfzYl72hdzfyRzXSrWphkFZZ2n5r0wtrXV5pl2i2Z-Nx-xkyj8ALPSmQX-Uq7AnqeQq1vPW1onk4Mizmq6IwQ-mycMZyvDQgADmiEK2Cn6j-dk4_HM7NDtkqI0XasQ-zS2pmske2qykMtPwp98kAo7jl3LBsjDvfl_TK4MYAuCSqcdryQqOOUfOhsRHwgsaf1EqixHSZU3h_5MK-G5rZOy0OyPDm-qXbY-WkBJa4nOdMpI6ntIFsTwpuVBCakCdGCMV1DBkefI8kcLWfag12NlXKaGGwwi31Q-kr4bqHpD6ZTswRofBLpkkQJjyAzMw3WseO0BLsgNSuKzPeIE4FUZSUbcRxmsVbVPHFXiOENUJYIwtrg1ys1sxsE4210n6FfPRLFSKw8mvWHf9z3QnZxDPLwT0l9Xy-NGcQaeRxs1ClJtnodAcPT3i8ve_1vwFeqtQU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5ED3rxLdbnHvQka5NNskkED6KWah8HrdBb3CQTqEhb-lB78U_5B51pNqIgHoRek92w-TJ8M5P9ZoexoyBRsQVeJnSgXOHaEIvQ8bTAyCCJMZNDL0jVyI2mqj64t22vPcc-iloYklUa7s85fcrW5krZoFnudzrle8w8Ajd0lSR9leO7RllZg8kr5m3D85sr_MjHUlauW5dVYVoLiMSxrJGQqe36GjA9UtICPwghtBKQ0rd0jCkRvkASONpLtUZiSn0ftAQqCUu9UHm-pL-gyPsLLtIFtU04ff_SldgqnDZ0pdUJWp6p1MlFZRohx6RUytOpINL_3Rt-83CVVbZsQlN-kb_9GpuD7jpbKdo-cMMCG-yOwsbxAETWoa32M34FtBOBPpBrau881GTUHN40nTw85PGE5yNpRG884gg4iW9fgGf5k4ab7GEm-G2x-W6vC9uMIwekSRAmVoCpoAdax7bUColHacdRmVVidgFRlJhzy6l9xnNUCNSeIoI1IlijHNYSO_ma089P7fhztFcgH_2wvQjdyh_zdv4575AtVluNelS_adZ22RLdyQXAe2x-NBjDPoY5o_hgalacPc7ajj8Bp2kNyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature-filter%3A+Detecting+adversarial+examples+by+filtering+out+recessive+features&rft.jtitle=Applied+soft+computing&rft.au=Liu%2C+Hui&rft.au=Zhao%2C+Bo&rft.au=Ji%2C+Minzhi&rft.au=Peng%2C+Yuefeng&rft.date=2022-07-01&rft.issn=1568-4946&rft.volume=124&rft.spage=109027&rft_id=info:doi/10.1016%2Fj.asoc.2022.109027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon