Cross-subject and cross-experimental classification of mental fatigue based on two-stream self-attention network
Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper propos...
Saved in:
Published in | Biomedical signal processing and control Vol. 88; p. 105638 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper proposes a Spatio-Temporal Transformer (STTransformer) architecture based on a two-stream attention network. We use datasets from three different mental fatigue experimental tasks and individuals. STTransformer has performed cross-task and cross-subject mental fatigue transfer learning and achieved promising results. This architecture is based on the idea of model migration, pre-training deep neural network parameters in the source domain to obtain prior knowledge, freezing some network parameters and migrating to the target domain containing similar samples for fine-tuning. This architecture achieves good transfer effects by using multiple attention mechanisms to capture common features between different individuals and experimental paradigms. Good performance was achieved in multiple individual and two mental fatigue experiments. We used the attention mechanism to visualize part of the feature maps, showing two characteristics of mental fatigue, and exploring deep learning interpretability.
•Transfer models available for different mental fatigue and subjects.•Models only require a small sample size to be effective.•The accuracy of the Parallel STTransformer model on the two datasets is 89.66% and 87.76%. |
---|---|
AbstractList | Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper proposes a Spatio-Temporal Transformer (STTransformer) architecture based on a two-stream attention network. We use datasets from three different mental fatigue experimental tasks and individuals. STTransformer has performed cross-task and cross-subject mental fatigue transfer learning and achieved promising results. This architecture is based on the idea of model migration, pre-training deep neural network parameters in the source domain to obtain prior knowledge, freezing some network parameters and migrating to the target domain containing similar samples for fine-tuning. This architecture achieves good transfer effects by using multiple attention mechanisms to capture common features between different individuals and experimental paradigms. Good performance was achieved in multiple individual and two mental fatigue experiments. We used the attention mechanism to visualize part of the feature maps, showing two characteristics of mental fatigue, and exploring deep learning interpretability.
•Transfer models available for different mental fatigue and subjects.•Models only require a small sample size to be effective.•The accuracy of the Parallel STTransformer model on the two datasets is 89.66% and 87.76%. |
ArticleNumber | 105638 |
Author | Wang, Lei Shan, Aoyang Li, Yangzheng Yang, Shuo Liu, Shuo |
Author_xml | – sequence: 1 givenname: Shuo orcidid: 0000-0002-4986-4761 surname: Yang fullname: Yang, Shuo email: sureyang@126.com – sequence: 2 givenname: Aoyang surname: Shan fullname: Shan, Aoyang – sequence: 3 givenname: Lei orcidid: 0000-0002-8625-3652 surname: Wang fullname: Wang, Lei – sequence: 4 givenname: Yangzheng surname: Li fullname: Li, Yangzheng – sequence: 5 givenname: Shuo surname: Liu fullname: Liu, Shuo |
BookMark | eNp9kLtuwyAUhhlSqUnaF-jEC5ACdgyWulRRb1KkLu2MMBwqXMe2gPTy9sVJpg6ZQP_Ph875FmjWDz0gdMPoilFW3barJo5mxSkvcrCuCjlDcybKikhal5doEWNLaSkFK-do3IQhRhL3TQsmYd1bbA4J_IwQ_A76pDtsOh2jd97o5IceDw6fCpeDjz3gRkewOFfpeyAxBdA7HKFzRKeUX05QD7kLn1fowukuwvXpXKL3x4e3zTPZvj69bO63xBSUJsIL2kANa6ql4JY7WbtCFEZwXTPJTcmFrJyzrKqsEQ3VwNdlbRpt8w0MNMUSyeO_h3UCOGV8OoyfgvadYlRNtlSrJltqsqWOtjLK_6FjNqHD73no7ghBXurLQ1DReOgNWB-yWWUHfw7_A-moi4Y |
CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_3390_s24247948 |
Cites_doi | 10.1016/j.neuropsychologia.2016.07.013 10.1007/s11571-020-09626-1 10.1111/ejn.12749 10.1142/S0129065716500180 10.1109/ACCESS.2019.2915533 10.1109/JSEN.2019.2956998 10.1007/s10484-020-09475-y 10.1038/s41597-019-0027-4 10.3390/s20216321 10.1111/psyp.12339 10.1002/hbm.20131 10.1016/0166-4328(94)00139-7 10.3390/brainsci9120348 10.1088/1742-6596/1456/1/012017 10.1016/j.neuropsychologia.2020.107506 10.1109/ICCV48922.2021.00021 10.1016/j.chaos.2020.110212 10.1109/EMBC.2013.6611070 10.1109/ICEFEET49149.2020.9186989 10.1109/EMBC.2016.7591765 10.1109/EMBC.2016.7590716 10.4236/psych.2015.65055 10.1016/j.neuropsychologia.2019.04.004 10.1016/j.neucom.2022.02.049 10.1109/TITS.2019.2918438 10.1016/j.aei.2020.101157 10.1016/j.brainresrev.2008.07.001 10.1109/CVPR.2018.00131 10.1109/ACCESS.2020.3039268 10.1016/j.bspc.2021.103360 10.1016/j.neucom.2017.12.062 10.1109/ACCESS.2020.2974009 10.3109/00207459008994241 10.1109/TNNLS.2018.2886414 10.1109/TCSVT.2020.3004854 10.1109/JSEN.2018.2871203 10.3390/e23040457 10.1016/j.neucom.2020.09.017 10.1186/s40810-016-0017-0 10.1109/CVPR.2019.00049 10.1088/1741-2552/ab405f 10.1088/1741-2552/aace8c 10.1109/CVPR.2018.00745 10.1016/S0093-934X(03)00067-1 10.1111/psyp.13828 10.1007/s11571-018-9496-y 10.1002/0471142301.ns0625s52 10.1016/j.cogbrainres.2005.04.011 10.1109/ICFTIC54370.2021.9647146 10.1109/TKDE.2009.191 10.1109/THMS.2019.2938156 10.1186/1744-9081-8-48 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2023.105638 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2023_105638 S1746809423010716 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-230be9e50a872d2f89f373c72a9182c42786ffd166dc7b0ae2549cbadae2eceb3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:20 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Sat Oct 05 15:36:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Attention mechanism Electroencephalography Mental fatigue Deep transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-230be9e50a872d2f89f373c72a9182c42786ffd166dc7b0ae2549cbadae2eceb3 |
ORCID | 0000-0002-4986-4761 0000-0002-8625-3652 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105638 crossref_primary_10_1016_j_bspc_2023_105638 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Davoodnia, Sepas-Moghaddam, Zhang, Etemad (b19) 2020; 20 Krizhevsky, Sutskever, Hinton (b14) 2012 Uddin, Hassan (b42) 2018; 19 Johannesen, Bi, Jiang, Kenney, Chen (b57) 2016; 2 Yang, Shi, Wang, Wang, Peng (b27) 2020; 8 H. Kuang, J. Qu, LSTM Model with Self-Attention Mechanism for EEG Based Cross-Subject Fatigue Detection, in: 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC, 2021, pp. 148–153. Mao, Fathurrahman, Lee, Chang (b16) 2020; 1456 Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (b34) 2020; 146 Gao, Dang, Wang, Hong, Hou, Ma, Perc (b21) 2021; 15 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b61) 2018; 15 Ye, Yin, Zhao, Tian, Sun (b30) 2022; 72 Chen, Wang, Wang, Hua (b5) 2019; 129 Wu, Zhu, Zhang, Deng, Jia, Chen, Ren, Zhou (b10) 2020; 21 R. Chai, Y. Tran, G.R. Naik, T.N. Nguyen, S.H. Ling, A. Craig, H.T. Nguyen, Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 4654–4657. N. Fei, Y. Gao, Z. Lu, T. Xiang, Z-score normalization, hubness, and few-shot learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 142–151. J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. Chao, Liu (b18) 2020; 8 Tanaka, Shigihara, Ishii, Funakura, Kanai, Watanabe (b55) 2012; 8 Gao, Wang, Yang, Mu, Cai, Dang, Zuo (b23) 2019; 30 Rac-Lubashevsky, Kessler (b56) 2016; 90 Owen, McMillan, Laird, Bullmore (b59) 2005; 25 Liu, Li, Liu, Ma, Fan, Luo (b48) 2021; 31 R.N. Roy, S. Bonnet, S. Charbonnier, A. Campagne, Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2013, pp. 6607–6610. P. Li, W. Jiang, F. Su, Single-channel EEG-based mental fatigue detection based on deep belief network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 367–370. F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H. Torr, T.M. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208. Chen, Wang, Wang, Hua (b9) 2019; 129 Monteiro, Skourup, Zhang (b29) 2019; 49 Wan, Yang, Huang, Zeng, Liu (b33) 2021; 421 Liu, Liu, Chen, Wang, Li, Ai, Ma (b7) 2021; 23 N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The Efficient Transformer, in: International Conference on Learning Representations, 2020. Bashivan, Bidelman, Yeasin (b58) 2014; 40 Wang, Guo, Zhang, Gao, Zheng (b36) 2022; 488 Zeng, Yang, Dai, Qin, Zhang, Kong (b22) 2018; 12 Trejo, Kubitz, Rosipal, Kochavi, Montgomery (b28) 2015; 6 Melo, Nascimento, Hoeller, Walz, Takase (b4) 2021; 46 Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412. Yin, Zhang (b37) 2018; 283 Ioffe, Szegedy (b44) 2015; vol. 37 Wang, Wu, Li, He, Chen, Bezerianos (b6) 2019; 7 Jeong, Yu, Lee, Lee (b15) 2019; 9 Zhang, Xu, Zheng, Li, Zhang, Yu, Liang (b35) 2020; 20 Åkerstedt, Gillberg (b52) 1990; 52 Henderi, Wahyuningsih, Rahwanto (b43) 2021; 4 Huang, Huang, Chuang, King, Wang, Lin, Jung (b2) 2016; 26 A. Sengupta, Study of Cognitive Fatigue using EEG Entropy Analysis, in: 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET, 2020, pp. 1–6. Z. Wu*, Z. Liu*, J. Lin, Y. Lin, S. Han, Lite Transformer with Long-Short Range Attention, in: International Conference on Learning Representations, 2020. Horwitz, McIntosh, Haxby, Grady (b25) 1995; 66 Anderson (b26) 2007; 13 Cao, Chuang, King, Lin (b60) 2019; 6 Shahid, Zameer, Muneeb (b62) 2020; 140 Dai, Zhou, Huang, Wang (b17) 2020; 17 Wan, Yang, Huang, Zeng, Liu (b31) 2021; 421 Bafna, Hansen (b8) 2021; 58 Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit, Lucic, Dosovitskiy (b45) 2021 Weiss, Mueller (b50) 2003; 85 Liu, Lan, Cui, Sourina, Müller-Wittig (b12) 2020; 46 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b38) 2017 Pan, Yang (b32) 2010; 22 Boksem, Tops (b1) 2008; 59 Boksem, Meijman, Lorist (b3) 2005; 25 Light, Williams, Minow, Sprock, Rissling, Sharp, Swerdlow, Braff (b53) 2010; 52 Hopstaken, Van Der Linden, Bakker, Kompier (b54) 2015; 52 Wang (10.1016/j.bspc.2023.105638_b34) 2020; 146 Wu (10.1016/j.bspc.2023.105638_b10) 2020; 21 Melo (10.1016/j.bspc.2023.105638_b4) 2021; 46 Dai (10.1016/j.bspc.2023.105638_b17) 2020; 17 Wan (10.1016/j.bspc.2023.105638_b31) 2021; 421 10.1016/j.bspc.2023.105638_b39 Chen (10.1016/j.bspc.2023.105638_b9) 2019; 129 Trejo (10.1016/j.bspc.2023.105638_b28) 2015; 6 Chao (10.1016/j.bspc.2023.105638_b18) 2020; 8 Horwitz (10.1016/j.bspc.2023.105638_b25) 1995; 66 Henderi (10.1016/j.bspc.2023.105638_b43) 2021; 4 Lawhern (10.1016/j.bspc.2023.105638_b61) 2018; 15 Johannesen (10.1016/j.bspc.2023.105638_b57) 2016; 2 Zhang (10.1016/j.bspc.2023.105638_b35) 2020; 20 Weiss (10.1016/j.bspc.2023.105638_b50) 2003; 85 Zeng (10.1016/j.bspc.2023.105638_b22) 2018; 12 Monteiro (10.1016/j.bspc.2023.105638_b29) 2019; 49 Bashivan (10.1016/j.bspc.2023.105638_b58) 2014; 40 Yang (10.1016/j.bspc.2023.105638_b27) 2020; 8 Boksem (10.1016/j.bspc.2023.105638_b3) 2005; 25 Wang (10.1016/j.bspc.2023.105638_b36) 2022; 488 Liu (10.1016/j.bspc.2023.105638_b7) 2021; 23 10.1016/j.bspc.2023.105638_b20 Ioffe (10.1016/j.bspc.2023.105638_b44) 2015; vol. 37 Rac-Lubashevsky (10.1016/j.bspc.2023.105638_b56) 2016; 90 Vaswani (10.1016/j.bspc.2023.105638_b38) 2017 10.1016/j.bspc.2023.105638_b24 Zhang (10.1016/j.bspc.2023.105638_b19) 2020; 20 Huang (10.1016/j.bspc.2023.105638_b2) 2016; 26 Bafna (10.1016/j.bspc.2023.105638_b8) 2021; 58 Jeong (10.1016/j.bspc.2023.105638_b15) 2019; 9 Yin (10.1016/j.bspc.2023.105638_b37) 2018; 283 Pan (10.1016/j.bspc.2023.105638_b32) 2010; 22 Light (10.1016/j.bspc.2023.105638_b53) 2010; 52 Tolstikhin (10.1016/j.bspc.2023.105638_b45) 2021 Chen (10.1016/j.bspc.2023.105638_b5) 2019; 129 Gao (10.1016/j.bspc.2023.105638_b23) 2019; 30 Tanaka (10.1016/j.bspc.2023.105638_b55) 2012; 8 10.1016/j.bspc.2023.105638_b51 10.1016/j.bspc.2023.105638_b13 10.1016/j.bspc.2023.105638_b11 Cao (10.1016/j.bspc.2023.105638_b60) 2019; 6 Ye (10.1016/j.bspc.2023.105638_b30) 2022; 72 Shahid (10.1016/j.bspc.2023.105638_b62) 2020; 140 Wang (10.1016/j.bspc.2023.105638_b6) 2019; 7 Liu (10.1016/j.bspc.2023.105638_b12) 2020; 46 Wan (10.1016/j.bspc.2023.105638_b33) 2021; 421 Liu (10.1016/j.bspc.2023.105638_b48) 2021; 31 Anderson (10.1016/j.bspc.2023.105638_b26) 2007; 13 Mao (10.1016/j.bspc.2023.105638_b16) 2020; 1456 10.1016/j.bspc.2023.105638_b49 Boksem (10.1016/j.bspc.2023.105638_b1) 2008; 59 10.1016/j.bspc.2023.105638_b47 Gao (10.1016/j.bspc.2023.105638_b21) 2021; 15 10.1016/j.bspc.2023.105638_b41 10.1016/j.bspc.2023.105638_b40 Uddin (10.1016/j.bspc.2023.105638_b42) 2018; 19 Owen (10.1016/j.bspc.2023.105638_b59) 2005; 25 10.1016/j.bspc.2023.105638_b46 Krizhevsky (10.1016/j.bspc.2023.105638_b14) 2012 Hopstaken (10.1016/j.bspc.2023.105638_b54) 2015; 52 Åkerstedt (10.1016/j.bspc.2023.105638_b52) 1990; 52 |
References_xml | – volume: 59 start-page: 125 year: 2008 end-page: 139 ident: b1 article-title: Mental fatigue: costs and benefits publication-title: Brain Res. Rev. – volume: 25 start-page: 107 year: 2005 end-page: 116 ident: b3 article-title: Effects of mental fatigue on attention: an ERP study publication-title: Cogn. Brain Res. – year: 2017 ident: b38 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems, Vol. 30 – volume: 30 start-page: 2755 year: 2019 end-page: 2763 ident: b23 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412. – volume: 46 start-page: 103 year: 2021 end-page: 113 ident: b4 article-title: Early alpha reactivity is associated with long-term mental fatigue behavioral impairments publication-title: Appl. Psychophys. Biof. – volume: 31 start-page: 1366 year: 2021 end-page: 1379 ident: b48 article-title: Learning Hadamard-product-propagation for image dehazing and beyond publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 52 start-page: 6 year: 2010 end-page: 25 ident: b53 article-title: Electroencephalography (EEG) and event-related potentials (ERPs) with human participants publication-title: Curr. Protoc. Neurosci. – volume: 20 start-page: 6321 year: 2020 ident: b35 article-title: Application of transfer learning in EEG decoding based on brain-computer interfaces: a review publication-title: Sensors – start-page: 1097 year: 2012 end-page: 1105 ident: b14 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems, Vol. 25 – volume: 9 start-page: 348 year: 2019 ident: b15 article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals publication-title: Brain Sci. – reference: P. Li, W. Jiang, F. Su, Single-channel EEG-based mental fatigue detection based on deep belief network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 367–370. – volume: 21 start-page: 2437 year: 2020 end-page: 2448 ident: b10 article-title: Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy publication-title: IEEE Trans. Intell. Transp. Syst. – reference: H. Kuang, J. Qu, LSTM Model with Self-Attention Mechanism for EEG Based Cross-Subject Fatigue Detection, in: 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC, 2021, pp. 148–153. – volume: 49 start-page: 599 year: 2019 end-page: 610 ident: b29 article-title: Using EEG for mental fatigue assessment: A comprehensive look into the current state of the art publication-title: IEEE Trans. Hum.-Mach. Syst. – volume: 8 start-page: 211482 year: 2020 end-page: 211489 ident: b27 article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: A study of time-frequency analysis and event-related potentials publication-title: IEEE Access – volume: 488 start-page: 183 year: 2022 end-page: 193 ident: b36 article-title: Automatic sleep staging method of EEG signal based on transfer learning and fusion network publication-title: Neurocomputing – volume: 421 start-page: 1 year: 2021 end-page: 14 ident: b31 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing – volume: 6 start-page: 19 year: 2019 ident: b60 article-title: Multi-channel EEG recordings during a sustained-attention driving task publication-title: Sci. Data – reference: N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The Efficient Transformer, in: International Conference on Learning Representations, 2020. – volume: 26 year: 2016 ident: b2 article-title: An EEG-based fatigue detection and mitigation system publication-title: Int. J. Neural Syst. – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b32 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 129 start-page: 200 year: 2019 end-page: 211 ident: b9 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia – volume: 17 year: 2020 ident: b17 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. – volume: 12 start-page: 597 year: 2018 end-page: 606 ident: b22 article-title: EEG classification of driver mental states by deep learning publication-title: Cogn. Neurodynamics – volume: 25 start-page: 46 year: 2005 end-page: 59 ident: b59 article-title: N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies publication-title: Hum. Brain Mapp. – reference: R. Chai, Y. Tran, G.R. Naik, T.N. Nguyen, S.H. Ling, A. Craig, H.T. Nguyen, Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 4654–4657. – volume: 129 start-page: 200 year: 2019 end-page: 211 ident: b5 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia – start-page: 24261 year: 2021 end-page: 24272 ident: b45 article-title: MLP-mixer: An all-MLP architecture for vision publication-title: Advances in Neural Information Processing Systems, Vol. 34 – volume: 2 start-page: 1 year: 2016 end-page: 21 ident: b57 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr. Electrophysiol. – volume: 6 start-page: 572 year: 2015 ident: b28 article-title: EEG-based estimation and classification of mental fatigue publication-title: Psychology – volume: 8 start-page: 1 year: 2012 end-page: 8 ident: b55 article-title: Effect of mental fatigue on the central nervous system: an electroencephalography study publication-title: Behav. Brain Funct. – volume: 15 start-page: 369 year: 2021 end-page: 388 ident: b21 article-title: Complex networks and deep learning for EEG signal analysis publication-title: Cogn. Neurodyn. – volume: 40 start-page: 3774 year: 2014 end-page: 3784 ident: b58 article-title: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity publication-title: Eur. J. Neurosci. – reference: F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H. Torr, T.M. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208. – volume: vol. 37 start-page: 448 year: 2015 end-page: 456 ident: b44 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd International Conference on Machine Learning – volume: 140 year: 2020 ident: b62 article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM publication-title: Chaos Solitons Fractals – reference: A. Sengupta, Study of Cognitive Fatigue using EEG Entropy Analysis, in: 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET, 2020, pp. 1–6. – volume: 20 start-page: 3113 year: 2020 end-page: 3122 ident: b19 article-title: Classification of hand movements from EEG using a deep attention-based LSTM network publication-title: IEEE Sens. J. – volume: 15 year: 2018 ident: b61 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 421 start-page: 1 year: 2021 end-page: 14 ident: b33 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing – volume: 66 start-page: 187 year: 1995 end-page: 193 ident: b25 article-title: Network analysis of brain cognitive function using metabolic and blood flow data publication-title: Behav. Brain Res. – volume: 19 start-page: 8413 year: 2018 end-page: 8419 ident: b42 article-title: Activity recognition for cognitive assistance using body sensors data and deep convolutional neural network publication-title: IEEE Sens. J. – volume: 72 year: 2022 ident: b30 article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network publication-title: Biomed. Signal Process. Control – volume: 46 year: 2020 ident: b12 article-title: Inter-subject transfer learning for EEG-based mental fatigue recognition publication-title: Adv. Eng. Inform. – reference: Z. Wu*, Z. Liu*, J. Lin, Y. Lin, S. Han, Lite Transformer with Long-Short Range Attention, in: International Conference on Learning Representations, 2020. – reference: R.N. Roy, S. Bonnet, S. Charbonnier, A. Campagne, Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2013, pp. 6607–6610. – volume: 7 start-page: 61975 year: 2019 end-page: 61986 ident: b6 article-title: Driving fatigue classification based on fusion entropy analysis combining EOG and EEG publication-title: IEEE Access – volume: 52 start-page: 29 year: 1990 end-page: 37 ident: b52 article-title: Subjective and objective sleepiness in the active individual publication-title: Int. J. Neurosci. – volume: 85 start-page: 325 year: 2003 end-page: 343 ident: b50 article-title: The contribution of EEG coherence to the investigation of language publication-title: Brain Lang. – volume: 1456 year: 2020 ident: b16 article-title: EEG dataset classification using CNN method publication-title: J. Phys. Conf. Ser. – volume: 8 start-page: 33002 year: 2020 end-page: 33012 ident: b18 article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework publication-title: IEEE Access – volume: 13 start-page: 13 year: 2007 end-page: 21 ident: b26 article-title: Evolution of cognitive function via redeployment of brain areas publication-title: Neurosci. – volume: 146 year: 2020 ident: b34 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia – volume: 4 start-page: 13 year: 2021 end-page: 20 ident: b43 article-title: Comparison of min-max normalization and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer publication-title: Int. J. Inform. Inf. Syst. – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. – reference: N. Fei, Y. Gao, Z. Lu, T. Xiang, Z-score normalization, hubness, and few-shot learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 142–151. – volume: 23 start-page: 457 year: 2021 end-page: 473 ident: b7 article-title: Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection publication-title: Entropy – volume: 283 start-page: 266 year: 2018 end-page: 281 ident: b37 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing – volume: 90 start-page: 190 year: 2016 end-page: 199 ident: b56 article-title: Decomposing the n-back task: An individual differences study using the reference-back paradigm publication-title: Neuropsychologia – volume: 52 start-page: 305 year: 2015 end-page: 315 ident: b54 article-title: A multifaceted investigation of the link between mental fatigue and task disengagement publication-title: Psychophysiology – volume: 58 year: 2021 ident: b8 article-title: Mental fatigue measurement using eye metrics: A systematic literature review publication-title: Psychophysiology – volume: 4 start-page: 13 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.105638_b43 article-title: Comparison of min-max normalization and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer publication-title: Int. J. Inform. Inf. Syst. – volume: 90 start-page: 190 year: 2016 ident: 10.1016/j.bspc.2023.105638_b56 article-title: Decomposing the n-back task: An individual differences study using the reference-back paradigm publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2016.07.013 – volume: 15 start-page: 369 issue: 3 year: 2021 ident: 10.1016/j.bspc.2023.105638_b21 article-title: Complex networks and deep learning for EEG signal analysis publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09626-1 – volume: 40 start-page: 3774 issue: 12 year: 2014 ident: 10.1016/j.bspc.2023.105638_b58 article-title: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12749 – volume: 26 issue: 04 year: 2016 ident: 10.1016/j.bspc.2023.105638_b2 article-title: An EEG-based fatigue detection and mitigation system publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500180 – volume: 7 start-page: 61975 year: 2019 ident: 10.1016/j.bspc.2023.105638_b6 article-title: Driving fatigue classification based on fusion entropy analysis combining EOG and EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915533 – volume: 20 start-page: 3113 issue: 6 year: 2020 ident: 10.1016/j.bspc.2023.105638_b19 article-title: Classification of hand movements from EEG using a deep attention-based LSTM network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2956998 – volume: 46 start-page: 103 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.105638_b4 article-title: Early alpha reactivity is associated with long-term mental fatigue behavioral impairments publication-title: Appl. Psychophys. Biof. doi: 10.1007/s10484-020-09475-y – volume: 6 start-page: 19 issue: 1 year: 2019 ident: 10.1016/j.bspc.2023.105638_b60 article-title: Multi-channel EEG recordings during a sustained-attention driving task publication-title: Sci. Data doi: 10.1038/s41597-019-0027-4 – volume: 20 start-page: 6321 issue: 21 year: 2020 ident: 10.1016/j.bspc.2023.105638_b35 article-title: Application of transfer learning in EEG decoding based on brain-computer interfaces: a review publication-title: Sensors doi: 10.3390/s20216321 – volume: 52 start-page: 305 issue: 3 year: 2015 ident: 10.1016/j.bspc.2023.105638_b54 article-title: A multifaceted investigation of the link between mental fatigue and task disengagement publication-title: Psychophysiology doi: 10.1111/psyp.12339 – volume: 25 start-page: 46 issue: 1 year: 2005 ident: 10.1016/j.bspc.2023.105638_b59 article-title: N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20131 – volume: 66 start-page: 187 issue: 1 year: 1995 ident: 10.1016/j.bspc.2023.105638_b25 article-title: Network analysis of brain cognitive function using metabolic and blood flow data publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(94)00139-7 – start-page: 24261 year: 2021 ident: 10.1016/j.bspc.2023.105638_b45 article-title: MLP-mixer: An all-MLP architecture for vision – volume: 9 start-page: 348 issue: 12 year: 2019 ident: 10.1016/j.bspc.2023.105638_b15 article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals publication-title: Brain Sci. doi: 10.3390/brainsci9120348 – volume: 1456 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105638_b16 article-title: EEG dataset classification using CNN method publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1456/1/012017 – ident: 10.1016/j.bspc.2023.105638_b47 – volume: 146 year: 2020 ident: 10.1016/j.bspc.2023.105638_b34 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – ident: 10.1016/j.bspc.2023.105638_b39 doi: 10.1109/ICCV48922.2021.00021 – volume: 140 year: 2020 ident: 10.1016/j.bspc.2023.105638_b62 article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110212 – ident: 10.1016/j.bspc.2023.105638_b51 doi: 10.1109/EMBC.2013.6611070 – ident: 10.1016/j.bspc.2023.105638_b11 doi: 10.1109/ICEFEET49149.2020.9186989 – ident: 10.1016/j.bspc.2023.105638_b13 doi: 10.1109/EMBC.2016.7591765 – ident: 10.1016/j.bspc.2023.105638_b24 doi: 10.1109/EMBC.2016.7590716 – volume: 6 start-page: 572 issue: 05 year: 2015 ident: 10.1016/j.bspc.2023.105638_b28 article-title: EEG-based estimation and classification of mental fatigue publication-title: Psychology doi: 10.4236/psych.2015.65055 – volume: 129 start-page: 200 year: 2019 ident: 10.1016/j.bspc.2023.105638_b5 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2019.04.004 – volume: 488 start-page: 183 year: 2022 ident: 10.1016/j.bspc.2023.105638_b36 article-title: Automatic sleep staging method of EEG signal based on transfer learning and fusion network publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.02.049 – volume: 21 start-page: 2437 issue: 6 year: 2020 ident: 10.1016/j.bspc.2023.105638_b10 article-title: Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2918438 – volume: 46 year: 2020 ident: 10.1016/j.bspc.2023.105638_b12 article-title: Inter-subject transfer learning for EEG-based mental fatigue recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101157 – ident: 10.1016/j.bspc.2023.105638_b46 – volume: 59 start-page: 125 issue: 1 year: 2008 ident: 10.1016/j.bspc.2023.105638_b1 article-title: Mental fatigue: costs and benefits publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2008.07.001 – ident: 10.1016/j.bspc.2023.105638_b40 doi: 10.1109/CVPR.2018.00131 – year: 2017 ident: 10.1016/j.bspc.2023.105638_b38 article-title: Attention is all you need – volume: 8 start-page: 211482 year: 2020 ident: 10.1016/j.bspc.2023.105638_b27 article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: A study of time-frequency analysis and event-related potentials publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039268 – volume: 72 year: 2022 ident: 10.1016/j.bspc.2023.105638_b30 article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103360 – volume: 283 start-page: 266 year: 2018 ident: 10.1016/j.bspc.2023.105638_b37 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.062 – volume: 8 start-page: 33002 year: 2020 ident: 10.1016/j.bspc.2023.105638_b18 article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974009 – volume: 52 start-page: 29 issue: 1–2 year: 1990 ident: 10.1016/j.bspc.2023.105638_b52 article-title: Subjective and objective sleepiness in the active individual publication-title: Int. J. Neurosci. doi: 10.3109/00207459008994241 – volume: vol. 37 start-page: 448 year: 2015 ident: 10.1016/j.bspc.2023.105638_b44 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 30 start-page: 2755 issue: 9 year: 2019 ident: 10.1016/j.bspc.2023.105638_b23 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2886414 – volume: 31 start-page: 1366 issue: 4 year: 2021 ident: 10.1016/j.bspc.2023.105638_b48 article-title: Learning Hadamard-product-propagation for image dehazing and beyond publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.3004854 – volume: 19 start-page: 8413 issue: 19 year: 2018 ident: 10.1016/j.bspc.2023.105638_b42 article-title: Activity recognition for cognitive assistance using body sensors data and deep convolutional neural network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2871203 – volume: 23 start-page: 457 issue: 4 year: 2021 ident: 10.1016/j.bspc.2023.105638_b7 article-title: Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection publication-title: Entropy doi: 10.3390/e23040457 – volume: 421 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105638_b31 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2023.105638_b57 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr. Electrophysiol. doi: 10.1186/s40810-016-0017-0 – volume: 129 start-page: 200 year: 2019 ident: 10.1016/j.bspc.2023.105638_b9 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2019.04.004 – start-page: 1097 year: 2012 ident: 10.1016/j.bspc.2023.105638_b14 article-title: ImageNet classification with deep convolutional neural networks – volume: 421 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105638_b33 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – ident: 10.1016/j.bspc.2023.105638_b41 doi: 10.1109/CVPR.2019.00049 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105638_b17 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab405f – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.bspc.2023.105638_b61 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: 10.1016/j.bspc.2023.105638_b49 doi: 10.1109/CVPR.2018.00745 – volume: 13 start-page: 13 issue: 1 year: 2007 ident: 10.1016/j.bspc.2023.105638_b26 article-title: Evolution of cognitive function via redeployment of brain areas publication-title: Neurosci. – volume: 85 start-page: 325 issue: 2 year: 2003 ident: 10.1016/j.bspc.2023.105638_b50 article-title: The contribution of EEG coherence to the investigation of language publication-title: Brain Lang. doi: 10.1016/S0093-934X(03)00067-1 – volume: 58 issue: 6 year: 2021 ident: 10.1016/j.bspc.2023.105638_b8 article-title: Mental fatigue measurement using eye metrics: A systematic literature review publication-title: Psychophysiology doi: 10.1111/psyp.13828 – volume: 12 start-page: 597 issue: 6 year: 2018 ident: 10.1016/j.bspc.2023.105638_b22 article-title: EEG classification of driver mental states by deep learning publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-018-9496-y – volume: 52 start-page: 6 issue: 1 year: 2010 ident: 10.1016/j.bspc.2023.105638_b53 article-title: Electroencephalography (EEG) and event-related potentials (ERPs) with human participants publication-title: Curr. Protoc. Neurosci. doi: 10.1002/0471142301.ns0625s52 – volume: 25 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.bspc.2023.105638_b3 article-title: Effects of mental fatigue on attention: an ERP study publication-title: Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2005.04.011 – ident: 10.1016/j.bspc.2023.105638_b20 doi: 10.1109/ICFTIC54370.2021.9647146 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.bspc.2023.105638_b32 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 49 start-page: 599 issue: 6 year: 2019 ident: 10.1016/j.bspc.2023.105638_b29 article-title: Using EEG for mental fatigue assessment: A comprehensive look into the current state of the art publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2019.2938156 – volume: 8 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.bspc.2023.105638_b55 article-title: Effect of mental fatigue on the central nervous system: an electroencephalography study publication-title: Behav. Brain Funct. doi: 10.1186/1744-9081-8-48 |
SSID | ssj0048714 |
Score | 2.3447802 |
Snippet | Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105638 |
SubjectTerms | Attention mechanism Deep transfer learning Electroencephalography Mental fatigue |
Title | Cross-subject and cross-experimental classification of mental fatigue based on two-stream self-attention network |
URI | https://dx.doi.org/10.1016/j.bspc.2023.105638 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrE3SPDbHUixVsRct9Bb2KZWaBpvizd_uTLIpFaQHb8m-CLPL7Dfhm28IuZHccE_ahOkwVCy0hjMRWcniOJSKBwI2BhOFn8fxaBI-TqNpiwyaXBikVTrfX_v0ylu7lq6zZreYzbovgKVjDtEJgGiIYXyU3Q7DBE_53fea5gF4vNL3xsEMR7vEmZrjJZcFyhgGvaoAPeao_HU5bVw4wwOy75Ai7dcfc0haJj8iexv6gcekGOAybLmS-DeFilzTamG2qdtPFQJkZARVm0AXlroOCw1vK0PxJtMUusqvBcPkEfFBl2ZuGWpvVmxImtds8RMyGd6_DkbMlVBgqud5JQPbSJOayBM8CXRgeWp7SU8lgUghsFBYZyO2VvtxrFUiPWEwXlRSaHgyCgLtU9LOF7k5I1RYhGYAkLSWYGeZplp4ieBcCBEp7p8Tv7Fdppy-OJa5mGcNkew9Q3tnaO-stvc5uV3PKWp1ja2jo2ZLsl9nJAP3v2XexT_nXZJdeAtrjvYVaZefK3MNEKSUneqMdchO_-FpNP4BX0zeJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPrMwdvErrd7iN7LMXS2sfFFnpb8hSlbott8e-b2c1KBenB25JkwjIJM9-EmW8AHgTTzBMmpioIJA2MZpSHRtAoCoRkPrcHg4XCo3HUmwbPs3BWgU5ZC4Nplc72FzY9t9ZupOG02Vi-vTVeLJaOmI1OLIi2MUwz2oMaslOFVai1-4PeuDTIFpLnFN-4nqKAq50p0rzEaolMhn4r70GPZSp_-actn9M9hiMHFkm7-J8TqOjsFA63KATPYNnBbehqI_BBhfBMkXxjuk3dTyRiZEwKys-BLAxxE8YOvG40QWemiJ1afy0o1o_wD7LSc0ORfjNPiCRZkTB-DtPu06TTo66LApUtz1tTqx6hEx16nMW-8g1LTCtuydjniY0tJLbaiIxRzShSMhYe1xgySsGV_dLSxtoXUM0Wmb4Ewg2iM4uRlBJBEIskUdyLOWOc81CyZh2ape5S6SjGsdPFPC1zyd5T1HeK-k4Lfdfh8UdmWRBs7FwdlkeS_romqfUAO-Su_il3D_u9yWiYDvvjwTUc2JmgSNm-ger6c6NvLSJZizt3474BAYPg1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+and+cross-experimental+classification+of+mental+fatigue+based+on+two-stream+self-attention+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Shuo&rft.au=Shan%2C+Aoyang&rft.au=Wang%2C+Lei&rft.au=Li%2C+Yangzheng&rft.date=2024-02-01&rft.issn=1746-8094&rft.volume=88&rft.spage=105638&rft_id=info:doi/10.1016%2Fj.bspc.2023.105638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |