Dynamic event-based forecasting-aided state estimation for active distribution systems subject to limited communication resource

In this paper, the dynamic event-based forecasting-aided state estimation (FASE) method is developed to deal with the state estimation problem of the active distribution system (ADS) subject to communication constraints and non-linear measurements. The proposed method first constructs a state-space...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 221; p. 109417
Main Authors Bai, Xingzhen, Zheng, Xinlei, Ge, Leijiao, Liao, Wenlong, Powell, Kody, Zhang, Jiaan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the dynamic event-based forecasting-aided state estimation (FASE) method is developed to deal with the state estimation problem of the active distribution system (ADS) subject to communication constraints and non-linear measurements. The proposed method first constructs a state-space model of the ADS to describe system state time evolution. Secondly, to use communication resources more effectively, the dynamic event-triggered scheme (ETS) is exploited to schedule the data transmission. Aiming at the problem of the ADS in the presence of the non-linear measurement, the Gaussian integral is approximated by the spherical cubature rule to obtain the mean and covariance of the state variables after non-linear transformation. Moreover, the upper bound of the estimation error covariance containing non-triggering errors is derived, and then minimized by suitably designing filter gain, thus developing the dynamic event-triggered cubature Kalman filter (DET-CKF) algorithm to perform state estimation for ADSs. Finally, a series of simulation experiments are conducted to verify the effectiveness of the developed FASE method. •Dynamic event-triggered scheme can relieve the network transmission burden.•The upper bound of error covariance containing non-triggering errors is derived.•The spherical cubature rule is adopted to deal with non-linear measurement.
AbstractList In this paper, the dynamic event-based forecasting-aided state estimation (FASE) method is developed to deal with the state estimation problem of the active distribution system (ADS) subject to communication constraints and non-linear measurements. The proposed method first constructs a state-space model of the ADS to describe system state time evolution. Secondly, to use communication resources more effectively, the dynamic event-triggered scheme (ETS) is exploited to schedule the data transmission. Aiming at the problem of the ADS in the presence of the non-linear measurement, the Gaussian integral is approximated by the spherical cubature rule to obtain the mean and covariance of the state variables after non-linear transformation. Moreover, the upper bound of the estimation error covariance containing non-triggering errors is derived, and then minimized by suitably designing filter gain, thus developing the dynamic event-triggered cubature Kalman filter (DET-CKF) algorithm to perform state estimation for ADSs. Finally, a series of simulation experiments are conducted to verify the effectiveness of the developed FASE method. •Dynamic event-triggered scheme can relieve the network transmission burden.•The upper bound of error covariance containing non-triggering errors is derived.•The spherical cubature rule is adopted to deal with non-linear measurement.
ArticleNumber 109417
Author Zheng, Xinlei
Zhang, Jiaan
Powell, Kody
Bai, Xingzhen
Liao, Wenlong
Ge, Leijiao
Author_xml – sequence: 1
  givenname: Xingzhen
  surname: Bai
  fullname: Bai, Xingzhen
  email: xzbai@163.com
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 2
  givenname: Xinlei
  orcidid: 0000-0003-3271-6903
  surname: Zheng
  fullname: Zheng, Xinlei
  email: zhengxl97@163.com
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, China
– sequence: 3
  givenname: Leijiao
  orcidid: 0000-0001-6310-6986
  surname: Ge
  fullname: Ge, Leijiao
  email: legendglj99@tju.edu.cn
  organization: Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Wenlong
  surname: Liao
  fullname: Liao, Wenlong
  email: weli@energy.aau.dk
  organization: AAU Energy, Aalborg University, Aalborg 9220, Denmark
– sequence: 5
  givenname: Kody
  orcidid: 0000-0001-9904-6671
  surname: Powell
  fullname: Powell, Kody
  email: kody.powell@utah.edu
  organization: Department of Chemical Engineering, University of Utah, UT 84112, United States of America
– sequence: 6
  givenname: Jiaan
  orcidid: 0000-0003-3836-3491
  surname: Zhang
  fullname: Zhang, Jiaan
  email: zhangjiaan@foxmail.com
  organization: School of Electrical and Engineering, Hebei University of Technology, Tianjin 300401, China
BookMark eNp9kD1rwzAQhjWk0CTtH-ikP-BUkm3Zhi4l_YRAl3YW0vlcZGI7SHIgW3965bhTh0wHL_e83D0rsuiHHgm542zDGZf37QYP3m0EE2kMqowXC7JkaVEmRVHJa7LyvmWMyarIl-Tn6dTrzgLFI_YhMdpjTZvBIWgfbP-daFvHxAcdkGKMOh3s0E8rVEOwR6S19cFZM55zf_IBO0_9aFqEQMNA97azIXbA0HVjb2EucOiH0QHekKtG7z3e_s01-Xp5_ty-JbuP1_ft4y6BlLGQCCFyk_Oc8cxoVqcFgAGeSyOxrACqkmvMQEqhG2kEyLhsqjoDpkvB8qxM10TMveAG7x026uDiM-6kOFOTN9WqyZuavKnZW4TKfxDYcL4_OG33l9GHGcX41NGiUx4s9oC1jXKDqgd7Cf8FafyRnQ
CitedBy_id crossref_primary_10_1002_tee_24229
Cites_doi 10.1016/j.automatica.2019.108681
10.1016/j.ijepes.2020.105962
10.1016/j.epsr.2021.107440
10.1016/j.epsr.2020.106247
10.1109/TIE.2018.2813982
10.1109/TSMC.2019.2905253
10.1016/j.ijepes.2019.105732
10.1109/TSMC.2020.3010825
10.1109/TAC.2014.2366855
10.1016/j.epsr.2019.105974
10.1109/TSP.2018.2853098
10.1016/j.epsr.2019.106063
10.1016/j.epsr.2020.106532
10.1016/j.inffus.2016.01.001
10.1109/TAC.2020.3004328
10.1007/s40565-016-0237-0
10.1016/0377-0427(95)00232-4
10.1109/TPWRS.2019.2894769
10.1016/j.automatica.2020.109408
10.1109/TNNLS.2019.2951948
10.1109/TIE.2009.2039455
10.1109/TPWRS.2009.2030295
10.1109/TCYB.2018.2818941
10.1109/TSG.2017.2761452
10.1109/TPWRS.2021.3062386
10.1109/TPWRS.2016.2628344
10.1109/TAC.2009.2019800
10.1002/rnc.5831
10.1109/TNNLS.2014.2381853
10.1016/j.automatica.2020.109154
10.1016/j.automatica.2021.109730
10.1109/TNNLS.2020.3016120
10.1109/TIM.2017.2677698
10.1109/TPWRS.2019.2936141
10.1109/TCYB.2017.2769722
10.1109/TSG.2019.2937162
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2023.109417
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2023_109417
S0378779623003061
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c300t-2225b515014ba0d37ccbc156b6e89cc981ae4c662af6b2c65b5b9d4c0a8205483
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Thu Apr 24 23:02:42 EDT 2025
Tue Jul 01 04:32:14 EDT 2025
Sun Apr 06 06:53:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cubature Kalman filter
Dynamic event-triggered scheme
Active distribution system
Non-linear system
State estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-2225b515014ba0d37ccbc156b6e89cc981ae4c662af6b2c65b5b9d4c0a8205483
ORCID 0000-0003-3271-6903
0000-0001-6310-6986
0000-0003-3836-3491
0000-0001-9904-6671
ParticipantIDs crossref_primary_10_1016_j_epsr_2023_109417
crossref_citationtrail_10_1016_j_epsr_2023_109417
elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sharma, Srivastava, Chakrabarti (b16) 2017; 66
Cheng, Bai (b23) 2021; 36
Qian, Lu, Guo, Zhao (b34) 2022
Hu, Wang, Liu (b22) 2016; 27
Qu, Wang, Shen, Dong (b9) 2021; 131
Liu, Wu, Li (b3) 2020; 179
Zhao, Gómez-Expósito, Netto, Mili, Abur, Terzija, Kamwa, Pal, Singh, Qi, Huang, Meliopoulos (b30) 2019; 34
Hu, Wang, Chen, Alsaadi (b18) 2016; 31
Ge, Han, Ding, Wang, Zhang (b29) 2020; 50
Qu, Wang, Shen (b31) 2021; 125
Zhao, Mili (b14) 2019; 10
Xu, Mo, Xie (b19) 2020; 65
Zou, Wang, Zhou (b35) 2020; 120
Chen, Wei, Sun, Lu, Sun, Zhu (b4) 2017; 5
Wang, Sun, Dinavahi (b12) 2020; 35
Li, Wang, Li, Sheng (b38) 2020; 31
Lin, Wu, Guo (b8) 2020; 11
Qian, Xing, Fei (b21) 2021; 32
Bai, Wang, Zou, Cheng (b37) 2018; 65
Arasaratnam, Haykin (b15) 2009; 54
Bai, Zheng, Ge, Qin, Li (b24) 2021; 9
Wang, Ding, Ge, Han (b33) 2022; 32
Geng, Wang, Cheng (b20) 2018; 66
Li, Shen, Wang, Huang, Luo (b28) 2018; 49
Genz A.and Keister (b39) 1996; 71
Girard (b25) 2015; 60
Fang, Lin, Song, Song, Lin, Cheng (b6) 2020; 182
Cheng, Song, Lin, Huang, Lin, Wang (b5) 2019; 177
Wang, Chen, Zhuang, Yang (b27) 2020; 386
Filho, Souza (b11) 2009; 24
Gungor, Lu, Hancke (b17) 2010; 57
Zhao, Netto, Mili (b13) 2017; 32
Chen, Ding, Dong, Wei (b32) 2019; 49
Zhang, Yuan, Du, Zhang, Chen (b7) 2020; 118
Ge, Han, Wang (b36) 2019; 49
Ugarte, Tuo, de Almeida (b2) 2021; 200
Li, Shen, Wang, Sheng (b26) 2020; 113
Jin, Zhao, Chakrabarti, Ding, Terzija (b10) 2020; 120
Sperstad, Degefa, Kjølle (b1) 2020; 188
Hu (10.1016/j.epsr.2023.109417_b22) 2016; 27
Zou (10.1016/j.epsr.2023.109417_b35) 2020; 120
Cheng (10.1016/j.epsr.2023.109417_b5) 2019; 177
Gungor (10.1016/j.epsr.2023.109417_b17) 2010; 57
Lin (10.1016/j.epsr.2023.109417_b8) 2020; 11
Ge (10.1016/j.epsr.2023.109417_b36) 2019; 49
Sharma (10.1016/j.epsr.2023.109417_b16) 2017; 66
Xu (10.1016/j.epsr.2023.109417_b19) 2020; 65
Wang (10.1016/j.epsr.2023.109417_b12) 2020; 35
Li (10.1016/j.epsr.2023.109417_b26) 2020; 113
Qian (10.1016/j.epsr.2023.109417_b21) 2021; 32
Chen (10.1016/j.epsr.2023.109417_b32) 2019; 49
Jin (10.1016/j.epsr.2023.109417_b10) 2020; 120
Liu (10.1016/j.epsr.2023.109417_b3) 2020; 179
Li (10.1016/j.epsr.2023.109417_b38) 2020; 31
Qian (10.1016/j.epsr.2023.109417_b34) 2022
Cheng (10.1016/j.epsr.2023.109417_b23) 2021; 36
Genz A.and Keister (10.1016/j.epsr.2023.109417_b39) 1996; 71
Li (10.1016/j.epsr.2023.109417_b28) 2018; 49
Zhang (10.1016/j.epsr.2023.109417_b7) 2020; 118
Bai (10.1016/j.epsr.2023.109417_b24) 2021; 9
Ugarte (10.1016/j.epsr.2023.109417_b2) 2021; 200
Sperstad (10.1016/j.epsr.2023.109417_b1) 2020; 188
Filho (10.1016/j.epsr.2023.109417_b11) 2009; 24
Bai (10.1016/j.epsr.2023.109417_b37) 2018; 65
Chen (10.1016/j.epsr.2023.109417_b4) 2017; 5
Ge (10.1016/j.epsr.2023.109417_b29) 2020; 50
Fang (10.1016/j.epsr.2023.109417_b6) 2020; 182
Wang (10.1016/j.epsr.2023.109417_b27) 2020; 386
Qu (10.1016/j.epsr.2023.109417_b31) 2021; 125
Zhao (10.1016/j.epsr.2023.109417_b30) 2019; 34
Qu (10.1016/j.epsr.2023.109417_b9) 2021; 131
Hu (10.1016/j.epsr.2023.109417_b18) 2016; 31
Wang (10.1016/j.epsr.2023.109417_b33) 2022; 32
Zhao (10.1016/j.epsr.2023.109417_b14) 2019; 10
Arasaratnam (10.1016/j.epsr.2023.109417_b15) 2009; 54
Geng (10.1016/j.epsr.2023.109417_b20) 2018; 66
Zhao (10.1016/j.epsr.2023.109417_b13) 2017; 32
Girard (10.1016/j.epsr.2023.109417_b25) 2015; 60
References_xml – volume: 50
  start-page: 3112
  year: 2020
  end-page: 3125
  ident: b29
  article-title: Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 34
  start-page: 3188
  year: 2019
  end-page: 3198
  ident: b30
  article-title: Power system dynamic state estimation: Motivations, definitions, methodologies, and future work
  publication-title: IEEE Trans. Power Syst.
– volume: 35
  start-page: 691
  year: 2020
  end-page: 702
  ident: b12
  article-title: Robust forecasting-aided state estimation for power system against uncertainties
  publication-title: IEEE Trans. Power Syst.
– volume: 65
  start-page: 4981
  year: 2020
  end-page: 4988
  ident: b19
  article-title: Remote state estimation with stochastic event-triggered sensor schedule and packet drops
  publication-title: IEEE Trans. Automat. Control
– volume: 36
  start-page: 4343
  year: 2021
  end-page: 4354
  ident: b23
  article-title: Robust forecasting-aided state estimation in power distribution systems with event-triggered transmission and reduced mixed measurements
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  year: 2021
  ident: b24
  article-title: Event-triggered forecasting-aided state estimation for active distribution system with distributed generations
  publication-title: Front. Energy Res.
– volume: 200
  year: 2021
  ident: b2
  article-title: Assessing approaches to modeling voltage magnitude measurements in state estimators devoted to active distribution networks
  publication-title: Electr. Power Syst. Res.
– volume: 60
  start-page: 1992
  year: 2015
  end-page: 1997
  ident: b25
  article-title: Dynamic triggering mechanisms for event-triggered control
  publication-title: IEEE Trans. Automat. Control
– volume: 120
  year: 2020
  ident: b35
  article-title: Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission
  publication-title: Automatica
– volume: 113
  year: 2020
  ident: b26
  article-title: Recursive distributed filtering over sensor networks on Gilbert–Elliott channels: A dynamic event-triggered approach
  publication-title: Automatica
– volume: 125
  year: 2021
  ident: b31
  article-title: Fusion estimation for a class of multi-rate power systems with randomly occurring SCADA measurement delays
  publication-title: Automatica
– volume: 31
  start-page: 4381
  year: 2020
  end-page: 4388
  ident: b38
  article-title: A dynamic event-triggered approach to recursive filtering for complex networks with switching topologies subject to random sensor failures
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 188
  year: 2020
  ident: b1
  article-title: The impact of flexible resources in distribution systems on the security of electricity supply: A literature review
  publication-title: Electr. Power Syst. Res.
– volume: 32
  start-page: 2760
  year: 2022
  end-page: 2779
  ident: b33
  article-title: Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case
  publication-title: Internat. J. Robust Nonlinear Control
– volume: 71
  start-page: 299
  year: 1996
  end-page: 309
  ident: b39
  article-title: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
  publication-title: J. Comput. Appl. Math.
– volume: 10
  start-page: 1215
  year: 2019
  end-page: 1224
  ident: b14
  article-title: Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics
  publication-title: IEEE Trans. Smart Grid
– volume: 131
  year: 2021
  ident: b9
  article-title: Distributed state estimation for renewable energy microgrids with sensor saturations
  publication-title: Automatica
– volume: 66
  start-page: 4477
  year: 2018
  end-page: 4489
  ident: b20
  article-title: Distributed federated tobit Kalman filter fusion over a packet-delaying network: A probabilistic perspective
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 810
  year: 2020
  end-page: 820
  ident: b8
  article-title: Decentralized robust state estimation of active distribution grids incorporating microgrids based on PMU measurements
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: 1604
  year: 2016
  end-page: 1614
  ident: b22
  article-title: Dynamic state estimation of power systems with quantization effects: A recursive filter approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 386
  year: 2020
  ident: b27
  article-title: Dynamic event-based mixed H
  publication-title: Appl. Math. Comput.
– volume: 179
  year: 2020
  ident: b3
  article-title: D-PMU based applications for emerging active distribution systems: A review
  publication-title: Electr. Power Syst. Res.
– volume: 24
  start-page: 1667
  year: 2009
  end-page: 1677
  ident: b11
  article-title: Forecasting-aided state estimation—Part I: Panorama
  publication-title: IEEE Trans. Power Syst.
– volume: 57
  start-page: 3557
  year: 2010
  end-page: 3564
  ident: b17
  article-title: Opportunities and challenges of wireless sensor networks in smart grid
  publication-title: IEEE Trans. Ind. Electron.
– volume: 49
  start-page: 1688
  year: 2019
  end-page: 1697
  ident: b32
  article-title: Distributed resilient filtering for power systems subject to denial-of-service attacks
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 118
  year: 2020
  ident: b7
  article-title: Robust distributed state estimation of active distribution networks considering communication failures
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 31
  start-page: 65
  year: 2016
  end-page: 75
  ident: b18
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
– volume: 32
  start-page: 3909
  year: 2021
  end-page: 3918
  ident: b21
  article-title: H
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 120
  year: 2020
  ident: b10
  article-title: A hybrid robust forecasting-aided state estimator considering bimodal Gaussian mixture measurement errors
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 54
  start-page: 1254
  year: 2009
  end-page: 1269
  ident: b15
  article-title: Cubature Kalman filters
  publication-title: IEEE Trans. Automat. Control
– volume: 177
  year: 2019
  ident: b5
  article-title: Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 49
  start-page: 171
  year: 2019
  end-page: 183
  ident: b36
  article-title: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2022
  end-page: 15
  ident: b34
  article-title: Distributed state estimation for mixed delays system over sensor networks with multichannel random attacks and Markov switching topology
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 5
  start-page: 767
  year: 2017
  end-page: 776
  ident: b4
  article-title: Multi-area distributed three-phase state estimation for unbalanced active distribution networks
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 49
  start-page: 1979
  year: 2018
  end-page: 1986
  ident: b28
  article-title: Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach
  publication-title: IEEE Trans. Cybern.
– volume: 65
  start-page: 9687
  year: 2018
  end-page: 9697
  ident: b37
  article-title: Target tracking for wireless localization systems with degraded measurements and quantization effects
  publication-title: IEEE Trans. Ind. Electron.
– volume: 32
  start-page: 3205
  year: 2017
  end-page: 3216
  ident: b13
  article-title: A robust iterated extended Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 66
  start-page: 2036
  year: 2017
  end-page: 2045
  ident: b16
  article-title: A Cubature Kalman filter based power system dynamic state estimator
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 182
  year: 2020
  ident: b6
  article-title: Active distribution system state estimation incorporating photovoltaic generation system model
  publication-title: Electr. Power Syst. Res.
– volume: 113
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b26
  article-title: Recursive distributed filtering over sensor networks on Gilbert–Elliott channels: A dynamic event-triggered approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108681
– volume: 120
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b10
  article-title: A hybrid robust forecasting-aided state estimator considering bimodal Gaussian mixture measurement errors
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.105962
– volume: 200
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b2
  article-title: Assessing approaches to modeling voltage magnitude measurements in state estimators devoted to active distribution networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107440
– volume: 182
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b6
  article-title: Active distribution system state estimation incorporating photovoltaic generation system model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106247
– volume: 65
  start-page: 9687
  issue: 12
  year: 2018
  ident: 10.1016/j.epsr.2023.109417_b37
  article-title: Target tracking for wireless localization systems with degraded measurements and quantization effects
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2813982
– volume: 49
  start-page: 1688
  issue: 8
  year: 2019
  ident: 10.1016/j.epsr.2023.109417_b32
  article-title: Distributed resilient filtering for power systems subject to denial-of-service attacks
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2905253
– volume: 118
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b7
  article-title: Robust distributed state estimation of active distribution networks considering communication failures
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105732
– volume: 50
  start-page: 3112
  issue: 9
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b29
  article-title: Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2020.3010825
– volume: 60
  start-page: 1992
  issue: 7
  year: 2015
  ident: 10.1016/j.epsr.2023.109417_b25
  article-title: Dynamic triggering mechanisms for event-triggered control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2366855
– volume: 177
  year: 2019
  ident: 10.1016/j.epsr.2023.109417_b5
  article-title: Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.105974
– volume: 66
  start-page: 4477
  issue: 17
  year: 2018
  ident: 10.1016/j.epsr.2023.109417_b20
  article-title: Distributed federated tobit Kalman filter fusion over a packet-delaying network: A probabilistic perspective
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2853098
– volume: 179
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b3
  article-title: D-PMU based applications for emerging active distribution systems: A review
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106063
– volume: 386
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b27
  article-title: Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems
  publication-title: Appl. Math. Comput.
– volume: 188
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b1
  article-title: The impact of flexible resources in distribution systems on the security of electricity supply: A literature review
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106532
– volume: 31
  start-page: 65
  year: 2016
  ident: 10.1016/j.epsr.2023.109417_b18
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.01.001
– volume: 65
  start-page: 4981
  issue: 11
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b19
  article-title: Remote state estimation with stochastic event-triggered sensor schedule and packet drops
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2020.3004328
– volume: 5
  start-page: 767
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2023.109417_b4
  article-title: Multi-area distributed three-phase state estimation for unbalanced active distribution networks
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-016-0237-0
– volume: 71
  start-page: 299
  issue: 2
  year: 1996
  ident: 10.1016/j.epsr.2023.109417_b39
  article-title: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(95)00232-4
– volume: 34
  start-page: 3188
  issue: 4
  year: 2019
  ident: 10.1016/j.epsr.2023.109417_b30
  article-title: Power system dynamic state estimation: Motivations, definitions, methodologies, and future work
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2894769
– volume: 125
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b31
  article-title: Fusion estimation for a class of multi-rate power systems with randomly occurring SCADA measurement delays
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109408
– volume: 31
  start-page: 4381
  issue: 10
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b38
  article-title: A dynamic event-triggered approach to recursive filtering for complex networks with switching topologies subject to random sensor failures
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2951948
– volume: 57
  start-page: 3557
  issue: 10
  year: 2010
  ident: 10.1016/j.epsr.2023.109417_b17
  article-title: Opportunities and challenges of wireless sensor networks in smart grid
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2039455
– start-page: 1
  year: 2022
  ident: 10.1016/j.epsr.2023.109417_b34
  article-title: Distributed state estimation for mixed delays system over sensor networks with multichannel random attacks and Markov switching topology
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 24
  start-page: 1667
  issue: 4
  year: 2009
  ident: 10.1016/j.epsr.2023.109417_b11
  article-title: Forecasting-aided state estimation—Part I: Panorama
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030295
– volume: 49
  start-page: 1979
  issue: 5
  year: 2018
  ident: 10.1016/j.epsr.2023.109417_b28
  article-title: Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2818941
– volume: 10
  start-page: 1215
  issue: 2
  year: 2019
  ident: 10.1016/j.epsr.2023.109417_b14
  article-title: Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2761452
– volume: 36
  start-page: 4343
  issue: 5
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b23
  article-title: Robust forecasting-aided state estimation in power distribution systems with event-triggered transmission and reduced mixed measurements
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3062386
– volume: 32
  start-page: 3205
  issue: 4
  year: 2017
  ident: 10.1016/j.epsr.2023.109417_b13
  article-title: A robust iterated extended Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2628344
– volume: 9
  issue: 327
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b24
  article-title: Event-triggered forecasting-aided state estimation for active distribution system with distributed generations
  publication-title: Front. Energy Res.
– volume: 54
  start-page: 1254
  issue: 6
  year: 2009
  ident: 10.1016/j.epsr.2023.109417_b15
  article-title: Cubature Kalman filters
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2009.2019800
– volume: 32
  start-page: 2760
  issue: 5
  year: 2022
  ident: 10.1016/j.epsr.2023.109417_b33
  article-title: Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.5831
– volume: 27
  start-page: 1604
  issue: 8
  year: 2016
  ident: 10.1016/j.epsr.2023.109417_b22
  article-title: Dynamic state estimation of power systems with quantization effects: A recursive filter approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2381853
– volume: 120
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b35
  article-title: Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109154
– volume: 131
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b9
  article-title: Distributed state estimation for renewable energy microgrids with sensor saturations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109730
– volume: 32
  start-page: 3909
  issue: 9
  year: 2021
  ident: 10.1016/j.epsr.2023.109417_b21
  article-title: H∞ state estimation for neural networks with general activation function and mixed time-varying delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3016120
– volume: 66
  start-page: 2036
  issue: 8
  year: 2017
  ident: 10.1016/j.epsr.2023.109417_b16
  article-title: A Cubature Kalman filter based power system dynamic state estimator
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2677698
– volume: 35
  start-page: 691
  issue: 1
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b12
  article-title: Robust forecasting-aided state estimation for power system against uncertainties
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2936141
– volume: 49
  start-page: 171
  issue: 1
  year: 2019
  ident: 10.1016/j.epsr.2023.109417_b36
  article-title: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2769722
– volume: 11
  start-page: 810
  issue: 1
  year: 2020
  ident: 10.1016/j.epsr.2023.109417_b8
  article-title: Decentralized robust state estimation of active distribution grids incorporating microgrids based on PMU measurements
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2937162
SSID ssj0006975
Score 2.3941731
Snippet In this paper, the dynamic event-based forecasting-aided state estimation (FASE) method is developed to deal with the state estimation problem of the active...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109417
SubjectTerms Active distribution system
Cubature Kalman filter
Dynamic event-triggered scheme
Non-linear system
State estimation
Title Dynamic event-based forecasting-aided state estimation for active distribution systems subject to limited communication resource
URI https://dx.doi.org/10.1016/j.epsr.2023.109417
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn1gfJQdvEru72U03x1ItVbEXLfS25LVQKW1pt1fxp5tJslpBevC4ywyEyTCPMN83CN3YjJJRzSmJS5aRNBYJLHJnpDS5AMxAKWIAJ78M2WCUPo2zcQP1aiwMjFWG2O9juovW4U87WLO9mEzarxG1ztbhNn-7wtch2NMOePndx8-YB-OObBeECUgH4Iyf8TKLFXCCJhRYlVK3tOyP5LSRcPqH6CBUirjrD3OEGmZ2jPY3-ANP0Oe93yePHQ0TgYyksa1CjRIrGGcmwP-osQMNYaDT8DhFEMHCBTqsgTg37LzCntZ5hVdrCc8zuJrjqQdAYbUJJMHL8Oh_ikb9h7fegISVCkRZK1UEujtpSxjbGEkRadpRSirbwklmcq4Uz2NhUsVYIkomE8WssOQ6VZGwlYJtbugZ2pnNZ-Yc4VxqVZqSM53RlLJSMCYiKkwW2VvgWjRRXNuyUIFvHNZeTIt6sOy9APsXYP_C27-Jbr91Fp5tY6t0Vl9R8ctnCpsOtuhd_FPvEu3Blx__u0I71XJtrm1JUsmW87kW2u0-Pg-GX7nH42w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEF5ED20PpU9qn3vorSwmbrImR7GVWB-XKngL-wpYRMXEe396d7KbYqF46DWZgfBlmccy3zcIPZuMElIVU-JnLCSBz9uwyJ2RTEccOAMZ94GcPJ6wZBa8z8N5DfUqLgyMVbrYb2N6Ga3dk5ZDs7VZLFofHjWHrROb_F0WvqYFaoA6VVhHje5gmEx-AjKLS71dsCfg4LgzdsxLb3KQBW1TEFYKyr1lf-SnvZzTP0OnrljEXfs956imVxfoZE9C8BJ9vdqV8rhUYiKQlBQ2haiWPIeJZgISkAqXvCEMihqWqggmmJexDivQznVrr7BVds5xvhNwQ4OLNV5aDhSW-1wSvHX3_ldo1n-b9hLitioQaYAqCDR4wlQxpjcS3FO0I6WQposTTEexlHHkcx1Ixto8Y6ItmTEWsQqkx02xYPobeo3qq_VK3yAcCSUzncVMhTSgLOOMcY9yHXpB0IkVbyK_wjKVTnIcNl8s02q27DMF_FPAP7X4N9HLj8_GCm4ctA6rX5T-OjapyQgH_G7_6feEjpLpeJSOBpPhHTqGN3Ya8B7Vi-1OP5gKpRCP7gR-A4Rf5h0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+event-based+forecasting-aided+state+estimation+for+active+distribution+systems+subject+to+limited+communication+resource&rft.jtitle=Electric+power+systems+research&rft.au=Bai%2C+Xingzhen&rft.au=Zheng%2C+Xinlei&rft.au=Ge%2C+Leijiao&rft.au=Liao%2C+Wenlong&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.volume=221&rft_id=info:doi/10.1016%2Fj.epsr.2023.109417&rft.externalDocID=S0378779623003061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon