Multivariate phase space reconstruction and Riemannian manifold for sleep stage classification

•A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 88; p. 105572
Main Authors Zhou, Xueling, Wing-Kuen Ling, Bingo, Ahmed, Waqar, Zhou, Yang, Lin, Yuxin, Zhang, Hongtao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2023.105572

Cover

Loading…
Abstract •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed to further perform the sleep state classification.•Compared to the traditional covariance method using sample covariance matrix (SCM), covariance feature matrix method using MPSR can successfully capture the differences in the spatial information of various sleep states. Sleep was highly imperative in human daily life. However, an increasing number of people were undergoing sleep deprivation and sleep disorders. Sleep stage classification became a highly essential process in sleep scoring. Nevertheless, the visual scoring of arousals during sleep routinely performed by sleep specialists was a challenging exercise. This paper introduced a novel approach for sleep stage classification using covariance feature matrix architecture with multivariate phase space reconstruction (MPSR). The goal was to capture the geometric properties and the hidden dynamic characteristics of multiple physiological signals. The covariance matrices constructed through the MPSR approach were considered as symmetric and positive definite (SPD) matrices, forming a Riemannian manifold space. These SPD matrices in the Riemannian manifold were mapped to the matrices in the tangent space, allowing them to be vectorized and treated as feature vectors in Euclidean space. Finally, an ensemble learning classifier was applied to perform various sleep stage tasks. Our proposed method was evaluated on three benchmark datasets to assess its effectiveness and robustness. For the tasks of both Five class and Six class sleep stages, the proposed approach in ten-fold cross validation achieved high accuracy of 93.57% and 92.56% for the Sleep EDF dataset, 86.36% and 84.18% for the DREAMS Subjects dataset, as well as 88.93% and 88.42% for the Sleep EDF Expanded dataset (95 subjects), respectively. In leave-one-subject-out cross validation, our proposed approach for the tasks of both Five class and Six class sleep stages yielded an accuracy of 84.46% and 80.73% for the Sleep EDF dataset, 82.50% and 79.51% for the DREAMS Subjects dataset, as well as 93.25% and 92.06% for the Sleep EDF Expanded-20 dataset (20 subjects), respectively. Compared to the traditional sample covariance matrix (SCM), the covariance feature matrix using the MPSR method successfully captured the distinction of spatial information among various sleep stages. Moreover, our proposed method obtained good performance without requiring computationally large artifact suppression or a long signal decomposition process.
AbstractList •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and the hidden dynamic characteristic of multiple physiological signals.•A novel classification strategy based on Riemannian manifold is employed to further perform the sleep state classification.•Compared to the traditional covariance method using sample covariance matrix (SCM), covariance feature matrix method using MPSR can successfully capture the differences in the spatial information of various sleep states. Sleep was highly imperative in human daily life. However, an increasing number of people were undergoing sleep deprivation and sleep disorders. Sleep stage classification became a highly essential process in sleep scoring. Nevertheless, the visual scoring of arousals during sleep routinely performed by sleep specialists was a challenging exercise. This paper introduced a novel approach for sleep stage classification using covariance feature matrix architecture with multivariate phase space reconstruction (MPSR). The goal was to capture the geometric properties and the hidden dynamic characteristics of multiple physiological signals. The covariance matrices constructed through the MPSR approach were considered as symmetric and positive definite (SPD) matrices, forming a Riemannian manifold space. These SPD matrices in the Riemannian manifold were mapped to the matrices in the tangent space, allowing them to be vectorized and treated as feature vectors in Euclidean space. Finally, an ensemble learning classifier was applied to perform various sleep stage tasks. Our proposed method was evaluated on three benchmark datasets to assess its effectiveness and robustness. For the tasks of both Five class and Six class sleep stages, the proposed approach in ten-fold cross validation achieved high accuracy of 93.57% and 92.56% for the Sleep EDF dataset, 86.36% and 84.18% for the DREAMS Subjects dataset, as well as 88.93% and 88.42% for the Sleep EDF Expanded dataset (95 subjects), respectively. In leave-one-subject-out cross validation, our proposed approach for the tasks of both Five class and Six class sleep stages yielded an accuracy of 84.46% and 80.73% for the Sleep EDF dataset, 82.50% and 79.51% for the DREAMS Subjects dataset, as well as 93.25% and 92.06% for the Sleep EDF Expanded-20 dataset (20 subjects), respectively. Compared to the traditional sample covariance matrix (SCM), the covariance feature matrix using the MPSR method successfully captured the distinction of spatial information among various sleep stages. Moreover, our proposed method obtained good performance without requiring computationally large artifact suppression or a long signal decomposition process.
ArticleNumber 105572
Author Wing-Kuen Ling, Bingo
Zhang, Hongtao
Ahmed, Waqar
Zhou, Yang
Zhou, Xueling
Lin, Yuxin
Author_xml – sequence: 1
  givenname: Xueling
  surname: Zhou
  fullname: Zhou, Xueling
  organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China
– sequence: 2
  givenname: Bingo
  surname: Wing-Kuen Ling
  fullname: Wing-Kuen Ling, Bingo
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 3
  givenname: Waqar
  surname: Ahmed
  fullname: Ahmed, Waqar
  organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China
– sequence: 4
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 5
  givenname: Yuxin
  orcidid: 0000-0003-4375-3515
  surname: Lin
  fullname: Lin, Yuxin
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 6
  givenname: Hongtao
  orcidid: 0000-0002-8447-5534
  surname: Zhang
  fullname: Zhang, Hongtao
  email: zhanghongtao@ipm-gba.org.cn
  organization: Greater Bay Area Institute of Precision Medicine, Guangzhou 511462, China
BookMark eNp9kM1KAzEUhbOoYFt9AVd5ganJJJ0fcCPFP6gIolvDnTs3mjLNDEla8O2dWlcuujpw4Lvc883YxPeeGLuSYiGFLK43iyYOuMhFrsZiuSzzCZvKUhdZJWp9zmYxboTQVSn1lH0877rk9hAcJOLDF0TicQAkHgh7H1PYYXK95-Bb_upoC9478HxMZ_uu5bYPPHZEA48JPoljBzE66xAO2AU7s9BFuvzLOXu_v3tbPWbrl4en1e06QyVEyvLCSoVN0bRKN1KVsgUsoEQUoFERAklbtDXJvJZtrpZa61qBBd1gXpU1qDmrjncx9DEGsgZd-v0gBXCdkcIc3JiNObgxBzfm6GZE83_oENwWwvdp6OYI0Thq7yiYiI48UutGb8m0vTuF_wDiJISU
CitedBy_id crossref_primary_10_3390_math12142164
crossref_primary_10_37391_ijeer_120235
crossref_primary_10_1007_s13755_024_00328_0
crossref_primary_10_1088_1741_2552_ad88a2
crossref_primary_10_1109_ACCESS_2024_3447096
crossref_primary_10_1109_TBME_2024_3386219
crossref_primary_10_1109_TNSRE_2024_3420715
Cites_doi 10.1016/j.knosys.2017.05.005
10.3390/brainsci6030036
10.1109/TCSII.2020.3014514
10.1109/TNSRE.2017.2699784
10.1016/j.bspc.2021.102581
10.1212/WNL.51.2.526
10.1016/j.eswa.2023.119613
10.1016/j.jneumeth.2019.108320
10.1016/j.sleep.2021.05.043
10.1016/j.apacoust.2021.108078
10.3390/ijerph16040599
10.1109/JSTSP.2013.2260320
10.1016/j.eswa.2018.03.020
10.1016/j.cmpb.2014.04.012
10.1016/j.eswa.2017.11.007
10.1001/archpsyc.1969.01740140118016
10.1016/j.compbiomed.2017.10.025
10.1016/j.eswa.2022.118752
10.1016/j.cmpb.2019.105089
10.1007/s12021-020-09473-9
10.1016/j.jneumeth.2019.108312
10.1016/j.bspc.2021.103086
10.1016/j.neucom.2012.12.039
10.1109/TNSRE.2016.2627016
10.1016/S0362-546X(96)00149-6
10.1016/B978-0-444-64032-1.00025-4
10.1016/j.jneumeth.2015.07.006
10.1109/BCI53720.2022.9734855
10.1016/j.neucom.2014.10.038
10.1016/j.bspc.2019.101576
10.1016/j.knosys.2020.106276
10.1016/j.bbe.2020.01.013
10.1016/j.bspc.2020.101899
10.1016/j.bspc.2021.103061
10.1155/2019/5627156
10.23919/CCC52363.2021.9550605
10.1109/TNSRE.2015.2465177
10.1109/ACCESS.2019.2933814
10.1109/ACCESS.2022.3180730
10.3390/s20174677
10.1109/TNSRE.2017.2721116
10.3389/fphys.2021.628502
10.1109/TNSRE.2016.2587939
10.1371/journal.pone.0216456
10.1016/j.eswa.2022.119288
10.1093/sleep/23.4.1f
10.1016/j.cmpb.2019.06.008
10.1016/j.jneumeth.2016.07.012
10.1016/j.knosys.2019.105367
10.1088/1741-2552/ab965a
10.1016/j.cmpb.2016.12.015
10.2307/2529465
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105572
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_105572
S1746809423010054
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-26f13cb6bd34b1371dac6a7cc0a4c3ecae1f6d9e1291d23544493afa4bc2879a3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:20 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Sat Oct 05 15:36:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Covariance feature matrix
Sleep stage classification
Riemannian manifold
Multivariate phase space reconstruction
Multiple physiological signals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-26f13cb6bd34b1371dac6a7cc0a4c3ecae1f6d9e1291d23544493afa4bc2879a3
ORCID 0000-0002-8447-5534
0000-0003-4375-3515
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105572
crossref_primary_10_1016_j_bspc_2023_105572
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Lo, Malik, Sheu, Wu (b0290) 2020; 55
S. Jeong, W. Ko, A. Mulyadi, H.-I. Suk, Continuous Riemannian Geometric Learning for Sleep Staging Classification, in: 2022 10th Int. Winter Conf. Brain-Comput. Interface BCI, 2022: pp. 1–2. 10.1109/BCI53720.2022.9734855.
Stark, Broomhead, Davies, Huke (b0210) 1997; 30
Hassan, Subasi (b0145) 2017; 128
Gopan, Prabhu, Sinha (b0125) 2020; 40
J. Qu, M. Lv, Y. Yang, Y. Tang, Flight Motion Recognition Method Based on Multivariate Phase Space Reconstruction and Approximate Entropy, in: 2021 40th Chin. Control Conf. CCC, 2021: pp. 7247–7253, doi: 10.23919/CCC52363.2021.9550605.
Meira e Cruz, Kryger, Morin, Palombini, Salles, Gozal (b0005) 2021; 84
Mousavi, Yousefi Rezaii, Sheykhivand, Farzamnia, Razavi (b0030) 2019; 324
Ross, Sheinhait, Harrison, Kvasz, Connelly, Shea, Allen (b0010) 2000; 23
Huang, Wing-Kuen Ling (b0170) 2022; 77
Sun, Fan, Chen, Li, Chen (b0180) 2019; 7
Shen, Ran, Xu, Guez, Li, Guo (b0160) 2020; 20
Shi, Liu, Li, Zhang, Li, Ying (b0050) 2015; 254
Liu, Tan, Fu, Li, Wang, Hou, Yang (b0040) 2021; 567
Fu, Wang, Chen, Li, Xu, Liu, Hou (b0190) 2021; 12
Hassan, Bhuiyan (b0135) 2016; 271
Hassan, Bhuiyan (b0140) 2016; 24
Mousavi, Afghah, Acharya (b0295) 2019; 14
Zhang, Cao, Feng, Wang, Geng, Zhou, Gao (b0200) 2023; 213
Gaur, Pachori, Wang, Prasad (b0080) 2018; 95
J.V. Rundo, R. Downey, Polysomnography, in: Handb. Clin. Neurol., Elsevier, 2019: pp. 381–392. 10.1016/B978-0-444-64032-1.00025-4.
Bakhshali, Khademi, Ebrahimi-Moghadam, Moghimi (b0105) 2020; 59
Hassan, Bhuiyan (b0150) 2017; 140
Yger, Berar, Lotte (b0255) 2017; 25
Landis, Koch (b0265) 1977; 33
Supratak, Dong, Wu, Guo (b0300) 2017; 25
Cai, Gao, An, Gao, Grebogi (b0285) 2021; 68
Chevallier, Kalunga, Barthélemy, Monacelli (b0090) 2021; 19
Barachant, Bonnet, Congedo, Jutten (b0065) 2013; 112
Taran, Sharma, Bajaj (b0260) 2020; 192
Comella, Nardine, Diederich, Stebbins (b0280) 1998; 51
Berry, Budhiraja, Gottlieb, Gozal, Iber, Kapur, Marcus, Mehra, Parthasarathy, Quan, Redline, Strohl, Ward, Tangredi (b0025) 2007; 08
Ghimatgar, Kazemi, Helfroush, Aarabi (b0270) 2019; 324
Yang, Zhu, Liu, Liu (b0045) 2021; 68
Fang, Chen, Zheng (b0220) 2015; 151
Li, Wong (b0115) 2013; 7
Wolpert (b0020) 1969; 20
Jiang, Ma, Wang (b0055) 2019; 178
Zhang, Yao, Ge, Gao (b0035) 2020; 183
Yildirim, Baloglu, Acharya (b0185) 2019; 16
Abdollahpour, Rezaii, Farzamnia, Saad (b0195) 2022; 10
Wu, Lance, Lawhern, Gordon, Jung, Lin (b0095) 2017; 25
Lee, Lim, Kim, Yang, Lee (b0215) 2014; 116
Corsi, Chevallier, Fallani, Yger (b0110) 2022; 69
Darjani, Omranpour (b0235) 2020; 205
Congedo, Barachant, Bhatia (b0100) 2017; 4
Zaidi, Farooq (b0275) 2023; 212
Huang, Ling (b0175) 2022; 71
Xie, Yu, Lu, Gu, Li (b0070) 2016; 25
Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (b0205) 2000; 47
Tang, Liang (b0240) 2011
Enshaeifar, Took (b0130) 2015; 24
Seifpour, Niknazar, Mikaeili, Nasrabadi (b0155) 2018; 104
Ghimatgar, Kazemi, Helfroush, Pillay, Dereymaker, Jansen, Vos, Aarabi (b0060) 2020; 17
Djemal, Bazyed, Belwafi, Gannouni, Kaaniche (b0225) 2016; 6
Kumar, Mamun, Sharma (b0075) 2017; 91
Jain, Ganesan (b0165) 2021; 70
Guan, Zhao, Yang (b0085) 2019; 2019
Zhou, Ling, Zhou, Law (b0250) 2023; 219
Akbari, Sadiq, Ur Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (b0230) 2021; 179
Cai (10.1016/j.bspc.2023.105572_b0285) 2021; 68
Gopan (10.1016/j.bspc.2023.105572_b0125) 2020; 40
Taran (10.1016/j.bspc.2023.105572_b0260) 2020; 192
Akbari (10.1016/j.bspc.2023.105572_b0230) 2021; 179
Tang (10.1016/j.bspc.2023.105572_b0240) 2011
Stark (10.1016/j.bspc.2023.105572_b0210) 1997; 30
10.1016/j.bspc.2023.105572_b0120
Huang (10.1016/j.bspc.2023.105572_b0170) 2022; 77
Zaidi (10.1016/j.bspc.2023.105572_b0275) 2023; 212
10.1016/j.bspc.2023.105572_b0245
Hassan (10.1016/j.bspc.2023.105572_b0145) 2017; 128
Yang (10.1016/j.bspc.2023.105572_b0045) 2021; 68
Zhou (10.1016/j.bspc.2023.105572_b0250) 2023; 219
Seifpour (10.1016/j.bspc.2023.105572_b0155) 2018; 104
Jain (10.1016/j.bspc.2023.105572_b0165) 2021; 70
Ross (10.1016/j.bspc.2023.105572_b0010) 2000; 23
Mousavi (10.1016/j.bspc.2023.105572_b0030) 2019; 324
Liu (10.1016/j.bspc.2023.105572_b0040) 2021; 567
Congedo (10.1016/j.bspc.2023.105572_b0100) 2017; 4
Liu (10.1016/j.bspc.2023.105572_b0290) 2020; 55
Enshaeifar (10.1016/j.bspc.2023.105572_b0130) 2015; 24
Yildirim (10.1016/j.bspc.2023.105572_b0185) 2019; 16
Li (10.1016/j.bspc.2023.105572_b0115) 2013; 7
Darjani (10.1016/j.bspc.2023.105572_b0235) 2020; 205
Xie (10.1016/j.bspc.2023.105572_b0070) 2016; 25
Kemp (10.1016/j.bspc.2023.105572_b0205) 2000; 47
Djemal (10.1016/j.bspc.2023.105572_b0225) 2016; 6
10.1016/j.bspc.2023.105572_b0015
Barachant (10.1016/j.bspc.2023.105572_b0065) 2013; 112
Guan (10.1016/j.bspc.2023.105572_b0085) 2019; 2019
Ghimatgar (10.1016/j.bspc.2023.105572_b0270) 2019; 324
Bakhshali (10.1016/j.bspc.2023.105572_b0105) 2020; 59
Berry (10.1016/j.bspc.2023.105572_b0025) 2007; 08
Yger (10.1016/j.bspc.2023.105572_b0255) 2017; 25
Zhang (10.1016/j.bspc.2023.105572_b0035) 2020; 183
Gaur (10.1016/j.bspc.2023.105572_b0080) 2018; 95
Chevallier (10.1016/j.bspc.2023.105572_b0090) 2021; 19
Ghimatgar (10.1016/j.bspc.2023.105572_b0060) 2020; 17
Corsi (10.1016/j.bspc.2023.105572_b0110) 2022; 69
Kumar (10.1016/j.bspc.2023.105572_b0075) 2017; 91
Hassan (10.1016/j.bspc.2023.105572_b0150) 2017; 140
Zhang (10.1016/j.bspc.2023.105572_b0200) 2023; 213
Wolpert (10.1016/j.bspc.2023.105572_b0020) 1969; 20
Shen (10.1016/j.bspc.2023.105572_b0160) 2020; 20
Landis (10.1016/j.bspc.2023.105572_b0265) 1977; 33
Comella (10.1016/j.bspc.2023.105572_b0280) 1998; 51
Fang (10.1016/j.bspc.2023.105572_b0220) 2015; 151
Supratak (10.1016/j.bspc.2023.105572_b0300) 2017; 25
Sun (10.1016/j.bspc.2023.105572_b0180) 2019; 7
Abdollahpour (10.1016/j.bspc.2023.105572_b0195) 2022; 10
Hassan (10.1016/j.bspc.2023.105572_b0140) 2016; 24
Meira e Cruz (10.1016/j.bspc.2023.105572_b0005) 2021; 84
Wu (10.1016/j.bspc.2023.105572_b0095) 2017; 25
Hassan (10.1016/j.bspc.2023.105572_b0135) 2016; 271
Mousavi (10.1016/j.bspc.2023.105572_b0295) 2019; 14
Fu (10.1016/j.bspc.2023.105572_b0190) 2021; 12
Huang (10.1016/j.bspc.2023.105572_b0175) 2022; 71
Lee (10.1016/j.bspc.2023.105572_b0215) 2014; 116
Shi (10.1016/j.bspc.2023.105572_b0050) 2015; 254
Jiang (10.1016/j.bspc.2023.105572_b0055) 2019; 178
References_xml – volume: 77
  year: 2022
  ident: b0170
  article-title: Joint ensemble empirical mode decomposition and tunable Q factor wavelet transform based sleep stage classifications, Biomed. Signal Process
  publication-title: Control.
– volume: 70
  year: 2021
  ident: b0165
  article-title: Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost
  publication-title: Biomed. Signal Process. Control
– volume: 25
  start-page: 1753
  year: 2017
  end-page: 1762
  ident: b0255
  article-title: Riemannian Approaches in Brain-Computer Interfaces: A Review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 16
  start-page: 599
  year: 2019
  ident: b0185
  article-title: A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals
  publication-title: Int. J. Environ. Res. Public Health
– volume: 219
  year: 2023
  ident: b0250
  article-title: Phase space reconstruction, geometric filtering based Fisher discriminant analysis and minimum distance to the Riemannian means algorithm for epileptic seizure classification
  publication-title: Expert Syst. Appl.
– volume: 567
  year: 2021
  ident: b0040
  article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
  publication-title: Phys. Stat. Mech. Its Appl.
– volume: 7
  start-page: 655
  year: 2013
  end-page: 669
  ident: b0115
  article-title: Riemannian Distances for Signal Classification by Power Spectral Density
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 23
  start-page: 519
  year: 2000
  end-page: 532
  ident: b0010
  article-title: Systematic Review and Meta-analysis of the Literature Regarding the Diagnosis of Sleep Apnea
  publication-title: Sleep
– volume: 25
  start-page: 504
  year: 2016
  end-page: 516
  ident: b0070
  article-title: Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 140
  start-page: 201
  year: 2017
  end-page: 210
  ident: b0150
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Programs Biomed.
– volume: 68
  start-page: 777
  year: 2021
  end-page: 781
  ident: b0285
  article-title: A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals, IEEE Trans
  publication-title: Circuits Syst. II Express Briefs.
– volume: 24
  start-page: 57
  year: 2015
  end-page: 67
  ident: b0130
  article-title: Quaternion Singular Spectrum Analysis of Electroencephalogram with Application in Sleep Analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 19
  start-page: 93
  year: 2021
  end-page: 106
  ident: b0090
  article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI
  publication-title: Neuroinformatics
– volume: 68
  year: 2021
  ident: b0045
  article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
  publication-title: Biomed. Signal Process. Control
– volume: 324
  year: 2019
  ident: b0030
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: J. Neurosci. Methods
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: b0205
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0140
  article-title: Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating, Biomed. Signal Process
  publication-title: Control.
– volume: 128
  start-page: 115
  year: 2017
  end-page: 124
  ident: b0145
  article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals
  publication-title: Knowl.-Based Syst.
– volume: 151
  start-page: 1477
  year: 2015
  end-page: 1485
  ident: b0220
  article-title: Extracting features from phase space of EEG signals in brain–computer interfaces
  publication-title: Neurocomputing
– start-page: 438
  year: 2011
  end-page: 441
  ident: b0240
  publication-title: C-C method to phase space reconstruction based on multivariate time series
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: b0300
  article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 14
  year: 2019
  ident: b0295
  article-title: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS One
– volume: 254
  start-page: 94
  year: 2015
  end-page: 101
  ident: b0050
  article-title: Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning
  publication-title: J. Neurosci. Methods
– volume: 2019
  start-page: 5627156
  year: 2019
  ident: b0085
  article-title: Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry
  publication-title: Comput. Intell. Neurosci.
– volume: 40
  start-page: 527
  year: 2020
  end-page: 545
  ident: b0125
  article-title: Sleep EEG analysis utilizing inter-channel covariance matrices
  publication-title: Biocybern Biomed. Eng.
– volume: 213
  year: 2023
  ident: b0200
  article-title: SHNN: A single-channel EEG sleep staging model based on semi-supervised learning
  publication-title: Expert Syst. Appl.
– reference: J. Qu, M. Lv, Y. Yang, Y. Tang, Flight Motion Recognition Method Based on Multivariate Phase Space Reconstruction and Approximate Entropy, in: 2021 40th Chin. Control Conf. CCC, 2021: pp. 7247–7253, doi: 10.23919/CCC52363.2021.9550605.
– volume: 33
  start-page: 671
  year: 1977
  end-page: 679
  ident: b0265
  article-title: A One-Way Components of Variance Model for Categorical Data
  publication-title: Biometrics
– volume: 12
  year: 2021
  ident: b0190
  article-title: Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography
  publication-title: Front. Physiol.
– volume: 7
  start-page: 109386
  year: 2019
  end-page: 109397
  ident: b0180
  article-title: A Two-Stage Neural Network for Sleep Stage Classification Based on Feature Learning, Sequence Learning, and Data Augmentation, IEEE
  publication-title: Access
– volume: 30
  start-page: 5303
  year: 1997
  end-page: 5314
  ident: b0210
  article-title: Takens embedding theorems for forced and stochastic systems
  publication-title: Nonlinear Anal. Theory Methods Appl.
– reference: J.V. Rundo, R. Downey, Polysomnography, in: Handb. Clin. Neurol., Elsevier, 2019: pp. 381–392. 10.1016/B978-0-444-64032-1.00025-4.
– volume: 59
  year: 2020
  ident: b0105
  article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density
  publication-title: Biomed. Signal Process. Control
– volume: 104
  start-page: 277
  year: 2018
  end-page: 293
  ident: b0155
  article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 2826
  year: 2022
  end-page: 2838
  ident: b0110
  article-title: Functional Connectivity Ensemble Method to Enhance BCI Performance (FUCONE)
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 6
  start-page: 36
  year: 2016
  ident: b0225
  article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique
  publication-title: Brain Sci.
– volume: 4
  start-page: 155
  year: 2017
  end-page: 174
  ident: b0100
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Comput
  publication-title: Interfaces
– volume: 71
  year: 2022
  ident: b0175
  article-title: Sleeping stage classification based on joint quaternion valued singular spectrum analysis and ensemble empirical mode decomposition
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 246
  year: 1969
  end-page: 247
  ident: b0020
  article-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects
  publication-title: Arch. Gen. Psychiatry
– volume: 178
  start-page: 19
  year: 2019
  end-page: 30
  ident: b0055
  article-title: Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds
  publication-title: Comput. Methods Programs Biomed.
– reference: S. Jeong, W. Ko, A. Mulyadi, H.-I. Suk, Continuous Riemannian Geometric Learning for Sleep Staging Classification, in: 2022 10th Int. Winter Conf. Brain-Comput. Interface BCI, 2022: pp. 1–2. 10.1109/BCI53720.2022.9734855.
– volume: 51
  start-page: 526
  year: 1998
  end-page: 529
  ident: b0280
  article-title: Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease
  publication-title: Neurology
– volume: 10
  start-page: 60597
  year: 2022
  end-page: 60609
  ident: b0195
  article-title: A Two-Stage Learning Convolutional Neural Network for Sleep Stage Classification Using a Filterbank and Single Feature
  publication-title: IEEE Access
– volume: 192
  year: 2020
  ident: b0260
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl.-Based Syst.
– volume: 205
  year: 2020
  ident: b0235
  article-title: Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method
  publication-title: Knowl.-Based Syst.
– volume: 55
  year: 2020
  ident: b0290
  article-title: Diffuse to fuse EEG spectra – Intrinsic geometry of sleep dynamics for classification
  publication-title: Biomed. Signal Process. Control
– volume: 212
  year: 2023
  ident: b0275
  article-title: EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features
  publication-title: Expert Syst. Appl.
– volume: 112
  start-page: 172
  year: 2013
  end-page: 178
  ident: b0065
  article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications
  publication-title: Neurocomputing
– volume: 324
  year: 2019
  ident: b0270
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model
  publication-title: J. Neurosci. Methods
– volume: 08
  start-page: 597
  year: 2007
  end-page: 619
  ident: b0025
  article-title: Rules for Scoring Respiratory Events in Sleep: Update of the AASM Manual for the Scoring of Sleep and Associated Events: Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine
  publication-title: J. Clin. Sleep Med.
– volume: 25
  start-page: 2157
  year: 2017
  end-page: 2168
  ident: b0095
  article-title: EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 179
  year: 2021
  ident: b0230
  article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features
  publication-title: Appl. Acoust.
– volume: 17
  year: 2020
  ident: b0060
  article-title: Neonatal EEG sleep stage classification based on deep learning and HMM
  publication-title: J. Neural Eng.
– volume: 271
  start-page: 107
  year: 2016
  end-page: 118
  ident: b0135
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
– volume: 84
  start-page: 283
  year: 2021
  end-page: 288
  ident: b0005
  article-title: Comorbid Insomnia and Sleep Apnea: mechanisms and implications of an underrecognized and misinterpreted sleep disorder
  publication-title: Sleep Med.
– volume: 95
  start-page: 201
  year: 2018
  end-page: 211
  ident: b0080
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
– volume: 116
  start-page: 10
  year: 2014
  end-page: 25
  ident: b0215
  article-title: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance
  publication-title: Comput. Methods Programs Biomed.
– volume: 91
  start-page: 231
  year: 2017
  end-page: 242
  ident: b0075
  article-title: CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI
  publication-title: Comput. Biol. Med.
– volume: 183
  year: 2020
  ident: b0035
  article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
– volume: 20
  start-page: 4677
  year: 2020
  ident: b0160
  article-title: An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features
  publication-title: Sensors
– volume: 128
  start-page: 115
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0145
  article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.05.005
– start-page: 438
  year: 2011
  ident: 10.1016/j.bspc.2023.105572_b0240
– volume: 6
  start-page: 36
  year: 2016
  ident: 10.1016/j.bspc.2023.105572_b0225
  article-title: Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique
  publication-title: Brain Sci.
  doi: 10.3390/brainsci6030036
– volume: 68
  start-page: 777
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0285
  article-title: A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals, IEEE Trans
  publication-title: Circuits Syst. II Express Briefs.
  doi: 10.1109/TCSII.2020.3014514
– volume: 25
  start-page: 2157
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0095
  article-title: EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2699784
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0045
  article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102581
– volume: 51
  start-page: 526
  year: 1998
  ident: 10.1016/j.bspc.2023.105572_b0280
  article-title: Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.51.2.526
– volume: 219
  year: 2023
  ident: 10.1016/j.bspc.2023.105572_b0250
  article-title: Phase space reconstruction, geometric filtering based Fisher discriminant analysis and minimum distance to the Riemannian means algorithm for epileptic seizure classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119613
– volume: 324
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0270
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108320
– volume: 84
  start-page: 283
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0005
  article-title: Comorbid Insomnia and Sleep Apnea: mechanisms and implications of an underrecognized and misinterpreted sleep disorder
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2021.05.043
– volume: 179
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0230
  article-title: Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108078
– volume: 16
  start-page: 599
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0185
  article-title: A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– volume: 7
  start-page: 655
  year: 2013
  ident: 10.1016/j.bspc.2023.105572_b0115
  article-title: Riemannian Distances for Signal Classification by Power Spectral Density
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2013.2260320
– volume: 104
  start-page: 277
  year: 2018
  ident: 10.1016/j.bspc.2023.105572_b0155
  article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.020
– volume: 116
  start-page: 10
  year: 2014
  ident: 10.1016/j.bspc.2023.105572_b0215
  article-title: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.04.012
– volume: 95
  start-page: 201
  year: 2018
  ident: 10.1016/j.bspc.2023.105572_b0080
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.007
– volume: 20
  start-page: 246
  year: 1969
  ident: 10.1016/j.bspc.2023.105572_b0020
  article-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1969.01740140118016
– volume: 91
  start-page: 231
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0075
  article-title: CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.025
– volume: 212
  year: 2023
  ident: 10.1016/j.bspc.2023.105572_b0275
  article-title: EEG sub-bands based sleep stages classification using Fourier Synchrosqueezed transform features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118752
– volume: 183
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0035
  article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105089
– volume: 19
  start-page: 93
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0090
  article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09473-9
– volume: 324
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0030
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108312
– volume: 71
  year: 2022
  ident: 10.1016/j.bspc.2023.105572_b0175
  article-title: Sleeping stage classification based on joint quaternion valued singular spectrum analysis and ensemble empirical mode decomposition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103086
– volume: 112
  start-page: 172
  year: 2013
  ident: 10.1016/j.bspc.2023.105572_b0065
  article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 25
  start-page: 1753
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0255
  article-title: Riemannian Approaches in Brain-Computer Interfaces: A Review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627016
– volume: 30
  start-page: 5303
  year: 1997
  ident: 10.1016/j.bspc.2023.105572_b0210
  article-title: Takens embedding theorems for forced and stochastic systems
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/S0362-546X(96)00149-6
– ident: 10.1016/j.bspc.2023.105572_b0015
  doi: 10.1016/B978-0-444-64032-1.00025-4
– volume: 254
  start-page: 94
  year: 2015
  ident: 10.1016/j.bspc.2023.105572_b0050
  article-title: Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.07.006
– volume: 47
  start-page: 1185
  year: 2000
  ident: 10.1016/j.bspc.2023.105572_b0205
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 69
  start-page: 2826
  year: 2022
  ident: 10.1016/j.bspc.2023.105572_b0110
  article-title: Functional Connectivity Ensemble Method to Enhance BCI Performance (FUCONE)
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 567
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0040
  article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
  publication-title: Phys. Stat. Mech. Its Appl.
– ident: 10.1016/j.bspc.2023.105572_b0120
  doi: 10.1109/BCI53720.2022.9734855
– volume: 151
  start-page: 1477
  year: 2015
  ident: 10.1016/j.bspc.2023.105572_b0220
  article-title: Extracting features from phase space of EEG signals in brain–computer interfaces
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.038
– volume: 55
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0290
  article-title: Diffuse to fuse EEG spectra – Intrinsic geometry of sleep dynamics for classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101576
– volume: 205
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0235
  article-title: Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106276
– volume: 40
  start-page: 527
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0125
  article-title: Sleep EEG analysis utilizing inter-channel covariance matrices
  publication-title: Biocybern Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.013
– volume: 59
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0105
  article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101899
– volume: 4
  start-page: 155
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0100
  article-title: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Comput
  publication-title: Interfaces
– volume: 77
  year: 2022
  ident: 10.1016/j.bspc.2023.105572_b0170
  article-title: Joint ensemble empirical mode decomposition and tunable Q factor wavelet transform based sleep stage classifications, Biomed. Signal Process
  publication-title: Control.
– volume: 70
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0165
  article-title: Reliable sleep staging of unseen subjects with fusion of multiple EEG features and RUSBoost
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103061
– volume: 2019
  start-page: 5627156
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0085
  article-title: Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/5627156
– ident: 10.1016/j.bspc.2023.105572_b0245
  doi: 10.23919/CCC52363.2021.9550605
– volume: 24
  start-page: 57
  year: 2015
  ident: 10.1016/j.bspc.2023.105572_b0130
  article-title: Quaternion Singular Spectrum Analysis of Electroencephalogram with Application in Sleep Analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2465177
– volume: 7
  start-page: 109386
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0180
  article-title: A Two-Stage Neural Network for Sleep Stage Classification Based on Feature Learning, Sequence Learning, and Data Augmentation, IEEE
  publication-title: Access
  doi: 10.1109/ACCESS.2019.2933814
– volume: 10
  start-page: 60597
  year: 2022
  ident: 10.1016/j.bspc.2023.105572_b0195
  article-title: A Two-Stage Learning Convolutional Neural Network for Sleep Stage Classification Using a Filterbank and Single Feature
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3180730
– volume: 20
  start-page: 4677
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0160
  article-title: An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features
  publication-title: Sensors
  doi: 10.3390/s20174677
– volume: 25
  start-page: 1998
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0300
  article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 12
  year: 2021
  ident: 10.1016/j.bspc.2023.105572_b0190
  article-title: Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.628502
– volume: 25
  start-page: 504
  year: 2016
  ident: 10.1016/j.bspc.2023.105572_b0070
  article-title: Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2587939
– volume: 14
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0295
  article-title: SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216456
– volume: 213
  year: 2023
  ident: 10.1016/j.bspc.2023.105572_b0200
  article-title: SHNN: A single-channel EEG sleep staging model based on semi-supervised learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119288
– volume: 23
  start-page: 519
  year: 2000
  ident: 10.1016/j.bspc.2023.105572_b0010
  article-title: Systematic Review and Meta-analysis of the Literature Regarding the Diagnosis of Sleep Apnea
  publication-title: Sleep
  doi: 10.1093/sleep/23.4.1f
– volume: 178
  start-page: 19
  year: 2019
  ident: 10.1016/j.bspc.2023.105572_b0055
  article-title: Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.008
– volume: 271
  start-page: 107
  year: 2016
  ident: 10.1016/j.bspc.2023.105572_b0135
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 192
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0260
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105367
– volume: 17
  year: 2020
  ident: 10.1016/j.bspc.2023.105572_b0060
  article-title: Neonatal EEG sleep stage classification based on deep learning and HMM
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab965a
– volume: 08
  start-page: 597
  issue: 2012
  year: 2007
  ident: 10.1016/j.bspc.2023.105572_b0025
  article-title: Rules for Scoring Respiratory Events in Sleep: Update of the AASM Manual for the Scoring of Sleep and Associated Events: Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine
  publication-title: J. Clin. Sleep Med.
– volume: 140
  start-page: 201
  year: 2017
  ident: 10.1016/j.bspc.2023.105572_b0150
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.12.015
– volume: 33
  start-page: 671
  year: 1977
  ident: 10.1016/j.bspc.2023.105572_b0265
  article-title: A One-Way Components of Variance Model for Categorical Data
  publication-title: Biometrics
  doi: 10.2307/2529465
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.105572_b0140
  article-title: Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating, Biomed. Signal Process
  publication-title: Control.
SSID ssj0048714
Score 2.3891935
Snippet •A novel covariance feature matrix architecture using multivariate phase space reconstruction (MPSR) is presented, which captured the geometric properties and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105572
SubjectTerms Covariance feature matrix
Multiple physiological signals
Multivariate phase space reconstruction
Riemannian manifold
Sleep stage classification
Title Multivariate phase space reconstruction and Riemannian manifold for sleep stage classification
URI https://dx.doi.org/10.1016/j.bspc.2023.105572
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbxGazj2SPpViqYg9qoSfDvqKVmgZaPPrbnc2jVJAePCbMwDIzzHwDM98gdEWSTCbWqsAQo6BBITpImLSBjE2idaicNH5R-HEkhmN2P-GTFuo3uzB-rLLO_VVOL7N1_adbW7NbTKfdZ8DSIoHuBEA08cjDb7Cz2Ef5zfdqzAPweMnv7YUDL10vzlQzXnpReBrDiPpztzyO_i5OawVnsId2a6SIe9Vj9lHL5QdoZ40_8BC9luuzX9DuAmLExTtUJAwZwjhc9rkrbliscoufpu7THyhSOfacF9l8ZjEgVryYOVdgAIlvDhuPpf3wUOmvIzQe3L70h0F9MCEwNAyXQSQyQo0W2lKmCY2JVUao2JhQMUOdUY5kwkoHNZ7YiHLGmKQqU0wbaJykoseonc9zd4KwkFRwHYXKas6M5MoyzjKhhRRRpFh0ikhjqdTUbOL-qMUsbcbGPlJv3dRbN62se4quVzpFxaWxUZo3Dkh_RUQKyX6D3tk_9c7RNnyxaiL7ArXBRe4SAMdSd8qI6qCt3t3DcPQDsVrW1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IM3Cc1mN9vssRRL66MHtdCTYV_RSo0Bi7_f2TxEQXrwmuzAMrN88w3MfANwQZNMJtaqwFCjsEChOki4tIHsmkTrUDlp_KDw3VgMJ_x6Gk9XoN_Mwvi2yhr7K0wv0br-0qm92Slms84DcmmRYHWCJJp65rEKa16dKm7BWm90Mxw3gIyUvJT49ucDb1DPzlRtXvqj8EqGEfMbb-Nu9Hd--pFzBtuwVZNF0qvuswMrLt-FzR8SgnvwVE7QfmLFi6SRFC-YlAiChHGkLHW_5WGJyi25n7k3v6NI5cTLXmTvc0uQtJKPuXMFQZ747IjxdNr3D5Uh24fJ4OqxPwzqnQmBYWG4CCKRUWa00JZxTVmXWmWE6hoTKm6YM8rRTFjpMM1TG7GYcy6ZyhTXBmsnqdgBtPL33B0CEZKJWEehsjrmRsbKonszoYUUUaR41AbaeCo1taC432sxT5vOsdfUezf13k0r77bh8tumqOQ0lp6OmwCkvx5Fini_xO7on3bnsD58vLtNb0fjm2PYwD-8atA-gRaGy50i_1jos_p9fQEacNmG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+phase+space+reconstruction+and+Riemannian+manifold+for+sleep+stage+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhou%2C+Xueling&rft.au=Wing-Kuen+Ling%2C+Bingo&rft.au=Ahmed%2C+Waqar&rft.au=Zhou%2C+Yang&rft.date=2024-02-01&rft.issn=1746-8094&rft.volume=88&rft.spage=105572&rft_id=info:doi/10.1016%2Fj.bspc.2023.105572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon