Dynamic distributed flexible job-shop scheduling problem considering operation inspection

The classical distributed flexible job-shop scheduling problem (DFJSP) only considers static manufacturing environment and ignores operation inspection. However, in the real production, the manufacturing environment is normally dynamic and the operation inspection is very important to prevent unqual...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 224; p. 119840
Main Authors Zhu, Kaikai, Gong, Guiliang, Peng, Ningtao, Zhang, Liqiang, Huang, Dan, Luo, Qiang, Li, Xiaoqiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2023
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.119840

Cover

Loading…
Abstract The classical distributed flexible job-shop scheduling problem (DFJSP) only considers static manufacturing environment and ignores operation inspection. However, in the real production, the manufacturing environment is normally dynamic and the operation inspection is very important to prevent unqualified products from being transported to the next manufacturing stage. In this paper, we first propose a dynamic distributed flexible job-shop scheduling problem considering operation inspection (DFJSPI). A modified memetic algorithm (MMA) is then designed to solve the DFJSPI aiming at to minimize the makespan and total energy consumption. In the MMA, a novel five-layer encoding method and an initialization method are developed to generate a high-quality initial population. A hybrid rescheduling method including three rescheduling strategies is developed to handle different inspection results. Some effective crossover operators, mutation operators and a local search operator are designed to expand the solution space of MMA and to accelerate its convergence speed. A total of 100 DFJSPI benchmark instances are constructed to test the performance of the MMA. Extensive experiments carried out to compare the proposed MMA with other three well-known algorithms demonstrate that the MMA has obvious superiority in almost all tested instances. This study will be beneficial for the production managers to deal with dynamical distributed manufacturing with operation inspection, especially providing reference for the manufacturing systems with operation reworking and scrapping.
AbstractList The classical distributed flexible job-shop scheduling problem (DFJSP) only considers static manufacturing environment and ignores operation inspection. However, in the real production, the manufacturing environment is normally dynamic and the operation inspection is very important to prevent unqualified products from being transported to the next manufacturing stage. In this paper, we first propose a dynamic distributed flexible job-shop scheduling problem considering operation inspection (DFJSPI). A modified memetic algorithm (MMA) is then designed to solve the DFJSPI aiming at to minimize the makespan and total energy consumption. In the MMA, a novel five-layer encoding method and an initialization method are developed to generate a high-quality initial population. A hybrid rescheduling method including three rescheduling strategies is developed to handle different inspection results. Some effective crossover operators, mutation operators and a local search operator are designed to expand the solution space of MMA and to accelerate its convergence speed. A total of 100 DFJSPI benchmark instances are constructed to test the performance of the MMA. Extensive experiments carried out to compare the proposed MMA with other three well-known algorithms demonstrate that the MMA has obvious superiority in almost all tested instances. This study will be beneficial for the production managers to deal with dynamical distributed manufacturing with operation inspection, especially providing reference for the manufacturing systems with operation reworking and scrapping.
ArticleNumber 119840
Author Gong, Guiliang
Luo, Qiang
Li, Xiaoqiang
Zhang, Liqiang
Zhu, Kaikai
Huang, Dan
Peng, Ningtao
Author_xml – sequence: 1
  givenname: Kaikai
  orcidid: 0000-0001-5693-4783
  surname: Zhu
  fullname: Zhu, Kaikai
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 2
  givenname: Guiliang
  orcidid: 0000-0002-3063-0770
  surname: Gong
  fullname: Gong, Guiliang
  email: guiliang_gong@163.com
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 3
  givenname: Ningtao
  surname: Peng
  fullname: Peng, Ningtao
  organization: Department of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Liqiang
  surname: Zhang
  fullname: Zhang, Liqiang
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 5
  givenname: Dan
  surname: Huang
  fullname: Huang, Dan
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 6
  givenname: Qiang
  surname: Luo
  fullname: Luo, Qiang
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 7
  givenname: Xiaoqiang
  surname: Li
  fullname: Li, Xiaoqiang
  organization: Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
BookMark eNp9kLtOwzAUhi1UJFrgBZjyAgnHjhO7EgsqV6kSCwxMluOcUEepHdkp0LcnoUwMnc5N35H-b0Fmzjsk5IpCRoGW122G8UtnDFieUbqUHE7InEqRp6VY5jMyh2UhUk4FPyOLGFsAKgDEnLzf7Z3eWpPUNg7BVrsB66Tp8NtWHSatr9K48X0SzQbrXWfdR9IHP562ifEu2hrDtPM9Bj1Y7xLrYo9mai_IaaO7iJd_9Zy8Pdy_rp7S9cvj8-p2nZocYEgZGC0ZFwUvKGhd8FxKQZFKNLwxuqiY5oIznrOixBpKqMvC0HGkElBXmJ8Tdvhrgo8xYKP6YLc67BUFNclRrZrkqEmOOsgZIfkPMnb4TTAEbbvj6M0BxTHUp8WgorHoDNY2jMlV7e0x_AcuaYOG
CitedBy_id crossref_primary_10_1080_03081079_2024_2326424
crossref_primary_10_1016_j_eswa_2025_126523
crossref_primary_10_1016_j_eswa_2023_121050
crossref_primary_10_1016_j_swevo_2024_101660
crossref_primary_10_1080_0951192X_2025_2478005
crossref_primary_10_1109_TASE_2024_3396474
crossref_primary_10_1016_j_asoc_2025_112780
crossref_primary_10_1016_j_jmsy_2023_09_002
crossref_primary_10_1016_j_compeleceng_2024_109813
crossref_primary_10_1016_j_engappai_2023_107458
crossref_primary_10_3390_app15052281
crossref_primary_10_1016_j_swevo_2024_101619
crossref_primary_10_1080_0305215X_2024_2437004
crossref_primary_10_1016_j_cie_2025_110990
crossref_primary_10_1080_23302674_2025_2467782
crossref_primary_10_1016_j_swevo_2024_101753
crossref_primary_10_1016_j_swevo_2025_101897
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1016_j_cie_2024_110835
crossref_primary_10_1007_s10586_024_04803_x
crossref_primary_10_1016_j_cie_2024_109950
crossref_primary_10_1016_j_cie_2024_110484
crossref_primary_10_1016_j_aei_2023_102307
crossref_primary_10_3390_math12101463
crossref_primary_10_1016_j_asoc_2024_112276
crossref_primary_10_1016_j_cor_2024_106744
crossref_primary_10_3934_mbe_2023950
crossref_primary_10_1016_j_eswa_2023_122734
crossref_primary_10_1016_j_engappai_2024_108487
crossref_primary_10_1016_j_eswa_2023_121205
crossref_primary_10_1016_j_swevo_2025_101902
crossref_primary_10_3390_s24072251
crossref_primary_10_1016_j_swevo_2025_101885
crossref_primary_10_3390_math12203176
Cites_doi 10.1080/095119299130443
10.3390/math9080909
10.1007/s00500-020-05152-8
10.1016/j.ifacol.2018.08.357
10.1049/iet-cim.2019.0056
10.1080/00207543.2017.1306134
10.1080/00207543.2022.2058432
10.1016/j.jmsy.2021.05.018
10.3390/pr10081517
10.1080/00207543.2018.1524165
10.1007/s10845-015-1144-3
10.3390/math7030278
10.1016/j.comnet.2021.107969
10.1109/JSYST.2021.3076481
10.1016/j.procs.2018.08.114
10.3390/s20185440
10.1145/3543859
10.1016/S0377-2217(97)00341-X
10.1016/j.jpdc.2018.07.022
10.1080/00207543.2022.2053603
10.1109/TEVC.2013.2281535
10.1016/j.rcim.2022.102412
10.1007/s00170-012-4344-4
10.1109/4235.996017
10.3390/pr10040760
10.1016/j.cie.2021.107884
10.1007/BF02023073
10.1016/j.procir.2021.11.069
10.1109/TASE.2013.2274517
10.1023/A:1022235519958
10.7232/iems.2013.12.2.151
10.1007/BF01719451
10.1016/j.jclepro.2022.130541
10.1109/ACCESS.2018.2873401
10.1007/s10845-015-1083-z
10.1080/00207543.2019.1696487
10.1007/s11081-020-09494-y
10.1007/s12559-018-9595-4
10.1109/4235.797969
10.1007/s10845-019-01521-9
10.1016/j.eswa.2022.117984
10.3390/app7010023
10.1016/j.compind.2015.10.001
10.1109/ACCESS.2020.3032548
10.1016/j.ejor.2009.01.008
10.1007/s10845-015-1084-y
10.1016/j.future.2020.02.019
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119840
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119840
S095741742300341X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-20ca824754510aa5438871e18ec4fca5b2a474243256ed060d65c1432180eabe3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 22:55:24 EDT 2025
Tue Jul 01 04:06:08 EDT 2025
Fri Feb 23 02:35:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Memetic algorithm
Dynamic distributed flexible job-shop scheduling
Multi-objective optimization
Operation inspection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-20ca824754510aa5438871e18ec4fca5b2a474243256ed060d65c1432180eabe3
ORCID 0000-0002-3063-0770
0000-0001-5693-4783
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_119840
crossref_citationtrail_10_1016_j_eswa_2023_119840
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vieira, Herrmann, Lin (b0265) 2003; 6
Yuan, Xu (b0325) 2013; 12
Oukil, El-Bouri (b0215) 2021; 59
Wang, Luo, Cai (b0285) 2017; 2017
Lin, Li, Wei, Wu (b0120) 2020; 124
Gong, Chiong, Deng, Luo (b0075) 2020; 31
Wu, Li, Shen, Zhao (b0300) 2020; 2
Luo, Zhang, Fan (b0160) 2021; 159
Marzouki, Driss, Ghédira (b0180) 2017
Luo, Deng, Gong, Zhang, Han, Li (b0155) 2020; 160
Lv, Zhang, Qin (b0170) 2017; 7
Baykasoğlu, Karaslan (b0020) 2017; 55
Shahgholi Zadeh, Katebi, Doniavi (b0240) 2019; 57
Meng, Zhang, Ren, Zhang, Lv (b0200) 2020; 142
Xu, Hu, Luo, Wang, Wu (b0310) 2021; 157
Mehta (b0190) 1999; 12
De Giovanni, Pezzella (b0050) 2010; 200
Chen, Yang, Li, Wang (b0040) 2020; 149
Viana, Morandin Junior, Contreras (b0260) 2020; 20
Wang, Wang (b0275) 2021; 1–1
Li, Deng, Zhang, Fan, Gong, Ding (b0115) 2021; 155
Wisittipanich, Kachitvichyanukul (b0295) 2013; 12
Yang, Huang, Wang, Zhu (b0320) 2020; 158
Jiang, Wang, Peng (b0105) 2020; 58
Du, Li, Luo, Meng (b0065) 2021; 62
Ahmed, Lin, Srivastava, Aleem (b0010) 2021; 25
Lu, Wu, Tan, Peng, Chen (b0135) 2018; 29
He, Sun (b0090) 2013; 66
Tang, Dai, Salido, Giret (b0245) 2016; 81
Wang, Liu, Ren, Wang, Wang (b0270) 2021; 293
Shady, Kaihara, Fujii, Kokuryo (b0230) 2021; 104
Wu, Liu (b0305) 2018
Montgomery (b0205) 2008
Ahmed, Lin, Srivastava (b0005) 2022; 13
Zhu, Deng, Zhang, Hu, Lin (b0355) 2020; 21
Chang, Yu, Hu, He, Yu (b0035) 2022; 10
doi:10.48550/arXiv.2201.00548.
Wang, Hu, Wang, Xu, Ma, Yang, Wang (b0280) 2021; 190
Meng, Ren, Zhang, Li, Sang, Zhang (b0195) 2020; 8
Hurink, Jurisch, Thole (b0100) 1994; 15
Zeng, Y., Liao, Z., Dai, Y., Wang, R., Li, X., & Yuan, B. (2022). Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement learning and attention mechanism.
Luo, El Baz, Xue, Hu (b0140) 2020; 108
Zhang, Buchmeister, Li, Ojstersek (b0335) 2021; 9
Deb, Pratap, Agarwal, Meyarivan (b0060) 2002; 6
He, Shao, Jing, Cheng, Yang (b0095) 2020; 152
Luo, Deng, Gong, Guo, Liu (b0150) 2022; 207
Zhou, Chen, Zhang, Chang (b0350) 2022; 337
Shady, Kaihara, Fujii, Kokuryo (b0235) 2022; 60
Liu, Piplani, Toro (b0125) 2022; 60
Marzouki, Driss, Ghédira (b0185) 2018; 126
Qin, Zhang, Song (b0220) 2018; 29
Teymourifar, Ozturk, Ozturk, Bahadir (b0250) 2020; 12
Chang, Liu (b0030) 2017; 28
Li, Duan, Cao, Lin, Han (b0110) 2018; 6
Barnes, Chambers (b0015) 1996
Turker, Aktepe, Inal, Ersoz, Das, Birgoren (b0255) 2019; 7
Gong, Deng, Chiong, Gong, Huang (b0080) 2019; 182
Ma, Lei, Wang, Jiao, Liu (b0175) 2014
Deb, Jain (b0055) 2013; 18
Luo, Fujimura, El Baz, Plazolles (b0145) 2019; 133
Fan, Shen, Gao, Zhang, Zhang (b0070) 2021; 60
Lv, Li, Tang, Kou (b0165) 2021; 1–17
Zhang, Zhu, Tang, Zhou, Gui (b0340) 2022; 78
Zhao, Gao, Li (b0345) 2019; 1–11
Dauzère-Pérès, Roux, Lasserre (b0045) 1998; 107
Sang, Tan (b0225) 2022; 164
Guo, Luo, Xu, Wang (b0085) 2020
Nouiri, Bekrar, Trentesaux (b0210) 2018; 51
Wang, Wang, Li, Shen, Yang (b0290) 2021; 174
Brandimarte (b0025) 1993; 41
Zitzler, Thiele (b0360) 1999; 3
Lu, Zhang, Gao, Yi, Mou (b0130) 2021; 16
Yang, Xu (b0315) 2022; 10
Baykasoğlu (10.1016/j.eswa.2023.119840_b0020) 2017; 55
Ahmed (10.1016/j.eswa.2023.119840_b0010) 2021; 25
Dauzère-Pérès (10.1016/j.eswa.2023.119840_b0045) 1998; 107
De Giovanni (10.1016/j.eswa.2023.119840_b0050) 2010; 200
He (10.1016/j.eswa.2023.119840_b0090) 2013; 66
Jiang (10.1016/j.eswa.2023.119840_b0105) 2020; 58
Lin (10.1016/j.eswa.2023.119840_b0120) 2020; 124
Zhang (10.1016/j.eswa.2023.119840_b0340) 2022; 78
Ahmed (10.1016/j.eswa.2023.119840_b0005) 2022; 13
Montgomery (10.1016/j.eswa.2023.119840_b0205) 2008
Xu (10.1016/j.eswa.2023.119840_b0310) 2021; 157
Deb (10.1016/j.eswa.2023.119840_b0060) 2002; 6
Zitzler (10.1016/j.eswa.2023.119840_b0360) 1999; 3
Marzouki (10.1016/j.eswa.2023.119840_b0185) 2018; 126
Meng (10.1016/j.eswa.2023.119840_b0195) 2020; 8
Shahgholi Zadeh (10.1016/j.eswa.2023.119840_b0240) 2019; 57
Guo (10.1016/j.eswa.2023.119840_b0085) 2020
Zhao (10.1016/j.eswa.2023.119840_b0345) 2019; 1–11
Zhang (10.1016/j.eswa.2023.119840_b0335) 2021; 9
Yuan (10.1016/j.eswa.2023.119840_b0325) 2013; 12
10.1016/j.eswa.2023.119840_b0330
Liu (10.1016/j.eswa.2023.119840_b0125) 2022; 60
Oukil (10.1016/j.eswa.2023.119840_b0215) 2021; 59
Wang (10.1016/j.eswa.2023.119840_b0280) 2021; 190
Wu (10.1016/j.eswa.2023.119840_b0300) 2020; 2
Gong (10.1016/j.eswa.2023.119840_b0080) 2019; 182
Qin (10.1016/j.eswa.2023.119840_b0220) 2018; 29
Lu (10.1016/j.eswa.2023.119840_b0135) 2018; 29
Chang (10.1016/j.eswa.2023.119840_b0035) 2022; 10
Lu (10.1016/j.eswa.2023.119840_b0130) 2021; 16
Li (10.1016/j.eswa.2023.119840_b0110) 2018; 6
Sang (10.1016/j.eswa.2023.119840_b0225) 2022; 164
Gong (10.1016/j.eswa.2023.119840_b0075) 2020; 31
Luo (10.1016/j.eswa.2023.119840_b0155) 2020; 160
Teymourifar (10.1016/j.eswa.2023.119840_b0250) 2020; 12
Li (10.1016/j.eswa.2023.119840_b0115) 2021; 155
Luo (10.1016/j.eswa.2023.119840_b0145) 2019; 133
Wang (10.1016/j.eswa.2023.119840_b0270) 2021; 293
Ma (10.1016/j.eswa.2023.119840_b0175) 2014
Viana (10.1016/j.eswa.2023.119840_b0260) 2020; 20
Fan (10.1016/j.eswa.2023.119840_b0070) 2021; 60
Deb (10.1016/j.eswa.2023.119840_b0055) 2013; 18
Lv (10.1016/j.eswa.2023.119840_b0165) 2021; 1–17
Marzouki (10.1016/j.eswa.2023.119840_b0180) 2017
Du (10.1016/j.eswa.2023.119840_b0065) 2021; 62
He (10.1016/j.eswa.2023.119840_b0095) 2020; 152
Wang (10.1016/j.eswa.2023.119840_b0275) 2021; 1–1
Wang (10.1016/j.eswa.2023.119840_b0285) 2017; 2017
Lv (10.1016/j.eswa.2023.119840_b0170) 2017; 7
Yang (10.1016/j.eswa.2023.119840_b0320) 2020; 158
Chang (10.1016/j.eswa.2023.119840_b0030) 2017; 28
Tang (10.1016/j.eswa.2023.119840_b0245) 2016; 81
Wu (10.1016/j.eswa.2023.119840_b0305) 2018
Meng (10.1016/j.eswa.2023.119840_b0200) 2020; 142
Chen (10.1016/j.eswa.2023.119840_b0040) 2020; 149
Barnes (10.1016/j.eswa.2023.119840_b0015) 1996
Wisittipanich (10.1016/j.eswa.2023.119840_b0295) 2013; 12
Hurink (10.1016/j.eswa.2023.119840_b0100) 1994; 15
Shady (10.1016/j.eswa.2023.119840_b0230) 2021; 104
Vieira (10.1016/j.eswa.2023.119840_b0265) 2003; 6
Luo (10.1016/j.eswa.2023.119840_b0140) 2020; 108
Mehta (10.1016/j.eswa.2023.119840_b0190) 1999; 12
Brandimarte (10.1016/j.eswa.2023.119840_b0025) 1993; 41
Shady (10.1016/j.eswa.2023.119840_b0235) 2022; 60
Luo (10.1016/j.eswa.2023.119840_b0160) 2021; 159
Turker (10.1016/j.eswa.2023.119840_b0255) 2019; 7
Zhu (10.1016/j.eswa.2023.119840_b0355) 2020; 21
Yang (10.1016/j.eswa.2023.119840_b0315) 2022; 10
Zhou (10.1016/j.eswa.2023.119840_b0350) 2022; 337
Nouiri (10.1016/j.eswa.2023.119840_b0210) 2018; 51
Luo (10.1016/j.eswa.2023.119840_b0150) 2022; 207
Wang (10.1016/j.eswa.2023.119840_b0290) 2021; 174
References_xml – volume: 60
  start-page: 4025
  year: 2022
  end-page: 4048
  ident: b0235
  article-title: A novel feature selection for evolving compact dispatching rules using genetic programming for dynamic job shop scheduling
  publication-title: International Journal of Production Research
– start-page: 1019
  year: 2017
  end-page: 1026
  ident: b0180
  article-title: Decentralized Tabu searches in multi agent system for distributed and flexible job shop scheduling problem
  publication-title: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA)
– volume: 1–17
  year: 2021
  ident: b0165
  article-title: Toward energy-efficient rescheduling decision mechanisms for flexible job shop with dynamic events and alternative process plans
  publication-title: IEEE Transactions on Automation Science Engineering
– volume: 7
  start-page: 278
  year: 2019
  ident: b0255
  article-title: A decision support system for dynamic job-shop scheduling using real-time data with simulation
  publication-title: Mathematics
– volume: 31
  start-page: 1443
  year: 2020
  end-page: 1466
  ident: b0075
  article-title: A memetic algorithm for multi-objective distributed production scheduling: Minimizing the makespan and total energy consumption
  publication-title: Journal Of Intelligent Manufacturing
– volume: 157
  year: 2021
  ident: b0310
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Computers & Industrial Engineering
– volume: 1–1
  year: 2021
  ident: b0275
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-Shop scheduling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 152
  year: 2020
  ident: b0095
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
– volume: 2
  start-page: 22
  year: 2020
  end-page: 33
  ident: b0300
  article-title: NSGA-III for solving dynamic flexible job shop scheduling problem considering deterioration effect
  publication-title: IET Collaborative Intelligent Manufacturing
– volume: 55
  start-page: 3308
  year: 2017
  end-page: 3325
  ident: b0020
  article-title: Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach
  publication-title: International Journal of Production Research
– volume: 107
  start-page: 289
  year: 1998
  end-page: 305
  ident: b0045
  article-title: Multi-resource shop scheduling with resource flexibility
  publication-title: European Journal of Operational Research
– volume: 12
  start-page: 15
  year: 1999
  end-page: 38
  ident: b0190
  article-title: Predictable scheduling of a single machine subject to breakdowns
  publication-title: International Journal of Computer Integrated Manufacturing
– volume: 8
  start-page: 191191
  year: 2020
  end-page: 191203
  ident: b0195
  article-title: MILP modeling and optimization of energy-efficient distributed flexible job shop scheduling problem
  publication-title: IEEE Access
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0360
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 195
  year: 2020
  end-page: 205
  ident: b0250
  article-title: Extracting new dispatching rules for multi-objective dynamic flexible job shop scheduling with limited buffer spaces
  publication-title: Cognitive Computation
– volume: 159
  year: 2021
  ident: b0160
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– volume: 60
  start-page: 4049
  year: 2022
  end-page: 4069
  ident: b0125
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
– volume: 51
  start-page: 1275
  year: 2018
  end-page: 1280
  ident: b0210
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
– volume: 13
  start-page: 1
  year: 2022
  end-page: 23
  ident: b0005
  article-title: Heterogeneous energy-aware load balancing for industry 4.0 and IoT environments
  publication-title: ACM Transactions on Management Information Systems
– volume: 66
  start-page: 501
  year: 2013
  end-page: 514
  ident: b0090
  article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 16
  start-page: 844
  year: 2021
  end-page: 855
  ident: b0130
  article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds
  publication-title: IEEE Systems Journal
– volume: 29
  start-page: 891
  year: 2018
  end-page: 904
  ident: b0220
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: Journal Of Intelligent Manufacturing
– volume: 60
  start-page: 298
  year: 2021
  end-page: 311
  ident: b0070
  article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths
  publication-title: Journal of Manufacturing Systems
– volume: 108
  start-page: 119
  year: 2020
  end-page: 134
  ident: b0140
  article-title: Solving the dynamic energy aware job shop scheduling problem with the heterogeneous parallel genetic algorithm
  publication-title: Future Generation Computer Systems
– volume: 155
  year: 2021
  ident: b0115
  article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 29
  start-page: 19
  year: 2018
  end-page: 34
  ident: b0135
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: Journal Of Intelligent Manufacturing
– volume: 9
  start-page: 909
  year: 2021
  ident: b0335
  article-title: Advanced metaheuristic method for decision-making in a dynamic job shop scheduling environment
  publication-title: Mathematics
– volume: 207
  year: 2022
  ident: b0150
  article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm
  publication-title: Expert Systems with Applications
– volume: 1–11
  year: 2019
  ident: b0345
  article-title: A random forest-based job shop rescheduling decision model with machine failures
  publication-title: Journal of Ambient Intelligence Humanized Computing
– volume: 104
  start-page: 411
  year: 2021
  end-page: 416
  ident: b0230
  article-title: Evolving dispatching rules using genetic programming for multi-objective dynamic job shop scheduling with machine breakdowns
  publication-title: Procedia CIRP
– volume: 59
  start-page: 388
  year: 2021
  end-page: 411
  ident: b0215
  article-title: Ranking dispatching rules in multi-objective dynamic flow shop scheduling: A multi-faceted perspective
  publication-title: International Journal of Production Research
– volume: 25
  start-page: 407
  year: 2021
  end-page: 420
  ident: b0010
  article-title: A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster
  publication-title: Soft Computing
– volume: 28
  start-page: 1973
  year: 2017
  end-page: 1986
  ident: b0030
  article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms
  publication-title: Journal of Intelligent Manufacturing
– volume: 21
  start-page: 1691
  year: 2020
  end-page: 1716
  ident: b0355
  article-title: Low carbon flexible job shop scheduling problem considering worker learning using a memetic algorithm
  publication-title: Optimization Engineering
– volume: 149
  year: 2020
  ident: b0040
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 62
  year: 2021
  ident: b0065
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations
  publication-title: Swarm and Evolutionary Computation
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0285
  article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm
  publication-title: Journal of Advanced Transportation
– volume: 12
  start-page: 151
  year: 2013
  end-page: 160
  ident: b0295
  article-title: An efficient PSO algorithm for finding Pareto-frontier in multi-objective job shop scheduling problems
  publication-title: Industrial Engineering and Management Systems
– volume: 6
  start-page: 39
  year: 2003
  end-page: 62
  ident: b0265
  article-title: Rescheduling manufacturing systems: A framework of strategies, policies, and methods
  publication-title: Journal of Scheduling
– start-page: 968
  year: 2018
  end-page: 973
  ident: b0305
  article-title: An improved differential evolution algorithm for solving a distributed flexible job shop scheduling problem
  publication-title: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
– volume: 15
  start-page: 205
  year: 1994
  end-page: 215
  ident: b0100
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Operations-Research-Spektrum
– volume: 164
  year: 2022
  ident: b0225
  article-title: Intelligent factory many-objective distributed flexible job shop collaborative scheduling method
  publication-title: Computers & Industrial Engineering
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: b0050
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: European Journal of Operational Research
– volume: 190
  year: 2021
  ident: b0280
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
– volume: 126
  start-page: 1424
  year: 2018
  end-page: 1433
  ident: b0185
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Computer Science
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0060
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 160
  year: 2020
  ident: b0155
  article-title: An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers
  publication-title: Expert Systems with Applications
– volume: 78
  year: 2022
  ident: b0340
  article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
  publication-title: Robotics Computer-Integrated Manufacturing
– reference: Zeng, Y., Liao, Z., Dai, Y., Wang, R., Li, X., & Yuan, B. (2022). Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement learning and attention mechanism.
– volume: 10
  start-page: 1517
  year: 2022
  ident: b0315
  article-title: Hybrid memetic algorithm to solve multiobjective distributed fuzzy flexible job shop scheduling problem with transfer
  publication-title: Processes
– year: 1996
  ident: b0015
  article-title: Flexible job shop scheduling by tabu search
  publication-title: Graduate Program in Operations Industrial Engineering
– volume: 158
  year: 2020
  ident: b0320
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 336
  year: 2013
  end-page: 353
  ident: b0325
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Transactions on Automation Science and Engineering
– reference: . doi:10.48550/arXiv.2201.00548.
– volume: 20
  start-page: 5440
  year: 2020
  ident: b0260
  article-title: A modified genetic algorithm with local search strategies and multi-crossover operator for job shop scheduling problem
  publication-title: Sensors
– volume: 142
  year: 2020
  ident: b0200
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 10
  start-page: 760
  year: 2022
  ident: b0035
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: b0025
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations Research
– volume: 133
  start-page: 244
  year: 2019
  end-page: 257
  ident: b0145
  article-title: GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem
  publication-title: Journal of Parallel and Distributed Computing
– start-page: 1501
  year: 2020
  end-page: 1506
  ident: b0085
  article-title: Research on distributed flexible job shop scheduling problem for large equipment manufacturing enterprises considering energy consumption
  publication-title: 2020 39th Chinese Control Conference (CCC)
– volume: 58
  year: 2020
  ident: b0105
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition
  publication-title: Swarm and Evolutionary Computation
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 81
  start-page: 82
  year: 2016
  end-page: 95
  ident: b0245
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Computers in Industry
– volume: 7
  start-page: 23
  year: 2017
  ident: b0170
  article-title: A Genetic Regulatory Network-Based Method for Dynamic Hybrid Flow Shop Scheduling with Uncertain Processing Times
  publication-title: Applied Sciences-Basel
– volume: 124
  year: 2020
  ident: b0120
  article-title: Integration of process planning and scheduling for distributed flexible job shops
  publication-title: Computers & Operations Research
– volume: 6
  start-page: 58883
  year: 2018
  end-page: 58897
  ident: b0110
  article-title: A hybrid pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria
  publication-title: IEEE Access
– year: 2008
  ident: b0205
  article-title: Design & analysis of experiments
– volume: 293
  year: 2021
  ident: b0270
  article-title: Evolutionary game based real-time scheduling for energy-efficient distributed and flexible job shop
  publication-title: Journal of Cleaner Production
– volume: 174
  year: 2021
  ident: b0290
  article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes
  publication-title: Expert Systems with Applications
– volume: 57
  start-page: 3020
  year: 2019
  end-page: 3035
  ident: b0240
  article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times
  publication-title: International Journal of Production Research
– volume: 337
  year: 2022
  ident: b0350
  article-title: An adaptive ensemble deep forest based dynamic scheduling strategy for low carbon flexible job shop under recessive disturbance
  publication-title: Journal of Cleaner Production
– volume: 182
  year: 2019
  ident: b0080
  article-title: An effective memetic algorithm for multi-objective job-shop scheduling
  publication-title: Knowledge-Based Systems
– start-page: 58
  year: 2014
  end-page: 65
  ident: b0175
  article-title: A memetic algorithm based on immune multi-objective optimization for flexible job-shop scheduling problems
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– volume: 12
  start-page: 15
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2023.119840_b0190
  article-title: Predictable scheduling of a single machine subject to breakdowns
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/095119299130443
– volume: 9
  start-page: 909
  issue: 8
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0335
  article-title: Advanced metaheuristic method for decision-making in a dynamic job shop scheduling environment
  publication-title: Mathematics
  doi: 10.3390/math9080909
– volume: 160
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0155
  article-title: An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers
  publication-title: Expert Systems with Applications
– volume: 293
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0270
  article-title: Evolutionary game based real-time scheduling for energy-efficient distributed and flexible job shop
  publication-title: Journal of Cleaner Production
– volume: 25
  start-page: 407
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0010
  article-title: A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05152-8
– volume: 51
  start-page: 1275
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0210
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.357
– start-page: 1019
  year: 2017
  ident: 10.1016/j.eswa.2023.119840_b0180
  article-title: Decentralized Tabu searches in multi agent system for distributed and flexible job shop scheduling problem
– volume: 2
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0300
  article-title: NSGA-III for solving dynamic flexible job shop scheduling problem considering deterioration effect
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/iet-cim.2019.0056
– start-page: 968
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0305
  article-title: An improved differential evolution algorithm for solving a distributed flexible job shop scheduling problem
– volume: 55
  start-page: 3308
  issue: 11
  year: 2017
  ident: 10.1016/j.eswa.2023.119840_b0020
  article-title: Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1306134
– volume: 60
  start-page: 4049
  issue: 13
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0125
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2058432
– volume: 60
  start-page: 298
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0070
  article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.05.018
– volume: 158
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0320
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Systems with Applications
– volume: 157
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0310
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Computers & Industrial Engineering
– volume: 10
  start-page: 1517
  issue: 8
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0315
  article-title: Hybrid memetic algorithm to solve multiobjective distributed fuzzy flexible job shop scheduling problem with transfer
  publication-title: Processes
  doi: 10.3390/pr10081517
– ident: 10.1016/j.eswa.2023.119840_b0330
– volume: 57
  start-page: 3020
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2023.119840_b0240
  article-title: A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1524165
– volume: 29
  start-page: 891
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0220
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: Journal Of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1144-3
– volume: 7
  start-page: 278
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2023.119840_b0255
  article-title: A decision support system for dynamic job-shop scheduling using real-time data with simulation
  publication-title: Mathematics
  doi: 10.3390/math7030278
– volume: 190
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0280
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.107969
– volume: 1–17
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0165
  article-title: Toward energy-efficient rescheduling decision mechanisms for flexible job shop with dynamic events and alternative process plans
  publication-title: IEEE Transactions on Automation Science Engineering
– volume: 16
  start-page: 844
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0130
  article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2021.3076481
– volume: 126
  start-page: 1424
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0185
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.08.114
– volume: 20
  start-page: 5440
  issue: 18
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0260
  article-title: A modified genetic algorithm with local search strategies and multi-crossover operator for job shop scheduling problem
  publication-title: Sensors
  doi: 10.3390/s20185440
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0005
  article-title: Heterogeneous energy-aware load balancing for industry 4.0 and IoT environments
  publication-title: ACM Transactions on Management Information Systems
  doi: 10.1145/3543859
– volume: 182
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.119840_b0080
  article-title: An effective memetic algorithm for multi-objective job-shop scheduling
  publication-title: Knowledge-Based Systems
– volume: 107
  start-page: 289
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2023.119840_b0045
  article-title: Multi-resource shop scheduling with resource flexibility
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00341-X
– volume: 133
  start-page: 244
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.119840_b0145
  article-title: GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2018.07.022
– volume: 60
  start-page: 4025
  issue: 13
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0235
  article-title: A novel feature selection for evolving compact dispatching rules using genetic programming for dynamic job shop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2053603
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2023.119840_b0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.119840_b0285
  article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm
  publication-title: Journal of Advanced Transportation
– volume: 78
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0340
  article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
  publication-title: Robotics Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2022.102412
– volume: 66
  start-page: 501
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.119840_b0090
  article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4344-4
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2023.119840_b0060
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 10
  start-page: 760
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0035
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
  doi: 10.3390/pr10040760
– volume: 152
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0095
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
– volume: 58
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0105
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition
  publication-title: Swarm and Evolutionary Computation
– volume: 164
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0225
  article-title: Intelligent factory many-objective distributed flexible job shop collaborative scheduling method
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107884
– volume: 1–11
  year: 2019
  ident: 10.1016/j.eswa.2023.119840_b0345
  article-title: A random forest-based job shop rescheduling decision model with machine failures
  publication-title: Journal of Ambient Intelligence Humanized Computing
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2023.119840_b0025
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02023073
– volume: 104
  start-page: 411
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0230
  article-title: Evolving dispatching rules using genetic programming for multi-objective dynamic job shop scheduling with machine breakdowns
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.069
– volume: 12
  start-page: 336
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2023.119840_b0325
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2013.2274517
– volume: 6
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2023.119840_b0265
  article-title: Rescheduling manufacturing systems: A framework of strategies, policies, and methods
  publication-title: Journal of Scheduling
  doi: 10.1023/A:1022235519958
– volume: 62
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0065
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations
  publication-title: Swarm and Evolutionary Computation
– start-page: 1501
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0085
  article-title: Research on distributed flexible job shop scheduling problem for large equipment manufacturing enterprises considering energy consumption
– volume: 12
  start-page: 151
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2023.119840_b0295
  article-title: An efficient PSO algorithm for finding Pareto-frontier in multi-objective job shop scheduling problems
  publication-title: Industrial Engineering and Management Systems
  doi: 10.7232/iems.2013.12.2.151
– volume: 155
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0115
  article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 15
  start-page: 205
  issue: 4
  year: 1994
  ident: 10.1016/j.eswa.2023.119840_b0100
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Operations-Research-Spektrum
  doi: 10.1007/BF01719451
– start-page: 58
  year: 2014
  ident: 10.1016/j.eswa.2023.119840_b0175
  article-title: A memetic algorithm based on immune multi-objective optimization for flexible job-shop scheduling problems
– volume: 337
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0350
  article-title: An adaptive ensemble deep forest based dynamic scheduling strategy for low carbon flexible job shop under recessive disturbance
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2022.130541
– volume: 6
  start-page: 58883
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0110
  article-title: A hybrid pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873401
– volume: 174
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0290
  article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.119840_b0135
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: Journal Of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1083-z
– year: 2008
  ident: 10.1016/j.eswa.2023.119840_b0205
– volume: 59
  start-page: 388
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0215
  article-title: Ranking dispatching rules in multi-objective dynamic flow shop scheduling: A multi-faceted perspective
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1696487
– volume: 21
  start-page: 1691
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0355
  article-title: Low carbon flexible job shop scheduling problem considering worker learning using a memetic algorithm
  publication-title: Optimization Engineering
  doi: 10.1007/s11081-020-09494-y
– volume: 12
  start-page: 195
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0250
  article-title: Extracting new dispatching rules for multi-objective dynamic flexible job shop scheduling with limited buffer spaces
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-018-9595-4
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2023.119840_b0360
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 31
  start-page: 1443
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0075
  article-title: A memetic algorithm for multi-objective distributed production scheduling: Minimizing the makespan and total energy consumption
  publication-title: Journal Of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01521-9
– volume: 207
  year: 2022
  ident: 10.1016/j.eswa.2023.119840_b0150
  article-title: A distributed flexible job shop scheduling problem considering worker arrangement using an improved memetic algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117984
– volume: 7
  start-page: 23
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.119840_b0170
  article-title: A Genetic Regulatory Network-Based Method for Dynamic Hybrid Flow Shop Scheduling with Uncertain Processing Times
  publication-title: Applied Sciences-Basel
  doi: 10.3390/app7010023
– volume: 81
  start-page: 82
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.119840_b0245
  article-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2015.10.001
– year: 1996
  ident: 10.1016/j.eswa.2023.119840_b0015
  article-title: Flexible job shop scheduling by tabu search
– volume: 8
  start-page: 191191
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0195
  article-title: MILP modeling and optimization of energy-efficient distributed flexible job shop scheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032548
– volume: 124
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0120
  article-title: Integration of process planning and scheduling for distributed flexible job shops
  publication-title: Computers & Operations Research
– volume: 149
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0040
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 200
  start-page: 395
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2023.119840_b0050
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.01.008
– volume: 159
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0160
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– volume: 28
  start-page: 1973
  issue: 8
  year: 2017
  ident: 10.1016/j.eswa.2023.119840_b0030
  article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1084-y
– volume: 108
  start-page: 119
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0140
  article-title: Solving the dynamic energy aware job shop scheduling problem with the heterogeneous parallel genetic algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.02.019
– volume: 142
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119840_b0200
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 1–1
  year: 2021
  ident: 10.1016/j.eswa.2023.119840_b0275
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-Shop scheduling
  publication-title: IEEE Transactions on Evolutionary Computation
SSID ssj0017007
Score 2.5781384
Snippet The classical distributed flexible job-shop scheduling problem (DFJSP) only considers static manufacturing environment and ignores operation inspection....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119840
SubjectTerms Dynamic distributed flexible job-shop scheduling
Memetic algorithm
Multi-objective optimization
Operation inspection
Title Dynamic distributed flexible job-shop scheduling problem considering operation inspection
URI https://dx.doi.org/10.1016/j.eswa.2023.119840
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCGQvOwk3SsClUB0QUqlSmy46toVSURLWLjt3NXOxVIqANjLFuKvpzvOzt33zF2JQzEEnnAw-8tPBHimTVNIfLAKK3CAJDl6WrgaRgPRuJhLMcN1qtrYSit0vl-69NX3tqNtB2a7Wo6bT9jcIB0SH8aSWQlGFMFu0hIP__ma53mQfJzidXbSzya7QpnbI4XLD5JeyiM0HN0UroA-YucfhBOf5_tukiRd-3LHLAGFIdsr-7CwN2mPGKvt7apPDekgUvtq8DwCelc6jnwWam9xVtZcTzFIqtQ8Tl3TWR47pp10lhZgbUFPi1s9WVZHLNR_-6lN_BcwwQvRwyWaPG5SkORYFQU-EpJEaELCSBIIReTXEkdKgQoFBHGOWD82DexzDFgQpr3QWmITthWURZwyrhOIDW4wXEGCGGE8o2KjPYT1QnlpCObLKiRynKnJk5NLeZZnTY2ywjdjNDNLLpNdr1eU1ktjY2zZf0Bsl8WkaGz37Du7J_rztkOPdF9cSAv2Nby_QMuMeBY6tbKolpsu3v_OBh-Axkg1Qo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoALb8R45sANVesj6brjNJg69riwSeNUpY0nNk3txIb4-9gknUBCHLimsVQ5ju0k9vcxdic0hBLjgIPrLRzh45k1iiBwQKtU-R5glKergeEojCfiaSqnFdYpe2GorNL6fuPTv7y1HWlYbTZW83njGZMDDIf00kggK950h9UInQqNvdbu9ePR9jGh6ZquaZzvkIDtnTFlXrD-IPghP0Dn0YroDuS3-PQt5nQP2b5NFnnb_M8Rq0B-zA5KIgZu9-UJe3kwvPJcEwwuMViB5jOCukyXwBdF6qxfixXHgywGFuo_55ZHhmeWr5PGihUYc-Dz3DRgFvkpm3Qfx53YsZwJToZq2KDRZyryRRMTI89VSooAvYgHXgSZmGVKpr4SqDIRYKoD2g1dHcoMcyaM9C6oFIIzVs2LHM4ZT5sQadzjOAOE0EK5WgU6dZuq5ctZS9aZV2oqySygOPFaLJOycmyRkHYT0m5itFtn91uZlYHT-HO2LBcg-WEUCfr7P-Qu_il3y3bj8XCQDHqj_iXboy90fezJK1bdvL3DNeYfm_TG2tcnczvXuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+distributed+flexible+job-shop+scheduling+problem+considering+operation+inspection&rft.jtitle=Expert+systems+with+applications&rft.au=Zhu%2C+Kaikai&rft.au=Gong%2C+Guiliang&rft.au=Peng%2C+Ningtao&rft.au=Zhang%2C+Liqiang&rft.date=2023-08-15&rft.issn=0957-4174&rft.volume=224&rft.spage=119840&rft_id=info:doi/10.1016%2Fj.eswa.2023.119840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_119840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon