Affective detection based on an imbalanced fuzzy support vector machine
•A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection. The int...
Saved in:
Published in | Biomedical signal processing and control Vol. 18; pp. 118 - 126 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2014.12.006 |
Cover
Abstract | •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection.
The interpretation of physiological signals is an important subject in affective computing. In this paper, we report an experiment to collect affective galvanic skin response signals (GRS), and describe a new imbalanced fuzzy support vector machine (IBFSVM) for their classification. IBFSVM introduces denoising factors and class compensation factors, thus defining a new fuzzy membership. The effectiveness of IBFSVM is verified on various real and artificial datasets. We define an appropriate evaluation criterion (g_mean) that combines the classification accuracy of positive and negative samples, and show that IBFSVM outperforms traditional support vector machines on imbalanced datasets. By running the IBFSVM for the datasets in our experiment, we can find that the g_mean of happiness, sadness, angry and fear is 85.17%, 86.6%, 87.4%, and 81.53% respectively. So IBFSVM is an effective and feasible solution for imbalanced learning in our experiment. |
---|---|
AbstractList | •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets and six UCI datasets are used to test the performance of IBFSVM.•Finally IBFSVM is employed in the experiment of affective detection.
The interpretation of physiological signals is an important subject in affective computing. In this paper, we report an experiment to collect affective galvanic skin response signals (GRS), and describe a new imbalanced fuzzy support vector machine (IBFSVM) for their classification. IBFSVM introduces denoising factors and class compensation factors, thus defining a new fuzzy membership. The effectiveness of IBFSVM is verified on various real and artificial datasets. We define an appropriate evaluation criterion (g_mean) that combines the classification accuracy of positive and negative samples, and show that IBFSVM outperforms traditional support vector machines on imbalanced datasets. By running the IBFSVM for the datasets in our experiment, we can find that the g_mean of happiness, sadness, angry and fear is 85.17%, 86.6%, 87.4%, and 81.53% respectively. So IBFSVM is an effective and feasible solution for imbalanced learning in our experiment. |
Author | Cheng, Jing Liu, Guang-Yuan |
Author_xml | – sequence: 1 givenname: Jing surname: Cheng fullname: Cheng, Jing email: cjcat@swu.edu.cn organization: College of Computer and Information Science, Southwest University, Chongqing 400715, China – sequence: 2 givenname: Guang-Yuan surname: Liu fullname: Liu, Guang-Yuan organization: School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China |
BookMark | eNp9kLFqwzAQhjWk0CTtC3TyC9jVybLkQJcQ2rQQ6NLOQpZOVCaxjeQEkqevTDp1yHQ_x30H378gs67vkJAnoAVQEM9t0cTBFIwCL4AVlIoZmYPkIq_pit-TRYwtpbyWwOdku3YOzehPmFkcp9R3WaMj2iwF3WX-0Oi97kxauOPlcs7icRj6MGandNyH7KDNj-_wgdw5vY_4-DeX5Pvt9Wvznu8-tx-b9S43JaVjzqTUtbW8EuWqthxWgjEqNW-c0AKcdBWrbAlUlroCKWuwYFjTMM4QJTpbLgm7_jWhjzGgU0PwBx3OCqia9FWrJn016StgKuknqP4HGT_qSXUM2u9voy9XFJPUyWNQ0Xic6vAhFaBs72_hv20Venc |
CitedBy_id | crossref_primary_10_1016_j_eswa_2016_12_035 crossref_primary_10_1007_s11042_017_5105_z crossref_primary_10_1007_s00530_023_01062_5 crossref_primary_10_1016_j_neucom_2019_06_065 crossref_primary_10_1016_j_measurement_2017_09_027 crossref_primary_10_1016_j_cie_2019_106266 |
Cites_doi | 10.1109/TKDE.2008.239 10.1109/TKDE.2005.95 10.1109/T-AFFC.2011.30 10.1016/0375-9601(92)90426-M 10.1016/S0378-4371(02)01383-3 10.1109/T-AFFC.2012.4 10.1023/A:1012406528296 10.1016/0167-2789(85)90011-9 10.1103/PhysRevLett.50.346 10.1109/TFUZZ.2010.2042721 10.1109/72.991432 10.1109/T-AFFC.2010.7 10.1109/TPAMI.2008.26 10.1103/PhysRevE.49.1685 10.1080/02699939508408966 10.1109/T-AFFC.2010.2 10.1016/S0031-3203(02)00257-1 10.1152/ajpheart.2000.278.6.H2039 10.1613/jair.953 10.1007/11941439_30 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2014.12.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 126 |
ExternalDocumentID | 10_1016_j_bspc_2014_12_006 S1746809414002018 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-277a8dd456398d41962207a4bf6a61f7f525d31073a517781d1c2bb242ee7efd3 |
IEDL.DBID | AIKHN |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:00 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Mon Nov 18 09:13:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | IBFSVM Imbalanced classification Galvanic skin response Affective detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-277a8dd456398d41962207a4bf6a61f7f525d31073a517781d1c2bb242ee7efd3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2014_12_006 crossref_citationtrail_10_1016_j_bspc_2014_12_006 elsevier_sciencedirect_doi_10_1016_j_bspc_2014_12_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Valenza, Lanata, Scilingo (bib0160) 2011; 3 Sakr, Elhajj, Huijer (bib0170) 2010; 1 YD, Du, Liu (bib0230) 2008; 28 Petrantonakis, Hadjileontiadis (bib0250) 2010; 1 Cheng, Liu, Lai (bib0260) 2014; 10 Eckmmn, Kamphorst, Ruelle (bib0285) 1987 Wolf, Switf, Swinney (bib0270) 1985; 16 Lin, Lee, Wahba (bib0185) 2002; 46 Lin, Wang (bib0190) 2002; 13 Lu, Cai, Jiang (bib0265) 2007; 19 Kim, Andre (bib0165) 2008; 30 Gross, Levenson (bib0255) 1995; 9 Haibo, Garcia (bib0195) 2009; 21 Veropoulos, Campbell, Cristianini (bib0210) 1999 Richman, Moorman (bib0280) 2000; 278 Batuwita, Palade (bib0225) 2010; 18 AlZoubi, D’Mello, Calvo (bib0155) 2012; 3 Sakr, Elhajj, Wejinya (bib0175) 2009 Kantelhardt, Zschiegner, Koscielny-Bunde (bib0300) 2002; 316 Peng, Buldyrev, Havlin (bib0295) 1994; 49 Imam, Ting, Kamruzzaman (bib0215) 2006; 4304 Chawla, Bowyer, Kegelmeyer (bib0200) 2002; 16 Qin, Liu, Zhang (bib0235) 2012; 39 bib0240 Barandela, Sanchez, Garcia (bib0205) 2003; 36 Wu, Chang (bib0220) 2005; 17 Grassbegrer, Procaccia (bib0275) 1983; 50 Zbilut, Webber (bib0290) 1992; 171 Eich, Joycelin, Macaulay, Percy (bib0245) 2007 Barandela, Sanchez, Garcia, Rangel (bib0180) 2003; 36 AlZoubi (10.1016/j.bspc.2014.12.006_bib0155) 2012; 3 Sakr (10.1016/j.bspc.2014.12.006_bib0175) 2009 Eich (10.1016/j.bspc.2014.12.006_bib0245) 2007 Barandela (10.1016/j.bspc.2014.12.006_bib0180) 2003; 36 Peng (10.1016/j.bspc.2014.12.006_bib0295) 1994; 49 Zbilut (10.1016/j.bspc.2014.12.006_bib0290) 1992; 171 Veropoulos (10.1016/j.bspc.2014.12.006_bib0210) 1999 Richman (10.1016/j.bspc.2014.12.006_bib0280) 2000; 278 Wu (10.1016/j.bspc.2014.12.006_bib0220) 2005; 17 Petrantonakis (10.1016/j.bspc.2014.12.006_bib0250) 2010; 1 Kim (10.1016/j.bspc.2014.12.006_bib0165) 2008; 30 Grassbegrer (10.1016/j.bspc.2014.12.006_bib0275) 1983; 50 Wolf (10.1016/j.bspc.2014.12.006_bib0270) 1985; 16 Lu (10.1016/j.bspc.2014.12.006_bib0265) 2007; 19 Lin (10.1016/j.bspc.2014.12.006_bib0185) 2002; 46 Lin (10.1016/j.bspc.2014.12.006_bib0190) 2002; 13 Imam (10.1016/j.bspc.2014.12.006_bib0215) 2006; 4304 Gross (10.1016/j.bspc.2014.12.006_bib0255) 1995; 9 Qin (10.1016/j.bspc.2014.12.006_bib0235) 2012; 39 Barandela (10.1016/j.bspc.2014.12.006_bib0205) 2003; 36 Cheng (10.1016/j.bspc.2014.12.006_bib0260) 2014; 10 YD (10.1016/j.bspc.2014.12.006_bib0230) 2008; 28 Sakr (10.1016/j.bspc.2014.12.006_bib0170) 2010; 1 Haibo (10.1016/j.bspc.2014.12.006_bib0195) 2009; 21 Chawla (10.1016/j.bspc.2014.12.006_bib0200) 2002; 16 Eckmmn (10.1016/j.bspc.2014.12.006_bib0285) 1987 Valenza (10.1016/j.bspc.2014.12.006_bib0160) 2011; 3 Kantelhardt (10.1016/j.bspc.2014.12.006_bib0300) 2002; 316 Batuwita (10.1016/j.bspc.2014.12.006_bib0225) 2010; 18 |
References_xml | – volume: 36 start-page: 849 year: 2003 end-page: 851 ident: bib0205 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recogn. – volume: 10 start-page: 2331 year: 2014 end-page: 2339 ident: bib0260 article-title: Calculation of nonlinear features of SC for emotion recognition publication-title: J. Comput. Inf. Syst. – volume: 3 start-page: 298 year: 2012 end-page: 310 ident: bib0155 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans. Affect. Comput. – volume: 28 start-page: 297 year: 2008 end-page: 300 ident: bib0230 article-title: A new noise-immune fuzzy SVM algorithm for unbalanced data publication-title: J. Xi’an Technol. Univ. – start-page: 441 year: 1987 end-page: 445 ident: bib0285 article-title: Recurrence plots of dynamical systems publication-title: Europhys. Lett. – volume: 278 start-page: 2039 year: 2000 end-page: 2049 ident: bib0280 article-title: Physiological time series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 18 start-page: 558 year: 2010 end-page: 571 ident: bib0225 article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. – volume: 4304 start-page: 264 year: 2006 end-page: 273 ident: bib0215 article-title: z-SVM: an SVM for improved classification of imbalanced data publication-title: Lecture Notes Comput. Sci. – volume: 17 start-page: 786 year: 2005 end-page: 795 ident: bib0220 article-title: KBA: kernel boundary alignment considering imbalanced data distribution publication-title: IEEE Trans. Knowl. Data Eng. – volume: 19 start-page: 2527 year: 2007 end-page: 2538 ident: bib0265 article-title: Determination of embedding parameters for phase space reconstruction based on improved C–C method publication-title: J. Syst. Simul. – volume: 9 start-page: 87 year: 1995 end-page: 108 ident: bib0255 article-title: Emotion elicitation using films publication-title: Cognit. Emot. – volume: 36 start-page: 849 year: 2003 end-page: 851 ident: bib0180 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recogn. – volume: 50 start-page: 346 year: 1983 end-page: 349 ident: bib0275 article-title: Characterization of strange attractors publication-title: Phys. Rev. Lett. – volume: 49 start-page: 1685 year: 1994 end-page: 1689 ident: bib0295 article-title: Mosaic organization of DNA nucleotides publication-title: Phys. Rev. E – volume: 46 start-page: 191 year: 2002 end-page: 202 ident: bib0185 article-title: Support vector machines for classification in nonstandard situations publication-title: Mach. Learn. – start-page: 55 year: 1999 end-page: 60 ident: bib0210 article-title: Controlling the sensitivity of support vector machines publication-title: Proceedings of the International Joint Conference on AI – volume: 16 start-page: 285 year: 1985 end-page: 317 ident: bib0270 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D – volume: 30 start-page: 2067 year: 2008 end-page: 2083 ident: bib0165 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: bib0240 – start-page: 538 year: 2009 end-page: 543 ident: bib0175 article-title: Multi level SVM for subject independent agitation detection publication-title: Proceedings in IEEE/ASME International Conference on Advanced Intelligent Mechatronics – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: bib0195 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 39 start-page: 188 year: 2012 end-page: 190 ident: bib0235 article-title: Balanced fuzzy support vector machines based on imbalanced data set publication-title: Comput. Sci. – volume: 1 start-page: 98 year: 2010 end-page: 108 ident: bib0170 article-title: Support vector machines to define and detect agitation transition publication-title: IEEE Trans. Affect. Comput. – volume: 13 start-page: 464 year: 2002 end-page: 471 ident: bib0190 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Netw. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0200 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – start-page: 124 year: 2007 end-page: 136 ident: bib0245 article-title: Combining music with thought to change mood publication-title: Handbook of Emotion Elicitation and Assessment – volume: 316 start-page: 87 year: 2002 end-page: 114 ident: bib0300 article-title: Multifractal detrended fluctuation analysis of nonstationary time series publication-title: Physica A – volume: 171 start-page: 199 year: 1992 end-page: 203 ident: bib0290 article-title: Embeddings and delays as derived from quantification of recurrence plots publication-title: Phys. Lett. A – volume: 3 start-page: 237 year: 2011 end-page: 249 ident: bib0160 article-title: The role of nonlinear dynamics in affective valence and arousal recognition publication-title: IEEE Trans. Affect. Comput. – volume: 1 start-page: 81 year: 2010 end-page: 97 ident: bib0250 article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis publication-title: IEEE Trans. Affect. Comput. – start-page: 55 year: 1999 ident: 10.1016/j.bspc.2014.12.006_bib0210 article-title: Controlling the sensitivity of support vector machines – volume: 39 start-page: 188 issue: 6 year: 2012 ident: 10.1016/j.bspc.2014.12.006_bib0235 article-title: Balanced fuzzy support vector machines based on imbalanced data set publication-title: Comput. Sci. – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.bspc.2014.12.006_bib0195 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 17 start-page: 786 issue: 6 year: 2005 ident: 10.1016/j.bspc.2014.12.006_bib0220 article-title: KBA: kernel boundary alignment considering imbalanced data distribution publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.95 – volume: 3 start-page: 237 issue: 2 year: 2011 ident: 10.1016/j.bspc.2014.12.006_bib0160 article-title: The role of nonlinear dynamics in affective valence and arousal recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.30 – start-page: 441 year: 1987 ident: 10.1016/j.bspc.2014.12.006_bib0285 article-title: Recurrence plots of dynamical systems publication-title: Europhys. Lett. – volume: 171 start-page: 199 issue: 3–4 year: 1992 ident: 10.1016/j.bspc.2014.12.006_bib0290 article-title: Embeddings and delays as derived from quantification of recurrence plots publication-title: Phys. Lett. A doi: 10.1016/0375-9601(92)90426-M – volume: 316 start-page: 87 issue: 1–4 year: 2002 ident: 10.1016/j.bspc.2014.12.006_bib0300 article-title: Multifractal detrended fluctuation analysis of nonstationary time series publication-title: Physica A doi: 10.1016/S0378-4371(02)01383-3 – volume: 3 start-page: 298 issue: 3 year: 2012 ident: 10.1016/j.bspc.2014.12.006_bib0155 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2012.4 – volume: 19 start-page: 2527 issue: 11 year: 2007 ident: 10.1016/j.bspc.2014.12.006_bib0265 article-title: Determination of embedding parameters for phase space reconstruction based on improved C–C method publication-title: J. Syst. Simul. – volume: 46 start-page: 191 issue: 1–3 year: 2002 ident: 10.1016/j.bspc.2014.12.006_bib0185 article-title: Support vector machines for classification in nonstandard situations publication-title: Mach. Learn. doi: 10.1023/A:1012406528296 – volume: 16 start-page: 285 issue: 3 year: 1985 ident: 10.1016/j.bspc.2014.12.006_bib0270 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D doi: 10.1016/0167-2789(85)90011-9 – volume: 50 start-page: 346 issue: 5 year: 1983 ident: 10.1016/j.bspc.2014.12.006_bib0275 article-title: Characterization of strange attractors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.346 – volume: 18 start-page: 558 issue: 3 year: 2010 ident: 10.1016/j.bspc.2014.12.006_bib0225 article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2042721 – volume: 13 start-page: 464 issue: 2 year: 2002 ident: 10.1016/j.bspc.2014.12.006_bib0190 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991432 – volume: 1 start-page: 81 issue: 2 year: 2010 ident: 10.1016/j.bspc.2014.12.006_bib0250 article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.7 – volume: 30 start-page: 2067 issue: 12 year: 2008 ident: 10.1016/j.bspc.2014.12.006_bib0165 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – start-page: 124 year: 2007 ident: 10.1016/j.bspc.2014.12.006_bib0245 article-title: Combining music with thought to change mood – volume: 49 start-page: 1685 issue: 2 year: 1994 ident: 10.1016/j.bspc.2014.12.006_bib0295 article-title: Mosaic organization of DNA nucleotides publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.1685 – volume: 28 start-page: 297 issue: 3 year: 2008 ident: 10.1016/j.bspc.2014.12.006_bib0230 article-title: A new noise-immune fuzzy SVM algorithm for unbalanced data publication-title: J. Xi’an Technol. Univ. – volume: 9 start-page: 87 issue: 1 year: 1995 ident: 10.1016/j.bspc.2014.12.006_bib0255 article-title: Emotion elicitation using films publication-title: Cognit. Emot. doi: 10.1080/02699939508408966 – start-page: 538 year: 2009 ident: 10.1016/j.bspc.2014.12.006_bib0175 article-title: Multi level SVM for subject independent agitation detection – volume: 1 start-page: 98 issue: 2 year: 2010 ident: 10.1016/j.bspc.2014.12.006_bib0170 article-title: Support vector machines to define and detect agitation transition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.2 – volume: 36 start-page: 849 issue: 3 year: 2003 ident: 10.1016/j.bspc.2014.12.006_bib0205 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00257-1 – volume: 278 start-page: 2039 issue: 6 year: 2000 ident: 10.1016/j.bspc.2014.12.006_bib0280 article-title: Physiological time series analysis using approximate entropy and sample entropy publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 10 start-page: 2331 issue: 6 year: 2014 ident: 10.1016/j.bspc.2014.12.006_bib0260 article-title: Calculation of nonlinear features of SC for emotion recognition publication-title: J. Comput. Inf. Syst. – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.bspc.2014.12.006_bib0200 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 4304 start-page: 264 year: 2006 ident: 10.1016/j.bspc.2014.12.006_bib0215 article-title: z-SVM: an SVM for improved classification of imbalanced data publication-title: Lecture Notes Comput. Sci. doi: 10.1007/11941439_30 – volume: 36 start-page: 849 issue: 3 year: 2003 ident: 10.1016/j.bspc.2014.12.006_bib0180 article-title: Strategies for learning in class imbalance problems publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00257-1 |
SSID | ssj0048714 |
Score | 2.0462883 |
Snippet | •A new algorithm named IBFSVM is proposed, which is based on fuzzy support vector and can be used in imbalanced classification.•Then three artificial datasets... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 118 |
SubjectTerms | Affective detection Galvanic skin response IBFSVM Imbalanced classification |
Title | Affective detection based on an imbalanced fuzzy support vector machine |
URI | https://dx.doi.org/10.1016/j.bspc.2014.12.006 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH7Zj4sejD_j_LH04M3gKLQUjsvinBp30SW7EaAlmXFI3GbiDv7tvpZiZmI8eAPSl8BX-r2P8vUV4IKan2mB6ygufIchGzgR49IJMomjyfUymerFyQ_jYDRhd1M-bcCgXgujbZWW-ytON2xtr_Qsmr1yNus9opYOQvw6wU8E1Dw0bELb86OAt6Ddv70fjWtCRkluSnzr9o4OsGtnKptXuih1JUPKzKyg3vjot_y0kXOGu7BjxSLpV_ezBw1V7MP2RgnBA7jpG0MGchaRaml8VQXRqUkSPEgKMpun2r2ID0ry1Xr9QRarUmtu8m7m68ncuCnVIUyG10-DkWM3R3Ay33WXjidEEkqJSPtRKBkOJM9zRcLSPEgCmouce1yidhN-wqkQKEtp5qUpZmSlhMqlfwSt4rVQx0B0gRuah5HiqWAyCZMkwo7DwZxlNAwZ6wCtIYkzWzlcb2DxEtcWsedYwxhrGGPqxQhjBy6_Y8qqbsafrXmNdPyj92Mk9j_iTv4ZdwpbeMYrB84ZtJZvK3WO4mKZdqF59Um79hX6Aq1MzOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwc2FBonduyMVUUp0HahlbpZSexIRTRENEWiA7-ds5NWRUIMbFHik5Ln3N2z_XxG6JrYxbTAdTTjvkMhGjghZcoJEgXe5HqJis3m5P4g6I7o45iNa6i93AtjZJVV7C9juo3W1Z1mhWYzn0yaz8ClAwGjExgiAOchYgNtUuZzo-u7_VrpPICQ2wLfprVjmlc7Z0qRVzzLTR1DQu2coDn26LfstJZxOntot6KKuFW-zT6q6ewA7awVEDxE9y0rx4CIhZUurKoqwyYxKQwXUYYn09hoF-EzcTpfLD7xbJ4bxo0_7Gw9nlotpT5Co87dsN11qqMRnMR33cLxOI-EUoCzHwpFwY08z-URjdMgCkjKU-YxBcyN-xEjnAMpJYkXx5CPteY6Vf4xqmdvmT5B2JS3IakINYs5VZGIohC6DVw5SYgQlDYQWUIik6puuDm-4lUuBWIv0sAoDYySeBJgbKCblU1eVs34szVbIi1_9L2EsP6H3ek_7a7QVnfY78new-DpDG3DE1Zqcc5RvXif6wugGUV8aX-jb2EQzbM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+detection+based+on+an+imbalanced+fuzzy+support+vector+machine&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Cheng%2C+Jing&rft.au=Liu%2C+Guang-Yuan&rft.date=2015-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=18&rft.spage=118&rft.epage=126&rft_id=info:doi/10.1016%2Fj.bspc.2014.12.006&rft.externalDocID=S1746809414002018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |