Affective detection based on an imbalanced fuzzy support vector machine

•A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection. The int...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 18; pp. 118 - 126
Main Authors Cheng, Jing, Liu, Guang-Yuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2015
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2014.12.006

Cover

Abstract •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection. The interpretation of physiological signals is an important subject in affective computing. In this paper, we report an experiment to collect affective galvanic skin response signals (GRS), and describe a new imbalanced fuzzy support vector machine (IBFSVM) for their classification. IBFSVM introduces denoising factors and class compensation factors, thus defining a new fuzzy membership. The effectiveness of IBFSVM is verified on various real and artificial datasets. We define an appropriate evaluation criterion (g_mean) that combines the classification accuracy of positive and negative samples, and show that IBFSVM outperforms traditional support vector machines on imbalanced datasets. By running the IBFSVM for the datasets in our experiment, we can find that the g_mean of happiness, sadness, angry and fear is 85.17%, 86.6%, 87.4%, and 81.53% respectively. So IBFSVM is an effective and feasible solution for imbalanced learning in our experiment.
AbstractList •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection. The interpretation of physiological signals is an important subject in affective computing. In this paper, we report an experiment to collect affective galvanic skin response signals (GRS), and describe a new imbalanced fuzzy support vector machine (IBFSVM) for their classification. IBFSVM introduces denoising factors and class compensation factors, thus defining a new fuzzy membership. The effectiveness of IBFSVM is verified on various real and artificial datasets. We define an appropriate evaluation criterion (g_mean) that combines the classification accuracy of positive and negative samples, and show that IBFSVM outperforms traditional support vector machines on imbalanced datasets. By running the IBFSVM for the datasets in our experiment, we can find that the g_mean of happiness, sadness, angry and fear is 85.17%, 86.6%, 87.4%, and 81.53% respectively. So IBFSVM is an effective and feasible solution for imbalanced learning in our experiment.
Author Cheng, Jing
Liu, Guang-Yuan
Author_xml – sequence: 1
  givenname: Jing
  surname: Cheng
  fullname: Cheng, Jing
  email: cjcat@swu.edu.cn
  organization: College of Computer and Information Science, Southwest University, Chongqing 400715, China
– sequence: 2
  givenname: Guang-Yuan
  surname: Liu
  fullname: Liu, Guang-Yuan
  organization: School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
BookMark eNp9kLFqwzAQhjWk0CTtC3TyC9jVybLkQJcQ2rQQ6NLOQpZOVCaxjeQEkqevTDp1yHQ_x30H378gs67vkJAnoAVQEM9t0cTBFIwCL4AVlIoZmYPkIq_pit-TRYwtpbyWwOdku3YOzehPmFkcp9R3WaMj2iwF3WX-0Oi97kxauOPlcs7icRj6MGandNyH7KDNj-_wgdw5vY_4-DeX5Pvt9Wvznu8-tx-b9S43JaVjzqTUtbW8EuWqthxWgjEqNW-c0AKcdBWrbAlUlroCKWuwYFjTMM4QJTpbLgm7_jWhjzGgU0PwBx3OCqia9FWrJn016StgKuknqP4HGT_qSXUM2u9voy9XFJPUyWNQ0Xic6vAhFaBs72_hv20Venc
CitedBy_id crossref_primary_10_1016_j_eswa_2016_12_035
crossref_primary_10_1007_s11042_017_5105_z
crossref_primary_10_1007_s00530_023_01062_5
crossref_primary_10_1016_j_neucom_2019_06_065
crossref_primary_10_1016_j_measurement_2017_09_027
crossref_primary_10_1016_j_cie_2019_106266
Cites_doi 10.1109/TKDE.2008.239
10.1109/TKDE.2005.95
10.1109/T-AFFC.2011.30
10.1016/0375-9601(92)90426-M
10.1016/S0378-4371(02)01383-3
10.1109/T-AFFC.2012.4
10.1023/A:1012406528296
10.1016/0167-2789(85)90011-9
10.1103/PhysRevLett.50.346
10.1109/TFUZZ.2010.2042721
10.1109/72.991432
10.1109/T-AFFC.2010.7
10.1109/TPAMI.2008.26
10.1103/PhysRevE.49.1685
10.1080/02699939508408966
10.1109/T-AFFC.2010.2
10.1016/S0031-3203(02)00257-1
10.1152/ajpheart.2000.278.6.H2039
10.1613/jair.953
10.1007/11941439_30
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2014.12.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 126
ExternalDocumentID 10_1016_j_bspc_2014_12_006
S1746809414002018
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-277a8dd456398d41962207a4bf6a61f7f525d31073a517781d1c2bb242ee7efd3
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:00 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Mon Nov 18 09:13:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IBFSVM
Imbalanced classification
Galvanic skin response
Affective detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-277a8dd456398d41962207a4bf6a61f7f525d31073a517781d1c2bb242ee7efd3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_bspc_2014_12_006
crossref_citationtrail_10_1016_j_bspc_2014_12_006
elsevier_sciencedirect_doi_10_1016_j_bspc_2014_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Biomedical signal processing and control
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valenza, Lanata, Scilingo (bib0160) 2011; 3
Sakr, Elhajj, Huijer (bib0170) 2010; 1
YD, Du, Liu (bib0230) 2008; 28
Petrantonakis, Hadjileontiadis (bib0250) 2010; 1
Cheng, Liu, Lai (bib0260) 2014; 10
Eckmmn, Kamphorst, Ruelle (bib0285) 1987
Wolf, Switf, Swinney (bib0270) 1985; 16
Lin, Lee, Wahba (bib0185) 2002; 46
Lin, Wang (bib0190) 2002; 13
Lu, Cai, Jiang (bib0265) 2007; 19
Kim, Andre (bib0165) 2008; 30
Gross, Levenson (bib0255) 1995; 9
Haibo, Garcia (bib0195) 2009; 21
Veropoulos, Campbell, Cristianini (bib0210) 1999
Richman, Moorman (bib0280) 2000; 278
Batuwita, Palade (bib0225) 2010; 18
AlZoubi, D’Mello, Calvo (bib0155) 2012; 3
Sakr, Elhajj, Wejinya (bib0175) 2009
Kantelhardt, Zschiegner, Koscielny-Bunde (bib0300) 2002; 316
Peng, Buldyrev, Havlin (bib0295) 1994; 49
Imam, Ting, Kamruzzaman (bib0215) 2006; 4304
Chawla, Bowyer, Kegelmeyer (bib0200) 2002; 16
Qin, Liu, Zhang (bib0235) 2012; 39
bib0240
Barandela, Sanchez, Garcia (bib0205) 2003; 36
Wu, Chang (bib0220) 2005; 17
Grassbegrer, Procaccia (bib0275) 1983; 50
Zbilut, Webber (bib0290) 1992; 171
Eich, Joycelin, Macaulay, Percy (bib0245) 2007
Barandela, Sanchez, Garcia, Rangel (bib0180) 2003; 36
AlZoubi (10.1016/j.bspc.2014.12.006_bib0155) 2012; 3
Sakr (10.1016/j.bspc.2014.12.006_bib0175) 2009
Eich (10.1016/j.bspc.2014.12.006_bib0245) 2007
Barandela (10.1016/j.bspc.2014.12.006_bib0180) 2003; 36
Peng (10.1016/j.bspc.2014.12.006_bib0295) 1994; 49
Zbilut (10.1016/j.bspc.2014.12.006_bib0290) 1992; 171
Veropoulos (10.1016/j.bspc.2014.12.006_bib0210) 1999
Richman (10.1016/j.bspc.2014.12.006_bib0280) 2000; 278
Wu (10.1016/j.bspc.2014.12.006_bib0220) 2005; 17
Petrantonakis (10.1016/j.bspc.2014.12.006_bib0250) 2010; 1
Kim (10.1016/j.bspc.2014.12.006_bib0165) 2008; 30
Grassbegrer (10.1016/j.bspc.2014.12.006_bib0275) 1983; 50
Wolf (10.1016/j.bspc.2014.12.006_bib0270) 1985; 16
Lu (10.1016/j.bspc.2014.12.006_bib0265) 2007; 19
Lin (10.1016/j.bspc.2014.12.006_bib0185) 2002; 46
Lin (10.1016/j.bspc.2014.12.006_bib0190) 2002; 13
Imam (10.1016/j.bspc.2014.12.006_bib0215) 2006; 4304
Gross (10.1016/j.bspc.2014.12.006_bib0255) 1995; 9
Qin (10.1016/j.bspc.2014.12.006_bib0235) 2012; 39
Barandela (10.1016/j.bspc.2014.12.006_bib0205) 2003; 36
Cheng (10.1016/j.bspc.2014.12.006_bib0260) 2014; 10
YD (10.1016/j.bspc.2014.12.006_bib0230) 2008; 28
Sakr (10.1016/j.bspc.2014.12.006_bib0170) 2010; 1
Haibo (10.1016/j.bspc.2014.12.006_bib0195) 2009; 21
Chawla (10.1016/j.bspc.2014.12.006_bib0200) 2002; 16
Eckmmn (10.1016/j.bspc.2014.12.006_bib0285) 1987
Valenza (10.1016/j.bspc.2014.12.006_bib0160) 2011; 3
Kantelhardt (10.1016/j.bspc.2014.12.006_bib0300) 2002; 316
Batuwita (10.1016/j.bspc.2014.12.006_bib0225) 2010; 18
References_xml – volume: 36
  start-page: 849
  year: 2003
  end-page: 851
  ident: bib0205
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
– volume: 10
  start-page: 2331
  year: 2014
  end-page: 2339
  ident: bib0260
  article-title: Calculation of nonlinear features of SC for emotion recognition
  publication-title: J. Comput. Inf. Syst.
– volume: 3
  start-page: 298
  year: 2012
  end-page: 310
  ident: bib0155
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 28
  start-page: 297
  year: 2008
  end-page: 300
  ident: bib0230
  article-title: A new noise-immune fuzzy SVM algorithm for unbalanced data
  publication-title: J. Xi’an Technol. Univ.
– start-page: 441
  year: 1987
  end-page: 445
  ident: bib0285
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
– volume: 278
  start-page: 2039
  year: 2000
  end-page: 2049
  ident: bib0280
  article-title: Physiological time series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 18
  start-page: 558
  year: 2010
  end-page: 571
  ident: bib0225
  article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 4304
  start-page: 264
  year: 2006
  end-page: 273
  ident: bib0215
  article-title: z-SVM: an SVM for improved classification of imbalanced data
  publication-title: Lecture Notes Comput. Sci.
– volume: 17
  start-page: 786
  year: 2005
  end-page: 795
  ident: bib0220
  article-title: KBA: kernel boundary alignment considering imbalanced data distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 19
  start-page: 2527
  year: 2007
  end-page: 2538
  ident: bib0265
  article-title: Determination of embedding parameters for phase space reconstruction based on improved C–C method
  publication-title: J. Syst. Simul.
– volume: 9
  start-page: 87
  year: 1995
  end-page: 108
  ident: bib0255
  article-title: Emotion elicitation using films
  publication-title: Cognit. Emot.
– volume: 36
  start-page: 849
  year: 2003
  end-page: 851
  ident: bib0180
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
– volume: 50
  start-page: 346
  year: 1983
  end-page: 349
  ident: bib0275
  article-title: Characterization of strange attractors
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 1685
  year: 1994
  end-page: 1689
  ident: bib0295
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
– volume: 46
  start-page: 191
  year: 2002
  end-page: 202
  ident: bib0185
  article-title: Support vector machines for classification in nonstandard situations
  publication-title: Mach. Learn.
– start-page: 55
  year: 1999
  end-page: 60
  ident: bib0210
  article-title: Controlling the sensitivity of support vector machines
  publication-title: Proceedings of the International Joint Conference on AI
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: bib0270
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
– volume: 30
  start-page: 2067
  year: 2008
  end-page: 2083
  ident: bib0165
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: bib0240
– start-page: 538
  year: 2009
  end-page: 543
  ident: bib0175
  article-title: Multi level SVM for subject independent agitation detection
  publication-title: Proceedings in IEEE/ASME International Conference on Advanced Intelligent Mechatronics
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: bib0195
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 39
  start-page: 188
  year: 2012
  end-page: 190
  ident: bib0235
  article-title: Balanced fuzzy support vector machines based on imbalanced data set
  publication-title: Comput. Sci.
– volume: 1
  start-page: 98
  year: 2010
  end-page: 108
  ident: bib0170
  article-title: Support vector machines to define and detect agitation transition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 13
  start-page: 464
  year: 2002
  end-page: 471
  ident: bib0190
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Netw.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0200
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– start-page: 124
  year: 2007
  end-page: 136
  ident: bib0245
  article-title: Combining music with thought to change mood
  publication-title: Handbook of Emotion Elicitation and Assessment
– volume: 316
  start-page: 87
  year: 2002
  end-page: 114
  ident: bib0300
  article-title: Multifractal detrended fluctuation analysis of nonstationary time series
  publication-title: Physica A
– volume: 171
  start-page: 199
  year: 1992
  end-page: 203
  ident: bib0290
  article-title: Embeddings and delays as derived from quantification of recurrence plots
  publication-title: Phys. Lett. A
– volume: 3
  start-page: 237
  year: 2011
  end-page: 249
  ident: bib0160
  article-title: The role of nonlinear dynamics in affective valence and arousal recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 1
  start-page: 81
  year: 2010
  end-page: 97
  ident: bib0250
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 55
  year: 1999
  ident: 10.1016/j.bspc.2014.12.006_bib0210
  article-title: Controlling the sensitivity of support vector machines
– volume: 39
  start-page: 188
  issue: 6
  year: 2012
  ident: 10.1016/j.bspc.2014.12.006_bib0235
  article-title: Balanced fuzzy support vector machines based on imbalanced data set
  publication-title: Comput. Sci.
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.bspc.2014.12.006_bib0195
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 17
  start-page: 786
  issue: 6
  year: 2005
  ident: 10.1016/j.bspc.2014.12.006_bib0220
  article-title: KBA: kernel boundary alignment considering imbalanced data distribution
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.95
– volume: 3
  start-page: 237
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2014.12.006_bib0160
  article-title: The role of nonlinear dynamics in affective valence and arousal recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.30
– start-page: 441
  year: 1987
  ident: 10.1016/j.bspc.2014.12.006_bib0285
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
– volume: 171
  start-page: 199
  issue: 3–4
  year: 1992
  ident: 10.1016/j.bspc.2014.12.006_bib0290
  article-title: Embeddings and delays as derived from quantification of recurrence plots
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90426-M
– volume: 316
  start-page: 87
  issue: 1–4
  year: 2002
  ident: 10.1016/j.bspc.2014.12.006_bib0300
  article-title: Multifractal detrended fluctuation analysis of nonstationary time series
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)01383-3
– volume: 3
  start-page: 298
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2014.12.006_bib0155
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.4
– volume: 19
  start-page: 2527
  issue: 11
  year: 2007
  ident: 10.1016/j.bspc.2014.12.006_bib0265
  article-title: Determination of embedding parameters for phase space reconstruction based on improved C–C method
  publication-title: J. Syst. Simul.
– volume: 46
  start-page: 191
  issue: 1–3
  year: 2002
  ident: 10.1016/j.bspc.2014.12.006_bib0185
  article-title: Support vector machines for classification in nonstandard situations
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012406528296
– volume: 16
  start-page: 285
  issue: 3
  year: 1985
  ident: 10.1016/j.bspc.2014.12.006_bib0270
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– volume: 50
  start-page: 346
  issue: 5
  year: 1983
  ident: 10.1016/j.bspc.2014.12.006_bib0275
  article-title: Characterization of strange attractors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.346
– volume: 18
  start-page: 558
  issue: 3
  year: 2010
  ident: 10.1016/j.bspc.2014.12.006_bib0225
  article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2042721
– volume: 13
  start-page: 464
  issue: 2
  year: 2002
  ident: 10.1016/j.bspc.2014.12.006_bib0190
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991432
– volume: 1
  start-page: 81
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2014.12.006_bib0250
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.7
– volume: 30
  start-page: 2067
  issue: 12
  year: 2008
  ident: 10.1016/j.bspc.2014.12.006_bib0165
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– start-page: 124
  year: 2007
  ident: 10.1016/j.bspc.2014.12.006_bib0245
  article-title: Combining music with thought to change mood
– volume: 49
  start-page: 1685
  issue: 2
  year: 1994
  ident: 10.1016/j.bspc.2014.12.006_bib0295
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.1685
– volume: 28
  start-page: 297
  issue: 3
  year: 2008
  ident: 10.1016/j.bspc.2014.12.006_bib0230
  article-title: A new noise-immune fuzzy SVM algorithm for unbalanced data
  publication-title: J. Xi’an Technol. Univ.
– volume: 9
  start-page: 87
  issue: 1
  year: 1995
  ident: 10.1016/j.bspc.2014.12.006_bib0255
  article-title: Emotion elicitation using films
  publication-title: Cognit. Emot.
  doi: 10.1080/02699939508408966
– start-page: 538
  year: 2009
  ident: 10.1016/j.bspc.2014.12.006_bib0175
  article-title: Multi level SVM for subject independent agitation detection
– volume: 1
  start-page: 98
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2014.12.006_bib0170
  article-title: Support vector machines to define and detect agitation transition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.2
– volume: 36
  start-page: 849
  issue: 3
  year: 2003
  ident: 10.1016/j.bspc.2014.12.006_bib0205
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00257-1
– volume: 278
  start-page: 2039
  issue: 6
  year: 2000
  ident: 10.1016/j.bspc.2014.12.006_bib0280
  article-title: Physiological time series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 10
  start-page: 2331
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2014.12.006_bib0260
  article-title: Calculation of nonlinear features of SC for emotion recognition
  publication-title: J. Comput. Inf. Syst.
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.bspc.2014.12.006_bib0200
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 4304
  start-page: 264
  year: 2006
  ident: 10.1016/j.bspc.2014.12.006_bib0215
  article-title: z-SVM: an SVM for improved classification of imbalanced data
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/11941439_30
– volume: 36
  start-page: 849
  issue: 3
  year: 2003
  ident: 10.1016/j.bspc.2014.12.006_bib0180
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00257-1
SSID ssj0048714
Score 2.0462883
Snippet •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Affective detection
Galvanic skin response
IBFSVM
Imbalanced classification
Title Affective detection based on an imbalanced fuzzy support vector machine
URI https://dx.doi.org/10.1016/j.bspc.2014.12.006
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH7Zj4sejD_j_LH04M3gKLQUjsvinBp30SW7EaAlmXFI3GbiDv7tvpZiZmI8eAPSl8BX-r2P8vUV4IKan2mB6ygufIchGzgR49IJMomjyfUymerFyQ_jYDRhd1M-bcCgXgujbZWW-ytON2xtr_Qsmr1yNus9opYOQvw6wU8E1Dw0bELb86OAt6Ddv70fjWtCRkluSnzr9o4OsGtnKptXuih1JUPKzKyg3vjot_y0kXOGu7BjxSLpV_ezBw1V7MP2RgnBA7jpG0MGchaRaml8VQXRqUkSPEgKMpun2r2ID0ry1Xr9QRarUmtu8m7m68ncuCnVIUyG10-DkWM3R3Ay33WXjidEEkqJSPtRKBkOJM9zRcLSPEgCmouce1yidhN-wqkQKEtp5qUpZmSlhMqlfwSt4rVQx0B0gRuah5HiqWAyCZMkwo7DwZxlNAwZ6wCtIYkzWzlcb2DxEtcWsedYwxhrGGPqxQhjBy6_Y8qqbsafrXmNdPyj92Mk9j_iTv4ZdwpbeMYrB84ZtJZvK3WO4mKZdqF59Um79hX6Aq1MzOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwc2FBonduyMVUUp0HahlbpZSexIRTRENEWiA7-ds5NWRUIMbFHik5Ln3N2z_XxG6JrYxbTAdTTjvkMhGjghZcoJEgXe5HqJis3m5P4g6I7o45iNa6i93AtjZJVV7C9juo3W1Z1mhWYzn0yaz8ClAwGjExgiAOchYgNtUuZzo-u7_VrpPICQ2wLfprVjmlc7Z0qRVzzLTR1DQu2coDn26LfstJZxOntot6KKuFW-zT6q6ewA7awVEDxE9y0rx4CIhZUurKoqwyYxKQwXUYYn09hoF-EzcTpfLD7xbJ4bxo0_7Gw9nlotpT5Co87dsN11qqMRnMR33cLxOI-EUoCzHwpFwY08z-URjdMgCkjKU-YxBcyN-xEjnAMpJYkXx5CPteY6Vf4xqmdvmT5B2JS3IakINYs5VZGIohC6DVw5SYgQlDYQWUIik6puuDm-4lUuBWIv0sAoDYySeBJgbKCblU1eVs34szVbIi1_9L2EsP6H3ek_7a7QVnfY78new-DpDG3DE1Zqcc5RvXif6wugGUV8aX-jb2EQzbM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+detection+based+on+an+imbalanced+fuzzy+support+vector+machine&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Cheng%2C+Jing&rft.au=Liu%2C+Guang-Yuan&rft.date=2015-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=18&rft.spage=118&rft.epage=126&rft_id=info:doi/10.1016%2Fj.bspc.2014.12.006&rft.externalDocID=S1746809414002018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon