A reasoning approach-based pattern graph for analyzing the risk level of correlations among catenary components considering time distribution
•We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to co...
Saved in:
Published in | Reliability engineering & system safety Vol. 245; p. 110035 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to construct the belief and disbelief models by defining the residual belief of fault correlations to evaluate the risk levels of fault correlations.•Simultaneous/sequential risk pattern graphs are proposed by linking and identifying virtual paths using explicit fault correlations to make reasonable inferences for inexplicit correlations that are included in the dataset but are hidden and thus not directly observable.
The catenary system is a crucial part of the traction power supply system, consisting of multiple components interconnected through mechanical coupling. To reveal the risk characteristics of fault propagation between catenary components, this paper presents a reasoning approach-based pattern graph for analyzing the risk level of correlations of components considering time distribution from a statistical perspective. Initially, we define simultaneous fault correlations and sequential fault correlations among faulty components based on the different time distributions to capture the risk propagation features among components. Then, the MYCIN model is introduced to construct a certainty factor considering the belief and disbelief of fault correlations to calculate the risk levels of simultaneous/sequential fault correlations. Finally, we develop a risk pattern graph by linking the virtual paths to assess the risk level of inexplicit correlations hidden within the historical dataset. Simulation results, conducted based on the fault database of the Chengdu Railway Bureau, show the proposed method can effectively assess the risk level of correlations among faulty components to reveal the fault propagation features, which provides valuable references for proactive maintenance. |
---|---|
AbstractList | •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to construct the belief and disbelief models by defining the residual belief of fault correlations to evaluate the risk levels of fault correlations.•Simultaneous/sequential risk pattern graphs are proposed by linking and identifying virtual paths using explicit fault correlations to make reasonable inferences for inexplicit correlations that are included in the dataset but are hidden and thus not directly observable.
The catenary system is a crucial part of the traction power supply system, consisting of multiple components interconnected through mechanical coupling. To reveal the risk characteristics of fault propagation between catenary components, this paper presents a reasoning approach-based pattern graph for analyzing the risk level of correlations of components considering time distribution from a statistical perspective. Initially, we define simultaneous fault correlations and sequential fault correlations among faulty components based on the different time distributions to capture the risk propagation features among components. Then, the MYCIN model is introduced to construct a certainty factor considering the belief and disbelief of fault correlations to calculate the risk levels of simultaneous/sequential fault correlations. Finally, we develop a risk pattern graph by linking the virtual paths to assess the risk level of inexplicit correlations hidden within the historical dataset. Simulation results, conducted based on the fault database of the Chengdu Railway Bureau, show the proposed method can effectively assess the risk level of correlations among faulty components to reveal the fault propagation features, which provides valuable references for proactive maintenance. |
ArticleNumber | 110035 |
Author | Shibin, Gao Diyang, Liu Jian, Shi Jiaming, Luo Xiaoguang, Wei |
Author_xml | – sequence: 1 givenname: Liu surname: Diyang fullname: Diyang, Liu organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China – sequence: 2 givenname: Gao surname: Shibin fullname: Shibin, Gao organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China – sequence: 3 givenname: Luo surname: Jiaming fullname: Jiaming, Luo organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China – sequence: 4 givenname: Wei orcidid: 0000-0001-9091-3345 surname: Xiaoguang fullname: Xiaoguang, Wei email: wei_xiaoguang@126.com organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China – sequence: 5 givenname: Shi orcidid: 0000-0001-5777-3678 surname: Jian fullname: Jian, Shi organization: Department of Engineering Technology, University of Houston, Houston, TX 77004 USA |
BookMark | eNp9kEFO5DAQRS0EEg3MBWblC6SxnbjjSGwQGmAkpNnA2qrYFdpN2o7KHiS4A3cmoWc1C1ZVUv33Vf-fseOYIjL2U4q1FHJzuVsT5rxWQjVrKYWo9RFbSdN2lTD15pitRKdlZWolTtlZzjshRNPpdsU-rjkh5BRDfOYwTZTAbaseMno-QSlIkT8TTFs-JOIQYXx7X6Rli5xCfuEjvuLI08BdIsIRSkgxc9inWeSgYAR6m2_7aX44ljyvMQeP9GUS9sh9yIVC_3cBL9jJAGPGH__mOXu6_fV4c189_Ln7fXP9ULlaiFIp6Td932qvZAO6Q60dmgZ6aKF3ZtC1a5VXjfF60zeqV64bhHQG3eDRGBzqc2YOvo5SzoSDdaF8vV4IwmilsEutdmeXWu1Sqz3UOqPqP3SisJ9Dfg9dHSCcQ70GJJtdwOjQB0JXrE_hO_wTAM-ZCQ |
CitedBy_id | crossref_primary_10_1016_j_ress_2024_110271 crossref_primary_10_1002_cpe_8368 crossref_primary_10_3390_s24227321 |
Cites_doi | 10.1016/j.ress.2021.107866 10.1007/s40534-019-0191-4 10.1016/j.ress.2022.108603 10.1109/ACCESS.2019.2919115 10.1016/0888-613X(89)90017-0 10.1016/j.ress.2018.11.019 10.1016/j.ress.2017.10.004 10.1109/PMAPS.2016.7764080 10.1016/j.trc.2013.08.004 10.1016/j.isatra.2021.07.018 10.1109/TPWRS.2013.2295379 10.1016/j.ress.2023.109266 10.1016/j.physa.2015.05.112 10.1016/j.ress.2015.08.006 10.1109/TR.2015.2418294 10.1177/0954409719884215 10.1016/j.ress.2010.01.011 10.1016/j.ress.2023.109530 10.1080/07408170601013653 10.1109/TII.2016.2628042 10.1109/ISKE47853.2019.9170406 10.1016/j.ress.2011.10.008 10.1016/j.ress.2022.109016 10.1016/j.ress.2023.109181 10.1109/TNNLS.2014.2303137 10.1109/TKDE.2013.76 10.1109/MCAS.2010.936782 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ress.2024.110035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2024_110035 S0951832024001108 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-21d6bb75d214a59e55ce84aba7abc8f53c72d248d56b42b2c9f01c8ecfde88ef3 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Tue Jul 01 00:45:14 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Sat Apr 13 16:38:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Risk pattern graph Sequential correlation Simultaneous correlation Belief, disbelief |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-21d6bb75d214a59e55ce84aba7abc8f53c72d248d56b42b2c9f01c8ecfde88ef3 |
ORCID | 0000-0001-9091-3345 0000-0001-5777-3678 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ress_2024_110035 crossref_primary_10_1016_j_ress_2024_110035 elsevier_sciencedirect_doi_10_1016_j_ress_2024_110035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dong, Ning, Cai (bib0003) 2010; 10 Wang, Gao, Yu (bib0001) 2022; 225 Zhang, Li, Xiong (bib0010) 2014; 29 Simon, Caraballo, Therneau (bib0024) 2013; 27 Lin, Yu, Wang (bib0018) 2019; 27 Liu, Zuo, Li (bib0008) 2015; 64 Zuo, Tian, Huang (bib0009) 2007; 39 Liu, Gao, Yu (bib0025) 2019; 7 Cheng H, Cao Y, Wang J, et al. A preventive, opportunistic maintenance strategy for the catenary system of high-speed railways based on reliability. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1149-1155. Yang, Wu, Wu (bib0017) 2008; 30 Catelani, Ciani, Guidi (bib0002) 2021; 215 Benet, Cuartero, Cuartero (bib0004) 2013; 36 Zhang, Zhang (bib0005) 2010; 1 Chaki (bib0032) 2023 Hosseini, Barker, Ramirez-Marquez (bib0014) 2016; 145 Wang Z, Feng D, Lin S, et al. Research on reliability evaluation method of catenary of high speed railway considering weather condition[C]//2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2016: 1-6. Wang, Gao, Yu (bib0013) 2023; 235 Soltani, Akbarzadeh-T (bib0023) 2014; 25 Zhuang, Xu, Wang (bib0029) 2023; 234 Xue, Liu, Ren (bib0012) 2023; 239 Lisnianski A, Elmakias D, Laredo D, et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliab Eng Syst Saf, 2012, 98(1): 1-6. Reder, Yürüşen, Melero (bib0020) 2018; 169 Abedi, Gaudard, Romerio (bib0011) 2019; 183 . Qian, Gao, Yu (bib0027) 2022; 126 Neapolitan (bib0031) 1986; 635 Karakose, Gencoglu, Karakose (bib0006) 2016; 13 Wang, Gao, Yu (bib0022) 2023; 231 Zhou, Xu, Guo (bib0021) 2015; 437 Qian K, Yu L, Liu Y. FHI: a fault intensity-based hierarchical association analysis model for mining fault database of railway OCS. Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019: 616-621. Aven (bib0030) 2010; 95 van der Gaag (bib0016) 1989; 3 Karakose (10.1016/j.ress.2024.110035_bib0006) 2016; 13 Abedi (10.1016/j.ress.2024.110035_bib0011) 2019; 183 Benet (10.1016/j.ress.2024.110035_bib0004) 2013; 36 Zuo (10.1016/j.ress.2024.110035_bib0009) 2007; 39 Liu (10.1016/j.ress.2024.110035_bib0008) 2015; 64 Zhang (10.1016/j.ress.2024.110035_bib0010) 2014; 29 Lin (10.1016/j.ress.2024.110035_bib0018) 2019; 27 Dong (10.1016/j.ress.2024.110035_bib0003) 2010; 10 Neapolitan (10.1016/j.ress.2024.110035_bib0031) 1986; 635 Chaki (10.1016/j.ress.2024.110035_bib0032) 2023 10.1016/j.ress.2024.110035_bib0007 van der Gaag (10.1016/j.ress.2024.110035_bib0016) 1989; 3 Zhang (10.1016/j.ress.2024.110035_bib0005) 2010; 1 10.1016/j.ress.2024.110035_bib0026 Wang (10.1016/j.ress.2024.110035_bib0013) 2023; 235 Xue (10.1016/j.ress.2024.110035_bib0012) 2023; 239 Simon (10.1016/j.ress.2024.110035_bib0024) 2013; 27 Liu (10.1016/j.ress.2024.110035_bib0025) 2019; 7 Aven (10.1016/j.ress.2024.110035_bib0030) 2010; 95 Zhou (10.1016/j.ress.2024.110035_bib0021) 2015; 437 Hosseini (10.1016/j.ress.2024.110035_bib0014) 2016; 145 Wang (10.1016/j.ress.2024.110035_bib0022) 2023; 231 Catelani (10.1016/j.ress.2024.110035_bib0002) 2021; 215 Yang (10.1016/j.ress.2024.110035_bib0017) 2008; 30 10.1016/j.ress.2024.110035_bib0019 Reder (10.1016/j.ress.2024.110035_bib0020) 2018; 169 Soltani (10.1016/j.ress.2024.110035_bib0023) 2014; 25 Qian (10.1016/j.ress.2024.110035_bib0027) 2022; 126 10.1016/j.ress.2024.110035_bib0015 Zhuang (10.1016/j.ress.2024.110035_bib0029) 2023; 234 Wang (10.1016/j.ress.2024.110035_bib0001) 2022; 225 |
References_xml | – volume: 10 start-page: 6 year: 2010 end-page: 18 ident: bib0003 article-title: Automatic train control system development and simulation for high-speed railways publication-title: IEEE Circ. Syst. Magaz. – volume: 29 start-page: 1839 year: 2014 end-page: 1846 ident: bib0010 article-title: Overhead line preventive maintenance strategy based on condition monitoring and system reliability assessment publication-title: IEEE Trans. Power Syst. – reference: Cheng H, Cao Y, Wang J, et al. A preventive, opportunistic maintenance strategy for the catenary system of high-speed railways based on reliability. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1149-1155. – volume: 239 year: 2023 ident: bib0012 article-title: A data aggregation-based spatiotemporal model for rail transit risk path forecasting publication-title: Reliab Eng Syst Saf – volume: 3 start-page: 239 year: 1989 end-page: 258 ident: bib0016 article-title: A conceptual model for inexact reasoning in rule-based systems publication-title: Int. J. Approx. Reas. – volume: 234 year: 2023 ident: bib0029 article-title: A prognostic driven predictive maintenance framework based on Bayesian deep learning publication-title: Reliab Eng Syst Saf – volume: 235 year: 2023 ident: bib0013 article-title: A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network publication-title: Reliab Eng Syst Saf – volume: 95 start-page: 623 year: 2010 end-page: 631 ident: bib0030 article-title: On how to define, understand and describe risk publication-title: Reliab Eng Syst Saf – volume: 215 year: 2021 ident: bib0002 article-title: An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering publication-title: Reliab Eng Syst Saf – reference: Qian K, Yu L, Liu Y. FHI: a fault intensity-based hierarchical association analysis model for mining fault database of railway OCS. Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019: 616-621. – volume: 225 year: 2022 ident: bib0001 article-title: Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis publication-title: Reliab Eng Syst Saf – volume: 7 start-page: 91850 year: 2019 end-page: 91859 ident: bib0025 article-title: A novel fault prevention model for metro overhead contact system publication-title: IEEE Access – reference: Wang Z, Feng D, Lin S, et al. Research on reliability evaluation method of catenary of high speed railway considering weather condition[C]//2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2016: 1-6. – volume: 437 start-page: 263 year: 2015 end-page: 277 ident: bib0021 article-title: A method for modeling and analysis of directed weighted accident causation network (DWACN) publication-title: Phys. A Statist. Mechan. Appl. – volume: 126 start-page: 276 year: 2022 end-page: 287 ident: bib0027 article-title: Marginal frequent itemset mining for fault prevention of railway overhead contact system publication-title: ISA Trans – volume: 27 start-page: 211 year: 2019 end-page: 221 ident: bib0018 article-title: A fault prediction method for catenary of high-speed rails based on meteorological conditions publication-title: J. Modern Transp. – reference: Lisnianski A, Elmakias D, Laredo D, et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliab Eng Syst Saf, 2012, 98(1): 1-6. – volume: 1 start-page: 184 year: 2010 end-page: 187 ident: bib0005 article-title: Reliability simulation and analysis of messenger wire bearing on electrified railways publication-title: Proc. Int. Conf. Opt. Photon. Energy Eng. (OPEE) – volume: 30 start-page: 115 year: 2008 end-page: 119 ident: bib0017 article-title: Fuzzy reliability evaluation of electrified railway catenary system based on credibility theory publication-title: J. China Rail. Soc. – volume: 231 year: 2023 ident: bib0022 article-title: Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model publication-title: Reliab Eng Syst Saf – reference: . – volume: 39 start-page: 811 year: 2007 end-page: 817 ident: bib0009 article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors publication-title: IIE Trans – volume: 13 start-page: 635 year: 2016 end-page: 643 ident: bib0006 article-title: A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems publication-title: IEEE Trans Industr Inform – volume: 183 start-page: 153 year: 2019 end-page: 172 ident: bib0011 article-title: Review of major approaches to analyze vulnerability in power system publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 138 year: 2013 end-page: 156 ident: bib0004 article-title: An advanced 3D-model for the study and simulation of the pantograph catenary system publication-title: Transp. Res. Part C Emerg. Technol. – volume: 145 start-page: 47 year: 2016 end-page: 61 ident: bib0014 article-title: A review of definitions and measures of system resilience publication-title: Reliab Eng Syst Saf – start-page: 37 year: 2023 end-page: 45 ident: bib0032 article-title: Certainty Factor and Evidential Reasoning to Handle Uncertainty in Artificial Intelligence Handling Uncertainty in Artificial Intelligence – volume: 25 start-page: 2053 year: 2014 end-page: 2064 ident: bib0023 article-title: Confabulation-inspired association rule mining for rare and frequent itemset publication-title: IEEE Trans Neural Netw Learn Syst – volume: 64 start-page: 1287 year: 2015 end-page: 1299 ident: bib0008 article-title: Dynamic reliability assessment for multi-state systems utilizing system-level inspection data publication-title: IEEE Trans Reliab – volume: 635 start-page: 375 year: 1986 end-page: 383 ident: bib0031 publication-title: A comparison of the MYCIN model for reasoning under uncertainty to a probability based model Applications of Artificial Intelligence III – volume: 169 start-page: 554 year: 2018 end-page: 569 ident: bib0020 article-title: Data-driven learning framework for associating weather conditions and wind turbine failures publication-title: Reliab Eng Syst Saf – volume: 27 start-page: 130 year: 2013 end-page: 141 ident: bib0024 article-title: Extending association rule summarization techniques to assess risk of diabetes mellitus publication-title: IEEE Trans Knowl Data Eng – volume: 215 year: 2021 ident: 10.1016/j.ress.2024.110035_bib0002 article-title: An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107866 – volume: 27 start-page: 211 year: 2019 ident: 10.1016/j.ress.2024.110035_bib0018 article-title: A fault prediction method for catenary of high-speed rails based on meteorological conditions publication-title: J. Modern Transp. doi: 10.1007/s40534-019-0191-4 – volume: 225 year: 2022 ident: 10.1016/j.ress.2024.110035_bib0001 article-title: Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108603 – volume: 7 start-page: 91850 year: 2019 ident: 10.1016/j.ress.2024.110035_bib0025 article-title: A novel fault prevention model for metro overhead contact system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919115 – volume: 3 start-page: 239 issue: 3 year: 1989 ident: 10.1016/j.ress.2024.110035_bib0016 article-title: A conceptual model for inexact reasoning in rule-based systems publication-title: Int. J. Approx. Reas. doi: 10.1016/0888-613X(89)90017-0 – volume: 183 start-page: 153 year: 2019 ident: 10.1016/j.ress.2024.110035_bib0011 article-title: Review of major approaches to analyze vulnerability in power system publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.11.019 – volume: 30 start-page: 115 issue: 6 year: 2008 ident: 10.1016/j.ress.2024.110035_bib0017 article-title: Fuzzy reliability evaluation of electrified railway catenary system based on credibility theory publication-title: J. China Rail. Soc. – volume: 169 start-page: 554 year: 2018 ident: 10.1016/j.ress.2024.110035_bib0020 article-title: Data-driven learning framework for associating weather conditions and wind turbine failures publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.10.004 – ident: 10.1016/j.ress.2024.110035_bib0019 doi: 10.1109/PMAPS.2016.7764080 – volume: 36 start-page: 138 year: 2013 ident: 10.1016/j.ress.2024.110035_bib0004 article-title: An advanced 3D-model for the study and simulation of the pantograph catenary system publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2013.08.004 – volume: 126 start-page: 276 year: 2022 ident: 10.1016/j.ress.2024.110035_bib0027 article-title: Marginal frequent itemset mining for fault prevention of railway overhead contact system publication-title: ISA Trans doi: 10.1016/j.isatra.2021.07.018 – start-page: 37 year: 2023 ident: 10.1016/j.ress.2024.110035_bib0032 – volume: 29 start-page: 1839 issue: 4 year: 2014 ident: 10.1016/j.ress.2024.110035_bib0010 article-title: Overhead line preventive maintenance strategy based on condition monitoring and system reliability assessment publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2295379 – volume: 235 year: 2023 ident: 10.1016/j.ress.2024.110035_bib0013 article-title: A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109266 – volume: 437 start-page: 263 year: 2015 ident: 10.1016/j.ress.2024.110035_bib0021 article-title: A method for modeling and analysis of directed weighted accident causation network (DWACN) publication-title: Phys. A Statist. Mechan. Appl. doi: 10.1016/j.physa.2015.05.112 – volume: 145 start-page: 47 year: 2016 ident: 10.1016/j.ress.2024.110035_bib0014 article-title: A review of definitions and measures of system resilience publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.08.006 – volume: 64 start-page: 1287 issue: 4 year: 2015 ident: 10.1016/j.ress.2024.110035_bib0008 article-title: Dynamic reliability assessment for multi-state systems utilizing system-level inspection data publication-title: IEEE Trans Reliab doi: 10.1109/TR.2015.2418294 – ident: 10.1016/j.ress.2024.110035_bib0015 doi: 10.1177/0954409719884215 – volume: 95 start-page: 623 issue: 6 year: 2010 ident: 10.1016/j.ress.2024.110035_bib0030 article-title: On how to define, understand and describe risk publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2010.01.011 – volume: 239 year: 2023 ident: 10.1016/j.ress.2024.110035_bib0012 article-title: A data aggregation-based spatiotemporal model for rail transit risk path forecasting publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109530 – volume: 39 start-page: 811 issue: 8 year: 2007 ident: 10.1016/j.ress.2024.110035_bib0009 article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors publication-title: IIE Trans doi: 10.1080/07408170601013653 – volume: 13 start-page: 635 issue: 2 year: 2016 ident: 10.1016/j.ress.2024.110035_bib0006 article-title: A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2016.2628042 – ident: 10.1016/j.ress.2024.110035_bib0026 doi: 10.1109/ISKE47853.2019.9170406 – ident: 10.1016/j.ress.2024.110035_bib0007 doi: 10.1016/j.ress.2011.10.008 – volume: 231 year: 2023 ident: 10.1016/j.ress.2024.110035_bib0022 article-title: Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.109016 – volume: 234 year: 2023 ident: 10.1016/j.ress.2024.110035_bib0029 article-title: A prognostic driven predictive maintenance framework based on Bayesian deep learning publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109181 – volume: 25 start-page: 2053 issue: 11 year: 2014 ident: 10.1016/j.ress.2024.110035_bib0023 article-title: Confabulation-inspired association rule mining for rare and frequent itemset publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2303137 – volume: 27 start-page: 130 issue: 1 year: 2013 ident: 10.1016/j.ress.2024.110035_bib0024 article-title: Extending association rule summarization techniques to assess risk of diabetes mellitus publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.76 – volume: 10 start-page: 6 issue: 2 year: 2010 ident: 10.1016/j.ress.2024.110035_bib0003 article-title: Automatic train control system development and simulation for high-speed railways publication-title: IEEE Circ. Syst. Magaz. doi: 10.1109/MCAS.2010.936782 – volume: 1 start-page: 184 year: 2010 ident: 10.1016/j.ress.2024.110035_bib0005 article-title: Reliability simulation and analysis of messenger wire bearing on electrified railways publication-title: Proc. Int. Conf. Opt. Photon. Energy Eng. (OPEE) – volume: 635 start-page: 375 year: 1986 ident: 10.1016/j.ress.2024.110035_bib0031 |
SSID | ssj0004957 |
Score | 2.4452965 |
Snippet | •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110035 |
SubjectTerms | Belief, disbelief Risk pattern graph Sequential correlation Simultaneous correlation |
Title | A reasoning approach-based pattern graph for analyzing the risk level of correlations among catenary components considering time distribution |
URI | https://dx.doi.org/10.1016/j.ress.2024.110035 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIbd5OLEzVhVVAdEFKnWL_JSKSlqhsjDwD_jP-BwHioQY2JLIdiLf6e4cffd9CF06LxKFUZRIF_0J5UlBXB5nRKi0yDUrFPP0xfeTfDylt7Ns1kLDphcGYJUh9tcx3Ufr8KQfdrO_ms_7D1AccJD_pp74DBp-KWXg5b33b5iHOwCwRk4eRofGmRrjBSfaHqwAaPjIS779kpw2Es5oD-2GShEP6o_ZRy1THaCdDf7AQ_QxwIAp939UccMOTiAxabzyxJkV9ozU2JWmWAD_yBsMdUUfBkw5XgBkCC8tViDSEWBx2AsQYYBKQa8uBtT5sgLAhbus5T39IvNngzXw7gbJrCM0HV0_Dsck6CsQlUbRmiSxzqVkmU5iKrLCZJkynAopmJCK2yxVLNEJ5TrLJU1kogobxYobZbXh3Nj0GLUr9_4ThKXNLQNqPy4s1VbJKLYFd-WFC5_MqLSD4mZjSxXIx0EDY1E2KLOnEoxRgjHK2hgddPU1Z1VTb_w5OmvsVf5woNLlhj_mnf5z3hnahrsa-3iO2uuXV3Ph6pO17HoH7KKtwc3dePIJGpTo6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwAD4ineeGBDoXnYiTNWiCpQ2gWQ2KL4JRWVtkJl4T_wn_E5DhQJdWCLEp8T-ay7i_Xd9wFc2F1U5VrSQNjoH1Ae54HN41lQySRPVZbLzNEXD4Zp8UTvntnzClw3vTAIq_Sxv47pLlr7Ox2_mp3ZaNR5wOKAo_w3dcRnfBXayE7FWtDu3vaL4U97ZF4TfqKiPBr43pka5oU_tVc4CQLiQ6f69kd-Wsg5vS3Y9MUi6dbfsw0rerIDGwsUgrvw2SUIK3eHqqQhCA8wNykyc9yZE-JIqYmtTkmFFCQfONTWfQRh5WSMqCEyNUSiTodHxhGnQUQQLYXtugSB59MJYi7sZa3w6SYZvWqikHrXq2btwVPv5vG6CLzEQiCTMJwHcaRSITKm4ohWLNeMSc1pJaqsEpIblsgsVjHliqWCxiKWuQkjybU0SnOuTbIPrYl9_wEQYVKTIbsfrwxVRoowMjm3FYaNoJmWySFEzcKW0vOPowzGuGyAZi8lOqNEZ5S1Mw7h8ttmVrNvLB3NGn-Vv_ZQadPDErujf9qdw1rxOLgv72-H_WNYxyc1FPIEWvO3d31qy5W5OPPb8QsPo-uZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reasoning+approach-based+pattern+graph+for+analyzing+the+risk+level+of+correlations+among+catenary+components+considering+time+distribution&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Diyang%2C+Liu&rft.au=Shibin%2C+Gao&rft.au=Jiaming%2C+Luo&rft.au=Xiaoguang%2C+Wei&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ress.2024.110035&rft.externalDocID=S0951832024001108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |