Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge
In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we hav...
Saved in:
Published in | Superlattices and microstructures Vol. 159; p. 107052 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we have obtained the eigenenergies and the eigenfunctions of the nanosystem. The hydrostatic pressure and temperature effects as well as the displacement of the donor on the binding energy are investigated. Within the confinement effect, the variation of the dot angle and the radius of the conical quantum dot on the electron-donor properties are evaluated. The numerical findings show that the binding energy is very sensitive to the position of the impurity and the size of the conical quantum dot (radius and dot angle). The position of the donor impurity leads to control the way of the variation of the binding energy versus the conical angle. The study includes the effects of hydrostatic pressure and temperature. It is noted that the binding energy increases with hydrostatic pressure and decreases with temperature. Additionally, the results show that the diamagnetic susceptibility increases with the conical angle and decreases with the dot radius. Therefore, it has an effective influence on the small radius of the quantum cone. In addition, we have examined extensively the possible effect due to change of the geometric angle and different position of impurity on the permanent dipole moment created by the electron and the ionized atom. Our results indicate that the spectrum of the impurity is strongly related to the impurity positions and the dot angle of the nanodot. These different influences allow a good understanding of the spectrum of these nanoparticles, and facilitate the fabrication of new optoelectronic devices.
•A donor atom confined in conical quantum dots with spherical edge.•The pressure dependent Γ-X crossover at the conduction band modifies the barrier potential.•The eigenvalues differential equations have been solved by using a two-dimensional finite difference method.•For the donor atom located at the quantum cone cap center, the binding energy decreases with the geometric parameters.•The average electron-impurity distance depends strongly from the pressure, temperature, and impurity position. |
---|---|
AbstractList | In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we have obtained the eigenenergies and the eigenfunctions of the nanosystem. The hydrostatic pressure and temperature effects as well as the displacement of the donor on the binding energy are investigated. Within the confinement effect, the variation of the dot angle and the radius of the conical quantum dot on the electron-donor properties are evaluated. The numerical findings show that the binding energy is very sensitive to the position of the impurity and the size of the conical quantum dot (radius and dot angle). The position of the donor impurity leads to control the way of the variation of the binding energy versus the conical angle. The study includes the effects of hydrostatic pressure and temperature. It is noted that the binding energy increases with hydrostatic pressure and decreases with temperature. Additionally, the results show that the diamagnetic susceptibility increases with the conical angle and decreases with the dot radius. Therefore, it has an effective influence on the small radius of the quantum cone. In addition, we have examined extensively the possible effect due to change of the geometric angle and different position of impurity on the permanent dipole moment created by the electron and the ionized atom. Our results indicate that the spectrum of the impurity is strongly related to the impurity positions and the dot angle of the nanodot. These different influences allow a good understanding of the spectrum of these nanoparticles, and facilitate the fabrication of new optoelectronic devices.
•A donor atom confined in conical quantum dots with spherical edge.•The pressure dependent Γ-X crossover at the conduction band modifies the barrier potential.•The eigenvalues differential equations have been solved by using a two-dimensional finite difference method.•For the donor atom located at the quantum cone cap center, the binding energy decreases with the geometric parameters.•The average electron-impurity distance depends strongly from the pressure, temperature, and impurity position. |
ArticleNumber | 107052 |
Author | Belamkadem, L. Boussetta, R. El Hadi, M. Laroze, D. Mora-Rey, F. Vinasco, J.A. Mommadi, O. Duque, C.A. El Moussaouy, A. Chnafi, M. Falyouni, F. |
Author_xml | – sequence: 1 givenname: M. surname: Chnafi fullname: Chnafi, M. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 2 givenname: L. surname: Belamkadem fullname: Belamkadem, L. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 3 givenname: O. surname: Mommadi fullname: Mommadi, O. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 4 givenname: R. surname: Boussetta fullname: Boussetta, R. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 5 givenname: M. surname: El Hadi fullname: El Hadi, M. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 6 givenname: A. surname: El Moussaouy fullname: El Moussaouy, A. email: azize10@yahoo.fr organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 7 givenname: F. surname: Falyouni fullname: Falyouni, F. organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco – sequence: 8 givenname: J.A. surname: Vinasco fullname: Vinasco, J.A. organization: Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile – sequence: 9 givenname: D. surname: Laroze fullname: Laroze, D. organization: Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile – sequence: 10 givenname: F. surname: Mora-Rey fullname: Mora-Rey, F. organization: Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia – sequence: 11 givenname: C.A. surname: Duque fullname: Duque, C.A. organization: Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia |
BookMark | eNp9kMtOAyEUhompiW31BVzxAlNhLgyTuDGNWhMTN7omCIeWZgojUE33PriMdeWiLLgczneS_5uhifMOELqmZEEJZTfbRRx2dlGSkuZCS5ryDE0p6VhRsbadoClp665gpGIXaBbjlhDS1bSdou_VQQcfk0xW4SFAjPsAWDqNE-wGCDKNbzAGVIrYOxyHfAv7HfYmt-XdFApcgoCjdesesPaDdAlbhyVW3lkle_yxz6XMaJ_wl02bPGUD4fcL9Bou0bmRfYSrv3OO3h7uX5er4vnl8Wl591yoipBUUNNS0I3mdad03YBhui15VXVcScIYN03ZdO9lxzljrDGmZpKDUWZcrSp1NUf8OFflyDGAEcqOyb1LQdpeUCJGm2IrRptitCmONjNa_kOHYHcyHE5Dt0cIcqhPC0FEZcEp0DZki0J7ewr_AYWjlBs |
CitedBy_id | crossref_primary_10_1088_1742_6596_2924_1_012016 crossref_primary_10_4028_p_Ntm4cY crossref_primary_10_1016_j_jpcs_2025_112670 crossref_primary_10_1016_j_physb_2024_416263 crossref_primary_10_4028_p_NDb2mL crossref_primary_10_1016_j_jmmm_2024_172729 crossref_primary_10_3390_condmat8030071 crossref_primary_10_3390_nano13030550 crossref_primary_10_4028_p_vvEW0o crossref_primary_10_1007_s00339_023_06834_4 crossref_primary_10_4028_p_h1qf09 crossref_primary_10_1016_j_ijleo_2025_172229 crossref_primary_10_19053_01217488_v14_n2_2023_14354 crossref_primary_10_4028_p_ufLk2M crossref_primary_10_1016_j_jmmm_2025_172891 crossref_primary_10_4028_p_BMi4VQ crossref_primary_10_1038_s41598_022_19118_3 crossref_primary_10_4028_p_6h7el8 crossref_primary_10_1016_j_jmmm_2024_172299 crossref_primary_10_1016_j_micrna_2022_207209 crossref_primary_10_1016_j_physleta_2024_129717 crossref_primary_10_1140_epjp_s13360_024_05164_5 crossref_primary_10_1080_14786435_2025_2459921 crossref_primary_10_1016_j_ijleo_2024_171881 crossref_primary_10_1016_j_mssp_2023_107805 crossref_primary_10_1016_j_physb_2023_415009 crossref_primary_10_1016_j_physb_2023_415527 crossref_primary_10_3390_computation11010005 |
Cites_doi | 10.1166/jctn.2011.1675 10.1007/s10948-019-05236-z 10.1016/j.apsusc.2017.07.235 10.1016/j.spmi.2020.106583 10.1103/PhysRevB.27.3494 10.1016/j.spmi.2009.06.014 10.1002/pssb.200405224 10.1142/S0217979218501540 10.1016/j.apsusc.2018.01.195 10.1016/j.cjph.2019.04.005 10.1016/j.spmi.2017.12.043 10.1038/s41598-021-83583-5 10.1016/j.physb.2020.412333 10.1016/j.physe.2019.113903 10.1002/pssb.200672509 10.1002/pssb.200642377 10.1016/j.spmi.2010.04.016 10.1103/PhysRevB.12.5729 10.1088/0953-8984/6/46/019 10.1103/PhysRevB.47.1383 10.1016/j.physe.2021.114642 10.1016/j.physb.2005.10.096 10.1016/j.physb.2009.07.103 10.1016/j.ijengsci.2016.12.004 10.1140/epjb/e2008-00161-6 10.1063/1.350600 10.1016/j.photonics.2019.100725 10.1557/mrc.2019.43 10.1016/j.physb.2005.06.027 10.1080/14786435.2020.1862430 10.1016/j.spmi.2013.01.006 10.1103/PhysRevB.14.5331 10.1016/j.physb.2016.05.028 10.1016/j.spmi.2012.08.005 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.107052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_107052 S0749603621002500 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-1f71ed5d849cd45ef6d7283398ca0668f5259b29886665ff46a8efcfffff7c2d3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:17 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 23 02:47:16 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Conical quantum dot with spherical edge Temperature Impurity binding energy Hydrostatic pressure Dipole moment Diamagnetic susceptibility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1f71ed5d849cd45ef6d7283398ca0668f5259b29886665ff46a8efcfffff7c2d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_spmi_2021_107052 crossref_primary_10_1016_j_spmi_2021_107052 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mora-Ramos, López, Duque (bib31) 2008; 62 Arif, Bera, Ghosh (bib7) 2019; 5 Nakra Mohajer, El Harouny, Ibral, El Khamkhami, Assaid (bib24) 2016; 497 Mommadi, El Moussaouy, El Hadi, Chnafi, Meziani, Duque (bib17) 2021; 101 Boda (bib19) 2020; 145 Elabsy (bib29) 1994; 6 Reuben, Nithiananthi, Jayakumar (bib16) 2009; 46 Raigoza, Duque, Reyes-Gómez, Oliveira (bib33) 2005; 367 Mommadi, El Moussaouy, Chnafi, El Hadi, Nougaoui, Magrez (bib3) 2020; 118 Zeiri, Naifar, Abdi-Ben Nasrallah, Said (bib10) 2019; 36 Khosravi, Vaseghi, Abbasi, Rezaei (bib15) 2020; 33 Duque, López, Mora-Ramos (bib30) 2007; 244 Raigoza, Duque, Porras-Montenegro, Oliveira (bib34) 2006; 371 Koksal, Kilicarslan, Sari, Sokmen (bib5) 2009; 404 Sali, Rezzouk, Es-Sbai, Ouazzani Jamil (bib28) 2019; 57 Iqraoun, Sali, El-Bakkari, Ezzarfi, Mora-Ramos, Duque (bib39) 2021; 96 M’zerd, Janati Edrissi, Chrafih, Rahmani, Khenfouch, Zorkani, Jorio (bib9) 2019; 1292 Lee, Ryu, Lee, Yim (bib6) 2018; 432 Kopf, Herman, Schnoes, Perley, Livescu, Ohring (bib36) 1992; 71 Joseph Sharkey, Yoo, John Peter (bib14) 2010; 48 Chnafi, El Moussaouy, Mommadi, Belamkadem (bib2) 2020; 594 Mommadi, Moussaouy, Belamkadem (bib13) 2020; 95 Mmadi, Rahmani, Zorkani, Jorio (bib4) 2013; 57 Okada (bib11) 2017; 112 El-Yadri, Aghoutane, El Aouami, Feddi, Dujardin, Duque (bib18) 2018; 441 Samara (bib37) 1983; 27 Duque, Restrepo, Duque (bib38) 2012; 52 Yilmaz, Kirak (bib21) 2018; 32 El Aouami, Feddi, El-Yadri, Aghoutane, Dujardin, Duque, Phuc (bib23) 2018; 114 Janati Edrissi, M'Zerd, Zorkani, Rahmani, Chrafih, Jorio (bib12) 2019; 13 Khordad, Vaseghi (bib20) 2019; 59 Reuben, Varshney, Jayakumar (bib25) 2011; 8 Rodríguez, Duque, Trallero-Giner, Vázquez, del Castillo-Mussot, Porras-Montenegro (bib35) 2007; 244 Le Goff, Stébé (bib1) 1993; 47 Welber, Cardona, Kim, Rodriguez (bib26) 1975; 12 Aspnes (bib27) 1976; 14 Aghoutane, El-Yadri, El Aouami, Feddi, Long, Sadoqi, Dujardin, Nguyen, Hieu, Phuc (bib8) 2019; 9 Mora-Ramos, Vinasco, Laroze, Radu, Restrepo, Heyn, Tulupenko, Hieu, Phuc, Ojeda, Morales, Duque (bib22) 2021; 11 Belamkadem, Mommadi, Vinasco, Laroze, El Moussaouy, Chnafi, Duque (bib40) 2021; 129 Morales, Raigoza, Montes, Porras-Montenegro, Duque (bib32) 2004; 241 Janati Edrissi (10.1016/j.spmi.2021.107052_bib12) 2019; 13 Mommadi (10.1016/j.spmi.2021.107052_bib3) 2020; 118 El-Yadri (10.1016/j.spmi.2021.107052_bib18) 2018; 441 Khordad (10.1016/j.spmi.2021.107052_bib20) 2019; 59 Mommadi (10.1016/j.spmi.2021.107052_bib13) 2020; 95 El Aouami (10.1016/j.spmi.2021.107052_bib23) 2018; 114 Le Goff (10.1016/j.spmi.2021.107052_bib1) 1993; 47 Chnafi (10.1016/j.spmi.2021.107052_bib2) 2020; 594 Rodríguez (10.1016/j.spmi.2021.107052_bib35) 2007; 244 Samara (10.1016/j.spmi.2021.107052_bib37) 1983; 27 Reuben (10.1016/j.spmi.2021.107052_bib25) 2011; 8 Mmadi (10.1016/j.spmi.2021.107052_bib4) 2013; 57 Reuben (10.1016/j.spmi.2021.107052_bib16) 2009; 46 Kopf (10.1016/j.spmi.2021.107052_bib36) 1992; 71 Koksal (10.1016/j.spmi.2021.107052_bib5) 2009; 404 Khosravi (10.1016/j.spmi.2021.107052_bib15) 2020; 33 Aghoutane (10.1016/j.spmi.2021.107052_bib8) 2019; 9 Duque (10.1016/j.spmi.2021.107052_bib38) 2012; 52 Mommadi (10.1016/j.spmi.2021.107052_bib17) 2021; 101 Raigoza (10.1016/j.spmi.2021.107052_bib33) 2005; 367 Boda (10.1016/j.spmi.2021.107052_bib19) 2020; 145 Welber (10.1016/j.spmi.2021.107052_bib26) 1975; 12 M’zerd (10.1016/j.spmi.2021.107052_bib9) 2019; 1292 Joseph Sharkey (10.1016/j.spmi.2021.107052_bib14) 2010; 48 Belamkadem (10.1016/j.spmi.2021.107052_bib40) 2021; 129 Zeiri (10.1016/j.spmi.2021.107052_bib10) 2019; 36 Morales (10.1016/j.spmi.2021.107052_bib32) 2004; 241 Okada (10.1016/j.spmi.2021.107052_bib11) 2017; 112 Mora-Ramos (10.1016/j.spmi.2021.107052_bib22) 2021; 11 Aspnes (10.1016/j.spmi.2021.107052_bib27) 1976; 14 Duque (10.1016/j.spmi.2021.107052_bib30) 2007; 244 Iqraoun (10.1016/j.spmi.2021.107052_bib39) 2021; 96 Sali (10.1016/j.spmi.2021.107052_bib28) 2019; 57 Mora-Ramos (10.1016/j.spmi.2021.107052_bib31) 2008; 62 Yilmaz (10.1016/j.spmi.2021.107052_bib21) 2018; 32 Raigoza (10.1016/j.spmi.2021.107052_bib34) 2006; 371 Nakra Mohajer (10.1016/j.spmi.2021.107052_bib24) 2016; 497 Arif (10.1016/j.spmi.2021.107052_bib7) 2019; 5 Lee (10.1016/j.spmi.2021.107052_bib6) 2018; 432 Elabsy (10.1016/j.spmi.2021.107052_bib29) 1994; 6 |
References_xml | – volume: 1292 year: 2019 ident: bib9 article-title: Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots publication-title: J. Phys. Conf. Ser. – volume: 497 start-page: 51 year: 2016 end-page: 58 ident: bib24 article-title: Energies and wave functions of an off-centre donor in hemispherical quantum dot: two-dimensional finite difference approach and Ritz variational principle publication-title: Physica B – volume: 367 start-page: 267 year: 2005 end-page: 274 ident: bib33 article-title: Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells publication-title: Physica B – volume: 47 start-page: 1383 year: 1993 end-page: 1391 ident: bib1 article-title: Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors publication-title: Phys. Rev. B – volume: 8 start-page: 189 year: 2011 end-page: 193 ident: bib25 article-title: Effect of confining potential on the diamagnetic susceptibility of a donor in a spherical quantum dot publication-title: J. Comput. Theor. Nanosci. – volume: 101 start-page: 753 year: 2021 end-page: 775 ident: bib17 article-title: Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects publication-title: Philos. Mag. A – volume: 441 start-page: 204 year: 2018 end-page: 209 ident: bib18 article-title: Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot publication-title: Appl. Surf. Sci. – volume: 5 year: 2019 ident: bib7 article-title: Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay publication-title: Heliyon – volume: 114 start-page: 214 year: 2018 end-page: 224 ident: bib23 article-title: Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge publication-title: Superlattice. Microst. – volume: 118 start-page: 113903 year: 2020 ident: bib3 article-title: Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field publication-title: Phys. E – volume: 11 start-page: 4015 year: 2021 ident: bib22 article-title: Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. a finite-element approach publication-title: Sci. Rep. – volume: 14 start-page: 5331 year: 1976 end-page: 5343 ident: bib27 article-title: GaAs lower conduction-band minima: ordering and properties publication-title: Phys. Rev. B – volume: 96 year: 2021 ident: bib39 article-title: Al publication-title: Phys. Scripta – volume: 244 start-page: 1964 year: 2007 end-page: 1970 ident: bib30 article-title: Γ − publication-title: Phys. Status Solidi B – volume: 48 start-page: 248 year: 2010 end-page: 255 ident: bib14 article-title: Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot publication-title: Superlattice. Microst. – volume: 57 start-page: 483 year: 2019 end-page: 491 ident: bib28 article-title: The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM publication-title: Indian J. Pure Appl. Phys. – volume: 9 start-page: 663 year: 2019 end-page: 669 ident: bib8 article-title: Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure publication-title: MRS Commun. – volume: 32 start-page: 1850154 year: 2018 ident: bib21 article-title: An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature publication-title: Int. J. Mod. Phys. B – volume: 241 start-page: 3224 year: 2004 end-page: 3230 ident: bib32 article-title: Al publication-title: Phys. Status Solidi B – volume: 432 start-page: 255 year: 2018 end-page: 261 ident: bib6 article-title: TiO publication-title: Appl. Surf. Sci. – volume: 13 year: 2019 ident: bib12 article-title: Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot publication-title: J. Nanophotonics – volume: 62 start-page: 257 year: 2008 end-page: 261 ident: bib31 article-title: Γ − publication-title: Eur. Phys. J. B – volume: 59 start-page: 473 year: 2019 end-page: 480 ident: bib20 article-title: Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots publication-title: Chin. J. Phys. – volume: 112 start-page: 32 year: 2017 end-page: 41 ident: bib11 article-title: A theory of dielectric fluid films between nanostructures publication-title: Int. J. Eng. Sci. – volume: 27 start-page: 3494 year: 1983 end-page: 3505 ident: bib37 article-title: Temperature and pressure dependences of the dielectric constants of semiconductors publication-title: Phys. Rev. B – volume: 404 start-page: 3850 year: 2009 end-page: 3854 ident: bib5 article-title: Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires publication-title: Physica B – volume: 52 start-page: 1078 year: 2012 end-page: 1082 ident: bib38 article-title: Tilted electric field effects on the electronic states in a GaAs quantum disk publication-title: Superlattice. Microst. – volume: 129 start-page: 114642 year: 2021 ident: bib40 article-title: Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot publication-title: Phys. E – volume: 594 start-page: 412333 year: 2020 ident: bib2 article-title: Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect publication-title: Physica B – volume: 36 start-page: 100725 year: 2019 ident: bib10 article-title: Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots publication-title: Photonics Nanostruct. – volume: 46 start-page: 710 year: 2009 end-page: 714 ident: bib16 article-title: Effect of laser intensity on the semiconductor–metal transition in a doped quantum well publication-title: Superlattice. Microst. – volume: 371 start-page: 153 year: 2006 end-page: 157 ident: bib34 article-title: Correlated electron-hole transition energies in quantum-well wires: effects of hydrostatic pressure publication-title: Physica B – volume: 33 start-page: 761 year: 2020 end-page: 768 ident: bib15 article-title: Magnetic susceptibility of cylindrical quantum dot with Aharonov-Bohm flux: simultaneous effects of pressure, temperature, and magnetic field publication-title: J. Supercond. Nov. Magnetism – volume: 12 start-page: 5729 year: 1975 end-page: 5738 ident: bib26 article-title: Dependence of the direct energy gap of GaAs on hydrostatic pressure publication-title: Phys. Rev. B – volume: 71 start-page: 5004 year: 1992 end-page: 5011 ident: bib36 article-title: Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GalnAs/AllnAs publication-title: J. Appl. Phys. – volume: 6 start-page: 10025 year: 1994 end-page: 10030 ident: bib29 article-title: Γ − publication-title: J. Phys.-Condens. Mat. – volume: 145 start-page: 106583 year: 2020 ident: bib19 publication-title: Superlattice. Microst. – volume: 57 start-page: 27 year: 2013 end-page: 36 ident: bib4 article-title: Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots publication-title: Superlattice. Microst. – volume: 95 year: 2020 ident: bib13 article-title: Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects publication-title: Phys. Scripta – volume: 244 start-page: 48 year: 2007 end-page: 52 ident: bib35 article-title: Effect of applied hydrostatic pressure on the e-h ground transition in self-assembled InAs/GaAs quantum lens publication-title: Phys. Status Solidi B – volume: 8 start-page: 189 year: 2011 ident: 10.1016/j.spmi.2021.107052_bib25 article-title: Effect of confining potential on the diamagnetic susceptibility of a donor in a spherical quantum dot publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2011.1675 – volume: 33 start-page: 761 year: 2020 ident: 10.1016/j.spmi.2021.107052_bib15 article-title: Magnetic susceptibility of cylindrical quantum dot with Aharonov-Bohm flux: simultaneous effects of pressure, temperature, and magnetic field publication-title: J. Supercond. Nov. Magnetism doi: 10.1007/s10948-019-05236-z – volume: 432 start-page: 255 year: 2018 ident: 10.1016/j.spmi.2021.107052_bib6 article-title: Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.235 – volume: 96 issue: 17pp year: 2021 ident: 10.1016/j.spmi.2021.107052_bib39 article-title: Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-AlxGa1−xAs quantum dots publication-title: Phys. Scripta – volume: 145 start-page: 106583 issue: 9pp year: 2020 ident: 10.1016/j.spmi.2021.107052_bib19 article-title: Temperature and resultant dipole moment of an off-center D− impurity in a Gaussian quantum dot publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106583 – volume: 27 start-page: 3494 year: 1983 ident: 10.1016/j.spmi.2021.107052_bib37 article-title: Temperature and pressure dependences of the dielectric constants of semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.3494 – volume: 46 start-page: 710 year: 2009 ident: 10.1016/j.spmi.2021.107052_bib16 article-title: Effect of laser intensity on the semiconductor–metal transition in a doped quantum well publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2009.06.014 – volume: 241 start-page: 3224 year: 2004 ident: 10.1016/j.spmi.2021.107052_bib32 article-title: Symmetric and asymmetric GaAs/AlxGa1−xAs double quantum well subjected to uniaxial stress and applied electric field publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200405224 – volume: 32 start-page: 1850154 issue: 13pp year: 2018 ident: 10.1016/j.spmi.2021.107052_bib21 article-title: An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979218501540 – volume: 441 start-page: 204 year: 2018 ident: 10.1016/j.spmi.2021.107052_bib18 article-title: Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.195 – volume: 59 start-page: 473 year: 2019 ident: 10.1016/j.spmi.2021.107052_bib20 article-title: Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.04.005 – volume: 95 issue: 8pp year: 2020 ident: 10.1016/j.spmi.2021.107052_bib13 article-title: Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects publication-title: Phys. Scripta – volume: 114 start-page: 214 year: 2018 ident: 10.1016/j.spmi.2021.107052_bib23 article-title: Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2017.12.043 – volume: 11 start-page: 4015 issue: 16pp year: 2021 ident: 10.1016/j.spmi.2021.107052_bib22 article-title: Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. a finite-element approach publication-title: Sci. Rep. doi: 10.1038/s41598-021-83583-5 – volume: 594 start-page: 412333 issue: 6pp year: 2020 ident: 10.1016/j.spmi.2021.107052_bib2 article-title: Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect publication-title: Physica B doi: 10.1016/j.physb.2020.412333 – volume: 118 start-page: 113903 issue: 7pp year: 2020 ident: 10.1016/j.spmi.2021.107052_bib3 article-title: Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field publication-title: Phys. E doi: 10.1016/j.physe.2019.113903 – volume: 244 start-page: 48 year: 2007 ident: 10.1016/j.spmi.2021.107052_bib35 article-title: Effect of applied hydrostatic pressure on the e-h ground transition in self-assembled InAs/GaAs quantum lens publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200672509 – volume: 244 start-page: 1964 year: 2007 ident: 10.1016/j.spmi.2021.107052_bib30 article-title: Hydrostatic pressure effects on the Γ − X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga1−xAlxAs quantum wells publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200642377 – volume: 48 start-page: 248 year: 2010 ident: 10.1016/j.spmi.2021.107052_bib14 article-title: Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2010.04.016 – volume: 12 start-page: 5729 year: 1975 ident: 10.1016/j.spmi.2021.107052_bib26 article-title: Dependence of the direct energy gap of GaAs on hydrostatic pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.12.5729 – volume: 57 start-page: 483 year: 2019 ident: 10.1016/j.spmi.2021.107052_bib28 article-title: The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM publication-title: Indian J. Pure Appl. Phys. – volume: 6 start-page: 10025 year: 1994 ident: 10.1016/j.spmi.2021.107052_bib29 article-title: Effect of the Γ − X crossover on the binding energies of cofined donors in single GaAs/AlxGa1−xAs quantum-well microstructures publication-title: J. Phys.-Condens. Mat. doi: 10.1088/0953-8984/6/46/019 – volume: 47 start-page: 1383 year: 1993 ident: 10.1016/j.spmi.2021.107052_bib1 article-title: Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1383 – volume: 129 start-page: 114642 issue: 8pp year: 2021 ident: 10.1016/j.spmi.2021.107052_bib40 article-title: Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot publication-title: Phys. E doi: 10.1016/j.physe.2021.114642 – volume: 371 start-page: 153 year: 2006 ident: 10.1016/j.spmi.2021.107052_bib34 article-title: Correlated electron-hole transition energies in quantum-well wires: effects of hydrostatic pressure publication-title: Physica B doi: 10.1016/j.physb.2005.10.096 – volume: 404 start-page: 3850 year: 2009 ident: 10.1016/j.spmi.2021.107052_bib5 article-title: Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires publication-title: Physica B doi: 10.1016/j.physb.2009.07.103 – volume: 112 start-page: 32 year: 2017 ident: 10.1016/j.spmi.2021.107052_bib11 article-title: A theory of dielectric fluid films between nanostructures publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2016.12.004 – volume: 62 start-page: 257 year: 2008 ident: 10.1016/j.spmi.2021.107052_bib31 article-title: Γ − X mixing in GaAs-Ga1−xAlxAs quantum wells under hydrostatic pressure publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2008-00161-6 – volume: 71 start-page: 5004 year: 1992 ident: 10.1016/j.spmi.2021.107052_bib36 article-title: Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GalnAs/AllnAs publication-title: J. Appl. Phys. doi: 10.1063/1.350600 – volume: 13 issue: 9pp year: 2019 ident: 10.1016/j.spmi.2021.107052_bib12 article-title: Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot publication-title: J. Nanophotonics – volume: 36 start-page: 100725 issue: 5pp year: 2019 ident: 10.1016/j.spmi.2021.107052_bib10 article-title: Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots publication-title: Photonics Nanostruct. doi: 10.1016/j.photonics.2019.100725 – volume: 9 start-page: 663 year: 2019 ident: 10.1016/j.spmi.2021.107052_bib8 article-title: Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure publication-title: MRS Commun. doi: 10.1557/mrc.2019.43 – volume: 367 start-page: 267 year: 2005 ident: 10.1016/j.spmi.2021.107052_bib33 article-title: Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells publication-title: Physica B doi: 10.1016/j.physb.2005.06.027 – volume: 101 start-page: 753 year: 2021 ident: 10.1016/j.spmi.2021.107052_bib17 article-title: Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects publication-title: Philos. Mag. A doi: 10.1080/14786435.2020.1862430 – volume: 57 start-page: 27 year: 2013 ident: 10.1016/j.spmi.2021.107052_bib4 article-title: Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2013.01.006 – volume: 14 start-page: 5331 year: 1976 ident: 10.1016/j.spmi.2021.107052_bib27 article-title: GaAs lower conduction-band minima: ordering and properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.5331 – volume: 1292 issue: 10pp year: 2019 ident: 10.1016/j.spmi.2021.107052_bib9 article-title: Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots publication-title: J. Phys. Conf. Ser. – volume: 497 start-page: 51 year: 2016 ident: 10.1016/j.spmi.2021.107052_bib24 article-title: Energies and wave functions of an off-centre donor in hemispherical quantum dot: two-dimensional finite difference approach and Ritz variational principle publication-title: Physica B doi: 10.1016/j.physb.2016.05.028 – volume: 52 start-page: 1078 year: 2012 ident: 10.1016/j.spmi.2021.107052_bib38 article-title: Tilted electric field effects on the electronic states in a GaAs quantum disk publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2012.08.005 – volume: 5 issue: 12pp year: 2019 ident: 10.1016/j.spmi.2021.107052_bib7 article-title: Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay publication-title: Heliyon |
SSID | ssj0009417 |
Score | 2.1017184 |
Snippet | In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107052 |
SubjectTerms | Conical quantum dot with spherical edge Diamagnetic susceptibility Dipole moment Hydrostatic pressure Impurity binding energy Temperature |
Title | Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge |
URI | https://dx.doi.org/10.1016/j.spmi.2021.107052 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IVsX6Yg7eZG2TbpLNsRQlKvaigrew2QdWalL7OHjx5A93drPxAeLBHAJZZkLITOax-WaGkJNAswLVJqShNIYyoRkttBBU61gZk6BHcEP7boZxds-uHqKHJTJoamEsrNLb_tqmO2vtVzr-bXYmo1HnFp0fht9ogAPnyG3ezlhitfzs7QvmkTI3ddcSU0vtC2dqjNds8jzCHDEMcCHpRuHvzumbw7nYJBs-UoR-_TBbZEmXLbI2aAa0tciqQ2_K2TZ5z16Vrd6w3VfBIVsXUw2iVGA7T_m2yeChG1CV4Oorp4tnqAyS4dlQi9LUU7BbB2MNCnPpcg6jEgTIytVOwssCl5AH81iw27d4l0f3u2cMdlNuh9xfnN8NMurHK1DZ63bnNDBJoFWkOEulYpE2sUow2OilXAoMRLiJMDUqwpRzTHEiY1gsuDYoUjwSGareLlkuq1LvEShiLk1s0iI1ivGYc9UTkhVJVODnLhLVJkHzXnPpe4_bERjjvAGZPeVWFrmVRV7Lok1OP3kmdeeNP6mjRlz5D_3J0TX8wbf_T74Dsm6v6qrEQ7KMMtNHGJ7Mi2Onf8dkpX95nQ0_AJhG55A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVhVcKgpFbFvoHOCE3N1kncQ59IBo0fK8ABK31PFDLNrNbvehiktP_Uf9g4wdp6VSxaESOeTgeCzbM5rxON_MAOxGhpckNjGLlbWMS8NZaaRkxqTa2owsgi_ad36R9q_5yU1yswS_mlgYB6sMur_W6V5bh5ZO2M3OZDDoXJLxo-M3KeDIG_JuQFaemvvv5LfNPh1_JibvxfHRl6vDPgulBZjqdbtzFtksMjrRgudK88TYVGdkaHu5UJKMsLAJuQVlnAtBx_vEWp5KYSwth55MxbpH4y7DC07qwpVN-PjjD64k577Mr5sdc9MLkTo1qGw2GQ3IKY0jasi6Sfxva_jIwh2twatwNMWDevWvYclU67By2FSEW4eXHi6qZhvws3-vXbiIS_eKHkq7mBqUlUaX6irkacaAFcFxhT6gc7oY4dhSN3pb5mChZorurmJoUJPzXs1xUKFENfbBmvhtQU1EQ44zuvtiGuXW_18aorsFfAPXz7Lpm9CqxpXZAixToWxq8zK3motUCN2TipdZUpJ-kZluQ9Tsa6FCsnNXc2NYNKi2u8LxonC8KGpetGH_N82kTvXxZO-kYVfxl8AWZIueoHv7n3QfYKV_dX5WnB1fnL6DVfelDol8Dy3in9mms9G83PGyiPD1uYX_AeKpJDM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrostatic+pressure+and+temperature+effects+on+spectrum+of+an+off-center+single+dopant+in+a+conical+quantum+dot+with+spherical+edge&rft.jtitle=Superlattices+and+microstructures&rft.au=Chnafi%2C+M.&rft.au=Belamkadem%2C+L.&rft.au=Mommadi%2C+O.&rft.au=Boussetta%2C+R.&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107052&rft_id=info:doi/10.1016%2Fj.spmi.2021.107052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |