Multivariate phase space reconstruction and Riemannian manifold for sleep stage classification
•A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed...
Saved in:
Published in | Biomedical signal processing and control Vol. 88; p. 105572 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 |
DOI | 10.1016/j.bspc.2023.105572 |
Cover
Loading…
Abstract | •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed to further perform the sleep state classification.•Compared to the traditional covariance method using sample covariance matrix (SCM), covariance feature matrix method using MPSR can successfully capture the differences in the spatial information of various sleep states.
Sleep was highly imperative in human daily life. However, an increasing number of people were undergoing sleep deprivation and sleep disorders. Sleep stage classification became a highly essential process in sleep scoring. Nevertheless, the visual scoring of arousals during sleep routinely performed by sleep specialists was a challenging exercise.
This paper introduced a novel approach for sleep stage classification using covariance feature matrix architecture with multivariate phase space reconstruction (MPSR). The goal was to capture the geometric properties and the hidden dynamic characteristics of multiple physiological signals. The covariance matrices constructed through the MPSR approach were considered as symmetric and positive definite (SPD) matrices, forming a Riemannian manifold space. These SPD matrices in the Riemannian manifold were mapped to the matrices in the tangent space, allowing them to be vectorized and treated as feature vectors in Euclidean space. Finally, an ensemble learning classifier was applied to perform various sleep stage tasks.
Our proposed method was evaluated on three benchmark datasets to assess its effectiveness and robustness. For the tasks of both Five class and Six class sleep stages, the proposed approach in ten-fold cross validation achieved high accuracy of 93.57% and 92.56% for the Sleep EDF dataset, 86.36% and 84.18% for the DREAMS Subjects dataset, as well as 88.93% and 88.42% for the Sleep EDF Expanded dataset (95 subjects), respectively. In leave-one-subject-out cross validation, our proposed approach for the tasks of both Five class and Six class sleep stages yielded an accuracy of 84.46% and 80.73% for the Sleep EDF dataset, 82.50% and 79.51% for the DREAMS Subjects dataset, as well as 93.25% and 92.06% for the Sleep EDF Expanded-20 dataset (20 subjects), respectively.
Compared to the traditional sample covariance matrix (SCM), the covariance feature matrix using the MPSR method successfully captured the distinction of spatial information among various sleep stages. Moreover, our proposed method obtained good performance without requiring computationally large artifact suppression or a long signal decomposition process. |
---|---|
AbstractList | •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed to further perform the sleep state classification.•Compared to the traditional covariance method using sample covariance matrix (SCM), covariance feature matrix method using MPSR can successfully capture the differences in the spatial information of various sleep states.
Sleep was highly imperative in human daily life. However, an increasing number of people were undergoing sleep deprivation and sleep disorders. Sleep stage classification became a highly essential process in sleep scoring. Nevertheless, the visual scoring of arousals during sleep routinely performed by sleep specialists was a challenging exercise.
This paper introduced a novel approach for sleep stage classification using covariance feature matrix architecture with multivariate phase space reconstruction (MPSR). The goal was to capture the geometric properties and the hidden dynamic characteristics of multiple physiological signals. The covariance matrices constructed through the MPSR approach were considered as symmetric and positive definite (SPD) matrices, forming a Riemannian manifold space. These SPD matrices in the Riemannian manifold were mapped to the matrices in the tangent space, allowing them to be vectorized and treated as feature vectors in Euclidean space. Finally, an ensemble learning classifier was applied to perform various sleep stage tasks.
Our proposed method was evaluated on three benchmark datasets to assess its effectiveness and robustness. For the tasks of both Five class and Six class sleep stages, the proposed approach in ten-fold cross validation achieved high accuracy of 93.57% and 92.56% for the Sleep EDF dataset, 86.36% and 84.18% for the DREAMS Subjects dataset, as well as 88.93% and 88.42% for the Sleep EDF Expanded dataset (95 subjects), respectively. In leave-one-subject-out cross validation, our proposed approach for the tasks of both Five class and Six class sleep stages yielded an accuracy of 84.46% and 80.73% for the Sleep EDF dataset, 82.50% and 79.51% for the DREAMS Subjects dataset, as well as 93.25% and 92.06% for the Sleep EDF Expanded-20 dataset (20 subjects), respectively.
Compared to the traditional sample covariance matrix (SCM), the covariance feature matrix using the MPSR method successfully captured the distinction of spatial information among various sleep stages. Moreover, our proposed method obtained good performance without requiring computationally large artifact suppression or a long signal decomposition process. |
ArticleNumber | 105572 |
Author | Wing-Kuen Ling, Bingo Zhang, Hongtao Ahmed, Waqar Zhou, Yang Zhou, Xueling Lin, Yuxin |
Author_xml | – sequence: 1 givenname: Xueling surname: Zhou fullname: Zhou, Xueling organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China – sequence: 2 givenname: Bingo surname: Wing-Kuen Ling fullname: Wing-Kuen Ling, Bingo organization: School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 3 givenname: Waqar surname: Ahmed fullname: Ahmed, Waqar organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China – sequence: 4 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 5 givenname: Yuxin orcidid: 0000-0003-4375-3515 surname: Lin fullname: Lin, Yuxin organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 6 givenname: Hongtao orcidid: 0000-0002-8447-5534 surname: Zhang fullname: Zhang, Hongtao email: zhanghongtao@ipm-gba.org.cn organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China |
BookMark | eNp9kM1KAzEUhbOoYFt9AVd5ganJJJ0fcCPFP6gIolvDnTs3mjLNDEla8O2dWlcuujpw4Lvc883YxPeeGLuSYiGFLK43iyYOuMhFrsZiuSzzCZvKUhdZJWp9zmYxboTQVSn1lH0877rk9hAcJOLDF0TicQAkHgh7H1PYYXK95-Bb_upoC9478HxMZ_uu5bYPPHZEA48JPoljBzE66xAO2AU7s9BFuvzLOXu_v3tbPWbrl4en1e06QyVEyvLCSoVN0bRKN1KVsgUsoEQUoFERAklbtDXJvJZtrpZa61qBBd1gXpU1qDmrjncx9DEGsgZd-v0gBXCdkcIc3JiNObgxBzfm6GZE83_oENwWwvdp6OYI0Thq7yiYiI48UutGb8m0vTuF_wDiJISU |
CitedBy_id | crossref_primary_10_3390_math12142164 crossref_primary_10_37391_ijeer_120235 crossref_primary_10_1007_s13755_024_00328_0 crossref_primary_10_1088_1741_2552_ad88a2 crossref_primary_10_1109_ACCESS_2024_3447096 crossref_primary_10_1109_TBME_2024_3386219 crossref_primary_10_1109_TNSRE_2024_3420715 |
Cites_doi | 10.1016/j.knosys.2017.05.005 10.3390/brainsci6030036 10.1109/TCSII.2020.3014514 10.1109/TNSRE.2017.2699784 10.1016/j.bspc.2021.102581 10.1212/WNL.51.2.526 10.1016/j.eswa.2023.119613 10.1016/j.jneumeth.2019.108320 10.1016/j.sleep.2021.05.043 10.1016/j.apacoust.2021.108078 10.3390/ijerph16040599 10.1109/JSTSP.2013.2260320 10.1016/j.eswa.2018.03.020 10.1016/j.cmpb.2014.04.012 10.1016/j.eswa.2017.11.007 10.1001/archpsyc.1969.01740140118016 10.1016/j.compbiomed.2017.10.025 10.1016/j.eswa.2022.118752 10.1016/j.cmpb.2019.105089 10.1007/s12021-020-09473-9 10.1016/j.jneumeth.2019.108312 10.1016/j.bspc.2021.103086 10.1016/j.neucom.2012.12.039 10.1109/TNSRE.2016.2627016 10.1016/S0362-546X(96)00149-6 10.1016/B978-0-444-64032-1.00025-4 10.1016/j.jneumeth.2015.07.006 10.1109/BCI53720.2022.9734855 10.1016/j.neucom.2014.10.038 10.1016/j.bspc.2019.101576 10.1016/j.knosys.2020.106276 10.1016/j.bbe.2020.01.013 10.1016/j.bspc.2020.101899 10.1016/j.bspc.2021.103061 10.1155/2019/5627156 10.23919/CCC52363.2021.9550605 10.1109/TNSRE.2015.2465177 10.1109/ACCESS.2019.2933814 10.1109/ACCESS.2022.3180730 10.3390/s20174677 10.1109/TNSRE.2017.2721116 10.3389/fphys.2021.628502 10.1109/TNSRE.2016.2587939 10.1371/journal.pone.0216456 10.1016/j.eswa.2022.119288 10.1093/sleep/23.4.1f 10.1016/j.cmpb.2019.06.008 10.1016/j.jneumeth.2016.07.012 10.1016/j.knosys.2019.105367 10.1088/1741-2552/ab965a 10.1016/j.cmpb.2016.12.015 10.2307/2529465 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105572 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2023_105572 S1746809423010054 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-26f13cb6bd34b1371dac6a7cc0a4c3ecae1f6d9e1291d23544493afa4bc2879a3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:20 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Sat Oct 05 15:36:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covariance feature matrix Sleep stage classification Riemannian manifold Multivariate phase space reconstruction Multiple physiological signals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-26f13cb6bd34b1371dac6a7cc0a4c3ecae1f6d9e1291d23544493afa4bc2879a3 |
ORCID | 0000-0002-8447-5534 0000-0003-4375-3515 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105572 crossref_primary_10_1016_j_bspc_2023_105572 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Lo, Malik, Sheu, Wu (b0290) 2020; 55 S. Jeong, W. Ko, A. Mulyadi, H.-I. Suk, Continuous Riemannian Geometric Learning for Sleep Staging Classification, in: 2022 10th Int. Winter Conf. Brain-Comput. Interface BCI, 2022: pp. 1–2. 10.1109/BCI53720.2022.9734855. Stark, Broomhead, Davies, Huke (b0210) 1997; 30 Hassan, Subasi (b0145) 2017; 128 Gopan, Prabhu, Sinha (b0125) 2020; 40 J. Qu, M. Lv, Y. Yang, Y. Tang, Flight Motion Recognition Method Based on Multivariate Phase Space Reconstruction and Approximate Entropy, in: 2021 40th Chin. Control Conf. CCC, 2021: pp. 7247–7253, doi: 10.23919/CCC52363.2021.9550605. Meira e Cruz, Kryger, Morin, Palombini, Salles, Gozal (b0005) 2021; 84 Mousavi, Yousefi Rezaii, Sheykhivand, Farzamnia, Razavi (b0030) 2019; 324 Ross, Sheinhait, Harrison, Kvasz, Connelly, Shea, Allen (b0010) 2000; 23 Huang, Wing-Kuen Ling (b0170) 2022; 77 Sun, Fan, Chen, Li, Chen (b0180) 2019; 7 Shen, Ran, Xu, Guez, Li, Guo (b0160) 2020; 20 Shi, Liu, Li, Zhang, Li, Ying (b0050) 2015; 254 Liu, Tan, Fu, Li, Wang, Hou, Yang (b0040) 2021; 567 Fu, Wang, Chen, Li, Xu, Liu, Hou (b0190) 2021; 12 Hassan, Bhuiyan (b0135) 2016; 271 Hassan, Bhuiyan (b0140) 2016; 24 Mousavi, Afghah, Acharya (b0295) 2019; 14 Zhang, Cao, Feng, Wang, Geng, Zhou, Gao (b0200) 2023; 213 Gaur, Pachori, Wang, Prasad (b0080) 2018; 95 J.V. Rundo, R. Downey, Polysomnography, in: Handb. Clin. Neurol., Elsevier, 2019: pp. 381–392. 10.1016/B978-0-444-64032-1.00025-4. Bakhshali, Khademi, Ebrahimi-Moghadam, Moghimi (b0105) 2020; 59 Hassan, Bhuiyan (b0150) 2017; 140 Yger, Berar, Lotte (b0255) 2017; 25 Landis, Koch (b0265) 1977; 33 Supratak, Dong, Wu, Guo (b0300) 2017; 25 Cai, Gao, An, Gao, Grebogi (b0285) 2021; 68 Chevallier, Kalunga, Barthélemy, Monacelli (b0090) 2021; 19 Barachant, Bonnet, Congedo, Jutten (b0065) 2013; 112 Taran, Sharma, Bajaj (b0260) 2020; 192 Comella, Nardine, Diederich, Stebbins (b0280) 1998; 51 Berry, Budhiraja, Gottlieb, Gozal, Iber, Kapur, Marcus, Mehra, Parthasarathy, Quan, Redline, Strohl, Ward, Tangredi (b0025) 2007; 08 Ghimatgar, Kazemi, Helfroush, Aarabi (b0270) 2019; 324 Yang, Zhu, Liu, Liu (b0045) 2021; 68 Fang, Chen, Zheng (b0220) 2015; 151 Li, Wong (b0115) 2013; 7 Wolpert (b0020) 1969; 20 Jiang, Ma, Wang (b0055) 2019; 178 Zhang, Yao, Ge, Gao (b0035) 2020; 183 Yildirim, Baloglu, Acharya (b0185) 2019; 16 Abdollahpour, Rezaii, Farzamnia, Saad (b0195) 2022; 10 Wu, Lance, Lawhern, Gordon, Jung, Lin (b0095) 2017; 25 Lee, Lim, Kim, Yang, Lee (b0215) 2014; 116 Corsi, Chevallier, Fallani, Yger (b0110) 2022; 69 Darjani, Omranpour (b0235) 2020; 205 Congedo, Barachant, Bhatia (b0100) 2017; 4 Zaidi, Farooq (b0275) 2023; 212 Huang, Ling (b0175) 2022; 71 Xie, Yu, Lu, Gu, Li (b0070) 2016; 25 Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (b0205) 2000; 47 Tang, Liang (b0240) 2011 Enshaeifar, Took (b0130) 2015; 24 Seifpour, Niknazar, Mikaeili, Nasrabadi (b0155) 2018; 104 Ghimatgar, Kazemi, Helfroush, Pillay, Dereymaker, Jansen, Vos, Aarabi (b0060) 2020; 17 Djemal, Bazyed, Belwafi, Gannouni, Kaaniche (b0225) 2016; 6 Kumar, Mamun, Sharma (b0075) 2017; 91 Jain, Ganesan (b0165) 2021; 70 Guan, Zhao, Yang (b0085) 2019; 2019 Zhou, Ling, Zhou, Law (b0250) 2023; 219 Akbari, Sadiq, Ur Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (b0230) 2021; 179 Cai (10.1016/j.bspc.2023.105572_b0285) 2021; 68 Gopan (10.1016/j.bspc.2023.105572_b0125) 2020; 40 Taran (10.1016/j.bspc.2023.105572_b0260) 2020; 192 Akbari (10.1016/j.bspc.2023.105572_b0230) 2021; 179 Tang (10.1016/j.bspc.2023.105572_b0240) 2011 Stark (10.1016/j.bspc.2023.105572_b0210) 1997; 30 10.1016/j.bspc.2023.105572_b0120 Huang (10.1016/j.bspc.2023.105572_b0170) 2022; 77 Zaidi (10.1016/j.bspc.2023.105572_b0275) 2023; 212 10.1016/j.bspc.2023.105572_b0245 Hassan (10.1016/j.bspc.2023.105572_b0145) 2017; 128 Yang (10.1016/j.bspc.2023.105572_b0045) 2021; 68 Zhou (10.1016/j.bspc.2023.105572_b0250) 2023; 219 Seifpour (10.1016/j.bspc.2023.105572_b0155) 2018; 104 Jain (10.1016/j.bspc.2023.105572_b0165) 2021; 70 Ross (10.1016/j.bspc.2023.105572_b0010) 2000; 23 Mousavi (10.1016/j.bspc.2023.105572_b0030) 2019; 324 Liu (10.1016/j.bspc.2023.105572_b0040) 2021; 567 Congedo (10.1016/j.bspc.2023.105572_b0100) 2017; 4 Liu (10.1016/j.bspc.2023.105572_b0290) 2020; 55 Enshaeifar (10.1016/j.bspc.2023.105572_b0130) 2015; 24 Yildirim (10.1016/j.bspc.2023.105572_b0185) 2019; 16 Li (10.1016/j.bspc.2023.105572_b0115) 2013; 7 Darjani (10.1016/j.bspc.2023.105572_b0235) 2020; 205 Xie (10.1016/j.bspc.2023.105572_b0070) 2016; 25 Kemp (10.1016/j.bspc.2023.105572_b0205) 2000; 47 Djemal (10.1016/j.bspc.2023.105572_b0225) 2016; 6 10.1016/j.bspc.2023.105572_b0015 Barachant (10.1016/j.bspc.2023.105572_b0065) 2013; 112 Guan (10.1016/j.bspc.2023.105572_b0085) 2019; 2019 Ghimatgar (10.1016/j.bspc.2023.105572_b0270) 2019; 324 Bakhshali (10.1016/j.bspc.2023.105572_b0105) 2020; 59 Berry (10.1016/j.bspc.2023.105572_b0025) 2007; 08 Yger (10.1016/j.bspc.2023.105572_b0255) 2017; 25 Zhang (10.1016/j.bspc.2023.105572_b0035) 2020; 183 Gaur (10.1016/j.bspc.2023.105572_b0080) 2018; 95 Chevallier (10.1016/j.bspc.2023.105572_b0090) 2021; 19 Ghimatgar (10.1016/j.bspc.2023.105572_b0060) 2020; 17 Corsi (10.1016/j.bspc.2023.105572_b0110) 2022; 69 Kumar (10.1016/j.bspc.2023.105572_b0075) 2017; 91 Hassan (10.1016/j.bspc.2023.105572_b0150) 2017; 140 Zhang (10.1016/j.bspc.2023.105572_b0200) 2023; 213 Wolpert (10.1016/j.bspc.2023.105572_b0020) 1969; 20 Shen (10.1016/j.bspc.2023.105572_b0160) 2020; 20 Landis (10.1016/j.bspc.2023.105572_b0265) 1977; 33 Comella (10.1016/j.bspc.2023.105572_b0280) 1998; 51 Fang (10.1016/j.bspc.2023.105572_b0220) 2015; 151 Supratak (10.1016/j.bspc.2023.105572_b0300) 2017; 25 Sun (10.1016/j.bspc.2023.105572_b0180) 2019; 7 Abdollahpour (10.1016/j.bspc.2023.105572_b0195) 2022; 10 Hassan (10.1016/j.bspc.2023.105572_b0140) 2016; 24 Meira e Cruz (10.1016/j.bspc.2023.105572_b0005) 2021; 84 Wu (10.1016/j.bspc.2023.105572_b0095) 2017; 25 Hassan (10.1016/j.bspc.2023.105572_b0135) 2016; 271 Mousavi (10.1016/j.bspc.2023.105572_b0295) 2019; 14 Fu (10.1016/j.bspc.2023.105572_b0190) 2021; 12 Huang (10.1016/j.bspc.2023.105572_b0175) 2022; 71 Lee (10.1016/j.bspc.2023.105572_b0215) 2014; 116 Shi (10.1016/j.bspc.2023.105572_b0050) 2015; 254 Jiang (10.1016/j.bspc.2023.105572_b0055) 2019; 178 |
References_xml | – volume: 77 year: 2022 ident: b0170 article-title: Joint ensemble empirical mode decomposition and tunable Q factor wavelet transform based sleep stage classifications, Biomed. Signal Process publication-title: Control. – volume: 70 year: 2021 ident: b0165 article-title: Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost publication-title: Biomed. Signal Process. Control – volume: 25 start-page: 1753 year: 2017 end-page: 1762 ident: b0255 article-title: Riemannian Approaches in Brain-Computer Interfaces: A Review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 16 start-page: 599 year: 2019 ident: b0185 article-title: A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals publication-title: Int. J. Environ. Res. Public Health – volume: 219 year: 2023 ident: b0250 article-title: Phase space reconstruction, geometric filtering based Fisher discriminant analysis and minimum distance to the Riemannian means algorithm for epileptic seizure classification publication-title: Expert Syst. Appl. – volume: 567 year: 2021 ident: b0040 article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition publication-title: Phys. Stat. Mech. Its Appl. – volume: 7 start-page: 655 year: 2013 end-page: 669 ident: b0115 article-title: Riemannian Distances for Signal Classification by Power Spectral Density publication-title: IEEE J. Sel. Top. Signal Process. – volume: 23 start-page: 519 year: 2000 end-page: 532 ident: b0010 article-title: Systematic Review and Meta-analysis of the Literature Regarding the Diagnosis of Sleep Apnea publication-title: Sleep – volume: 25 start-page: 504 year: 2016 end-page: 516 ident: b0070 article-title: Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 140 start-page: 201 year: 2017 end-page: 210 ident: b0150 article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Methods Programs Biomed. – volume: 68 start-page: 777 year: 2021 end-page: 781 ident: b0285 article-title: A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals, IEEE Trans publication-title: Circuits Syst. II Express Briefs. – volume: 24 start-page: 57 year: 2015 end-page: 67 ident: b0130 article-title: Quaternion Singular Spectrum Analysis of Electroencephalogram with Application in Sleep Analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 19 start-page: 93 year: 2021 end-page: 106 ident: b0090 article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI publication-title: Neuroinformatics – volume: 68 year: 2021 ident: b0045 article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model publication-title: Biomed. Signal Process. Control – volume: 324 year: 2019 ident: b0030 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: J. Neurosci. Methods – volume: 47 start-page: 1185 year: 2000 end-page: 1194 ident: b0205 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: b0140 article-title: Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating, Biomed. Signal Process publication-title: Control. – volume: 128 start-page: 115 year: 2017 end-page: 124 ident: b0145 article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals publication-title: Knowl.-Based Syst. – volume: 151 start-page: 1477 year: 2015 end-page: 1485 ident: b0220 article-title: Extracting features from phase space of EEG signals in brain–computer interfaces publication-title: Neurocomputing – start-page: 438 year: 2011 end-page: 441 ident: b0240 publication-title: C-C method to phase space reconstruction based on multivariate time series – volume: 25 start-page: 1998 year: 2017 end-page: 2008 ident: b0300 article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 14 year: 2019 ident: b0295 article-title: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PLoS One – volume: 254 start-page: 94 year: 2015 end-page: 101 ident: b0050 article-title: Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning publication-title: J. Neurosci. Methods – volume: 2019 start-page: 5627156 year: 2019 ident: b0085 article-title: Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry publication-title: Comput. Intell. Neurosci. – volume: 40 start-page: 527 year: 2020 end-page: 545 ident: b0125 article-title: Sleep EEG analysis utilizing inter-channel covariance matrices publication-title: Biocybern Biomed. Eng. – volume: 213 year: 2023 ident: b0200 article-title: SHNN: A single-channel EEG sleep staging model based on semi-supervised learning publication-title: Expert Syst. Appl. – reference: J. Qu, M. Lv, Y. Yang, Y. Tang, Flight Motion Recognition Method Based on Multivariate Phase Space Reconstruction and Approximate Entropy, in: 2021 40th Chin. Control Conf. CCC, 2021: pp. 7247–7253, doi: 10.23919/CCC52363.2021.9550605. – volume: 33 start-page: 671 year: 1977 end-page: 679 ident: b0265 article-title: A One-Way Components of Variance Model for Categorical Data publication-title: Biometrics – volume: 12 year: 2021 ident: b0190 article-title: Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography publication-title: Front. Physiol. – volume: 7 start-page: 109386 year: 2019 end-page: 109397 ident: b0180 article-title: A Two-Stage Neural Network for Sleep Stage Classification Based on Feature Learning, Sequence Learning, and Data Augmentation, IEEE publication-title: Access – volume: 30 start-page: 5303 year: 1997 end-page: 5314 ident: b0210 article-title: Takens embedding theorems for forced and stochastic systems publication-title: Nonlinear Anal. Theory Methods Appl. – reference: J.V. Rundo, R. Downey, Polysomnography, in: Handb. Clin. Neurol., Elsevier, 2019: pp. 381–392. 10.1016/B978-0-444-64032-1.00025-4. – volume: 59 year: 2020 ident: b0105 article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density publication-title: Biomed. Signal Process. Control – volume: 104 start-page: 277 year: 2018 end-page: 293 ident: b0155 article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal publication-title: Expert Syst. Appl. – volume: 69 start-page: 2826 year: 2022 end-page: 2838 ident: b0110 article-title: Functional Connectivity Ensemble Method to Enhance BCI Performance (FUCONE) publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 6 start-page: 36 year: 2016 ident: b0225 article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique publication-title: Brain Sci. – volume: 4 start-page: 155 year: 2017 end-page: 174 ident: b0100 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Comput publication-title: Interfaces – volume: 71 year: 2022 ident: b0175 article-title: Sleeping stage classification based on joint quaternion valued singular spectrum analysis and ensemble empirical mode decomposition publication-title: Biomed. Signal Process. Control – volume: 20 start-page: 246 year: 1969 end-page: 247 ident: b0020 article-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects publication-title: Arch. Gen. Psychiatry – volume: 178 start-page: 19 year: 2019 end-page: 30 ident: b0055 article-title: Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds publication-title: Comput. Methods Programs Biomed. – reference: S. Jeong, W. Ko, A. Mulyadi, H.-I. Suk, Continuous Riemannian Geometric Learning for Sleep Staging Classification, in: 2022 10th Int. Winter Conf. Brain-Comput. Interface BCI, 2022: pp. 1–2. 10.1109/BCI53720.2022.9734855. – volume: 51 start-page: 526 year: 1998 end-page: 529 ident: b0280 article-title: Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease publication-title: Neurology – volume: 10 start-page: 60597 year: 2022 end-page: 60609 ident: b0195 article-title: A Two-Stage Learning Convolutional Neural Network for Sleep Stage Classification Using a Filterbank and Single Feature publication-title: IEEE Access – volume: 192 year: 2020 ident: b0260 article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform publication-title: Knowl.-Based Syst. – volume: 205 year: 2020 ident: b0235 article-title: Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method publication-title: Knowl.-Based Syst. – volume: 55 year: 2020 ident: b0290 article-title: Diffuse to fuse EEG spectra – Intrinsic geometry of sleep dynamics for classification publication-title: Biomed. Signal Process. Control – volume: 212 year: 2023 ident: b0275 article-title: EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features publication-title: Expert Syst. Appl. – volume: 112 start-page: 172 year: 2013 end-page: 178 ident: b0065 article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications publication-title: Neurocomputing – volume: 324 year: 2019 ident: b0270 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model publication-title: J. Neurosci. Methods – volume: 08 start-page: 597 year: 2007 end-page: 619 ident: b0025 article-title: Rules for Scoring Respiratory Events in Sleep: Update of the AASM Manual for the Scoring of Sleep and Associated Events: Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine publication-title: J. Clin. Sleep Med. – volume: 25 start-page: 2157 year: 2017 end-page: 2168 ident: b0095 article-title: EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 179 year: 2021 ident: b0230 article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features publication-title: Appl. Acoust. – volume: 17 year: 2020 ident: b0060 article-title: Neonatal EEG sleep stage classification based on deep learning and HMM publication-title: J. Neural Eng. – volume: 271 start-page: 107 year: 2016 end-page: 118 ident: b0135 article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features publication-title: J. Neurosci. Methods – volume: 84 start-page: 283 year: 2021 end-page: 288 ident: b0005 article-title: Comorbid Insomnia and Sleep Apnea: mechanisms and implications of an underrecognized and misinterpreted sleep disorder publication-title: Sleep Med. – volume: 95 start-page: 201 year: 2018 end-page: 211 ident: b0080 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. – volume: 116 start-page: 10 year: 2014 end-page: 25 ident: b0215 article-title: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance publication-title: Comput. Methods Programs Biomed. – volume: 91 start-page: 231 year: 2017 end-page: 242 ident: b0075 article-title: CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI publication-title: Comput. Biol. Med. – volume: 183 year: 2020 ident: b0035 article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG publication-title: Comput. Methods Programs Biomed. – volume: 20 start-page: 4677 year: 2020 ident: b0160 article-title: An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features publication-title: Sensors – volume: 128 start-page: 115 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0145 article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.05.005 – start-page: 438 year: 2011 ident: 10.1016/j.bspc.2023.105572_b0240 – volume: 6 start-page: 36 year: 2016 ident: 10.1016/j.bspc.2023.105572_b0225 article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique publication-title: Brain Sci. doi: 10.3390/brainsci6030036 – volume: 68 start-page: 777 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0285 article-title: A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals, IEEE Trans publication-title: Circuits Syst. II Express Briefs. doi: 10.1109/TCSII.2020.3014514 – volume: 25 start-page: 2157 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0095 article-title: EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2699784 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0045 article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102581 – volume: 51 start-page: 526 year: 1998 ident: 10.1016/j.bspc.2023.105572_b0280 article-title: Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease publication-title: Neurology doi: 10.1212/WNL.51.2.526 – volume: 219 year: 2023 ident: 10.1016/j.bspc.2023.105572_b0250 article-title: Phase space reconstruction, geometric filtering based Fisher discriminant analysis and minimum distance to the Riemannian means algorithm for epileptic seizure classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119613 – volume: 324 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0270 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108320 – volume: 84 start-page: 283 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0005 article-title: Comorbid Insomnia and Sleep Apnea: mechanisms and implications of an underrecognized and misinterpreted sleep disorder publication-title: Sleep Med. doi: 10.1016/j.sleep.2021.05.043 – volume: 179 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0230 article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108078 – volume: 16 start-page: 599 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0185 article-title: A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16040599 – volume: 7 start-page: 655 year: 2013 ident: 10.1016/j.bspc.2023.105572_b0115 article-title: Riemannian Distances for Signal Classification by Power Spectral Density publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2260320 – volume: 104 start-page: 277 year: 2018 ident: 10.1016/j.bspc.2023.105572_b0155 article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.020 – volume: 116 start-page: 10 year: 2014 ident: 10.1016/j.bspc.2023.105572_b0215 article-title: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.04.012 – volume: 95 start-page: 201 year: 2018 ident: 10.1016/j.bspc.2023.105572_b0080 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.007 – volume: 20 start-page: 246 year: 1969 ident: 10.1016/j.bspc.2023.105572_b0020 article-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1969.01740140118016 – volume: 91 start-page: 231 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0075 article-title: CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.025 – volume: 212 year: 2023 ident: 10.1016/j.bspc.2023.105572_b0275 article-title: EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118752 – volume: 183 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0035 article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105089 – volume: 19 start-page: 93 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0090 article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI publication-title: Neuroinformatics doi: 10.1007/s12021-020-09473-9 – volume: 324 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0030 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108312 – volume: 71 year: 2022 ident: 10.1016/j.bspc.2023.105572_b0175 article-title: Sleeping stage classification based on joint quaternion valued singular spectrum analysis and ensemble empirical mode decomposition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103086 – volume: 112 start-page: 172 year: 2013 ident: 10.1016/j.bspc.2023.105572_b0065 article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 25 start-page: 1753 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0255 article-title: Riemannian Approaches in Brain-Computer Interfaces: A Review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627016 – volume: 30 start-page: 5303 year: 1997 ident: 10.1016/j.bspc.2023.105572_b0210 article-title: Takens embedding theorems for forced and stochastic systems publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/S0362-546X(96)00149-6 – ident: 10.1016/j.bspc.2023.105572_b0015 doi: 10.1016/B978-0-444-64032-1.00025-4 – volume: 254 start-page: 94 year: 2015 ident: 10.1016/j.bspc.2023.105572_b0050 article-title: Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.07.006 – volume: 47 start-page: 1185 year: 2000 ident: 10.1016/j.bspc.2023.105572_b0205 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 69 start-page: 2826 year: 2022 ident: 10.1016/j.bspc.2023.105572_b0110 article-title: Functional Connectivity Ensemble Method to Enhance BCI Performance (FUCONE) publication-title: I.E.E.E. Trans. Biomed. Eng. – volume: 567 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0040 article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition publication-title: Phys. Stat. Mech. Its Appl. – ident: 10.1016/j.bspc.2023.105572_b0120 doi: 10.1109/BCI53720.2022.9734855 – volume: 151 start-page: 1477 year: 2015 ident: 10.1016/j.bspc.2023.105572_b0220 article-title: Extracting features from phase space of EEG signals in brain–computer interfaces publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.038 – volume: 55 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0290 article-title: Diffuse to fuse EEG spectra – Intrinsic geometry of sleep dynamics for classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101576 – volume: 205 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0235 article-title: Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106276 – volume: 40 start-page: 527 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0125 article-title: Sleep EEG analysis utilizing inter-channel covariance matrices publication-title: Biocybern Biomed. Eng. doi: 10.1016/j.bbe.2020.01.013 – volume: 59 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0105 article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101899 – volume: 4 start-page: 155 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0100 article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Comput publication-title: Interfaces – volume: 77 year: 2022 ident: 10.1016/j.bspc.2023.105572_b0170 article-title: Joint ensemble empirical mode decomposition and tunable Q factor wavelet transform based sleep stage classifications, Biomed. Signal Process publication-title: Control. – volume: 70 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0165 article-title: Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103061 – volume: 2019 start-page: 5627156 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0085 article-title: Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/5627156 – ident: 10.1016/j.bspc.2023.105572_b0245 doi: 10.23919/CCC52363.2021.9550605 – volume: 24 start-page: 57 year: 2015 ident: 10.1016/j.bspc.2023.105572_b0130 article-title: Quaternion Singular Spectrum Analysis of Electroencephalogram with Application in Sleep Analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2465177 – volume: 7 start-page: 109386 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0180 article-title: A Two-Stage Neural Network for Sleep Stage Classification Based on Feature Learning, Sequence Learning, and Data Augmentation, IEEE publication-title: Access doi: 10.1109/ACCESS.2019.2933814 – volume: 10 start-page: 60597 year: 2022 ident: 10.1016/j.bspc.2023.105572_b0195 article-title: A Two-Stage Learning Convolutional Neural Network for Sleep Stage Classification Using a Filterbank and Single Feature publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180730 – volume: 20 start-page: 4677 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0160 article-title: An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features publication-title: Sensors doi: 10.3390/s20174677 – volume: 25 start-page: 1998 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0300 article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – volume: 12 year: 2021 ident: 10.1016/j.bspc.2023.105572_b0190 article-title: Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography publication-title: Front. Physiol. doi: 10.3389/fphys.2021.628502 – volume: 25 start-page: 504 year: 2016 ident: 10.1016/j.bspc.2023.105572_b0070 article-title: Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2587939 – volume: 14 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0295 article-title: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PLoS One doi: 10.1371/journal.pone.0216456 – volume: 213 year: 2023 ident: 10.1016/j.bspc.2023.105572_b0200 article-title: SHNN: A single-channel EEG sleep staging model based on semi-supervised learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119288 – volume: 23 start-page: 519 year: 2000 ident: 10.1016/j.bspc.2023.105572_b0010 article-title: Systematic Review and Meta-analysis of the Literature Regarding the Diagnosis of Sleep Apnea publication-title: Sleep doi: 10.1093/sleep/23.4.1f – volume: 178 start-page: 19 year: 2019 ident: 10.1016/j.bspc.2023.105572_b0055 article-title: Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.06.008 – volume: 271 start-page: 107 year: 2016 ident: 10.1016/j.bspc.2023.105572_b0135 article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.07.012 – volume: 192 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0260 article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105367 – volume: 17 year: 2020 ident: 10.1016/j.bspc.2023.105572_b0060 article-title: Neonatal EEG sleep stage classification based on deep learning and HMM publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab965a – volume: 08 start-page: 597 issue: 2012 year: 2007 ident: 10.1016/j.bspc.2023.105572_b0025 article-title: Rules for Scoring Respiratory Events in Sleep: Update of the AASM Manual for the Scoring of Sleep and Associated Events: Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine publication-title: J. Clin. Sleep Med. – volume: 140 start-page: 201 year: 2017 ident: 10.1016/j.bspc.2023.105572_b0150 article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.12.015 – volume: 33 start-page: 671 year: 1977 ident: 10.1016/j.bspc.2023.105572_b0265 article-title: A One-Way Components of Variance Model for Categorical Data publication-title: Biometrics doi: 10.2307/2529465 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2023.105572_b0140 article-title: Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating, Biomed. Signal Process publication-title: Control. |
SSID | ssj0048714 |
Score | 2.3891935 |
Snippet | •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105572 |
SubjectTerms | Covariance feature matrix Multiple physiological signals Multivariate phase space reconstruction Riemannian manifold Sleep stage classification |
Title | Multivariate phase space reconstruction and Riemannian manifold for sleep stage classification |
URI | https://dx.doi.org/10.1016/j.bspc.2023.105572 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbxGazj2SPpViqYg9qoSfDvqKVmgZaPPrbnc2jVJAePCbMwDIzzHwDM98gdEWSTCbWqsAQo6BBITpImLSBjE2idaicNH5R-HEkhmN2P-GTFuo3uzB-rLLO_VVOL7N1_adbW7NbTKfdZ8DSIoHuBEA08cjDb7Cz2Ef5zfdqzAPweMnv7YUDL10vzlQzXnpReBrDiPpztzyO_i5OawVnsId2a6SIe9Vj9lHL5QdoZ40_8BC9luuzX9DuAmLExTtUJAwZwjhc9rkrbliscoufpu7THyhSOfacF9l8ZjEgVryYOVdgAIlvDhuPpf3wUOmvIzQe3L70h0F9MCEwNAyXQSQyQo0W2lKmCY2JVUao2JhQMUOdUY5kwkoHNZ7YiHLGmKQqU0wbaJykoseonc9zd4KwkFRwHYXKas6M5MoyzjKhhRRRpFh0ikhjqdTUbOL-qMUsbcbGPlJv3dRbN62se4quVzpFxaWxUZo3Dkh_RUQKyX6D3tk_9c7RNnyxaiL7ArXBRe4SAMdSd8qI6qCt3t3DcPQDsVrW1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IM3Cc1mN9vssRRL66MHtdCTYV_RSo0Bi7_f2TxEQXrwmuzAMrN88w3MfANwQZNMJtaqwFCjsEChOki4tIHsmkTrUDlp_KDw3VgMJ_x6Gk9XoN_Mwvi2yhr7K0wv0br-0qm92Slms84DcmmRYHWCJJp65rEKa16dKm7BWm90Mxw3gIyUvJT49ucDb1DPzlRtXvqj8EqGEfMbb-Nu9Hd--pFzBtuwVZNF0qvuswMrLt-FzR8SgnvwVE7QfmLFi6SRFC-YlAiChHGkLHW_5WGJyi25n7k3v6NI5cTLXmTvc0uQtJKPuXMFQZ747IjxdNr3D5Uh24fJ4OqxPwzqnQmBYWG4CCKRUWa00JZxTVmXWmWE6hoTKm6YM8rRTFjpMM1TG7GYcy6ZyhTXBmsnqdgBtPL33B0CEZKJWEehsjrmRsbKonszoYUUUaR41AbaeCo1taC432sxT5vOsdfUezf13k0r77bh8tumqOQ0lp6OmwCkvx5Fini_xO7on3bnsD58vLtNb0fjm2PYwD-8atA-gRaGy50i_1jos_p9fQEacNmG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+phase+space+reconstruction+and+Riemannian+manifold+for+sleep+stage+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhou%2C+Xueling&rft.au=Wing-Kuen+Ling%2C+Bingo&rft.au=Ahmed%2C+Waqar&rft.au=Zhou%2C+Yang&rft.date=2024-02-01&rft.issn=1746-8094&rft.volume=88&rft.spage=105572&rft_id=info:doi/10.1016%2Fj.bspc.2023.105572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |