SAITS: Self-attention-based imputation for time series

Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism f...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 219; p. 119619
Main Authors Du, Wenjie, Côté, David, Liu, Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism for missing value imputation in multivariate time series. Trained by a joint-optimization approach, SAITS learns missing values from a weighted combination of two diagonally-masked self-attention (DMSA) blocks. DMSA explicitly captures both the temporal dependencies and feature correlations between time steps, which improves imputation accuracy and training speed. Meanwhile, the weighted-combination design enables SAITS to dynamically assign weights to the learned representations from two DMSA blocks according to the attention map and the missingness information. Extensive experiments quantitatively and qualitatively demonstrate that SAITS outperforms the state-of-the-art methods on the time-series imputation task efficiently and reveal SAITS’ potential to improve the learning performance of pattern recognition models on incomplete time-series data from the real world. •Address the missing data problem in time-series analysis tasks by deep learning.•A novel self-attention model imputes missing values in incomplete time series.•Our method solves the disadvantages of previous RNN-based imputation models.•SAITS has a better imputation model architecture than Transformer.•SAITS achieves the state-of-the-art performance on the time-series imputation task.
AbstractList Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental challenge is to determine what values should be filled in. This paper proposes SAITS, a novel method based on the self-attention mechanism for missing value imputation in multivariate time series. Trained by a joint-optimization approach, SAITS learns missing values from a weighted combination of two diagonally-masked self-attention (DMSA) blocks. DMSA explicitly captures both the temporal dependencies and feature correlations between time steps, which improves imputation accuracy and training speed. Meanwhile, the weighted-combination design enables SAITS to dynamically assign weights to the learned representations from two DMSA blocks according to the attention map and the missingness information. Extensive experiments quantitatively and qualitatively demonstrate that SAITS outperforms the state-of-the-art methods on the time-series imputation task efficiently and reveal SAITS’ potential to improve the learning performance of pattern recognition models on incomplete time-series data from the real world. •Address the missing data problem in time-series analysis tasks by deep learning.•A novel self-attention model imputes missing values in incomplete time series.•Our method solves the disadvantages of previous RNN-based imputation models.•SAITS has a better imputation model architecture than Transformer.•SAITS achieves the state-of-the-art performance on the time-series imputation task.
ArticleNumber 119619
Author Liu, Yan
Côté, David
Du, Wenjie
Author_xml – sequence: 1
  givenname: Wenjie
  orcidid: 0000-0003-3046-7835
  surname: Du
  fullname: Du, Wenjie
  email: wenjie.du@mail.concordia.ca
  organization: Concordia University, Montréal, Canada
– sequence: 2
  givenname: David
  orcidid: 0000-0001-7468-0430
  surname: Côté
  fullname: Côté, David
  email: dcote@ciena.com
  organization: Ciena Corporation, Ottawa, Canada
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-6747-8151
  surname: Liu
  fullname: Liu, Yan
  email: yan.liu@concordia.ca
  organization: Concordia University, Montréal, Canada
BookMark eNp9j81KAzEUhYNUsK2-gKt5gYy5yWQyETel-FMouGhdhzRzAyntTEmi4tvbYVy56N0cuPAdzjcjk67vkJB7YCUwqB_2JaZvW3LGRQmga9BXZAqNErRWWkzIlGmpaAWquiGzlPaMgWJMTUm9Way2m8digwdPbc7Y5dB3dGcTtkU4nj6zHR6F72ORwxGLhDFguiXX3h4S3v3lnHy8PG-Xb3T9_rpaLtbUCcYy5Q6kdzumpNdOAniNFba-4ZXTFXPnq1ura86tq7gAIaCRGmzrpZNeAoo5acZeF_uUInrjwrgoRxsOBpgZ_M3eDP5m8Dej_xnl_9BTDEcbfy5DTyOEZ6mvgNEkF7Bz2IaILpu2D5fwX0D1dgI
CitedBy_id crossref_primary_10_1016_j_knosys_2024_112917
crossref_primary_10_1016_j_knosys_2023_110737
crossref_primary_10_1016_j_eswa_2024_124787
crossref_primary_10_1016_j_knosys_2023_110896
crossref_primary_10_1007_s10115_024_02159_7
crossref_primary_10_1016_j_physa_2024_129914
crossref_primary_10_1007_s10462_024_11039_z
crossref_primary_10_1016_j_knosys_2023_111270
crossref_primary_10_1007_s10618_023_00987_9
crossref_primary_10_3390_stats8010007
crossref_primary_10_1016_j_jneumeth_2024_110157
crossref_primary_10_1063_5_0176922
crossref_primary_10_1145_3698107
crossref_primary_10_1016_j_knosys_2023_111233
crossref_primary_10_1007_s10489_025_06240_8
crossref_primary_10_1109_TIM_2024_3372213
crossref_primary_10_1016_j_media_2024_103103
crossref_primary_10_1093_jamia_ocae323
crossref_primary_10_1016_j_chemolab_2024_105193
crossref_primary_10_1109_JBHI_2024_3433461
crossref_primary_10_1109_TKDE_2024_3392897
crossref_primary_10_1016_j_knosys_2023_111215
crossref_primary_10_1109_JSEN_2024_3519370
crossref_primary_10_3390_forecast5010017
crossref_primary_10_1016_j_cageo_2024_105789
crossref_primary_10_14778_3632093_3632100
crossref_primary_10_1007_s00521_025_11028_5
crossref_primary_10_3389_fnagi_2024_1356745
crossref_primary_10_1016_j_neucom_2024_128948
crossref_primary_10_1016_j_enbenv_2024_12_005
crossref_primary_10_1134_S1995080224606854
crossref_primary_10_3390_fractalfract9030181
crossref_primary_10_3390_buildings15020236
crossref_primary_10_1007_s12530_024_09644_y
crossref_primary_10_1016_j_asoc_2023_110647
crossref_primary_10_1016_j_eswa_2023_120552
crossref_primary_10_1016_j_neunet_2025_107298
crossref_primary_10_1109_TGRS_2024_3435044
crossref_primary_10_1038_s41598_023_34077_z
crossref_primary_10_1109_JAS_2024_124611
crossref_primary_10_1049_rsn2_12695
crossref_primary_10_1109_TIM_2023_3307765
crossref_primary_10_14778_3632093_3632115
crossref_primary_10_1016_j_est_2025_116186
crossref_primary_10_3389_fphy_2023_1095277
crossref_primary_10_1007_s41060_024_00547_4
crossref_primary_10_1109_TFUZZ_2024_3466175
crossref_primary_10_3233_JIFS_232737
crossref_primary_10_1016_j_knosys_2023_110919
crossref_primary_10_1007_s10489_024_05314_3
crossref_primary_10_3390_math13010152
crossref_primary_10_1038_s41598_024_75678_6
crossref_primary_10_26748_KSOE_2024_065
crossref_primary_10_1007_s11227_024_06670_0
crossref_primary_10_1109_TVT_2024_3382729
crossref_primary_10_1016_j_eswa_2023_121737
crossref_primary_10_1016_j_inpa_2023_10_001
crossref_primary_10_1128_msystems_00697_24
crossref_primary_10_1109_TSUSC_2024_3353183
crossref_primary_10_1007_s13222_024_00488_z
crossref_primary_10_1109_LSP_2022_3224880
crossref_primary_10_1007_s13755_024_00295_6
crossref_primary_10_1016_j_eswa_2023_122148
crossref_primary_10_1109_ACCESS_2024_3496319
crossref_primary_10_1109_JSEN_2024_3457625
crossref_primary_10_1016_j_eswa_2024_124553
crossref_primary_10_1016_j_eswa_2025_126435
crossref_primary_10_1371_journal_pone_0306303
crossref_primary_10_1109_TASE_2023_3317978
crossref_primary_10_1177_19322968241308217
crossref_primary_10_1016_j_ijmedinf_2024_105744
crossref_primary_10_12677_jisp_2024_132014
crossref_primary_10_1186_s12911_024_02514_2
crossref_primary_10_1016_j_jag_2024_104003
crossref_primary_10_3389_fenrg_2024_1362371
crossref_primary_10_1145_3649841
crossref_primary_10_1109_ACCESS_2023_3315343
crossref_primary_10_1021_acs_jctc_4c01237
crossref_primary_10_1016_j_eswa_2025_127001
crossref_primary_10_1016_j_neunet_2023_07_033
crossref_primary_10_1108_IJWIS_04_2024_0119
crossref_primary_10_1016_j_knosys_2024_112114
crossref_primary_10_32604_cmc_2024_048813
crossref_primary_10_1016_j_eswa_2024_124155
crossref_primary_10_1109_ACCESS_2024_3416345
Cites_doi 10.1161/01.CIR.101.23.e215
10.1002/sim.3944
10.1609/aaai.v29i1.9590
10.1109/CVPR42600.2020.01421
10.1109/TBME.2018.2874712
10.1146/annurev.psych.58.110405.085530
10.1016/j.patcog.2020.107501
10.1109/CVPR.2019.00259
10.1109/CVPR42600.2020.00848
10.1364/JOCN.423667
10.1016/j.aca.2018.01.062
10.1093/biomet/63.3.581
10.1016/j.knosys.2020.106512
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119619
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119619
S0957417423001203
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-2c15fcb075f9c511f9e4edf824c940cccc6da9622ac42313318591adf5c5f51e3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:08 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Missing values
Imputation model
Time series
Self-attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2c15fcb075f9c511f9e4edf824c940cccc6da9622ac42313318591adf5c5f51e3
ORCID 0000-0002-6747-8151
0000-0001-7468-0430
0000-0003-3046-7835
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_119619
crossref_primary_10_1016_j_eswa_2023_119619
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Luo, Zhang, Cai, Yuan (b28) 2019
Azur, Stuart, Frangakis, Leaf (b4) 2011
Li, Jiang, Marlin (b24) 2019
Shin, Lee, Yoon, Jung (b39) 2020
Burgess, White, Resche-Rigon, Wood (b8) 2013
Che, Purushotham, Cho, Sontag, Liu (b12) 2018
Silva, Moody, Scott, Celi, Mark (b40) 2012; 39
Bruni, Daraio, Aureli (b7) 2021; 212
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (b42) 2017
Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). McFlow: Monte Carlo Flow Models for Data Imputation. In
Yoon, Jordon, van der Schaar (b49) 2018
Yoon, Zame, van der Schaar (b51) 2019; 66
Yoon, S., & Sull, S. (2020). GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data. In
Bansal, Deshpande, Sarawagi (b6) 2021
Lee, D., Kim, J., Moon, W. J., & Ye, J. C. (2019). CollaGAN: Collaborative GAN for Missing Image Data Imputation. In
Ashman, So, Tebbutt, Fortuin, Pearce, Turner (b3) 2020
Rubin (b35) 1976; 63
Fortuin, Baranchuk, Raetsch, Mandt (b16) 2020
Ramchandran, Tikhonov, Kujanpää, Koskinen, Lähdesmäki (b33) 2021
.
Zhou, Zhang, Peng, Zhang, Li, Xiong, Zhang (b54) 2021
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Chintala (b32) 2019
Casale, Dalca, Saglietti, Listgarten, Fusi (b11) 2018
Fung (b17) 2006
Wu, R., Zhang, A., Ilyas, I., & Rekatsinas, T. (2020). Attention-based Learning for Missing Data Imputation in HoloClean. In I. Dhillon, D. Papailiopoulos, & V. Sze (Eds.)
Zhang, Guo, Dong, He, Xu, Chen (b53) 2017
Yang, Dai, Yang, Carbonell, Salakhutdinov, Le (b47) 2019
(pp. 307–325).
Luo, Cai, Zhang, Xu, xiaojie (b27) 2018
White, Carlin (b45) 2010; 29
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen, Chen (b36) 2016
CVPR.
Yi, X., Zheng, Y., Zhang, J., & Li, T. (2016). ST-MVL: Filling Missing Values in Geo-sensory Time Series Data: Filling missing values in geo-sensory time series data. In
Ansley, Kohn (b2) 1984
Venkatraman, Hebert, Bagnell (b43) 2015; 29
Acuna, Rodriguez (b1) 2004
Kreindler, Lumsden (b22) 2006; 10
Wang, de Vries, Reinders (b44) 2006
Graham (b19) 2009; 60
Ma, Shou, Zareian, Mansour, Vetro, Chang (b29) 2019
Yu, Rao, Dhillon (b52) 2016
Little, Rubin (b25) 1986
Mouselinos, Polymenakos, Nikitakis, Kyriakopoulos (b30) 2021
Liu, Yu, Zheng, Zhan (b26) 2019
Devlin, Chang, Lee, Toutanova (b13) 2019
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Stanley (b18) 2000; 101
Shen, Zhou, Long, Jiang, Pan, Zhang (b38) 2018
Kingma, Ba (b21) 2015
Taylor (b41) 1953; 30
Burgués, Jiménez-Soto, Marco (b9) 2018; 1013
Shan, Oliva (b37) 2021
Cao, Wang, Li, Zhou, Li, Li (b10) 2018
Nazábal, Olmos, Ghahramani, Valera (b31) 2020; 107
Du, Côté, Barber, Liu (b14) 2021; 13
Dua, Graff (b15) 2017
He, Zhang, Ren, Sun (b20) 2016
Ba, Kiros, Hinton (b5) 2016
Burgués (10.1016/j.eswa.2023.119619_b9) 2018; 1013
Fortuin (10.1016/j.eswa.2023.119619_b16) 2020
Ba (10.1016/j.eswa.2023.119619_b5) 2016
White (10.1016/j.eswa.2023.119619_b45) 2010; 29
Fung (10.1016/j.eswa.2023.119619_b17) 2006
Cao (10.1016/j.eswa.2023.119619_b10) 2018
Luo (10.1016/j.eswa.2023.119619_b27) 2018
Shan (10.1016/j.eswa.2023.119619_b37) 2021
Yu (10.1016/j.eswa.2023.119619_b52) 2016
He (10.1016/j.eswa.2023.119619_b20) 2016
Bansal (10.1016/j.eswa.2023.119619_b6) 2021
Shin (10.1016/j.eswa.2023.119619_b39) 2020
Ma (10.1016/j.eswa.2023.119619_b29) 2019
Burgess (10.1016/j.eswa.2023.119619_b8) 2013
Shen (10.1016/j.eswa.2023.119619_b38) 2018
10.1016/j.eswa.2023.119619_b50
Kingma (10.1016/j.eswa.2023.119619_b21) 2015
Venkatraman (10.1016/j.eswa.2023.119619_b43) 2015; 29
Che (10.1016/j.eswa.2023.119619_b12) 2018
Mouselinos (10.1016/j.eswa.2023.119619_b30) 2021
10.1016/j.eswa.2023.119619_b48
Ashman (10.1016/j.eswa.2023.119619_b3) 2020
10.1016/j.eswa.2023.119619_b46
Vaswani (10.1016/j.eswa.2023.119619_b42) 2017
Little (10.1016/j.eswa.2023.119619_b25) 1986
Zhang (10.1016/j.eswa.2023.119619_b53) 2017
Graham (10.1016/j.eswa.2023.119619_b19) 2009; 60
Goldberger (10.1016/j.eswa.2023.119619_b18) 2000; 101
Silva (10.1016/j.eswa.2023.119619_b40) 2012; 39
Paszke (10.1016/j.eswa.2023.119619_b32) 2019
Yang (10.1016/j.eswa.2023.119619_b47) 2019
Yoon (10.1016/j.eswa.2023.119619_b49) 2018
Taylor (10.1016/j.eswa.2023.119619_b41) 1953; 30
Dua (10.1016/j.eswa.2023.119619_b15) 2017
Rubin (10.1016/j.eswa.2023.119619_b35) 1976; 63
10.1016/j.eswa.2023.119619_b34
Yoon (10.1016/j.eswa.2023.119619_b51) 2019; 66
Acuna (10.1016/j.eswa.2023.119619_b1) 2004
Liu (10.1016/j.eswa.2023.119619_b26) 2019
Nazábal (10.1016/j.eswa.2023.119619_b31) 2020; 107
Wang (10.1016/j.eswa.2023.119619_b44) 2006
Casale (10.1016/j.eswa.2023.119619_b11) 2018
Salimans (10.1016/j.eswa.2023.119619_b36) 2016
Devlin (10.1016/j.eswa.2023.119619_b13) 2019
Li (10.1016/j.eswa.2023.119619_b24) 2019
Zhou (10.1016/j.eswa.2023.119619_b54) 2021
Kreindler (10.1016/j.eswa.2023.119619_b22) 2006; 10
Azur (10.1016/j.eswa.2023.119619_b4) 2011
Ansley (10.1016/j.eswa.2023.119619_b2) 1984
10.1016/j.eswa.2023.119619_b23
Ramchandran (10.1016/j.eswa.2023.119619_b33) 2021
Bruni (10.1016/j.eswa.2023.119619_b7) 2021; 212
Luo (10.1016/j.eswa.2023.119619_b28) 2019
Du (10.1016/j.eswa.2023.119619_b14) 2021; 13
References_xml – volume: 101
  start-page: E215
  year: 2000
  end-page: 20
  ident: b18
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– year: 1986
  ident: b25
  article-title: Statistical analysis with missing data
– reference: Richardson, T. W., Wu, W., Lin, L., Xu, B., & Bernal, E. A. (2020). McFlow: Monte Carlo Flow Models for Data Imputation. In
– volume: 10
  start-page: 187
  year: 2006
  end-page: 214
  ident: b22
  article-title: The effects of the irregular sample and missing data in time series analysis
  publication-title: Nonlinear Dynamics, Psychology, and Life Sciences
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  ident: b35
  article-title: Inference and missing data
  publication-title: Biometrika
– reference: (pp. 307–325).
– start-page: 3094
  year: 2019
  end-page: 3100
  ident: b28
  article-title: E
  publication-title: Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI-19
– start-page: 770
  year: 2016
  end-page: 778
  ident: b20
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE conference on computer vision and pattern recognition
– start-page: 3898
  year: 2021
  end-page: 3906
  ident: b33
  article-title: Longitudinal variational autoencoder
  publication-title: Proceedings of the 24th international conference on artificial intelligence and statistics, vol. 130
– year: 2016
  ident: b36
  article-title: Improved techniques for training GANs
  publication-title: Advances in neural information processing systems, vol. 29
– start-page: 5689
  year: 2018
  end-page: 5698
  ident: b49
  article-title: GAIN: Missing data imputation using generative adversarial nets
  publication-title: Proceedings of the 35th international conference on machine learning, vol. 80
– year: 2017
  ident: b42
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems, vol. 30
– year: 2021
  ident: b6
  article-title: Missing value imputation on multidimensional time series
– year: 2019
  ident: b47
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
  publication-title: NeurIPS
– year: 2020
  ident: b3
  article-title: Sparse Gaussian process variational autoencoders
– year: 2016
  ident: b5
  article-title: Layer normalization
– year: 2018
  ident: b10
  article-title: BRITS: Bidirectional Recurrent Imputation for Time Series
  publication-title: Advances in neural information processing systems, vol. 31
– start-page: 473
  year: 2017
  ident: b53
  article-title: Cautionary tales on air-quality improvement in Beijing
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– start-page: 8
  year: 2018
  ident: b12
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Scientific Reports
– reference: Wu, R., Zhang, A., Ilyas, I., & Rekatsinas, T. (2020). Attention-based Learning for Missing Data Imputation in HoloClean. In I. Dhillon, D. Papailiopoulos, & V. Sze (Eds.),
– volume: 212
  year: 2021
  ident: b7
  article-title: Imputation techniques for the reconstruction of missing interconnected data from higher Educational Institutions
  publication-title: Knowledge-Based Systems
– start-page: 32
  year: 2013
  ident: b8
  article-title: Combining multiple imputation and meta-analysis with individual participant data
  publication-title: Statistics in Medicine
– volume: 1013
  start-page: 13
  year: 2018
  end-page: 25
  ident: b9
  article-title: Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models
  publication-title: Analytica Chimica Acta
– year: 2021
  ident: b30
  article-title: MAIN: multihead-attention imputation networks multihead-attention imputation networks
– year: 2018
  ident: b38
  article-title: DISAN: Directional self-attention network for rnn/cnn-free language understanding
  publication-title: AAAI conference on artificial intelligence
– start-page: 9
  year: 1984
  end-page: 37
  ident: b2
  publication-title: On the estimation of ARIMA models with missing values
– start-page: 823
  year: 2020
  end-page: 835
  ident: b39
  article-title: Fast and accurate deep bidirectional language representations for unsupervised learning
  publication-title: Proceedings of the 58th annual meeting of the association for computational linguistics
– start-page: 1651
  year: 2020
  end-page: 1661
  ident: b16
  article-title: GP-VAE: Deep Probabilistic Time Series Imputation: Deep probabilistic time series imputation
  publication-title: Proceedings of the twenty third international conference on artificial intelligence and statistics, vol. 108
– reference: . CVPR.
– volume: 107
  year: 2020
  ident: b31
  article-title: Handling incomplete heterogeneous data using VAEsling incomplete heterogeneous data using vaes
  publication-title: Pattern Recognition
– volume: 29
  start-page: 2920
  year: 2010
  end-page: 2931
  ident: b45
  article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
  publication-title: Statistics in Medicine
– volume: 60
  start-page: 549
  year: 2009
  end-page: 576
  ident: b19
  article-title: Missing data analysis: making it work in the real world
  publication-title: Annual Review of Psychology
– year: 2016
  ident: b52
  article-title: Temporal regularized matrix factorization for high-dimensional time series prediction
  publication-title: Advances in neural information processing systems, vol. 29
– year: 2018
  ident: b11
  article-title: Gaussian process prior variational autoencoders
  publication-title: Advances in neural information processing systems, vol. 31
– year: 2019
  ident: b13
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: NAACL-HLT
– reference: Lee, D., Kim, J., Moon, W. J., & Ye, J. C. (2019). CollaGAN: Collaborative GAN for Missing Image Data Imputation. In
– year: 2018
  ident: b27
  article-title: Multivariate time series imputation with generative adversarial networks
  publication-title: Advances in neural information processing systems, vol. 31
– volume: 30
  start-page: 415
  year: 1953
  end-page: 433
  ident: b41
  article-title: Cloze Procedure: A new tool for measuring readability
  publication-title: Journalism & Mass Communication Quarterly
– volume: 66
  start-page: 1477
  year: 2019
  end-page: 1490
  ident: b51
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 501
  year: 2006
  end-page: 508
  ident: b44
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
  publication-title: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval
– start-page: 11106
  year: 2021
  end-page: 11115
  ident: b54
  article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting
  publication-title: The Thirty-Fifth AAAI conference on artificial intelligence, AAAI 2021, virtual conference , vol. 35
– year: 2017
  ident: b15
  article-title: UCI Machine Learning Repository
– year: 2015
  ident: b21
  article-title: Adam: A method for stochastic optimization method for stochastic optimization
  publication-title: 3rd international conference on learning representations, ICLR 2015
– year: 2021
  ident: b37
  article-title: NRTSI: Non-recurrent time series imputation: Non-recurrent time series imputation
– volume: 29
  start-page: 1
  year: 2015
  ident: b43
  article-title: Improving multi-step prediction of learned time series models
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 639
  year: 2004
  end-page: 647
  ident: b1
  article-title: The treatment of missing values and its effect on classifier accuracy
  publication-title: Classification, clustering, and data mining applications
– year: 2019
  ident: b24
  article-title: MisGAN: Learning from Incomplete Data with Generative Adversarial Networks
  publication-title: International conference on learning representations
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b32
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Advances in neural information processing systems, vol. 32
– reference: Yi, X., Zheng, Y., Zhang, J., & Li, T. (2016). ST-MVL: Filling Missing Values in Geo-sensory Time Series Data: Filling missing values in geo-sensory time series data. In
– volume: 39
  year: 2012
  ident: b40
  article-title: Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012
  publication-title: Computing in Cardiology
– start-page: 20
  year: 2011
  ident: b4
  article-title: Multiple imputation by chained equations: what is it and how does it work?
  publication-title: International Journal of Methods in Psychiatric Research
– reference: .
– year: 2019
  ident: b26
  article-title: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation
  publication-title: Advances in neural information processing systems, vol. 32
– year: 2019
  ident: b29
  article-title: CDSA: cross-dimensional self-attention for multivariate, geo-tagged time series imputation
– reference: Yoon, S., & Sull, S. (2020). GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data. In
– year: 2006
  ident: b17
  article-title: Methods for the estimation of missing values in time series
– volume: 13
  start-page: E109
  year: 2021
  end-page: E121
  ident: b14
  article-title: Forecasting loss of signal in optical networks with machine learning
  publication-title: Journal of Optical Communications and Networking
– volume: 101
  start-page: E215
  issue: 23
  year: 2000
  ident: 10.1016/j.eswa.2023.119619_b18
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 3094
  year: 2019
  ident: 10.1016/j.eswa.2023.119619_b28
  article-title: E2GAN: End-to-end generative adversarial network for multivariate time series imputation
– year: 2017
  ident: 10.1016/j.eswa.2023.119619_b15
– start-page: 32
  year: 2013
  ident: 10.1016/j.eswa.2023.119619_b8
  article-title: Combining multiple imputation and meta-analysis with individual participant data
  publication-title: Statistics in Medicine
– year: 2019
  ident: 10.1016/j.eswa.2023.119619_b29
– year: 1986
  ident: 10.1016/j.eswa.2023.119619_b25
– start-page: 770
  year: 2016
  ident: 10.1016/j.eswa.2023.119619_b20
  article-title: Deep residual learning for image recognition
– start-page: 5689
  year: 2018
  ident: 10.1016/j.eswa.2023.119619_b49
  article-title: GAIN: Missing data imputation using generative adversarial nets
– start-page: 11106
  year: 2021
  ident: 10.1016/j.eswa.2023.119619_b54
  article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting
– year: 2019
  ident: 10.1016/j.eswa.2023.119619_b13
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– start-page: 823
  year: 2020
  ident: 10.1016/j.eswa.2023.119619_b39
  article-title: Fast and accurate deep bidirectional language representations for unsupervised learning
– start-page: 639
  year: 2004
  ident: 10.1016/j.eswa.2023.119619_b1
  article-title: The treatment of missing values and its effect on classifier accuracy
– volume: 39
  issue: 245
  year: 2012
  ident: 10.1016/j.eswa.2023.119619_b40
  article-title: Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012
  publication-title: Computing in Cardiology
– volume: 29
  start-page: 2920
  year: 2010
  ident: 10.1016/j.eswa.2023.119619_b45
  article-title: Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3944
– volume: 30
  start-page: 415
  year: 1953
  ident: 10.1016/j.eswa.2023.119619_b41
  article-title: Cloze Procedure: A new tool for measuring readability
  publication-title: Journalism & Mass Communication Quarterly
– year: 2019
  ident: 10.1016/j.eswa.2023.119619_b47
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
– start-page: 8
  year: 2018
  ident: 10.1016/j.eswa.2023.119619_b12
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Scientific Reports
– volume: 29
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2023.119619_b43
  article-title: Improving multi-step prediction of learned time series models
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v29i1.9590
– year: 2019
  ident: 10.1016/j.eswa.2023.119619_b24
  article-title: MisGAN: Learning from Incomplete Data with Generative Adversarial Networks
– year: 2018
  ident: 10.1016/j.eswa.2023.119619_b38
  article-title: DISAN: Directional self-attention network for rnn/cnn-free language understanding
– ident: 10.1016/j.eswa.2023.119619_b46
– year: 2018
  ident: 10.1016/j.eswa.2023.119619_b10
  article-title: BRITS: Bidirectional Recurrent Imputation for Time Series
– year: 2018
  ident: 10.1016/j.eswa.2023.119619_b27
  article-title: Multivariate time series imputation with generative adversarial networks
– ident: 10.1016/j.eswa.2023.119619_b34
  doi: 10.1109/CVPR42600.2020.01421
– year: 2020
  ident: 10.1016/j.eswa.2023.119619_b3
– year: 2019
  ident: 10.1016/j.eswa.2023.119619_b26
  article-title: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation
– year: 2016
  ident: 10.1016/j.eswa.2023.119619_b36
  article-title: Improved techniques for training GANs
– start-page: 20
  year: 2011
  ident: 10.1016/j.eswa.2023.119619_b4
  article-title: Multiple imputation by chained equations: what is it and how does it work?
  publication-title: International Journal of Methods in Psychiatric Research
– year: 2021
  ident: 10.1016/j.eswa.2023.119619_b6
– year: 2006
  ident: 10.1016/j.eswa.2023.119619_b17
– year: 2016
  ident: 10.1016/j.eswa.2023.119619_b5
– start-page: 8024
  year: 2019
  ident: 10.1016/j.eswa.2023.119619_b32
  article-title: PyTorch: An imperative style, high-performance deep learning library
– year: 2017
  ident: 10.1016/j.eswa.2023.119619_b42
  article-title: Attention is all you need
– volume: 66
  start-page: 1477
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2023.119619_b51
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2018.2874712
– start-page: 9
  year: 1984
  ident: 10.1016/j.eswa.2023.119619_b2
– volume: 60
  start-page: 549
  year: 2009
  ident: 10.1016/j.eswa.2023.119619_b19
  article-title: Missing data analysis: making it work in the real world
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.58.110405.085530
– start-page: 501
  year: 2006
  ident: 10.1016/j.eswa.2023.119619_b44
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
– volume: 107
  year: 2020
  ident: 10.1016/j.eswa.2023.119619_b31
  article-title: Handling incomplete heterogeneous data using VAEsling incomplete heterogeneous data using vaes
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107501
– year: 2021
  ident: 10.1016/j.eswa.2023.119619_b37
– start-page: 473
  year: 2017
  ident: 10.1016/j.eswa.2023.119619_b53
  article-title: Cautionary tales on air-quality improvement in Beijing
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– ident: 10.1016/j.eswa.2023.119619_b23
  doi: 10.1109/CVPR.2019.00259
– volume: 10
  start-page: 187
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2023.119619_b22
  article-title: The effects of the irregular sample and missing data in time series analysis
  publication-title: Nonlinear Dynamics, Psychology, and Life Sciences
– ident: 10.1016/j.eswa.2023.119619_b50
  doi: 10.1109/CVPR42600.2020.00848
– start-page: 3898
  year: 2021
  ident: 10.1016/j.eswa.2023.119619_b33
  article-title: Longitudinal variational autoencoder
– year: 2018
  ident: 10.1016/j.eswa.2023.119619_b11
  article-title: Gaussian process prior variational autoencoders
– ident: 10.1016/j.eswa.2023.119619_b48
– volume: 13
  start-page: E109
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2023.119619_b14
  article-title: Forecasting loss of signal in optical networks with machine learning
  publication-title: Journal of Optical Communications and Networking
  doi: 10.1364/JOCN.423667
– volume: 1013
  start-page: 13
  year: 2018
  ident: 10.1016/j.eswa.2023.119619_b9
  article-title: Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2018.01.062
– year: 2016
  ident: 10.1016/j.eswa.2023.119619_b52
  article-title: Temporal regularized matrix factorization for high-dimensional time series prediction
– year: 2021
  ident: 10.1016/j.eswa.2023.119619_b30
– volume: 63
  start-page: 581
  issue: 3
  year: 1976
  ident: 10.1016/j.eswa.2023.119619_b35
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– year: 2015
  ident: 10.1016/j.eswa.2023.119619_b21
  article-title: Adam: A method for stochastic optimization method for stochastic optimization
– start-page: 1651
  year: 2020
  ident: 10.1016/j.eswa.2023.119619_b16
  article-title: GP-VAE: Deep Probabilistic Time Series Imputation: Deep probabilistic time series imputation
– volume: 212
  year: 2021
  ident: 10.1016/j.eswa.2023.119619_b7
  article-title: Imputation techniques for the reconstruction of missing interconnected data from higher Educational Institutions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106512
SSID ssj0017007
Score 2.7201123
Snippet Missing data in time series is a pervasive problem that puts obstacles in the way of advanced analysis. A popular solution is imputation, where the fundamental...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119619
SubjectTerms Imputation model
Missing values
Neural network
Self-attention
Time series
Title SAITS: Self-attention-based imputation for time series
URI https://dx.doi.org/10.1016/j.eswa.2023.119619
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbrG2S3U3XWymWVqGXtNBb2CdUSi224s3f7kweRUF6MIdAwg4kXyYzs-y33xByJ0NXeCU065ogGLdJzIzWKUuNjrVNuRG6IMiO5XDKn2di1iD9ei8M0iqr2F_G9CJaV3faFZrt1XzezqA4gHSIK43FDlBU_OQ8RS9_-NrSPFB-Li319lKGo6uNMyXHy68_UXsoTiByKIlqO38lpx8JZ3BMDqtKkfbKhzkhDb88JUd1FwZa_ZRnRGa90SR7pJlfBIZqmQV_kWF6cnSOowvwKVSnFDvJU3Q6vz4n08HTpD9kVTcEZuEFNyy2kQjWQIoPykKZFJTn3oVuzK3iHQuHdFrJGCAGSGDqGaE0nXZBWBFE5JMLsrd8W_pLQq1PAleBxw5OuqOMg2lDx7ggpUugZGiSqIYht5VUOHasWOQ1J-w1R-hyhC4voWuS-63NqhTK2Dla1Ojmvz53DpF8h93VP-2uyQFelRyvG7K3ef_wt1BNbEyrcJcW2e-NXobjb1IfyJ0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGDhjShPDzAh08axkwaJAfFQS4GlReoWHMeWiqpS0SLEwp_iD3KXRwUSYkAiQ4bEtpzPp7uz8vk7gIPANZSNlOaNxCkujS94onXIw0QLbUKZKJ0RZO-C5r287qleBT7KszBEqyx8f-7TM29dPKkVaNZG_X6tg8kBhkP605idAC0rWLft2yvu28anrQtc5EMhri67501elBbgBltPuDCecibBeOkigzmHi6y0qWsIaSJZN3gFqY4CgfPF8XEf55HOm06dMsopz_o47gzMSXQXVDbh-H3KKyG9uzAX-As5Ta84qZOTyuz4lcSOhI-uKgpI3uenaPglwl0tw2KRmrKz_OtXoGKHq7BUln1ghRdYg6Bz1up2TljHDhwnec6MMMkpHqasT62z1WaYDjMqXc_Iyu14He7_BaMNmB0-De0mMGN9JyMnRYo3XY-SFPcp9SR1QZD6mKNUwSthiE2hTU4lMgZxSUJ7jAm6mKCLc-iqcDTtM8qVOX5trUp042_2FWPo-KXf1h_77cN8s3t7E9-07trbsEBvcoLZDsxOnl_sLqYyk2QvMx0GD_9tq58fJgS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAITS%3A+Self-attention-based+imputation+for+time+series&rft.jtitle=Expert+systems+with+applications&rft.au=Du%2C+Wenjie&rft.au=C%C3%B4t%C3%A9%2C+David&rft.au=Liu%2C+Yan&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=219&rft_id=info:doi/10.1016%2Fj.eswa.2023.119619&rft.externalDocID=S0957417423001203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon