SAITS: Self-attention-based imputation for time series
Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism f...
Saved in:
Published in | Expert systems with applications Vol. 219; p. 119619 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism for missing value imputation in multivariate time series. Trained by a joint-optimization approach, SAITS learns missing values from a weighted combination of two diagonally-masked self-attention (DMSA) blocks. DMSA explicitly captures both the temporal dependencies and feature correlations between time steps, which improves imputation accuracy and training speed. Meanwhile, the weighted-combination design enables SAITS to dynamically assign weights to the learned representations from two DMSA blocks according to the attention map and the missingness information. Extensive experiments quantitatively and qualitatively demonstrate that SAITS outperforms the state-of-the-art methods on the time-series imputation task efficiently and reveal SAITS’ potential to improve the learning performance of pattern recognition models on incomplete time-series data from the real world.
•Address the missing data problem in time-series analysis tasks by deep learning.•A novel self-attention model imputes missing values in incomplete time series.•Our method solves the disadvantages of previous RNN-based imputation models.•SAITS has a better imputation model architecture than Transformer.•SAITS achieves the state-of-the-art performance on the time-series imputation task. |
---|---|
AbstractList | Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism for missing value imputation in multivariate time series. Trained by a joint-optimization approach, SAITS learns missing values from a weighted combination of two diagonally-masked self-attention (DMSA) blocks. DMSA explicitly captures both the temporal dependencies and feature correlations between time steps, which improves imputation accuracy and training speed. Meanwhile, the weighted-combination design enables SAITS to dynamically assign weights to the learned representations from two DMSA blocks according to the attention map and the missingness information. Extensive experiments quantitatively and qualitatively demonstrate that SAITS outperforms the state-of-the-art methods on the time-series imputation task efficiently and reveal SAITS’ potential to improve the learning performance of pattern recognition models on incomplete time-series data from the real world.
•Address the missing data problem in time-series analysis tasks by deep learning.•A novel self-attention model imputes missing values in incomplete time series.•Our method solves the disadvantages of previous RNN-based imputation models.•SAITS has a better imputation model architecture than Transformer.•SAITS achieves the state-of-the-art performance on the time-series imputation task. |
ArticleNumber | 119619 |
Author | Liu, Yan Côté, David Du, Wenjie |
Author_xml | – sequence: 1 givenname: Wenjie orcidid: 0000-0003-3046-7835 surname: Du fullname: Du, Wenjie email: wenjie.du@mail.concordia.ca organization: Concordia University, Montréal, Canada – sequence: 2 givenname: David orcidid: 0000-0001-7468-0430 surname: Côté fullname: Côté, David email: dcote@ciena.com organization: Ciena Corporation, Ottawa, Canada – sequence: 3 givenname: Yan orcidid: 0000-0002-6747-8151 surname: Liu fullname: Liu, Yan email: yan.liu@concordia.ca organization: Concordia University, Montréal, Canada |
BookMark | eNp9j81KAzEUhYNUsK2-gKt5gYy5yWQyETel-FMouGhdhzRzAyntTEmi4tvbYVy56N0cuPAdzjcjk67vkJB7YCUwqB_2JaZvW3LGRQmga9BXZAqNErRWWkzIlGmpaAWquiGzlPaMgWJMTUm9Way2m8digwdPbc7Y5dB3dGcTtkU4nj6zHR6F72ORwxGLhDFguiXX3h4S3v3lnHy8PG-Xb3T9_rpaLtbUCcYy5Q6kdzumpNdOAniNFba-4ZXTFXPnq1ura86tq7gAIaCRGmzrpZNeAoo5acZeF_uUInrjwrgoRxsOBpgZ_M3eDP5m8Dej_xnl_9BTDEcbfy5DTyOEZ6mvgNEkF7Bz2IaILpu2D5fwX0D1dgI |
CitedBy_id | crossref_primary_10_1016_j_knosys_2024_112917 crossref_primary_10_1016_j_knosys_2023_110737 crossref_primary_10_1016_j_eswa_2024_124787 crossref_primary_10_1016_j_knosys_2023_110896 crossref_primary_10_1007_s10115_024_02159_7 crossref_primary_10_1016_j_physa_2024_129914 crossref_primary_10_1007_s10462_024_11039_z crossref_primary_10_1016_j_knosys_2023_111270 crossref_primary_10_1007_s10618_023_00987_9 crossref_primary_10_3390_stats8010007 crossref_primary_10_1016_j_jneumeth_2024_110157 crossref_primary_10_1063_5_0176922 crossref_primary_10_1145_3698107 crossref_primary_10_1016_j_knosys_2023_111233 crossref_primary_10_1007_s10489_025_06240_8 crossref_primary_10_1109_TIM_2024_3372213 crossref_primary_10_1016_j_media_2024_103103 crossref_primary_10_1093_jamia_ocae323 crossref_primary_10_1016_j_chemolab_2024_105193 crossref_primary_10_1109_JBHI_2024_3433461 crossref_primary_10_1109_TKDE_2024_3392897 crossref_primary_10_1016_j_knosys_2023_111215 crossref_primary_10_1109_JSEN_2024_3519370 crossref_primary_10_3390_forecast5010017 crossref_primary_10_1016_j_cageo_2024_105789 crossref_primary_10_14778_3632093_3632100 crossref_primary_10_1007_s00521_025_11028_5 crossref_primary_10_3389_fnagi_2024_1356745 crossref_primary_10_1016_j_neucom_2024_128948 crossref_primary_10_1016_j_enbenv_2024_12_005 crossref_primary_10_1134_S1995080224606854 crossref_primary_10_3390_fractalfract9030181 crossref_primary_10_3390_buildings15020236 crossref_primary_10_1007_s12530_024_09644_y crossref_primary_10_1016_j_asoc_2023_110647 crossref_primary_10_1016_j_eswa_2023_120552 crossref_primary_10_1016_j_neunet_2025_107298 crossref_primary_10_1109_TGRS_2024_3435044 crossref_primary_10_1038_s41598_023_34077_z crossref_primary_10_1109_JAS_2024_124611 crossref_primary_10_1049_rsn2_12695 crossref_primary_10_1109_TIM_2023_3307765 crossref_primary_10_14778_3632093_3632115 crossref_primary_10_1016_j_est_2025_116186 crossref_primary_10_3389_fphy_2023_1095277 crossref_primary_10_1007_s41060_024_00547_4 crossref_primary_10_1109_TFUZZ_2024_3466175 crossref_primary_10_3233_JIFS_232737 crossref_primary_10_1016_j_knosys_2023_110919 crossref_primary_10_1007_s10489_024_05314_3 crossref_primary_10_3390_math13010152 crossref_primary_10_1038_s41598_024_75678_6 crossref_primary_10_26748_KSOE_2024_065 crossref_primary_10_1007_s11227_024_06670_0 crossref_primary_10_1109_TVT_2024_3382729 crossref_primary_10_1016_j_eswa_2023_121737 crossref_primary_10_1016_j_inpa_2023_10_001 crossref_primary_10_1128_msystems_00697_24 crossref_primary_10_1109_TSUSC_2024_3353183 crossref_primary_10_1007_s13222_024_00488_z crossref_primary_10_1109_LSP_2022_3224880 crossref_primary_10_1007_s13755_024_00295_6 crossref_primary_10_1016_j_eswa_2023_122148 crossref_primary_10_1109_ACCESS_2024_3496319 crossref_primary_10_1109_JSEN_2024_3457625 crossref_primary_10_1016_j_eswa_2024_124553 crossref_primary_10_1016_j_eswa_2025_126435 crossref_primary_10_1371_journal_pone_0306303 crossref_primary_10_1109_TASE_2023_3317978 crossref_primary_10_1177_19322968241308217 crossref_primary_10_1016_j_ijmedinf_2024_105744 crossref_primary_10_12677_jisp_2024_132014 crossref_primary_10_1186_s12911_024_02514_2 crossref_primary_10_1016_j_jag_2024_104003 crossref_primary_10_3389_fenrg_2024_1362371 crossref_primary_10_1145_3649841 crossref_primary_10_1109_ACCESS_2023_3315343 crossref_primary_10_1021_acs_jctc_4c01237 crossref_primary_10_1016_j_eswa_2025_127001 crossref_primary_10_1016_j_neunet_2023_07_033 crossref_primary_10_1108_IJWIS_04_2024_0119 crossref_primary_10_1016_j_knosys_2024_112114 crossref_primary_10_32604_cmc_2024_048813 crossref_primary_10_1016_j_eswa_2024_124155 crossref_primary_10_1109_ACCESS_2024_3416345 |
Cites_doi | 10.1161/01.CIR.101.23.e215 10.1002/sim.3944 10.1609/aaai.v29i1.9590 10.1109/CVPR42600.2020.01421 10.1109/TBME.2018.2874712 10.1146/annurev.psych.58.110405.085530 10.1016/j.patcog.2020.107501 10.1109/CVPR.2019.00259 10.1109/CVPR42600.2020.00848 10.1364/JOCN.423667 10.1016/j.aca.2018.01.062 10.1093/biomet/63.3.581 10.1016/j.knosys.2020.106512 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.119619 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_119619 S0957417423001203 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-2c15fcb075f9c511f9e4edf824c940cccc6da9622ac42313318591adf5c5f51e3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:08 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Fri Feb 23 02:35:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural network Missing values Imputation model Time series Self-attention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-2c15fcb075f9c511f9e4edf824c940cccc6da9622ac42313318591adf5c5f51e3 |
ORCID | 0000-0002-6747-8151 0000-0001-7468-0430 0000-0003-3046-7835 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_119619 crossref_primary_10_1016_j_eswa_2023_119619 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Luo, Zhang, Cai, Yuan (b28) 2019 Azur, Stuart, Frangakis, Leaf (b4) 2011 Li, Jiang, Marlin (b24) 2019 Shin, Lee, Yoon, Jung (b39) 2020 Burgess, White, Resche-Rigon, Wood (b8) 2013 Che, Purushotham, Cho, Sontag, Liu (b12) 2018 Silva, Moody, Scott, Celi, Mark (b40) 2012; 39 Bruni, Daraio, Aureli (b7) 2021; 212 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (b42) 2017 Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). McFlow: Monte Carlo Flow Models for Data Imputation. In Yoon, Jordon, van der Schaar (b49) 2018 Yoon, Zame, van der Schaar (b51) 2019; 66 Yoon, S., & Sull, S. (2020). GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data. In Bansal, Deshpande, Sarawagi (b6) 2021 Lee, D., Kim, J., Moon, W. J., & Ye, J. C. (2019). CollaGAN: Collaborative GAN for Missing Image Data Imputation. In Ashman, So, Tebbutt, Fortuin, Pearce, Turner (b3) 2020 Rubin (b35) 1976; 63 Fortuin, Baranchuk, Raetsch, Mandt (b16) 2020 Ramchandran, Tikhonov, Kujanpää, Koskinen, Lähdesmäki (b33) 2021 . Zhou, Zhang, Peng, Zhang, Li, Xiong, Zhang (b54) 2021 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Chintala (b32) 2019 Casale, Dalca, Saglietti, Listgarten, Fusi (b11) 2018 Fung (b17) 2006 Wu, R., Zhang, A., Ilyas, I., & Rekatsinas, T. (2020). Attention-based Learning for Missing Data Imputation in HoloClean. In I. Dhillon, D. Papailiopoulos, & V. Sze (Eds.) Zhang, Guo, Dong, He, Xu, Chen (b53) 2017 Yang, Dai, Yang, Carbonell, Salakhutdinov, Le (b47) 2019 (pp. 307–325). Luo, Cai, Zhang, Xu, xiaojie (b27) 2018 White, Carlin (b45) 2010; 29 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen, Chen (b36) 2016 CVPR. Yi, X., Zheng, Y., Zhang, J., & Li, T. (2016). ST-MVL: Filling Missing Values in Geo-sensory Time Series Data: Filling missing values in geo-sensory time series data. In Ansley, Kohn (b2) 1984 Venkatraman, Hebert, Bagnell (b43) 2015; 29 Acuna, Rodriguez (b1) 2004 Kreindler, Lumsden (b22) 2006; 10 Wang, de Vries, Reinders (b44) 2006 Graham (b19) 2009; 60 Ma, Shou, Zareian, Mansour, Vetro, Chang (b29) 2019 Yu, Rao, Dhillon (b52) 2016 Little, Rubin (b25) 1986 Mouselinos, Polymenakos, Nikitakis, Kyriakopoulos (b30) 2021 Liu, Yu, Zheng, Zhan (b26) 2019 Devlin, Chang, Lee, Toutanova (b13) 2019 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Stanley (b18) 2000; 101 Shen, Zhou, Long, Jiang, Pan, Zhang (b38) 2018 Kingma, Ba (b21) 2015 Taylor (b41) 1953; 30 Burgués, Jiménez-Soto, Marco (b9) 2018; 1013 Shan, Oliva (b37) 2021 Cao, Wang, Li, Zhou, Li, Li (b10) 2018 Nazábal, Olmos, Ghahramani, Valera (b31) 2020; 107 Du, Côté, Barber, Liu (b14) 2021; 13 Dua, Graff (b15) 2017 He, Zhang, Ren, Sun (b20) 2016 Ba, Kiros, Hinton (b5) 2016 Burgués (10.1016/j.eswa.2023.119619_b9) 2018; 1013 Fortuin (10.1016/j.eswa.2023.119619_b16) 2020 Ba (10.1016/j.eswa.2023.119619_b5) 2016 White (10.1016/j.eswa.2023.119619_b45) 2010; 29 Fung (10.1016/j.eswa.2023.119619_b17) 2006 Cao (10.1016/j.eswa.2023.119619_b10) 2018 Luo (10.1016/j.eswa.2023.119619_b27) 2018 Shan (10.1016/j.eswa.2023.119619_b37) 2021 Yu (10.1016/j.eswa.2023.119619_b52) 2016 He (10.1016/j.eswa.2023.119619_b20) 2016 Bansal (10.1016/j.eswa.2023.119619_b6) 2021 Shin (10.1016/j.eswa.2023.119619_b39) 2020 Ma (10.1016/j.eswa.2023.119619_b29) 2019 Burgess (10.1016/j.eswa.2023.119619_b8) 2013 Shen (10.1016/j.eswa.2023.119619_b38) 2018 10.1016/j.eswa.2023.119619_b50 Kingma (10.1016/j.eswa.2023.119619_b21) 2015 Venkatraman (10.1016/j.eswa.2023.119619_b43) 2015; 29 Che (10.1016/j.eswa.2023.119619_b12) 2018 Mouselinos (10.1016/j.eswa.2023.119619_b30) 2021 10.1016/j.eswa.2023.119619_b48 Ashman (10.1016/j.eswa.2023.119619_b3) 2020 10.1016/j.eswa.2023.119619_b46 Vaswani (10.1016/j.eswa.2023.119619_b42) 2017 Little (10.1016/j.eswa.2023.119619_b25) 1986 Zhang (10.1016/j.eswa.2023.119619_b53) 2017 Graham (10.1016/j.eswa.2023.119619_b19) 2009; 60 Goldberger (10.1016/j.eswa.2023.119619_b18) 2000; 101 Silva (10.1016/j.eswa.2023.119619_b40) 2012; 39 Paszke (10.1016/j.eswa.2023.119619_b32) 2019 Yang (10.1016/j.eswa.2023.119619_b47) 2019 Yoon (10.1016/j.eswa.2023.119619_b49) 2018 Taylor (10.1016/j.eswa.2023.119619_b41) 1953; 30 Dua (10.1016/j.eswa.2023.119619_b15) 2017 Rubin (10.1016/j.eswa.2023.119619_b35) 1976; 63 10.1016/j.eswa.2023.119619_b34 Yoon (10.1016/j.eswa.2023.119619_b51) 2019; 66 Acuna (10.1016/j.eswa.2023.119619_b1) 2004 Liu (10.1016/j.eswa.2023.119619_b26) 2019 Nazábal (10.1016/j.eswa.2023.119619_b31) 2020; 107 Wang (10.1016/j.eswa.2023.119619_b44) 2006 Casale (10.1016/j.eswa.2023.119619_b11) 2018 Salimans (10.1016/j.eswa.2023.119619_b36) 2016 Devlin (10.1016/j.eswa.2023.119619_b13) 2019 Li (10.1016/j.eswa.2023.119619_b24) 2019 Zhou (10.1016/j.eswa.2023.119619_b54) 2021 Kreindler (10.1016/j.eswa.2023.119619_b22) 2006; 10 Azur (10.1016/j.eswa.2023.119619_b4) 2011 Ansley (10.1016/j.eswa.2023.119619_b2) 1984 10.1016/j.eswa.2023.119619_b23 Ramchandran (10.1016/j.eswa.2023.119619_b33) 2021 Bruni (10.1016/j.eswa.2023.119619_b7) 2021; 212 Luo (10.1016/j.eswa.2023.119619_b28) 2019 Du (10.1016/j.eswa.2023.119619_b14) 2021; 13 |
References_xml | – volume: 101 start-page: E215 year: 2000 end-page: 20 ident: b18 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – year: 1986 ident: b25 article-title: Statistical analysis with missing data – reference: Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). McFlow: Monte Carlo Flow Models for Data Imputation. In – volume: 10 start-page: 187 year: 2006 end-page: 214 ident: b22 article-title: The effects of the irregular sample and missing data in time series analysis publication-title: Nonlinear Dynamics, Psychology, and Life Sciences – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: b35 article-title: Inference and missing data publication-title: Biometrika – reference: (pp. 307–325). – start-page: 3094 year: 2019 end-page: 3100 ident: b28 article-title: E publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19 – start-page: 770 year: 2016 end-page: 778 ident: b20 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE conference on computer vision and pattern recognition – start-page: 3898 year: 2021 end-page: 3906 ident: b33 article-title: Longitudinal variational autoencoder publication-title: Proceedings of the 24th international conference on artificial intelligence and statistics, vol. 130 – year: 2016 ident: b36 article-title: Improved techniques for training GANs publication-title: Advances in neural information processing systems, vol. 29 – start-page: 5689 year: 2018 end-page: 5698 ident: b49 article-title: GAIN: Missing data imputation using generative adversarial nets publication-title: Proceedings of the 35th international conference on machine learning, vol. 80 – year: 2017 ident: b42 article-title: Attention is all you need publication-title: Advances in neural information processing systems, vol. 30 – year: 2021 ident: b6 article-title: Missing value imputation on multidimensional time series – year: 2019 ident: b47 article-title: XLNet: Generalized autoregressive pretraining for language understanding publication-title: NeurIPS – year: 2020 ident: b3 article-title: Sparse Gaussian process variational autoencoders – year: 2016 ident: b5 article-title: Layer normalization – year: 2018 ident: b10 article-title: BRITS: Bidirectional Recurrent Imputation for Time Series publication-title: Advances in neural information processing systems, vol. 31 – start-page: 473 year: 2017 ident: b53 article-title: Cautionary tales on air-quality improvement in Beijing publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – start-page: 8 year: 2018 ident: b12 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Scientific Reports – reference: Wu, R., Zhang, A., Ilyas, I., & Rekatsinas, T. (2020). Attention-based Learning for Missing Data Imputation in HoloClean. In I. Dhillon, D. Papailiopoulos, & V. Sze (Eds.), – volume: 212 year: 2021 ident: b7 article-title: Imputation techniques for the reconstruction of missing interconnected data from higher Educational Institutions publication-title: Knowledge-Based Systems – start-page: 32 year: 2013 ident: b8 article-title: Combining multiple imputation and meta-analysis with individual participant data publication-title: Statistics in Medicine – volume: 1013 start-page: 13 year: 2018 end-page: 25 ident: b9 article-title: Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models publication-title: Analytica Chimica Acta – year: 2021 ident: b30 article-title: MAIN: multihead-attention imputation networks multihead-attention imputation networks – year: 2018 ident: b38 article-title: DISAN: Directional self-attention network for rnn/cnn-free language understanding publication-title: AAAI conference on artificial intelligence – start-page: 9 year: 1984 end-page: 37 ident: b2 publication-title: On the estimation of ARIMA models with missing values – start-page: 823 year: 2020 end-page: 835 ident: b39 article-title: Fast and accurate deep bidirectional language representations for unsupervised learning publication-title: Proceedings of the 58th annual meeting of the association for computational linguistics – start-page: 1651 year: 2020 end-page: 1661 ident: b16 article-title: GP-VAE: Deep Probabilistic Time Series Imputation: Deep probabilistic time series imputation publication-title: Proceedings of the twenty third international conference on artificial intelligence and statistics, vol. 108 – reference: . CVPR. – volume: 107 year: 2020 ident: b31 article-title: Handling incomplete heterogeneous data using VAEsling incomplete heterogeneous data using vaes publication-title: Pattern Recognition – volume: 29 start-page: 2920 year: 2010 end-page: 2931 ident: b45 article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values publication-title: Statistics in Medicine – volume: 60 start-page: 549 year: 2009 end-page: 576 ident: b19 article-title: Missing data analysis: making it work in the real world publication-title: Annual Review of Psychology – year: 2016 ident: b52 article-title: Temporal regularized matrix factorization for high-dimensional time series prediction publication-title: Advances in neural information processing systems, vol. 29 – year: 2018 ident: b11 article-title: Gaussian process prior variational autoencoders publication-title: Advances in neural information processing systems, vol. 31 – year: 2019 ident: b13 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: NAACL-HLT – reference: Lee, D., Kim, J., Moon, W. J., & Ye, J. C. (2019). CollaGAN: Collaborative GAN for Missing Image Data Imputation. In – year: 2018 ident: b27 article-title: Multivariate time series imputation with generative adversarial networks publication-title: Advances in neural information processing systems, vol. 31 – volume: 30 start-page: 415 year: 1953 end-page: 433 ident: b41 article-title: Cloze Procedure: A new tool for measuring readability publication-title: Journalism & Mass Communication Quarterly – volume: 66 start-page: 1477 year: 2019 end-page: 1490 ident: b51 article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks publication-title: IEEE Transactions on Biomedical Engineering – start-page: 501 year: 2006 end-page: 508 ident: b44 article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion publication-title: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval – start-page: 11106 year: 2021 end-page: 11115 ident: b54 article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting publication-title: The Thirty-Fifth AAAI conference on artificial intelligence, AAAI 2021, virtual conference , vol. 35 – year: 2017 ident: b15 article-title: UCI Machine Learning Repository – year: 2015 ident: b21 article-title: Adam: A method for stochastic optimization method for stochastic optimization publication-title: 3rd international conference on learning representations, ICLR 2015 – year: 2021 ident: b37 article-title: NRTSI: Non-recurrent time series imputation: Non-recurrent time series imputation – volume: 29 start-page: 1 year: 2015 ident: b43 article-title: Improving multi-step prediction of learned time series models publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 639 year: 2004 end-page: 647 ident: b1 article-title: The treatment of missing values and its effect on classifier accuracy publication-title: Classification, clustering, and data mining applications – year: 2019 ident: b24 article-title: MisGAN: Learning from Incomplete Data with Generative Adversarial Networks publication-title: International conference on learning representations – start-page: 8024 year: 2019 end-page: 8035 ident: b32 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems, vol. 32 – reference: Yi, X., Zheng, Y., Zhang, J., & Li, T. (2016). ST-MVL: Filling Missing Values in Geo-sensory Time Series Data: Filling missing values in geo-sensory time series data. In – volume: 39 year: 2012 ident: b40 article-title: Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012 publication-title: Computing in Cardiology – start-page: 20 year: 2011 ident: b4 article-title: Multiple imputation by chained equations: what is it and how does it work? publication-title: International Journal of Methods in Psychiatric Research – reference: . – year: 2019 ident: b26 article-title: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation publication-title: Advances in neural information processing systems, vol. 32 – year: 2019 ident: b29 article-title: CDSA: cross-dimensional self-attention for multivariate, geo-tagged time series imputation – reference: Yoon, S., & Sull, S. (2020). GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data. In – year: 2006 ident: b17 article-title: Methods for the estimation of missing values in time series – volume: 13 start-page: E109 year: 2021 end-page: E121 ident: b14 article-title: Forecasting loss of signal in optical networks with machine learning publication-title: Journal of Optical Communications and Networking – volume: 101 start-page: E215 issue: 23 year: 2000 ident: 10.1016/j.eswa.2023.119619_b18 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 3094 year: 2019 ident: 10.1016/j.eswa.2023.119619_b28 article-title: E2GAN: End-to-end generative adversarial network for multivariate time series imputation – year: 2017 ident: 10.1016/j.eswa.2023.119619_b15 – start-page: 32 year: 2013 ident: 10.1016/j.eswa.2023.119619_b8 article-title: Combining multiple imputation and meta-analysis with individual participant data publication-title: Statistics in Medicine – year: 2019 ident: 10.1016/j.eswa.2023.119619_b29 – year: 1986 ident: 10.1016/j.eswa.2023.119619_b25 – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2023.119619_b20 article-title: Deep residual learning for image recognition – start-page: 5689 year: 2018 ident: 10.1016/j.eswa.2023.119619_b49 article-title: GAIN: Missing data imputation using generative adversarial nets – start-page: 11106 year: 2021 ident: 10.1016/j.eswa.2023.119619_b54 article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting – year: 2019 ident: 10.1016/j.eswa.2023.119619_b13 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – start-page: 823 year: 2020 ident: 10.1016/j.eswa.2023.119619_b39 article-title: Fast and accurate deep bidirectional language representations for unsupervised learning – start-page: 639 year: 2004 ident: 10.1016/j.eswa.2023.119619_b1 article-title: The treatment of missing values and its effect on classifier accuracy – volume: 39 issue: 245 year: 2012 ident: 10.1016/j.eswa.2023.119619_b40 article-title: Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012 publication-title: Computing in Cardiology – volume: 29 start-page: 2920 year: 2010 ident: 10.1016/j.eswa.2023.119619_b45 article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values publication-title: Statistics in Medicine doi: 10.1002/sim.3944 – volume: 30 start-page: 415 year: 1953 ident: 10.1016/j.eswa.2023.119619_b41 article-title: Cloze Procedure: A new tool for measuring readability publication-title: Journalism & Mass Communication Quarterly – year: 2019 ident: 10.1016/j.eswa.2023.119619_b47 article-title: XLNet: Generalized autoregressive pretraining for language understanding – start-page: 8 year: 2018 ident: 10.1016/j.eswa.2023.119619_b12 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Scientific Reports – volume: 29 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2023.119619_b43 article-title: Improving multi-step prediction of learned time series models publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v29i1.9590 – year: 2019 ident: 10.1016/j.eswa.2023.119619_b24 article-title: MisGAN: Learning from Incomplete Data with Generative Adversarial Networks – year: 2018 ident: 10.1016/j.eswa.2023.119619_b38 article-title: DISAN: Directional self-attention network for rnn/cnn-free language understanding – ident: 10.1016/j.eswa.2023.119619_b46 – year: 2018 ident: 10.1016/j.eswa.2023.119619_b10 article-title: BRITS: Bidirectional Recurrent Imputation for Time Series – year: 2018 ident: 10.1016/j.eswa.2023.119619_b27 article-title: Multivariate time series imputation with generative adversarial networks – ident: 10.1016/j.eswa.2023.119619_b34 doi: 10.1109/CVPR42600.2020.01421 – year: 2020 ident: 10.1016/j.eswa.2023.119619_b3 – year: 2019 ident: 10.1016/j.eswa.2023.119619_b26 article-title: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation – year: 2016 ident: 10.1016/j.eswa.2023.119619_b36 article-title: Improved techniques for training GANs – start-page: 20 year: 2011 ident: 10.1016/j.eswa.2023.119619_b4 article-title: Multiple imputation by chained equations: what is it and how does it work? publication-title: International Journal of Methods in Psychiatric Research – year: 2021 ident: 10.1016/j.eswa.2023.119619_b6 – year: 2006 ident: 10.1016/j.eswa.2023.119619_b17 – year: 2016 ident: 10.1016/j.eswa.2023.119619_b5 – start-page: 8024 year: 2019 ident: 10.1016/j.eswa.2023.119619_b32 article-title: PyTorch: An imperative style, high-performance deep learning library – year: 2017 ident: 10.1016/j.eswa.2023.119619_b42 article-title: Attention is all you need – volume: 66 start-page: 1477 issue: 5 year: 2019 ident: 10.1016/j.eswa.2023.119619_b51 article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2018.2874712 – start-page: 9 year: 1984 ident: 10.1016/j.eswa.2023.119619_b2 – volume: 60 start-page: 549 year: 2009 ident: 10.1016/j.eswa.2023.119619_b19 article-title: Missing data analysis: making it work in the real world publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.58.110405.085530 – start-page: 501 year: 2006 ident: 10.1016/j.eswa.2023.119619_b44 article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion – volume: 107 year: 2020 ident: 10.1016/j.eswa.2023.119619_b31 article-title: Handling incomplete heterogeneous data using VAEsling incomplete heterogeneous data using vaes publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107501 – year: 2021 ident: 10.1016/j.eswa.2023.119619_b37 – start-page: 473 year: 2017 ident: 10.1016/j.eswa.2023.119619_b53 article-title: Cautionary tales on air-quality improvement in Beijing publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – ident: 10.1016/j.eswa.2023.119619_b23 doi: 10.1109/CVPR.2019.00259 – volume: 10 start-page: 187 issue: 2 year: 2006 ident: 10.1016/j.eswa.2023.119619_b22 article-title: The effects of the irregular sample and missing data in time series analysis publication-title: Nonlinear Dynamics, Psychology, and Life Sciences – ident: 10.1016/j.eswa.2023.119619_b50 doi: 10.1109/CVPR42600.2020.00848 – start-page: 3898 year: 2021 ident: 10.1016/j.eswa.2023.119619_b33 article-title: Longitudinal variational autoencoder – year: 2018 ident: 10.1016/j.eswa.2023.119619_b11 article-title: Gaussian process prior variational autoencoders – ident: 10.1016/j.eswa.2023.119619_b48 – volume: 13 start-page: E109 issue: 10 year: 2021 ident: 10.1016/j.eswa.2023.119619_b14 article-title: Forecasting loss of signal in optical networks with machine learning publication-title: Journal of Optical Communications and Networking doi: 10.1364/JOCN.423667 – volume: 1013 start-page: 13 year: 2018 ident: 10.1016/j.eswa.2023.119619_b9 article-title: Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2018.01.062 – year: 2016 ident: 10.1016/j.eswa.2023.119619_b52 article-title: Temporal regularized matrix factorization for high-dimensional time series prediction – year: 2021 ident: 10.1016/j.eswa.2023.119619_b30 – volume: 63 start-page: 581 issue: 3 year: 1976 ident: 10.1016/j.eswa.2023.119619_b35 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – year: 2015 ident: 10.1016/j.eswa.2023.119619_b21 article-title: Adam: A method for stochastic optimization method for stochastic optimization – start-page: 1651 year: 2020 ident: 10.1016/j.eswa.2023.119619_b16 article-title: GP-VAE: Deep Probabilistic Time Series Imputation: Deep probabilistic time series imputation – volume: 212 year: 2021 ident: 10.1016/j.eswa.2023.119619_b7 article-title: Imputation techniques for the reconstruction of missing interconnected data from higher Educational Institutions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106512 |
SSID | ssj0017007 |
Score | 2.7201123 |
Snippet | Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119619 |
SubjectTerms | Imputation model Missing values Neural network Self-attention Time series |
Title | SAITS: Self-attention-based imputation for time series |
URI | https://dx.doi.org/10.1016/j.eswa.2023.119619 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbrG2S3U3XWymWVqGXtNBb2CdUSi224s3f7kweRUF6MIdAwg4kXyYzs-y33xByJ0NXeCU065ogGLdJzIzWKUuNjrVNuRG6IMiO5XDKn2di1iD9ei8M0iqr2F_G9CJaV3faFZrt1XzezqA4gHSIK43FDlBU_OQ8RS9_-NrSPFB-Li319lKGo6uNMyXHy68_UXsoTiByKIlqO38lpx8JZ3BMDqtKkfbKhzkhDb88JUd1FwZa_ZRnRGa90SR7pJlfBIZqmQV_kWF6cnSOowvwKVSnFDvJU3Q6vz4n08HTpD9kVTcEZuEFNyy2kQjWQIoPykKZFJTn3oVuzK3iHQuHdFrJGCAGSGDqGaE0nXZBWBFE5JMLsrd8W_pLQq1PAleBxw5OuqOMg2lDx7ggpUugZGiSqIYht5VUOHasWOQ1J-w1R-hyhC4voWuS-63NqhTK2Dla1Ojmvz53DpF8h93VP-2uyQFelRyvG7K3ef_wt1BNbEyrcJcW2e-NXobjb1IfyJ0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGDhjShPDzAh08axkwaJAfFQS4GlReoWHMeWiqpS0SLEwp_iD3KXRwUSYkAiQ4bEtpzPp7uz8vk7gIPANZSNlOaNxCkujS94onXIw0QLbUKZKJ0RZO-C5r287qleBT7KszBEqyx8f-7TM29dPKkVaNZG_X6tg8kBhkP605idAC0rWLft2yvu28anrQtc5EMhri67501elBbgBltPuDCecibBeOkigzmHi6y0qWsIaSJZN3gFqY4CgfPF8XEf55HOm06dMsopz_o47gzMSXQXVDbh-H3KKyG9uzAX-As5Ta84qZOTyuz4lcSOhI-uKgpI3uenaPglwl0tw2KRmrKz_OtXoGKHq7BUln1ghRdYg6Bz1up2TljHDhwnec6MMMkpHqasT62z1WaYDjMqXc_Iyu14He7_BaMNmB0-De0mMGN9JyMnRYo3XY-SFPcp9SR1QZD6mKNUwSthiE2hTU4lMgZxSUJ7jAm6mKCLc-iqcDTtM8qVOX5trUp042_2FWPo-KXf1h_77cN8s3t7E9-07trbsEBvcoLZDsxOnl_sLqYyk2QvMx0GD_9tq58fJgS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAITS%3A+Self-attention-based+imputation+for+time+series&rft.jtitle=Expert+systems+with+applications&rft.au=Du%2C+Wenjie&rft.au=C%C3%B4t%C3%A9%2C+David&rft.au=Liu%2C+Yan&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=219&rft_id=info:doi/10.1016%2Fj.eswa.2023.119619&rft.externalDocID=S0957417423001203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |