A reasoning approach-based pattern graph for analyzing the risk level of correlations among catenary components considering time distribution

•We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to co...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 245; p. 110035
Main Authors Diyang, Liu, Shibin, Gao, Jiaming, Luo, Xiaoguang, Wei, Jian, Shi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to construct the belief and disbelief models by defining the residual belief of fault correlations to evaluate the risk levels of fault correlations.•Simultaneous/sequential risk pattern graphs are proposed by linking and identifying virtual paths using explicit fault correlations to make reasonable inferences for inexplicit correlations that are included in the dataset but are hidden and thus not directly observable. The catenary system is a crucial part of the traction power supply system, consisting of multiple components interconnected through mechanical coupling. To reveal the risk characteristics of fault propagation between catenary components, this paper presents a reasoning approach-based pattern graph for analyzing the risk level of correlations of components considering time distribution from a statistical perspective. Initially, we define simultaneous fault correlations and sequential fault correlations among faulty components based on the different time distributions to capture the risk propagation features among components. Then, the MYCIN model is introduced to construct a certainty factor considering the belief and disbelief of fault correlations to calculate the risk levels of simultaneous/sequential fault correlations. Finally, we develop a risk pattern graph by linking the virtual paths to assess the risk level of inexplicit correlations hidden within the historical dataset. Simulation results, conducted based on the fault database of the Chengdu Railway Bureau, show the proposed method can effectively assess the risk level of correlations among faulty components to reveal the fault propagation features, which provides valuable references for proactive maintenance.
AbstractList •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault correlations to investigate the fault propagation characteristics among faulty components at different time scales•The MYCIN method is introduced to construct the belief and disbelief models by defining the residual belief of fault correlations to evaluate the risk levels of fault correlations.•Simultaneous/sequential risk pattern graphs are proposed by linking and identifying virtual paths using explicit fault correlations to make reasonable inferences for inexplicit correlations that are included in the dataset but are hidden and thus not directly observable. The catenary system is a crucial part of the traction power supply system, consisting of multiple components interconnected through mechanical coupling. To reveal the risk characteristics of fault propagation between catenary components, this paper presents a reasoning approach-based pattern graph for analyzing the risk level of correlations of components considering time distribution from a statistical perspective. Initially, we define simultaneous fault correlations and sequential fault correlations among faulty components based on the different time distributions to capture the risk propagation features among components. Then, the MYCIN model is introduced to construct a certainty factor considering the belief and disbelief of fault correlations to calculate the risk levels of simultaneous/sequential fault correlations. Finally, we develop a risk pattern graph by linking the virtual paths to assess the risk level of inexplicit correlations hidden within the historical dataset. Simulation results, conducted based on the fault database of the Chengdu Railway Bureau, show the proposed method can effectively assess the risk level of correlations among faulty components to reveal the fault propagation features, which provides valuable references for proactive maintenance.
ArticleNumber 110035
Author Shibin, Gao
Diyang, Liu
Jian, Shi
Jiaming, Luo
Xiaoguang, Wei
Author_xml – sequence: 1
  givenname: Liu
  surname: Diyang
  fullname: Diyang, Liu
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 2
  givenname: Gao
  surname: Shibin
  fullname: Shibin, Gao
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 3
  givenname: Luo
  surname: Jiaming
  fullname: Jiaming, Luo
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-9091-3345
  surname: Xiaoguang
  fullname: Xiaoguang, Wei
  email: wei_xiaoguang@126.com
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 5
  givenname: Shi
  orcidid: 0000-0001-5777-3678
  surname: Jian
  fullname: Jian, Shi
  organization: Department of Engineering Technology, University of Houston, Houston, TX 77004 USA
BookMark eNp9kEFO5DAQRS0EEg3MBWblC6SxnbjjSGwQGmAkpNnA2qrYFdpN2o7KHiS4A3cmoWc1C1ZVUv33Vf-fseOYIjL2U4q1FHJzuVsT5rxWQjVrKYWo9RFbSdN2lTD15pitRKdlZWolTtlZzjshRNPpdsU-rjkh5BRDfOYwTZTAbaseMno-QSlIkT8TTFs-JOIQYXx7X6Rli5xCfuEjvuLI08BdIsIRSkgxc9inWeSgYAR6m2_7aX44ljyvMQeP9GUS9sh9yIVC_3cBL9jJAGPGH__mOXu6_fV4c189_Ln7fXP9ULlaiFIp6Td932qvZAO6Q60dmgZ6aKF3ZtC1a5VXjfF60zeqV64bhHQG3eDRGBzqc2YOvo5SzoSDdaF8vV4IwmilsEutdmeXWu1Sqz3UOqPqP3SisJ9Dfg9dHSCcQ70GJJtdwOjQB0JXrE_hO_wTAM-ZCQ
CitedBy_id crossref_primary_10_1016_j_ress_2024_110271
crossref_primary_10_1002_cpe_8368
crossref_primary_10_3390_s24227321
Cites_doi 10.1016/j.ress.2021.107866
10.1007/s40534-019-0191-4
10.1016/j.ress.2022.108603
10.1109/ACCESS.2019.2919115
10.1016/0888-613X(89)90017-0
10.1016/j.ress.2018.11.019
10.1016/j.ress.2017.10.004
10.1109/PMAPS.2016.7764080
10.1016/j.trc.2013.08.004
10.1016/j.isatra.2021.07.018
10.1109/TPWRS.2013.2295379
10.1016/j.ress.2023.109266
10.1016/j.physa.2015.05.112
10.1016/j.ress.2015.08.006
10.1109/TR.2015.2418294
10.1177/0954409719884215
10.1016/j.ress.2010.01.011
10.1016/j.ress.2023.109530
10.1080/07408170601013653
10.1109/TII.2016.2628042
10.1109/ISKE47853.2019.9170406
10.1016/j.ress.2011.10.008
10.1016/j.ress.2022.109016
10.1016/j.ress.2023.109181
10.1109/TNNLS.2014.2303137
10.1109/TKDE.2013.76
10.1109/MCAS.2010.936782
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2024.110035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2024_110035
S0951832024001108
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-21d6bb75d214a59e55ce84aba7abc8f53c72d248d56b42b2c9f01c8ecfde88ef3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Tue Jul 01 00:45:14 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Sat Apr 13 16:38:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Risk pattern graph
Sequential correlation
Simultaneous correlation
Belief, disbelief
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-21d6bb75d214a59e55ce84aba7abc8f53c72d248d56b42b2c9f01c8ecfde88ef3
ORCID 0000-0001-9091-3345
0000-0001-5777-3678
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2024_110035
crossref_primary_10_1016_j_ress_2024_110035
elsevier_sciencedirect_doi_10_1016_j_ress_2024_110035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Ning, Cai (bib0003) 2010; 10
Wang, Gao, Yu (bib0001) 2022; 225
Zhang, Li, Xiong (bib0010) 2014; 29
Simon, Caraballo, Therneau (bib0024) 2013; 27
Lin, Yu, Wang (bib0018) 2019; 27
Liu, Zuo, Li (bib0008) 2015; 64
Zuo, Tian, Huang (bib0009) 2007; 39
Liu, Gao, Yu (bib0025) 2019; 7
Cheng H, Cao Y, Wang J, et al. A preventive, opportunistic maintenance strategy for the catenary system of high-speed railways based on reliability. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1149-1155.
Yang, Wu, Wu (bib0017) 2008; 30
Catelani, Ciani, Guidi (bib0002) 2021; 215
Benet, Cuartero, Cuartero (bib0004) 2013; 36
Zhang, Zhang (bib0005) 2010; 1
Chaki (bib0032) 2023
Hosseini, Barker, Ramirez-Marquez (bib0014) 2016; 145
Wang Z, Feng D, Lin S, et al. Research on reliability evaluation method of catenary of high speed railway considering weather condition[C]//2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2016: 1-6.
Wang, Gao, Yu (bib0013) 2023; 235
Soltani, Akbarzadeh-T (bib0023) 2014; 25
Zhuang, Xu, Wang (bib0029) 2023; 234
Xue, Liu, Ren (bib0012) 2023; 239
Lisnianski A, Elmakias D, Laredo D, et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliab Eng Syst Saf, 2012, 98(1): 1-6.
Reder, Yürüşen, Melero (bib0020) 2018; 169
Abedi, Gaudard, Romerio (bib0011) 2019; 183
.
Qian, Gao, Yu (bib0027) 2022; 126
Neapolitan (bib0031) 1986; 635
Karakose, Gencoglu, Karakose (bib0006) 2016; 13
Wang, Gao, Yu (bib0022) 2023; 231
Zhou, Xu, Guo (bib0021) 2015; 437
Qian K, Yu L, Liu Y. FHI: a fault intensity-based hierarchical association analysis model for mining fault database of railway OCS. Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019: 616-621.
Aven (bib0030) 2010; 95
van der Gaag (bib0016) 1989; 3
Karakose (10.1016/j.ress.2024.110035_bib0006) 2016; 13
Abedi (10.1016/j.ress.2024.110035_bib0011) 2019; 183
Benet (10.1016/j.ress.2024.110035_bib0004) 2013; 36
Zuo (10.1016/j.ress.2024.110035_bib0009) 2007; 39
Liu (10.1016/j.ress.2024.110035_bib0008) 2015; 64
Zhang (10.1016/j.ress.2024.110035_bib0010) 2014; 29
Lin (10.1016/j.ress.2024.110035_bib0018) 2019; 27
Dong (10.1016/j.ress.2024.110035_bib0003) 2010; 10
Neapolitan (10.1016/j.ress.2024.110035_bib0031) 1986; 635
Chaki (10.1016/j.ress.2024.110035_bib0032) 2023
10.1016/j.ress.2024.110035_bib0007
van der Gaag (10.1016/j.ress.2024.110035_bib0016) 1989; 3
Zhang (10.1016/j.ress.2024.110035_bib0005) 2010; 1
10.1016/j.ress.2024.110035_bib0026
Wang (10.1016/j.ress.2024.110035_bib0013) 2023; 235
Xue (10.1016/j.ress.2024.110035_bib0012) 2023; 239
Simon (10.1016/j.ress.2024.110035_bib0024) 2013; 27
Liu (10.1016/j.ress.2024.110035_bib0025) 2019; 7
Aven (10.1016/j.ress.2024.110035_bib0030) 2010; 95
Zhou (10.1016/j.ress.2024.110035_bib0021) 2015; 437
Hosseini (10.1016/j.ress.2024.110035_bib0014) 2016; 145
Wang (10.1016/j.ress.2024.110035_bib0022) 2023; 231
Catelani (10.1016/j.ress.2024.110035_bib0002) 2021; 215
Yang (10.1016/j.ress.2024.110035_bib0017) 2008; 30
10.1016/j.ress.2024.110035_bib0019
Reder (10.1016/j.ress.2024.110035_bib0020) 2018; 169
Soltani (10.1016/j.ress.2024.110035_bib0023) 2014; 25
Qian (10.1016/j.ress.2024.110035_bib0027) 2022; 126
10.1016/j.ress.2024.110035_bib0015
Zhuang (10.1016/j.ress.2024.110035_bib0029) 2023; 234
Wang (10.1016/j.ress.2024.110035_bib0001) 2022; 225
References_xml – volume: 10
  start-page: 6
  year: 2010
  end-page: 18
  ident: bib0003
  article-title: Automatic train control system development and simulation for high-speed railways
  publication-title: IEEE Circ. Syst. Magaz.
– volume: 29
  start-page: 1839
  year: 2014
  end-page: 1846
  ident: bib0010
  article-title: Overhead line preventive maintenance strategy based on condition monitoring and system reliability assessment
  publication-title: IEEE Trans. Power Syst.
– reference: Cheng H, Cao Y, Wang J, et al. A preventive, opportunistic maintenance strategy for the catenary system of high-speed railways based on reliability. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1149-1155.
– volume: 239
  year: 2023
  ident: bib0012
  article-title: A data aggregation-based spatiotemporal model for rail transit risk path forecasting
  publication-title: Reliab Eng Syst Saf
– volume: 3
  start-page: 239
  year: 1989
  end-page: 258
  ident: bib0016
  article-title: A conceptual model for inexact reasoning in rule-based systems
  publication-title: Int. J. Approx. Reas.
– volume: 234
  year: 2023
  ident: bib0029
  article-title: A prognostic driven predictive maintenance framework based on Bayesian deep learning
  publication-title: Reliab Eng Syst Saf
– volume: 235
  year: 2023
  ident: bib0013
  article-title: A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network
  publication-title: Reliab Eng Syst Saf
– volume: 95
  start-page: 623
  year: 2010
  end-page: 631
  ident: bib0030
  article-title: On how to define, understand and describe risk
  publication-title: Reliab Eng Syst Saf
– volume: 215
  year: 2021
  ident: bib0002
  article-title: An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering
  publication-title: Reliab Eng Syst Saf
– reference: Qian K, Yu L, Liu Y. FHI: a fault intensity-based hierarchical association analysis model for mining fault database of railway OCS. Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). IEEE, 2019: 616-621.
– volume: 225
  year: 2022
  ident: bib0001
  article-title: Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis
  publication-title: Reliab Eng Syst Saf
– volume: 7
  start-page: 91850
  year: 2019
  end-page: 91859
  ident: bib0025
  article-title: A novel fault prevention model for metro overhead contact system
  publication-title: IEEE Access
– reference: Wang Z, Feng D, Lin S, et al. Research on reliability evaluation method of catenary of high speed railway considering weather condition[C]//2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2016: 1-6.
– volume: 437
  start-page: 263
  year: 2015
  end-page: 277
  ident: bib0021
  article-title: A method for modeling and analysis of directed weighted accident causation network (DWACN)
  publication-title: Phys. A Statist. Mechan. Appl.
– volume: 126
  start-page: 276
  year: 2022
  end-page: 287
  ident: bib0027
  article-title: Marginal frequent itemset mining for fault prevention of railway overhead contact system
  publication-title: ISA Trans
– volume: 27
  start-page: 211
  year: 2019
  end-page: 221
  ident: bib0018
  article-title: A fault prediction method for catenary of high-speed rails based on meteorological conditions
  publication-title: J. Modern Transp.
– reference: Lisnianski A, Elmakias D, Laredo D, et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliab Eng Syst Saf, 2012, 98(1): 1-6.
– volume: 1
  start-page: 184
  year: 2010
  end-page: 187
  ident: bib0005
  article-title: Reliability simulation and analysis of messenger wire bearing on electrified railways
  publication-title: Proc. Int. Conf. Opt. Photon. Energy Eng. (OPEE)
– volume: 30
  start-page: 115
  year: 2008
  end-page: 119
  ident: bib0017
  article-title: Fuzzy reliability evaluation of electrified railway catenary system based on credibility theory
  publication-title: J. China Rail. Soc.
– volume: 231
  year: 2023
  ident: bib0022
  article-title: Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model
  publication-title: Reliab Eng Syst Saf
– reference: .
– volume: 39
  start-page: 811
  year: 2007
  end-page: 817
  ident: bib0009
  article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors
  publication-title: IIE Trans
– volume: 13
  start-page: 635
  year: 2016
  end-page: 643
  ident: bib0006
  article-title: A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems
  publication-title: IEEE Trans Industr Inform
– volume: 183
  start-page: 153
  year: 2019
  end-page: 172
  ident: bib0011
  article-title: Review of major approaches to analyze vulnerability in power system
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 138
  year: 2013
  end-page: 156
  ident: bib0004
  article-title: An advanced 3D-model for the study and simulation of the pantograph catenary system
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 145
  start-page: 47
  year: 2016
  end-page: 61
  ident: bib0014
  article-title: A review of definitions and measures of system resilience
  publication-title: Reliab Eng Syst Saf
– start-page: 37
  year: 2023
  end-page: 45
  ident: bib0032
  article-title: Certainty Factor and Evidential Reasoning to Handle Uncertainty in Artificial Intelligence Handling Uncertainty in Artificial Intelligence
– volume: 25
  start-page: 2053
  year: 2014
  end-page: 2064
  ident: bib0023
  article-title: Confabulation-inspired association rule mining for rare and frequent itemset
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 64
  start-page: 1287
  year: 2015
  end-page: 1299
  ident: bib0008
  article-title: Dynamic reliability assessment for multi-state systems utilizing system-level inspection data
  publication-title: IEEE Trans Reliab
– volume: 635
  start-page: 375
  year: 1986
  end-page: 383
  ident: bib0031
  publication-title: A comparison of the MYCIN model for reasoning under uncertainty to a probability based model Applications of Artificial Intelligence III
– volume: 169
  start-page: 554
  year: 2018
  end-page: 569
  ident: bib0020
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
– volume: 27
  start-page: 130
  year: 2013
  end-page: 141
  ident: bib0024
  article-title: Extending association rule summarization techniques to assess risk of diabetes mellitus
  publication-title: IEEE Trans Knowl Data Eng
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2024.110035_bib0002
  article-title: An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107866
– volume: 27
  start-page: 211
  year: 2019
  ident: 10.1016/j.ress.2024.110035_bib0018
  article-title: A fault prediction method for catenary of high-speed rails based on meteorological conditions
  publication-title: J. Modern Transp.
  doi: 10.1007/s40534-019-0191-4
– volume: 225
  year: 2022
  ident: 10.1016/j.ress.2024.110035_bib0001
  article-title: Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108603
– volume: 7
  start-page: 91850
  year: 2019
  ident: 10.1016/j.ress.2024.110035_bib0025
  article-title: A novel fault prevention model for metro overhead contact system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919115
– volume: 3
  start-page: 239
  issue: 3
  year: 1989
  ident: 10.1016/j.ress.2024.110035_bib0016
  article-title: A conceptual model for inexact reasoning in rule-based systems
  publication-title: Int. J. Approx. Reas.
  doi: 10.1016/0888-613X(89)90017-0
– volume: 183
  start-page: 153
  year: 2019
  ident: 10.1016/j.ress.2024.110035_bib0011
  article-title: Review of major approaches to analyze vulnerability in power system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.019
– volume: 30
  start-page: 115
  issue: 6
  year: 2008
  ident: 10.1016/j.ress.2024.110035_bib0017
  article-title: Fuzzy reliability evaluation of electrified railway catenary system based on credibility theory
  publication-title: J. China Rail. Soc.
– volume: 169
  start-page: 554
  year: 2018
  ident: 10.1016/j.ress.2024.110035_bib0020
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.10.004
– ident: 10.1016/j.ress.2024.110035_bib0019
  doi: 10.1109/PMAPS.2016.7764080
– volume: 36
  start-page: 138
  year: 2013
  ident: 10.1016/j.ress.2024.110035_bib0004
  article-title: An advanced 3D-model for the study and simulation of the pantograph catenary system
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2013.08.004
– volume: 126
  start-page: 276
  year: 2022
  ident: 10.1016/j.ress.2024.110035_bib0027
  article-title: Marginal frequent itemset mining for fault prevention of railway overhead contact system
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.07.018
– start-page: 37
  year: 2023
  ident: 10.1016/j.ress.2024.110035_bib0032
– volume: 29
  start-page: 1839
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2024.110035_bib0010
  article-title: Overhead line preventive maintenance strategy based on condition monitoring and system reliability assessment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2295379
– volume: 235
  year: 2023
  ident: 10.1016/j.ress.2024.110035_bib0013
  article-title: A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109266
– volume: 437
  start-page: 263
  year: 2015
  ident: 10.1016/j.ress.2024.110035_bib0021
  article-title: A method for modeling and analysis of directed weighted accident causation network (DWACN)
  publication-title: Phys. A Statist. Mechan. Appl.
  doi: 10.1016/j.physa.2015.05.112
– volume: 145
  start-page: 47
  year: 2016
  ident: 10.1016/j.ress.2024.110035_bib0014
  article-title: A review of definitions and measures of system resilience
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.08.006
– volume: 64
  start-page: 1287
  issue: 4
  year: 2015
  ident: 10.1016/j.ress.2024.110035_bib0008
  article-title: Dynamic reliability assessment for multi-state systems utilizing system-level inspection data
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2418294
– ident: 10.1016/j.ress.2024.110035_bib0015
  doi: 10.1177/0954409719884215
– volume: 95
  start-page: 623
  issue: 6
  year: 2010
  ident: 10.1016/j.ress.2024.110035_bib0030
  article-title: On how to define, understand and describe risk
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.01.011
– volume: 239
  year: 2023
  ident: 10.1016/j.ress.2024.110035_bib0012
  article-title: A data aggregation-based spatiotemporal model for rail transit risk path forecasting
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109530
– volume: 39
  start-page: 811
  issue: 8
  year: 2007
  ident: 10.1016/j.ress.2024.110035_bib0009
  article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors
  publication-title: IIE Trans
  doi: 10.1080/07408170601013653
– volume: 13
  start-page: 635
  issue: 2
  year: 2016
  ident: 10.1016/j.ress.2024.110035_bib0006
  article-title: A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph–catenary systems
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2016.2628042
– ident: 10.1016/j.ress.2024.110035_bib0026
  doi: 10.1109/ISKE47853.2019.9170406
– ident: 10.1016/j.ress.2024.110035_bib0007
  doi: 10.1016/j.ress.2011.10.008
– volume: 231
  year: 2023
  ident: 10.1016/j.ress.2024.110035_bib0022
  article-title: Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.109016
– volume: 234
  year: 2023
  ident: 10.1016/j.ress.2024.110035_bib0029
  article-title: A prognostic driven predictive maintenance framework based on Bayesian deep learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109181
– volume: 25
  start-page: 2053
  issue: 11
  year: 2014
  ident: 10.1016/j.ress.2024.110035_bib0023
  article-title: Confabulation-inspired association rule mining for rare and frequent itemset
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2303137
– volume: 27
  start-page: 130
  issue: 1
  year: 2013
  ident: 10.1016/j.ress.2024.110035_bib0024
  article-title: Extending association rule summarization techniques to assess risk of diabetes mellitus
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.76
– volume: 10
  start-page: 6
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2024.110035_bib0003
  article-title: Automatic train control system development and simulation for high-speed railways
  publication-title: IEEE Circ. Syst. Magaz.
  doi: 10.1109/MCAS.2010.936782
– volume: 1
  start-page: 184
  year: 2010
  ident: 10.1016/j.ress.2024.110035_bib0005
  article-title: Reliability simulation and analysis of messenger wire bearing on electrified railways
  publication-title: Proc. Int. Conf. Opt. Photon. Energy Eng. (OPEE)
– volume: 635
  start-page: 375
  year: 1986
  ident: 10.1016/j.ress.2024.110035_bib0031
SSID ssj0004957
Score 2.4452965
Snippet •We define two types of fault correlations based on the time intervals among faulty components: simultaneous fault correlations and sequential fault...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110035
SubjectTerms Belief, disbelief
Risk pattern graph
Sequential correlation
Simultaneous correlation
Title A reasoning approach-based pattern graph for analyzing the risk level of correlations among catenary components considering time distribution
URI https://dx.doi.org/10.1016/j.ress.2024.110035
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIbd5OLEzVhVVAdEFKnWL_JSKSlqhsjDwD_jP-BwHioQY2JLIdiLf6e4cffd9CF06LxKFUZRIF_0J5UlBXB5nRKi0yDUrFPP0xfeTfDylt7Ns1kLDphcGYJUh9tcx3Ufr8KQfdrO_ms_7D1AccJD_pp74DBp-KWXg5b33b5iHOwCwRk4eRofGmRrjBSfaHqwAaPjIS779kpw2Es5oD-2GShEP6o_ZRy1THaCdDf7AQ_QxwIAp939UccMOTiAxabzyxJkV9ozU2JWmWAD_yBsMdUUfBkw5XgBkCC8tViDSEWBx2AsQYYBKQa8uBtT5sgLAhbus5T39IvNngzXw7gbJrCM0HV0_Dsck6CsQlUbRmiSxzqVkmU5iKrLCZJkynAopmJCK2yxVLNEJ5TrLJU1kogobxYobZbXh3Nj0GLUr9_4ThKXNLQNqPy4s1VbJKLYFd-WFC5_MqLSD4mZjSxXIx0EDY1E2KLOnEoxRgjHK2hgddPU1Z1VTb_w5OmvsVf5woNLlhj_mnf5z3hnahrsa-3iO2uuXV3Ph6pO17HoH7KKtwc3dePIJGpTo6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwAD4ineeGBDoXnYiTNWiCpQ2gWQ2KL4JRWVtkJl4T_wn_E5DhQJdWCLEp8T-ay7i_Xd9wFc2F1U5VrSQNjoH1Ae54HN41lQySRPVZbLzNEXD4Zp8UTvntnzClw3vTAIq_Sxv47pLlr7Ox2_mp3ZaNR5wOKAo_w3dcRnfBXayE7FWtDu3vaL4U97ZF4TfqKiPBr43pka5oU_tVc4CQLiQ6f69kd-Wsg5vS3Y9MUi6dbfsw0rerIDGwsUgrvw2SUIK3eHqqQhCA8wNykyc9yZE-JIqYmtTkmFFCQfONTWfQRh5WSMqCEyNUSiTodHxhGnQUQQLYXtugSB59MJYi7sZa3w6SYZvWqikHrXq2btwVPv5vG6CLzEQiCTMJwHcaRSITKm4ohWLNeMSc1pJaqsEpIblsgsVjHliqWCxiKWuQkjybU0SnOuTbIPrYl9_wEQYVKTIbsfrwxVRoowMjm3FYaNoJmWySFEzcKW0vOPowzGuGyAZi8lOqNEZ5S1Mw7h8ttmVrNvLB3NGn-Vv_ZQadPDErujf9qdw1rxOLgv72-H_WNYxyc1FPIEWvO3d31qy5W5OPPb8QsPo-uZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reasoning+approach-based+pattern+graph+for+analyzing+the+risk+level+of+correlations+among+catenary+components+considering+time+distribution&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Diyang%2C+Liu&rft.au=Shibin%2C+Gao&rft.au=Jiaming%2C+Luo&rft.au=Xiaoguang%2C+Wei&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ress.2024.110035&rft.externalDocID=S0951832024001108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon