Cross-subject and cross-experimental classification of mental fatigue based on two-stream self-attention network

Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper propos...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 88; p. 105638
Main Authors Yang, Shuo, Shan, Aoyang, Wang, Lei, Li, Yangzheng, Liu, Shuo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper proposes a Spatio-Temporal Transformer (STTransformer) architecture based on a two-stream attention network. We use datasets from three different mental fatigue experimental tasks and individuals. STTransformer has performed cross-task and cross-subject mental fatigue transfer learning and achieved promising results. This architecture is based on the idea of model migration, pre-training deep neural network parameters in the source domain to obtain prior knowledge, freezing some network parameters and migrating to the target domain containing similar samples for fine-tuning. This architecture achieves good transfer effects by using multiple attention mechanisms to capture common features between different individuals and experimental paradigms. Good performance was achieved in multiple individual and two mental fatigue experiments. We used the attention mechanism to visualize part of the feature maps, showing two characteristics of mental fatigue, and exploring deep learning interpretability. •Transfer models available for different mental fatigue and subjects.•Models only require a small sample size to be effective.•The accuracy of the Parallel STTransformer model on the two datasets is 89.66% and 87.76%.
AbstractList Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in mental fatigue experimental paradigms limit the generalizability of classification models across subjects and experiments. This paper proposes a Spatio-Temporal Transformer (STTransformer) architecture based on a two-stream attention network. We use datasets from three different mental fatigue experimental tasks and individuals. STTransformer has performed cross-task and cross-subject mental fatigue transfer learning and achieved promising results. This architecture is based on the idea of model migration, pre-training deep neural network parameters in the source domain to obtain prior knowledge, freezing some network parameters and migrating to the target domain containing similar samples for fine-tuning. This architecture achieves good transfer effects by using multiple attention mechanisms to capture common features between different individuals and experimental paradigms. Good performance was achieved in multiple individual and two mental fatigue experiments. We used the attention mechanism to visualize part of the feature maps, showing two characteristics of mental fatigue, and exploring deep learning interpretability. •Transfer models available for different mental fatigue and subjects.•Models only require a small sample size to be effective.•The accuracy of the Parallel STTransformer model on the two datasets is 89.66% and 87.76%.
ArticleNumber 105638
Author Wang, Lei
Shan, Aoyang
Li, Yangzheng
Yang, Shuo
Liu, Shuo
Author_xml – sequence: 1
  givenname: Shuo
  orcidid: 0000-0002-4986-4761
  surname: Yang
  fullname: Yang, Shuo
  email: sureyang@126.com
– sequence: 2
  givenname: Aoyang
  surname: Shan
  fullname: Shan, Aoyang
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-8625-3652
  surname: Wang
  fullname: Wang, Lei
– sequence: 4
  givenname: Yangzheng
  surname: Li
  fullname: Li, Yangzheng
– sequence: 5
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
BookMark eNp9kLtuwyAUhhlSqUnaF-jEC5ACdgyWulRRb1KkLu2MMBwqXMe2gPTy9sVJpg6ZQP_Ph875FmjWDz0gdMPoilFW3barJo5mxSkvcrCuCjlDcybKikhal5doEWNLaSkFK-do3IQhRhL3TQsmYd1bbA4J_IwQ_A76pDtsOh2jd97o5IceDw6fCpeDjz3gRkewOFfpeyAxBdA7HKFzRKeUX05QD7kLn1fowukuwvXpXKL3x4e3zTPZvj69bO63xBSUJsIL2kANa6ql4JY7WbtCFEZwXTPJTcmFrJyzrKqsEQ3VwNdlbRpt8w0MNMUSyeO_h3UCOGV8OoyfgvadYlRNtlSrJltqsqWOtjLK_6FjNqHD73no7ghBXurLQ1DReOgNWB-yWWUHfw7_A-moi4Y
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_3390_s24247948
Cites_doi 10.1016/j.neuropsychologia.2016.07.013
10.1007/s11571-020-09626-1
10.1111/ejn.12749
10.1142/S0129065716500180
10.1109/ACCESS.2019.2915533
10.1109/JSEN.2019.2956998
10.1007/s10484-020-09475-y
10.1038/s41597-019-0027-4
10.3390/s20216321
10.1111/psyp.12339
10.1002/hbm.20131
10.1016/0166-4328(94)00139-7
10.3390/brainsci9120348
10.1088/1742-6596/1456/1/012017
10.1016/j.neuropsychologia.2020.107506
10.1109/ICCV48922.2021.00021
10.1016/j.chaos.2020.110212
10.1109/EMBC.2013.6611070
10.1109/ICEFEET49149.2020.9186989
10.1109/EMBC.2016.7591765
10.1109/EMBC.2016.7590716
10.4236/psych.2015.65055
10.1016/j.neuropsychologia.2019.04.004
10.1016/j.neucom.2022.02.049
10.1109/TITS.2019.2918438
10.1016/j.aei.2020.101157
10.1016/j.brainresrev.2008.07.001
10.1109/CVPR.2018.00131
10.1109/ACCESS.2020.3039268
10.1016/j.bspc.2021.103360
10.1016/j.neucom.2017.12.062
10.1109/ACCESS.2020.2974009
10.3109/00207459008994241
10.1109/TNNLS.2018.2886414
10.1109/TCSVT.2020.3004854
10.1109/JSEN.2018.2871203
10.3390/e23040457
10.1016/j.neucom.2020.09.017
10.1186/s40810-016-0017-0
10.1109/CVPR.2019.00049
10.1088/1741-2552/ab405f
10.1088/1741-2552/aace8c
10.1109/CVPR.2018.00745
10.1016/S0093-934X(03)00067-1
10.1111/psyp.13828
10.1007/s11571-018-9496-y
10.1002/0471142301.ns0625s52
10.1016/j.cogbrainres.2005.04.011
10.1109/ICFTIC54370.2021.9647146
10.1109/TKDE.2009.191
10.1109/THMS.2019.2938156
10.1186/1744-9081-8-48
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_105638
S1746809423010716
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-230be9e50a872d2f89f373c72a9182c42786ffd166dc7b0ae2549cbadae2eceb3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:20 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Sat Oct 05 15:36:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Electroencephalography
Mental fatigue
Deep transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-230be9e50a872d2f89f373c72a9182c42786ffd166dc7b0ae2549cbadae2eceb3
ORCID 0000-0002-4986-4761
0000-0002-8625-3652
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105638
crossref_primary_10_1016_j_bspc_2023_105638
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Davoodnia, Sepas-Moghaddam, Zhang, Etemad (b19) 2020; 20
Krizhevsky, Sutskever, Hinton (b14) 2012
Uddin, Hassan (b42) 2018; 19
Johannesen, Bi, Jiang, Kenney, Chen (b57) 2016; 2
Yang, Shi, Wang, Wang, Peng (b27) 2020; 8
H. Kuang, J. Qu, LSTM Model with Self-Attention Mechanism for EEG Based Cross-Subject Fatigue Detection, in: 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC, 2021, pp. 148–153.
Mao, Fathurrahman, Lee, Chang (b16) 2020; 1456
Wang, Wu, Zhang, Xu, Zhang, Wu, Coleman (b34) 2020; 146
Gao, Dang, Wang, Hong, Hou, Ma, Perc (b21) 2021; 15
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b61) 2018; 15
Ye, Yin, Zhao, Tian, Sun (b30) 2022; 72
Chen, Wang, Wang, Hua (b5) 2019; 129
Wu, Zhu, Zhang, Deng, Jia, Chen, Ren, Zhou (b10) 2020; 21
R. Chai, Y. Tran, G.R. Naik, T.N. Nguyen, S.H. Ling, A. Craig, H.T. Nguyen, Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 4654–4657.
N. Fei, Y. Gao, Z. Lu, T. Xiang, Z-score normalization, hubness, and few-shot learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 142–151.
J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.
Chao, Liu (b18) 2020; 8
Tanaka, Shigihara, Ishii, Funakura, Kanai, Watanabe (b55) 2012; 8
Gao, Wang, Yang, Mu, Cai, Dang, Zuo (b23) 2019; 30
Rac-Lubashevsky, Kessler (b56) 2016; 90
Owen, McMillan, Laird, Bullmore (b59) 2005; 25
Liu, Li, Liu, Ma, Fan, Luo (b48) 2021; 31
R.N. Roy, S. Bonnet, S. Charbonnier, A. Campagne, Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2013, pp. 6607–6610.
P. Li, W. Jiang, F. Su, Single-channel EEG-based mental fatigue detection based on deep belief network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 367–370.
F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H. Torr, T.M. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208.
Chen, Wang, Wang, Hua (b9) 2019; 129
Monteiro, Skourup, Zhang (b29) 2019; 49
Wan, Yang, Huang, Zeng, Liu (b33) 2021; 421
Liu, Liu, Chen, Wang, Li, Ai, Ma (b7) 2021; 23
N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The Efficient Transformer, in: International Conference on Learning Representations, 2020.
Bashivan, Bidelman, Yeasin (b58) 2014; 40
Wang, Guo, Zhang, Gao, Zheng (b36) 2022; 488
Zeng, Yang, Dai, Qin, Zhang, Kong (b22) 2018; 12
Trejo, Kubitz, Rosipal, Kochavi, Montgomery (b28) 2015; 6
Melo, Nascimento, Hoeller, Walz, Takase (b4) 2021; 46
Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412.
Yin, Zhang (b37) 2018; 283
Ioffe, Szegedy (b44) 2015; vol. 37
Wang, Wu, Li, He, Chen, Bezerianos (b6) 2019; 7
Jeong, Yu, Lee, Lee (b15) 2019; 9
Zhang, Xu, Zheng, Li, Zhang, Yu, Liang (b35) 2020; 20
Åkerstedt, Gillberg (b52) 1990; 52
Henderi, Wahyuningsih, Rahwanto (b43) 2021; 4
Huang, Huang, Chuang, King, Wang, Lin, Jung (b2) 2016; 26
A. Sengupta, Study of Cognitive Fatigue using EEG Entropy Analysis, in: 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET, 2020, pp. 1–6.
Z. Wu*, Z. Liu*, J. Lin, Y. Lin, S. Han, Lite Transformer with Long-Short Range Attention, in: International Conference on Learning Representations, 2020.
Horwitz, McIntosh, Haxby, Grady (b25) 1995; 66
Anderson (b26) 2007; 13
Cao, Chuang, King, Lin (b60) 2019; 6
Shahid, Zameer, Muneeb (b62) 2020; 140
Dai, Zhou, Huang, Wang (b17) 2020; 17
Wan, Yang, Huang, Zeng, Liu (b31) 2021; 421
Bafna, Hansen (b8) 2021; 58
Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit, Lucic, Dosovitskiy (b45) 2021
Weiss, Mueller (b50) 2003; 85
Liu, Lan, Cui, Sourina, Müller-Wittig (b12) 2020; 46
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b38) 2017
Pan, Yang (b32) 2010; 22
Boksem, Tops (b1) 2008; 59
Boksem, Meijman, Lorist (b3) 2005; 25
Light, Williams, Minow, Sprock, Rissling, Sharp, Swerdlow, Braff (b53) 2010; 52
Hopstaken, Van Der Linden, Bakker, Kompier (b54) 2015; 52
Wang (10.1016/j.bspc.2023.105638_b34) 2020; 146
Wu (10.1016/j.bspc.2023.105638_b10) 2020; 21
Melo (10.1016/j.bspc.2023.105638_b4) 2021; 46
Dai (10.1016/j.bspc.2023.105638_b17) 2020; 17
Wan (10.1016/j.bspc.2023.105638_b31) 2021; 421
10.1016/j.bspc.2023.105638_b39
Chen (10.1016/j.bspc.2023.105638_b9) 2019; 129
Trejo (10.1016/j.bspc.2023.105638_b28) 2015; 6
Chao (10.1016/j.bspc.2023.105638_b18) 2020; 8
Horwitz (10.1016/j.bspc.2023.105638_b25) 1995; 66
Henderi (10.1016/j.bspc.2023.105638_b43) 2021; 4
Lawhern (10.1016/j.bspc.2023.105638_b61) 2018; 15
Johannesen (10.1016/j.bspc.2023.105638_b57) 2016; 2
Zhang (10.1016/j.bspc.2023.105638_b35) 2020; 20
Weiss (10.1016/j.bspc.2023.105638_b50) 2003; 85
Zeng (10.1016/j.bspc.2023.105638_b22) 2018; 12
Monteiro (10.1016/j.bspc.2023.105638_b29) 2019; 49
Bashivan (10.1016/j.bspc.2023.105638_b58) 2014; 40
Yang (10.1016/j.bspc.2023.105638_b27) 2020; 8
Boksem (10.1016/j.bspc.2023.105638_b3) 2005; 25
Wang (10.1016/j.bspc.2023.105638_b36) 2022; 488
Liu (10.1016/j.bspc.2023.105638_b7) 2021; 23
10.1016/j.bspc.2023.105638_b20
Ioffe (10.1016/j.bspc.2023.105638_b44) 2015; vol. 37
Rac-Lubashevsky (10.1016/j.bspc.2023.105638_b56) 2016; 90
Vaswani (10.1016/j.bspc.2023.105638_b38) 2017
10.1016/j.bspc.2023.105638_b24
Zhang (10.1016/j.bspc.2023.105638_b19) 2020; 20
Huang (10.1016/j.bspc.2023.105638_b2) 2016; 26
Bafna (10.1016/j.bspc.2023.105638_b8) 2021; 58
Jeong (10.1016/j.bspc.2023.105638_b15) 2019; 9
Yin (10.1016/j.bspc.2023.105638_b37) 2018; 283
Pan (10.1016/j.bspc.2023.105638_b32) 2010; 22
Light (10.1016/j.bspc.2023.105638_b53) 2010; 52
Tolstikhin (10.1016/j.bspc.2023.105638_b45) 2021
Chen (10.1016/j.bspc.2023.105638_b5) 2019; 129
Gao (10.1016/j.bspc.2023.105638_b23) 2019; 30
Tanaka (10.1016/j.bspc.2023.105638_b55) 2012; 8
10.1016/j.bspc.2023.105638_b51
10.1016/j.bspc.2023.105638_b13
10.1016/j.bspc.2023.105638_b11
Cao (10.1016/j.bspc.2023.105638_b60) 2019; 6
Ye (10.1016/j.bspc.2023.105638_b30) 2022; 72
Shahid (10.1016/j.bspc.2023.105638_b62) 2020; 140
Wang (10.1016/j.bspc.2023.105638_b6) 2019; 7
Liu (10.1016/j.bspc.2023.105638_b12) 2020; 46
Wan (10.1016/j.bspc.2023.105638_b33) 2021; 421
Liu (10.1016/j.bspc.2023.105638_b48) 2021; 31
Anderson (10.1016/j.bspc.2023.105638_b26) 2007; 13
Mao (10.1016/j.bspc.2023.105638_b16) 2020; 1456
10.1016/j.bspc.2023.105638_b49
Boksem (10.1016/j.bspc.2023.105638_b1) 2008; 59
10.1016/j.bspc.2023.105638_b47
Gao (10.1016/j.bspc.2023.105638_b21) 2021; 15
10.1016/j.bspc.2023.105638_b41
10.1016/j.bspc.2023.105638_b40
Uddin (10.1016/j.bspc.2023.105638_b42) 2018; 19
Owen (10.1016/j.bspc.2023.105638_b59) 2005; 25
10.1016/j.bspc.2023.105638_b46
Krizhevsky (10.1016/j.bspc.2023.105638_b14) 2012
Hopstaken (10.1016/j.bspc.2023.105638_b54) 2015; 52
Åkerstedt (10.1016/j.bspc.2023.105638_b52) 1990; 52
References_xml – volume: 59
  start-page: 125
  year: 2008
  end-page: 139
  ident: b1
  article-title: Mental fatigue: costs and benefits
  publication-title: Brain Res. Rev.
– volume: 25
  start-page: 107
  year: 2005
  end-page: 116
  ident: b3
  article-title: Effects of mental fatigue on attention: an ERP study
  publication-title: Cogn. Brain Res.
– year: 2017
  ident: b38
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– volume: 30
  start-page: 2755
  year: 2019
  end-page: 2763
  ident: b23
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412.
– volume: 46
  start-page: 103
  year: 2021
  end-page: 113
  ident: b4
  article-title: Early alpha reactivity is associated with long-term mental fatigue behavioral impairments
  publication-title: Appl. Psychophys. Biof.
– volume: 31
  start-page: 1366
  year: 2021
  end-page: 1379
  ident: b48
  article-title: Learning Hadamard-product-propagation for image dehazing and beyond
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 52
  start-page: 6
  year: 2010
  end-page: 25
  ident: b53
  article-title: Electroencephalography (EEG) and event-related potentials (ERPs) with human participants
  publication-title: Curr. Protoc. Neurosci.
– volume: 20
  start-page: 6321
  year: 2020
  ident: b35
  article-title: Application of transfer learning in EEG decoding based on brain-computer interfaces: a review
  publication-title: Sensors
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems, Vol. 25
– volume: 9
  start-page: 348
  year: 2019
  ident: b15
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
– reference: P. Li, W. Jiang, F. Su, Single-channel EEG-based mental fatigue detection based on deep belief network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 367–370.
– volume: 21
  start-page: 2437
  year: 2020
  end-page: 2448
  ident: b10
  article-title: Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: H. Kuang, J. Qu, LSTM Model with Self-Attention Mechanism for EEG Based Cross-Subject Fatigue Detection, in: 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC, 2021, pp. 148–153.
– volume: 49
  start-page: 599
  year: 2019
  end-page: 610
  ident: b29
  article-title: Using EEG for mental fatigue assessment: A comprehensive look into the current state of the art
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 8
  start-page: 211482
  year: 2020
  end-page: 211489
  ident: b27
  article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: A study of time-frequency analysis and event-related potentials
  publication-title: IEEE Access
– volume: 488
  start-page: 183
  year: 2022
  end-page: 193
  ident: b36
  article-title: Automatic sleep staging method of EEG signal based on transfer learning and fusion network
  publication-title: Neurocomputing
– volume: 421
  start-page: 1
  year: 2021
  end-page: 14
  ident: b31
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
– volume: 6
  start-page: 19
  year: 2019
  ident: b60
  article-title: Multi-channel EEG recordings during a sustained-attention driving task
  publication-title: Sci. Data
– reference: N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The Efficient Transformer, in: International Conference on Learning Representations, 2020.
– volume: 26
  year: 2016
  ident: b2
  article-title: An EEG-based fatigue detection and mitigation system
  publication-title: Int. J. Neural Syst.
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b32
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 129
  start-page: 200
  year: 2019
  end-page: 211
  ident: b9
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
– volume: 17
  year: 2020
  ident: b17
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
– volume: 12
  start-page: 597
  year: 2018
  end-page: 606
  ident: b22
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cogn. Neurodynamics
– volume: 25
  start-page: 46
  year: 2005
  end-page: 59
  ident: b59
  article-title: N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies
  publication-title: Hum. Brain Mapp.
– reference: R. Chai, Y. Tran, G.R. Naik, T.N. Nguyen, S.H. Ling, A. Craig, H.T. Nguyen, Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2016, pp. 4654–4657.
– volume: 129
  start-page: 200
  year: 2019
  end-page: 211
  ident: b5
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
– start-page: 24261
  year: 2021
  end-page: 24272
  ident: b45
  article-title: MLP-mixer: An all-MLP architecture for vision
  publication-title: Advances in Neural Information Processing Systems, Vol. 34
– volume: 2
  start-page: 1
  year: 2016
  end-page: 21
  ident: b57
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr. Electrophysiol.
– volume: 6
  start-page: 572
  year: 2015
  ident: b28
  article-title: EEG-based estimation and classification of mental fatigue
  publication-title: Psychology
– volume: 8
  start-page: 1
  year: 2012
  end-page: 8
  ident: b55
  article-title: Effect of mental fatigue on the central nervous system: an electroencephalography study
  publication-title: Behav. Brain Funct.
– volume: 15
  start-page: 369
  year: 2021
  end-page: 388
  ident: b21
  article-title: Complex networks and deep learning for EEG signal analysis
  publication-title: Cogn. Neurodyn.
– volume: 40
  start-page: 3774
  year: 2014
  end-page: 3784
  ident: b58
  article-title: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity
  publication-title: Eur. J. Neurosci.
– reference: F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H. Torr, T.M. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208.
– volume: vol. 37
  start-page: 448
  year: 2015
  end-page: 456
  ident: b44
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
– volume: 140
  year: 2020
  ident: b62
  article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
  publication-title: Chaos Solitons Fractals
– reference: A. Sengupta, Study of Cognitive Fatigue using EEG Entropy Analysis, in: 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, ICEFEET, 2020, pp. 1–6.
– volume: 20
  start-page: 3113
  year: 2020
  end-page: 3122
  ident: b19
  article-title: Classification of hand movements from EEG using a deep attention-based LSTM network
  publication-title: IEEE Sens. J.
– volume: 15
  year: 2018
  ident: b61
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 421
  start-page: 1
  year: 2021
  end-page: 14
  ident: b33
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
– volume: 66
  start-page: 187
  year: 1995
  end-page: 193
  ident: b25
  article-title: Network analysis of brain cognitive function using metabolic and blood flow data
  publication-title: Behav. Brain Res.
– volume: 19
  start-page: 8413
  year: 2018
  end-page: 8419
  ident: b42
  article-title: Activity recognition for cognitive assistance using body sensors data and deep convolutional neural network
  publication-title: IEEE Sens. J.
– volume: 72
  year: 2022
  ident: b30
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed. Signal Process. Control
– volume: 46
  year: 2020
  ident: b12
  article-title: Inter-subject transfer learning for EEG-based mental fatigue recognition
  publication-title: Adv. Eng. Inform.
– reference: Z. Wu*, Z. Liu*, J. Lin, Y. Lin, S. Han, Lite Transformer with Long-Short Range Attention, in: International Conference on Learning Representations, 2020.
– reference: R.N. Roy, S. Bonnet, S. Charbonnier, A. Campagne, Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2013, pp. 6607–6610.
– volume: 7
  start-page: 61975
  year: 2019
  end-page: 61986
  ident: b6
  article-title: Driving fatigue classification based on fusion entropy analysis combining EOG and EEG
  publication-title: IEEE Access
– volume: 52
  start-page: 29
  year: 1990
  end-page: 37
  ident: b52
  article-title: Subjective and objective sleepiness in the active individual
  publication-title: Int. J. Neurosci.
– volume: 85
  start-page: 325
  year: 2003
  end-page: 343
  ident: b50
  article-title: The contribution of EEG coherence to the investigation of language
  publication-title: Brain Lang.
– volume: 1456
  year: 2020
  ident: b16
  article-title: EEG dataset classification using CNN method
  publication-title: J. Phys. Conf. Ser.
– volume: 8
  start-page: 33002
  year: 2020
  end-page: 33012
  ident: b18
  article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework
  publication-title: IEEE Access
– volume: 13
  start-page: 13
  year: 2007
  end-page: 21
  ident: b26
  article-title: Evolution of cognitive function via redeployment of brain areas
  publication-title: Neurosci.
– volume: 146
  year: 2020
  ident: b34
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
– volume: 4
  start-page: 13
  year: 2021
  end-page: 20
  ident: b43
  article-title: Comparison of min-max normalization and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer
  publication-title: Int. J. Inform. Inf. Syst.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.
– reference: N. Fei, Y. Gao, Z. Lu, T. Xiang, Z-score normalization, hubness, and few-shot learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 142–151.
– volume: 23
  start-page: 457
  year: 2021
  end-page: 473
  ident: b7
  article-title: Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection
  publication-title: Entropy
– volume: 283
  start-page: 266
  year: 2018
  end-page: 281
  ident: b37
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
– volume: 90
  start-page: 190
  year: 2016
  end-page: 199
  ident: b56
  article-title: Decomposing the n-back task: An individual differences study using the reference-back paradigm
  publication-title: Neuropsychologia
– volume: 52
  start-page: 305
  year: 2015
  end-page: 315
  ident: b54
  article-title: A multifaceted investigation of the link between mental fatigue and task disengagement
  publication-title: Psychophysiology
– volume: 58
  year: 2021
  ident: b8
  article-title: Mental fatigue measurement using eye metrics: A systematic literature review
  publication-title: Psychophysiology
– volume: 4
  start-page: 13
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b43
  article-title: Comparison of min-max normalization and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer
  publication-title: Int. J. Inform. Inf. Syst.
– volume: 90
  start-page: 190
  year: 2016
  ident: 10.1016/j.bspc.2023.105638_b56
  article-title: Decomposing the n-back task: An individual differences study using the reference-back paradigm
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2016.07.013
– volume: 15
  start-page: 369
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b21
  article-title: Complex networks and deep learning for EEG signal analysis
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09626-1
– volume: 40
  start-page: 3774
  issue: 12
  year: 2014
  ident: 10.1016/j.bspc.2023.105638_b58
  article-title: Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12749
– volume: 26
  issue: 04
  year: 2016
  ident: 10.1016/j.bspc.2023.105638_b2
  article-title: An EEG-based fatigue detection and mitigation system
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500180
– volume: 7
  start-page: 61975
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b6
  article-title: Driving fatigue classification based on fusion entropy analysis combining EOG and EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915533
– volume: 20
  start-page: 3113
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b19
  article-title: Classification of hand movements from EEG using a deep attention-based LSTM network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2956998
– volume: 46
  start-page: 103
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b4
  article-title: Early alpha reactivity is associated with long-term mental fatigue behavioral impairments
  publication-title: Appl. Psychophys. Biof.
  doi: 10.1007/s10484-020-09475-y
– volume: 6
  start-page: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b60
  article-title: Multi-channel EEG recordings during a sustained-attention driving task
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0027-4
– volume: 20
  start-page: 6321
  issue: 21
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b35
  article-title: Application of transfer learning in EEG decoding based on brain-computer interfaces: a review
  publication-title: Sensors
  doi: 10.3390/s20216321
– volume: 52
  start-page: 305
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2023.105638_b54
  article-title: A multifaceted investigation of the link between mental fatigue and task disengagement
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12339
– volume: 25
  start-page: 46
  issue: 1
  year: 2005
  ident: 10.1016/j.bspc.2023.105638_b59
  article-title: N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20131
– volume: 66
  start-page: 187
  issue: 1
  year: 1995
  ident: 10.1016/j.bspc.2023.105638_b25
  article-title: Network analysis of brain cognitive function using metabolic and blood flow data
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(94)00139-7
– start-page: 24261
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b45
  article-title: MLP-mixer: An all-MLP architecture for vision
– volume: 9
  start-page: 348
  issue: 12
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b15
  article-title: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9120348
– volume: 1456
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b16
  article-title: EEG dataset classification using CNN method
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1456/1/012017
– ident: 10.1016/j.bspc.2023.105638_b47
– volume: 146
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b34
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– ident: 10.1016/j.bspc.2023.105638_b39
  doi: 10.1109/ICCV48922.2021.00021
– volume: 140
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b62
  article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110212
– ident: 10.1016/j.bspc.2023.105638_b51
  doi: 10.1109/EMBC.2013.6611070
– ident: 10.1016/j.bspc.2023.105638_b11
  doi: 10.1109/ICEFEET49149.2020.9186989
– ident: 10.1016/j.bspc.2023.105638_b13
  doi: 10.1109/EMBC.2016.7591765
– ident: 10.1016/j.bspc.2023.105638_b24
  doi: 10.1109/EMBC.2016.7590716
– volume: 6
  start-page: 572
  issue: 05
  year: 2015
  ident: 10.1016/j.bspc.2023.105638_b28
  article-title: EEG-based estimation and classification of mental fatigue
  publication-title: Psychology
  doi: 10.4236/psych.2015.65055
– volume: 129
  start-page: 200
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b5
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2019.04.004
– volume: 488
  start-page: 183
  year: 2022
  ident: 10.1016/j.bspc.2023.105638_b36
  article-title: Automatic sleep staging method of EEG signal based on transfer learning and fusion network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.02.049
– volume: 21
  start-page: 2437
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b10
  article-title: Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2918438
– volume: 46
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b12
  article-title: Inter-subject transfer learning for EEG-based mental fatigue recognition
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101157
– ident: 10.1016/j.bspc.2023.105638_b46
– volume: 59
  start-page: 125
  issue: 1
  year: 2008
  ident: 10.1016/j.bspc.2023.105638_b1
  article-title: Mental fatigue: costs and benefits
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2008.07.001
– ident: 10.1016/j.bspc.2023.105638_b40
  doi: 10.1109/CVPR.2018.00131
– year: 2017
  ident: 10.1016/j.bspc.2023.105638_b38
  article-title: Attention is all you need
– volume: 8
  start-page: 211482
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b27
  article-title: Long-term cognitive tasks impair the ability of resource allocation in working memory: A study of time-frequency analysis and event-related potentials
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039268
– volume: 72
  year: 2022
  ident: 10.1016/j.bspc.2023.105638_b30
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103360
– volume: 283
  start-page: 266
  year: 2018
  ident: 10.1016/j.bspc.2023.105638_b37
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.062
– volume: 8
  start-page: 33002
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b18
  article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974009
– volume: 52
  start-page: 29
  issue: 1–2
  year: 1990
  ident: 10.1016/j.bspc.2023.105638_b52
  article-title: Subjective and objective sleepiness in the active individual
  publication-title: Int. J. Neurosci.
  doi: 10.3109/00207459008994241
– volume: vol. 37
  start-page: 448
  year: 2015
  ident: 10.1016/j.bspc.2023.105638_b44
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 30
  start-page: 2755
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b23
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886414
– volume: 31
  start-page: 1366
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b48
  article-title: Learning Hadamard-product-propagation for image dehazing and beyond
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3004854
– volume: 19
  start-page: 8413
  issue: 19
  year: 2018
  ident: 10.1016/j.bspc.2023.105638_b42
  article-title: Activity recognition for cognitive assistance using body sensors data and deep convolutional neural network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2871203
– volume: 23
  start-page: 457
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b7
  article-title: Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection
  publication-title: Entropy
  doi: 10.3390/e23040457
– volume: 421
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b31
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 2
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.105638_b57
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr. Electrophysiol.
  doi: 10.1186/s40810-016-0017-0
– volume: 129
  start-page: 200
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b9
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2019.04.004
– start-page: 1097
  year: 2012
  ident: 10.1016/j.bspc.2023.105638_b14
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 421
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b33
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– ident: 10.1016/j.bspc.2023.105638_b41
  doi: 10.1109/CVPR.2019.00049
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105638_b17
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2023.105638_b61
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: 10.1016/j.bspc.2023.105638_b49
  doi: 10.1109/CVPR.2018.00745
– volume: 13
  start-page: 13
  issue: 1
  year: 2007
  ident: 10.1016/j.bspc.2023.105638_b26
  article-title: Evolution of cognitive function via redeployment of brain areas
  publication-title: Neurosci.
– volume: 85
  start-page: 325
  issue: 2
  year: 2003
  ident: 10.1016/j.bspc.2023.105638_b50
  article-title: The contribution of EEG coherence to the investigation of language
  publication-title: Brain Lang.
  doi: 10.1016/S0093-934X(03)00067-1
– volume: 58
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2023.105638_b8
  article-title: Mental fatigue measurement using eye metrics: A systematic literature review
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13828
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2023.105638_b22
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-018-9496-y
– volume: 52
  start-page: 6
  issue: 1
  year: 2010
  ident: 10.1016/j.bspc.2023.105638_b53
  article-title: Electroencephalography (EEG) and event-related potentials (ERPs) with human participants
  publication-title: Curr. Protoc. Neurosci.
  doi: 10.1002/0471142301.ns0625s52
– volume: 25
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.bspc.2023.105638_b3
  article-title: Effects of mental fatigue on attention: an ERP study
  publication-title: Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2005.04.011
– ident: 10.1016/j.bspc.2023.105638_b20
  doi: 10.1109/ICFTIC54370.2021.9647146
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.bspc.2023.105638_b32
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 49
  start-page: 599
  issue: 6
  year: 2019
  ident: 10.1016/j.bspc.2023.105638_b29
  article-title: Using EEG for mental fatigue assessment: A comprehensive look into the current state of the art
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2019.2938156
– volume: 8
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2023.105638_b55
  article-title: Effect of mental fatigue on the central nervous system: an electroencephalography study
  publication-title: Behav. Brain Funct.
  doi: 10.1186/1744-9081-8-48
SSID ssj0048714
Score 2.3447802
Snippet Mental fatigue detection based on Electroencephalogram (EEG) is an objective and effective detection method. However, individual variability and variability in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105638
SubjectTerms Attention mechanism
Deep transfer learning
Electroencephalography
Mental fatigue
Title Cross-subject and cross-experimental classification of mental fatigue based on two-stream self-attention network
URI https://dx.doi.org/10.1016/j.bspc.2023.105638
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGbrE3SPDbHUixVsRct9Bb2KZWaBpvizd_uTLIpFaQHb8m-CLPL7Dfhm28IuZHccE_ahOkwVCy0hjMRWcniOJSKBwI2BhOFn8fxaBI-TqNpiwyaXBikVTrfX_v0ylu7lq6zZreYzbovgKVjDtEJgGiIYXyU3Q7DBE_53fea5gF4vNL3xsEMR7vEmZrjJZcFyhgGvaoAPeao_HU5bVw4wwOy75Ai7dcfc0haJj8iexv6gcekGOAybLmS-DeFilzTamG2qdtPFQJkZARVm0AXlroOCw1vK0PxJtMUusqvBcPkEfFBl2ZuGWpvVmxImtds8RMyGd6_DkbMlVBgqud5JQPbSJOayBM8CXRgeWp7SU8lgUghsFBYZyO2VvtxrFUiPWEwXlRSaHgyCgLtU9LOF7k5I1RYhGYAkLSWYGeZplp4ieBcCBEp7p8Tv7Fdppy-OJa5mGcNkew9Q3tnaO-stvc5uV3PKWp1ja2jo2ZLsl9nJAP3v2XexT_nXZJdeAtrjvYVaZefK3MNEKSUneqMdchO_-FpNP4BX0zeJA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPrMwdvErrd7iN7LMXS2sfFFnpb8hSlbott8e-b2c1KBenB25JkwjIJM9-EmW8AHgTTzBMmpioIJA2MZpSHRtAoCoRkPrcHg4XCo3HUmwbPs3BWgU5ZC4Nplc72FzY9t9ZupOG02Vi-vTVeLJaOmI1OLIi2MUwz2oMaslOFVai1-4PeuDTIFpLnFN-4nqKAq50p0rzEaolMhn4r70GPZSp_-actn9M9hiMHFkm7-J8TqOjsFA63KATPYNnBbehqI_BBhfBMkXxjuk3dTyRiZEwKys-BLAxxE8YOvG40QWemiJ1afy0o1o_wD7LSc0ORfjNPiCRZkTB-DtPu06TTo66LApUtz1tTqx6hEx16nMW-8g1LTCtuydjniY0tJLbaiIxRzShSMhYe1xgySsGV_dLSxtoXUM0Wmb4Ewg2iM4uRlBJBEIskUdyLOWOc81CyZh2ape5S6SjGsdPFPC1zyd5T1HeK-k4Lfdfh8UdmWRBs7FwdlkeS_romqfUAO-Su_il3D_u9yWiYDvvjwTUc2JmgSNm-ger6c6NvLSJZizt3474BAYPg1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+and+cross-experimental+classification+of+mental+fatigue+based+on+two-stream+self-attention+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yang%2C+Shuo&rft.au=Shan%2C+Aoyang&rft.au=Wang%2C+Lei&rft.au=Li%2C+Yangzheng&rft.date=2024-02-01&rft.issn=1746-8094&rft.volume=88&rft.spage=105638&rft_id=info:doi/10.1016%2Fj.bspc.2023.105638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon