Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge

In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we hav...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 159; p. 107052
Main Authors Chnafi, M., Belamkadem, L., Mommadi, O., Boussetta, R., El Hadi, M., El Moussaouy, A., Falyouni, F., Vinasco, J.A., Laroze, D., Mora-Rey, F., Duque, C.A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we have obtained the eigenenergies and the eigenfunctions of the nanosystem. The hydrostatic pressure and temperature effects as well as the displacement of the donor on the binding energy are investigated. Within the confinement effect, the variation of the dot angle and the radius of the conical quantum dot on the electron-donor properties are evaluated. The numerical findings show that the binding energy is very sensitive to the position of the impurity and the size of the conical quantum dot (radius and dot angle). The position of the donor impurity leads to control the way of the variation of the binding energy versus the conical angle. The study includes the effects of hydrostatic pressure and temperature. It is noted that the binding energy increases with hydrostatic pressure and decreases with temperature. Additionally, the results show that the diamagnetic susceptibility increases with the conical angle and decreases with the dot radius. Therefore, it has an effective influence on the small radius of the quantum cone. In addition, we have examined extensively the possible effect due to change of the geometric angle and different position of impurity on the permanent dipole moment created by the electron and the ionized atom. Our results indicate that the spectrum of the impurity is strongly related to the impurity positions and the dot angle of the nanodot. These different influences allow a good understanding of the spectrum of these nanoparticles, and facilitate the fabrication of new optoelectronic devices. •A donor atom confined in conical quantum dots with spherical edge.•The pressure dependent Γ-X crossover at the conduction band modifies the barrier potential.•The eigenvalues differential equations have been solved by using a two-dimensional finite difference method.•For the donor atom located at the quantum cone cap center, the binding energy decreases with the geometric parameters.•The average electron-impurity distance depends strongly from the pressure, temperature, and impurity position.
AbstractList In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite and infinite confinement potential. By considering the effective mass approximation and using the finite difference and elements method, we have obtained the eigenenergies and the eigenfunctions of the nanosystem. The hydrostatic pressure and temperature effects as well as the displacement of the donor on the binding energy are investigated. Within the confinement effect, the variation of the dot angle and the radius of the conical quantum dot on the electron-donor properties are evaluated. The numerical findings show that the binding energy is very sensitive to the position of the impurity and the size of the conical quantum dot (radius and dot angle). The position of the donor impurity leads to control the way of the variation of the binding energy versus the conical angle. The study includes the effects of hydrostatic pressure and temperature. It is noted that the binding energy increases with hydrostatic pressure and decreases with temperature. Additionally, the results show that the diamagnetic susceptibility increases with the conical angle and decreases with the dot radius. Therefore, it has an effective influence on the small radius of the quantum cone. In addition, we have examined extensively the possible effect due to change of the geometric angle and different position of impurity on the permanent dipole moment created by the electron and the ionized atom. Our results indicate that the spectrum of the impurity is strongly related to the impurity positions and the dot angle of the nanodot. These different influences allow a good understanding of the spectrum of these nanoparticles, and facilitate the fabrication of new optoelectronic devices. •A donor atom confined in conical quantum dots with spherical edge.•The pressure dependent Γ-X crossover at the conduction band modifies the barrier potential.•The eigenvalues differential equations have been solved by using a two-dimensional finite difference method.•For the donor atom located at the quantum cone cap center, the binding energy decreases with the geometric parameters.•The average electron-impurity distance depends strongly from the pressure, temperature, and impurity position.
ArticleNumber 107052
Author Belamkadem, L.
Boussetta, R.
El Hadi, M.
Laroze, D.
Mora-Rey, F.
Vinasco, J.A.
Mommadi, O.
Duque, C.A.
El Moussaouy, A.
Chnafi, M.
Falyouni, F.
Author_xml – sequence: 1
  givenname: M.
  surname: Chnafi
  fullname: Chnafi, M.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 2
  givenname: L.
  surname: Belamkadem
  fullname: Belamkadem, L.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 3
  givenname: O.
  surname: Mommadi
  fullname: Mommadi, O.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 4
  givenname: R.
  surname: Boussetta
  fullname: Boussetta, R.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 5
  givenname: M.
  surname: El Hadi
  fullname: El Hadi, M.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 6
  givenname: A.
  surname: El Moussaouy
  fullname: El Moussaouy, A.
  email: azize10@yahoo.fr
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 7
  givenname: F.
  surname: Falyouni
  fullname: Falyouni, F.
  organization: OAPM Group, Laboratory of Materials, Waves, Energy and Environment, Department of Physics, Faculty of Sciences, University Mohamed I, 60000, Oujda, Morocco
– sequence: 8
  givenname: J.A.
  surname: Vinasco
  fullname: Vinasco, J.A.
  organization: Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
– sequence: 9
  givenname: D.
  surname: Laroze
  fullname: Laroze, D.
  organization: Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica, Chile
– sequence: 10
  givenname: F.
  surname: Mora-Rey
  fullname: Mora-Rey, F.
  organization: Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
– sequence: 11
  givenname: C.A.
  surname: Duque
  fullname: Duque, C.A.
  organization: Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
BookMark eNp9kMtOAyEUhompiW31BVzxAlNhLgyTuDGNWhMTN7omCIeWZgojUE33PriMdeWiLLgczneS_5uhifMOELqmZEEJZTfbRRx2dlGSkuZCS5ryDE0p6VhRsbadoClp665gpGIXaBbjlhDS1bSdou_VQQcfk0xW4SFAjPsAWDqNE-wGCDKNbzAGVIrYOxyHfAv7HfYmt-XdFApcgoCjdesesPaDdAlbhyVW3lkle_yxz6XMaJ_wl02bPGUD4fcL9Bou0bmRfYSrv3OO3h7uX5er4vnl8Wl591yoipBUUNNS0I3mdad03YBhui15VXVcScIYN03ZdO9lxzljrDGmZpKDUWZcrSp1NUf8OFflyDGAEcqOyb1LQdpeUCJGm2IrRptitCmONjNa_kOHYHcyHE5Dt0cIcqhPC0FEZcEp0DZki0J7ewr_AYWjlBs
CitedBy_id crossref_primary_10_1088_1742_6596_2924_1_012016
crossref_primary_10_4028_p_Ntm4cY
crossref_primary_10_1016_j_jpcs_2025_112670
crossref_primary_10_1016_j_physb_2024_416263
crossref_primary_10_4028_p_NDb2mL
crossref_primary_10_1016_j_jmmm_2024_172729
crossref_primary_10_3390_condmat8030071
crossref_primary_10_3390_nano13030550
crossref_primary_10_4028_p_vvEW0o
crossref_primary_10_1007_s00339_023_06834_4
crossref_primary_10_4028_p_h1qf09
crossref_primary_10_1016_j_ijleo_2025_172229
crossref_primary_10_19053_01217488_v14_n2_2023_14354
crossref_primary_10_4028_p_ufLk2M
crossref_primary_10_1016_j_jmmm_2025_172891
crossref_primary_10_4028_p_BMi4VQ
crossref_primary_10_1038_s41598_022_19118_3
crossref_primary_10_4028_p_6h7el8
crossref_primary_10_1016_j_jmmm_2024_172299
crossref_primary_10_1016_j_micrna_2022_207209
crossref_primary_10_1016_j_physleta_2024_129717
crossref_primary_10_1140_epjp_s13360_024_05164_5
crossref_primary_10_1080_14786435_2025_2459921
crossref_primary_10_1016_j_ijleo_2024_171881
crossref_primary_10_1016_j_mssp_2023_107805
crossref_primary_10_1016_j_physb_2023_415009
crossref_primary_10_1016_j_physb_2023_415527
crossref_primary_10_3390_computation11010005
Cites_doi 10.1166/jctn.2011.1675
10.1007/s10948-019-05236-z
10.1016/j.apsusc.2017.07.235
10.1016/j.spmi.2020.106583
10.1103/PhysRevB.27.3494
10.1016/j.spmi.2009.06.014
10.1002/pssb.200405224
10.1142/S0217979218501540
10.1016/j.apsusc.2018.01.195
10.1016/j.cjph.2019.04.005
10.1016/j.spmi.2017.12.043
10.1038/s41598-021-83583-5
10.1016/j.physb.2020.412333
10.1016/j.physe.2019.113903
10.1002/pssb.200672509
10.1002/pssb.200642377
10.1016/j.spmi.2010.04.016
10.1103/PhysRevB.12.5729
10.1088/0953-8984/6/46/019
10.1103/PhysRevB.47.1383
10.1016/j.physe.2021.114642
10.1016/j.physb.2005.10.096
10.1016/j.physb.2009.07.103
10.1016/j.ijengsci.2016.12.004
10.1140/epjb/e2008-00161-6
10.1063/1.350600
10.1016/j.photonics.2019.100725
10.1557/mrc.2019.43
10.1016/j.physb.2005.06.027
10.1080/14786435.2020.1862430
10.1016/j.spmi.2013.01.006
10.1103/PhysRevB.14.5331
10.1016/j.physb.2016.05.028
10.1016/j.spmi.2012.08.005
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.107052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_107052
S0749603621002500
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1f71ed5d849cd45ef6d7283398ca0668f5259b29886665ff46a8efcfffff7c2d3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:17 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Conical quantum dot with spherical edge
Temperature
Impurity binding energy
Hydrostatic pressure
Dipole moment
Diamagnetic susceptibility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1f71ed5d849cd45ef6d7283398ca0668f5259b29886665ff46a8efcfffff7c2d3
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2021_107052
crossref_primary_10_1016_j_spmi_2021_107052
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mora-Ramos, López, Duque (bib31) 2008; 62
Arif, Bera, Ghosh (bib7) 2019; 5
Nakra Mohajer, El Harouny, Ibral, El Khamkhami, Assaid (bib24) 2016; 497
Mommadi, El Moussaouy, El Hadi, Chnafi, Meziani, Duque (bib17) 2021; 101
Boda (bib19) 2020; 145
Elabsy (bib29) 1994; 6
Reuben, Nithiananthi, Jayakumar (bib16) 2009; 46
Raigoza, Duque, Reyes-Gómez, Oliveira (bib33) 2005; 367
Mommadi, El Moussaouy, Chnafi, El Hadi, Nougaoui, Magrez (bib3) 2020; 118
Zeiri, Naifar, Abdi-Ben Nasrallah, Said (bib10) 2019; 36
Khosravi, Vaseghi, Abbasi, Rezaei (bib15) 2020; 33
Duque, López, Mora-Ramos (bib30) 2007; 244
Raigoza, Duque, Porras-Montenegro, Oliveira (bib34) 2006; 371
Koksal, Kilicarslan, Sari, Sokmen (bib5) 2009; 404
Sali, Rezzouk, Es-Sbai, Ouazzani Jamil (bib28) 2019; 57
Iqraoun, Sali, El-Bakkari, Ezzarfi, Mora-Ramos, Duque (bib39) 2021; 96
M’zerd, Janati Edrissi, Chrafih, Rahmani, Khenfouch, Zorkani, Jorio (bib9) 2019; 1292
Lee, Ryu, Lee, Yim (bib6) 2018; 432
Kopf, Herman, Schnoes, Perley, Livescu, Ohring (bib36) 1992; 71
Joseph Sharkey, Yoo, John Peter (bib14) 2010; 48
Chnafi, El Moussaouy, Mommadi, Belamkadem (bib2) 2020; 594
Mommadi, Moussaouy, Belamkadem (bib13) 2020; 95
Mmadi, Rahmani, Zorkani, Jorio (bib4) 2013; 57
Okada (bib11) 2017; 112
El-Yadri, Aghoutane, El Aouami, Feddi, Dujardin, Duque (bib18) 2018; 441
Samara (bib37) 1983; 27
Duque, Restrepo, Duque (bib38) 2012; 52
Yilmaz, Kirak (bib21) 2018; 32
El Aouami, Feddi, El-Yadri, Aghoutane, Dujardin, Duque, Phuc (bib23) 2018; 114
Janati Edrissi, M'Zerd, Zorkani, Rahmani, Chrafih, Jorio (bib12) 2019; 13
Khordad, Vaseghi (bib20) 2019; 59
Reuben, Varshney, Jayakumar (bib25) 2011; 8
Rodríguez, Duque, Trallero-Giner, Vázquez, del Castillo-Mussot, Porras-Montenegro (bib35) 2007; 244
Le Goff, Stébé (bib1) 1993; 47
Welber, Cardona, Kim, Rodriguez (bib26) 1975; 12
Aspnes (bib27) 1976; 14
Aghoutane, El-Yadri, El Aouami, Feddi, Long, Sadoqi, Dujardin, Nguyen, Hieu, Phuc (bib8) 2019; 9
Mora-Ramos, Vinasco, Laroze, Radu, Restrepo, Heyn, Tulupenko, Hieu, Phuc, Ojeda, Morales, Duque (bib22) 2021; 11
Belamkadem, Mommadi, Vinasco, Laroze, El Moussaouy, Chnafi, Duque (bib40) 2021; 129
Morales, Raigoza, Montes, Porras-Montenegro, Duque (bib32) 2004; 241
Janati Edrissi (10.1016/j.spmi.2021.107052_bib12) 2019; 13
Mommadi (10.1016/j.spmi.2021.107052_bib3) 2020; 118
El-Yadri (10.1016/j.spmi.2021.107052_bib18) 2018; 441
Khordad (10.1016/j.spmi.2021.107052_bib20) 2019; 59
Mommadi (10.1016/j.spmi.2021.107052_bib13) 2020; 95
El Aouami (10.1016/j.spmi.2021.107052_bib23) 2018; 114
Le Goff (10.1016/j.spmi.2021.107052_bib1) 1993; 47
Chnafi (10.1016/j.spmi.2021.107052_bib2) 2020; 594
Rodríguez (10.1016/j.spmi.2021.107052_bib35) 2007; 244
Samara (10.1016/j.spmi.2021.107052_bib37) 1983; 27
Reuben (10.1016/j.spmi.2021.107052_bib25) 2011; 8
Mmadi (10.1016/j.spmi.2021.107052_bib4) 2013; 57
Reuben (10.1016/j.spmi.2021.107052_bib16) 2009; 46
Kopf (10.1016/j.spmi.2021.107052_bib36) 1992; 71
Koksal (10.1016/j.spmi.2021.107052_bib5) 2009; 404
Khosravi (10.1016/j.spmi.2021.107052_bib15) 2020; 33
Aghoutane (10.1016/j.spmi.2021.107052_bib8) 2019; 9
Duque (10.1016/j.spmi.2021.107052_bib38) 2012; 52
Mommadi (10.1016/j.spmi.2021.107052_bib17) 2021; 101
Raigoza (10.1016/j.spmi.2021.107052_bib33) 2005; 367
Boda (10.1016/j.spmi.2021.107052_bib19) 2020; 145
Welber (10.1016/j.spmi.2021.107052_bib26) 1975; 12
M’zerd (10.1016/j.spmi.2021.107052_bib9) 2019; 1292
Joseph Sharkey (10.1016/j.spmi.2021.107052_bib14) 2010; 48
Belamkadem (10.1016/j.spmi.2021.107052_bib40) 2021; 129
Zeiri (10.1016/j.spmi.2021.107052_bib10) 2019; 36
Morales (10.1016/j.spmi.2021.107052_bib32) 2004; 241
Okada (10.1016/j.spmi.2021.107052_bib11) 2017; 112
Mora-Ramos (10.1016/j.spmi.2021.107052_bib22) 2021; 11
Aspnes (10.1016/j.spmi.2021.107052_bib27) 1976; 14
Duque (10.1016/j.spmi.2021.107052_bib30) 2007; 244
Iqraoun (10.1016/j.spmi.2021.107052_bib39) 2021; 96
Sali (10.1016/j.spmi.2021.107052_bib28) 2019; 57
Mora-Ramos (10.1016/j.spmi.2021.107052_bib31) 2008; 62
Yilmaz (10.1016/j.spmi.2021.107052_bib21) 2018; 32
Raigoza (10.1016/j.spmi.2021.107052_bib34) 2006; 371
Nakra Mohajer (10.1016/j.spmi.2021.107052_bib24) 2016; 497
Arif (10.1016/j.spmi.2021.107052_bib7) 2019; 5
Lee (10.1016/j.spmi.2021.107052_bib6) 2018; 432
Elabsy (10.1016/j.spmi.2021.107052_bib29) 1994; 6
References_xml – volume: 1292
  year: 2019
  ident: bib9
  article-title: Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots
  publication-title: J. Phys. Conf. Ser.
– volume: 497
  start-page: 51
  year: 2016
  end-page: 58
  ident: bib24
  article-title: Energies and wave functions of an off-centre donor in hemispherical quantum dot: two-dimensional finite difference approach and Ritz variational principle
  publication-title: Physica B
– volume: 367
  start-page: 267
  year: 2005
  end-page: 274
  ident: bib33
  article-title: Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells
  publication-title: Physica B
– volume: 47
  start-page: 1383
  year: 1993
  end-page: 1391
  ident: bib1
  article-title: Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 189
  year: 2011
  end-page: 193
  ident: bib25
  article-title: Effect of confining potential on the diamagnetic susceptibility of a donor in a spherical quantum dot
  publication-title: J. Comput. Theor. Nanosci.
– volume: 101
  start-page: 753
  year: 2021
  end-page: 775
  ident: bib17
  article-title: Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects
  publication-title: Philos. Mag. A
– volume: 441
  start-page: 204
  year: 2018
  end-page: 209
  ident: bib18
  article-title: Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot
  publication-title: Appl. Surf. Sci.
– volume: 5
  year: 2019
  ident: bib7
  article-title: Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay
  publication-title: Heliyon
– volume: 114
  start-page: 214
  year: 2018
  end-page: 224
  ident: bib23
  article-title: Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge
  publication-title: Superlattice. Microst.
– volume: 118
  start-page: 113903
  year: 2020
  ident: bib3
  article-title: Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field
  publication-title: Phys. E
– volume: 11
  start-page: 4015
  year: 2021
  ident: bib22
  article-title: Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. a finite-element approach
  publication-title: Sci. Rep.
– volume: 14
  start-page: 5331
  year: 1976
  end-page: 5343
  ident: bib27
  article-title: GaAs lower conduction-band minima: ordering and properties
  publication-title: Phys. Rev. B
– volume: 96
  year: 2021
  ident: bib39
  article-title: Al
  publication-title: Phys. Scripta
– volume: 244
  start-page: 1964
  year: 2007
  end-page: 1970
  ident: bib30
  article-title: Γ −
  publication-title: Phys. Status Solidi B
– volume: 48
  start-page: 248
  year: 2010
  end-page: 255
  ident: bib14
  article-title: Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot
  publication-title: Superlattice. Microst.
– volume: 57
  start-page: 483
  year: 2019
  end-page: 491
  ident: bib28
  article-title: The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM
  publication-title: Indian J. Pure Appl. Phys.
– volume: 9
  start-page: 663
  year: 2019
  end-page: 669
  ident: bib8
  article-title: Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure
  publication-title: MRS Commun.
– volume: 32
  start-page: 1850154
  year: 2018
  ident: bib21
  article-title: An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature
  publication-title: Int. J. Mod. Phys. B
– volume: 241
  start-page: 3224
  year: 2004
  end-page: 3230
  ident: bib32
  article-title: Al
  publication-title: Phys. Status Solidi B
– volume: 432
  start-page: 255
  year: 2018
  end-page: 261
  ident: bib6
  article-title: TiO
  publication-title: Appl. Surf. Sci.
– volume: 13
  year: 2019
  ident: bib12
  article-title: Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot
  publication-title: J. Nanophotonics
– volume: 62
  start-page: 257
  year: 2008
  end-page: 261
  ident: bib31
  article-title: Γ −
  publication-title: Eur. Phys. J. B
– volume: 59
  start-page: 473
  year: 2019
  end-page: 480
  ident: bib20
  article-title: Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots
  publication-title: Chin. J. Phys.
– volume: 112
  start-page: 32
  year: 2017
  end-page: 41
  ident: bib11
  article-title: A theory of dielectric fluid films between nanostructures
  publication-title: Int. J. Eng. Sci.
– volume: 27
  start-page: 3494
  year: 1983
  end-page: 3505
  ident: bib37
  article-title: Temperature and pressure dependences of the dielectric constants of semiconductors
  publication-title: Phys. Rev. B
– volume: 404
  start-page: 3850
  year: 2009
  end-page: 3854
  ident: bib5
  article-title: Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires
  publication-title: Physica B
– volume: 52
  start-page: 1078
  year: 2012
  end-page: 1082
  ident: bib38
  article-title: Tilted electric field effects on the electronic states in a GaAs quantum disk
  publication-title: Superlattice. Microst.
– volume: 129
  start-page: 114642
  year: 2021
  ident: bib40
  article-title: Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot
  publication-title: Phys. E
– volume: 594
  start-page: 412333
  year: 2020
  ident: bib2
  article-title: Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect
  publication-title: Physica B
– volume: 36
  start-page: 100725
  year: 2019
  ident: bib10
  article-title: Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots
  publication-title: Photonics Nanostruct.
– volume: 46
  start-page: 710
  year: 2009
  end-page: 714
  ident: bib16
  article-title: Effect of laser intensity on the semiconductor–metal transition in a doped quantum well
  publication-title: Superlattice. Microst.
– volume: 371
  start-page: 153
  year: 2006
  end-page: 157
  ident: bib34
  article-title: Correlated electron-hole transition energies in quantum-well wires: effects of hydrostatic pressure
  publication-title: Physica B
– volume: 33
  start-page: 761
  year: 2020
  end-page: 768
  ident: bib15
  article-title: Magnetic susceptibility of cylindrical quantum dot with Aharonov-Bohm flux: simultaneous effects of pressure, temperature, and magnetic field
  publication-title: J. Supercond. Nov. Magnetism
– volume: 12
  start-page: 5729
  year: 1975
  end-page: 5738
  ident: bib26
  article-title: Dependence of the direct energy gap of GaAs on hydrostatic pressure
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 5004
  year: 1992
  end-page: 5011
  ident: bib36
  article-title: Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GalnAs/AllnAs
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 10025
  year: 1994
  end-page: 10030
  ident: bib29
  article-title: Γ −
  publication-title: J. Phys.-Condens. Mat.
– volume: 145
  start-page: 106583
  year: 2020
  ident: bib19
  publication-title: Superlattice. Microst.
– volume: 57
  start-page: 27
  year: 2013
  end-page: 36
  ident: bib4
  article-title: Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots
  publication-title: Superlattice. Microst.
– volume: 95
  year: 2020
  ident: bib13
  article-title: Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects
  publication-title: Phys. Scripta
– volume: 244
  start-page: 48
  year: 2007
  end-page: 52
  ident: bib35
  article-title: Effect of applied hydrostatic pressure on the e-h ground transition in self-assembled InAs/GaAs quantum lens
  publication-title: Phys. Status Solidi B
– volume: 8
  start-page: 189
  year: 2011
  ident: 10.1016/j.spmi.2021.107052_bib25
  article-title: Effect of confining potential on the diamagnetic susceptibility of a donor in a spherical quantum dot
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2011.1675
– volume: 33
  start-page: 761
  year: 2020
  ident: 10.1016/j.spmi.2021.107052_bib15
  article-title: Magnetic susceptibility of cylindrical quantum dot with Aharonov-Bohm flux: simultaneous effects of pressure, temperature, and magnetic field
  publication-title: J. Supercond. Nov. Magnetism
  doi: 10.1007/s10948-019-05236-z
– volume: 432
  start-page: 255
  year: 2018
  ident: 10.1016/j.spmi.2021.107052_bib6
  article-title: Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.235
– volume: 96
  issue: 17pp
  year: 2021
  ident: 10.1016/j.spmi.2021.107052_bib39
  article-title: Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-AlxGa1−xAs quantum dots
  publication-title: Phys. Scripta
– volume: 145
  start-page: 106583
  issue: 9pp
  year: 2020
  ident: 10.1016/j.spmi.2021.107052_bib19
  article-title: Temperature and resultant dipole moment of an off-center D− impurity in a Gaussian quantum dot
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106583
– volume: 27
  start-page: 3494
  year: 1983
  ident: 10.1016/j.spmi.2021.107052_bib37
  article-title: Temperature and pressure dependences of the dielectric constants of semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.27.3494
– volume: 46
  start-page: 710
  year: 2009
  ident: 10.1016/j.spmi.2021.107052_bib16
  article-title: Effect of laser intensity on the semiconductor–metal transition in a doped quantum well
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2009.06.014
– volume: 241
  start-page: 3224
  year: 2004
  ident: 10.1016/j.spmi.2021.107052_bib32
  article-title: Symmetric and asymmetric GaAs/AlxGa1−xAs double quantum well subjected to uniaxial stress and applied electric field
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200405224
– volume: 32
  start-page: 1850154
  issue: 13pp
  year: 2018
  ident: 10.1016/j.spmi.2021.107052_bib21
  article-title: An investigation on the effect of impurity position on the binding energy of quantum box under electric field with pressure and temperature
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979218501540
– volume: 441
  start-page: 204
  year: 2018
  ident: 10.1016/j.spmi.2021.107052_bib18
  article-title: Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.01.195
– volume: 59
  start-page: 473
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib20
  article-title: Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2019.04.005
– volume: 95
  issue: 8pp
  year: 2020
  ident: 10.1016/j.spmi.2021.107052_bib13
  article-title: Diamagnetic susceptibility of bound exciton in cylindrical quantum nanodots under hydrostatic pressure and temperature effects
  publication-title: Phys. Scripta
– volume: 114
  start-page: 214
  year: 2018
  ident: 10.1016/j.spmi.2021.107052_bib23
  article-title: Electronic states and optical properties of single donor in GaN conical quantum dot with spherical edge
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2017.12.043
– volume: 11
  start-page: 4015
  issue: 16pp
  year: 2021
  ident: 10.1016/j.spmi.2021.107052_bib22
  article-title: Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. a finite-element approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83583-5
– volume: 594
  start-page: 412333
  issue: 6pp
  year: 2020
  ident: 10.1016/j.spmi.2021.107052_bib2
  article-title: Energy and stability of negatively charged trion in cylindrical quantum dot under temperature effect
  publication-title: Physica B
  doi: 10.1016/j.physb.2020.412333
– volume: 118
  start-page: 113903
  issue: 7pp
  year: 2020
  ident: 10.1016/j.spmi.2021.107052_bib3
  article-title: Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field
  publication-title: Phys. E
  doi: 10.1016/j.physe.2019.113903
– volume: 244
  start-page: 48
  year: 2007
  ident: 10.1016/j.spmi.2021.107052_bib35
  article-title: Effect of applied hydrostatic pressure on the e-h ground transition in self-assembled InAs/GaAs quantum lens
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200672509
– volume: 244
  start-page: 1964
  year: 2007
  ident: 10.1016/j.spmi.2021.107052_bib30
  article-title: Hydrostatic pressure effects on the Γ − X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga1−xAlxAs quantum wells
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200642377
– volume: 48
  start-page: 248
  year: 2010
  ident: 10.1016/j.spmi.2021.107052_bib14
  article-title: Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2010.04.016
– volume: 12
  start-page: 5729
  year: 1975
  ident: 10.1016/j.spmi.2021.107052_bib26
  article-title: Dependence of the direct energy gap of GaAs on hydrostatic pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.12.5729
– volume: 57
  start-page: 483
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib28
  article-title: The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM
  publication-title: Indian J. Pure Appl. Phys.
– volume: 6
  start-page: 10025
  year: 1994
  ident: 10.1016/j.spmi.2021.107052_bib29
  article-title: Effect of the Γ − X crossover on the binding energies of cofined donors in single GaAs/AlxGa1−xAs quantum-well microstructures
  publication-title: J. Phys.-Condens. Mat.
  doi: 10.1088/0953-8984/6/46/019
– volume: 47
  start-page: 1383
  year: 1993
  ident: 10.1016/j.spmi.2021.107052_bib1
  article-title: Influence of longitudinal and lateral confinements on excitons in cylindrical quantum dots of semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1383
– volume: 129
  start-page: 114642
  issue: 8pp
  year: 2021
  ident: 10.1016/j.spmi.2021.107052_bib40
  article-title: Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot
  publication-title: Phys. E
  doi: 10.1016/j.physe.2021.114642
– volume: 371
  start-page: 153
  year: 2006
  ident: 10.1016/j.spmi.2021.107052_bib34
  article-title: Correlated electron-hole transition energies in quantum-well wires: effects of hydrostatic pressure
  publication-title: Physica B
  doi: 10.1016/j.physb.2005.10.096
– volume: 404
  start-page: 3850
  year: 2009
  ident: 10.1016/j.spmi.2021.107052_bib5
  article-title: Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires
  publication-title: Physica B
  doi: 10.1016/j.physb.2009.07.103
– volume: 112
  start-page: 32
  year: 2017
  ident: 10.1016/j.spmi.2021.107052_bib11
  article-title: A theory of dielectric fluid films between nanostructures
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2016.12.004
– volume: 62
  start-page: 257
  year: 2008
  ident: 10.1016/j.spmi.2021.107052_bib31
  article-title: Γ − X mixing in GaAs-Ga1−xAlxAs quantum wells under hydrostatic pressure
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2008-00161-6
– volume: 71
  start-page: 5004
  year: 1992
  ident: 10.1016/j.spmi.2021.107052_bib36
  article-title: Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GalnAs/AllnAs
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.350600
– volume: 13
  issue: 9pp
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib12
  article-title: Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot
  publication-title: J. Nanophotonics
– volume: 36
  start-page: 100725
  issue: 5pp
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib10
  article-title: Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots
  publication-title: Photonics Nanostruct.
  doi: 10.1016/j.photonics.2019.100725
– volume: 9
  start-page: 663
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib8
  article-title: Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.43
– volume: 367
  start-page: 267
  year: 2005
  ident: 10.1016/j.spmi.2021.107052_bib33
  article-title: Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells
  publication-title: Physica B
  doi: 10.1016/j.physb.2005.06.027
– volume: 101
  start-page: 753
  year: 2021
  ident: 10.1016/j.spmi.2021.107052_bib17
  article-title: Stark shift and exciton binding energy in parabolic quantum dots: hydrostatic pressure, temperature, and electric field effects
  publication-title: Philos. Mag. A
  doi: 10.1080/14786435.2020.1862430
– volume: 57
  start-page: 27
  year: 2013
  ident: 10.1016/j.spmi.2021.107052_bib4
  article-title: Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2013.01.006
– volume: 14
  start-page: 5331
  year: 1976
  ident: 10.1016/j.spmi.2021.107052_bib27
  article-title: GaAs lower conduction-band minima: ordering and properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.5331
– volume: 1292
  issue: 10pp
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib9
  article-title: Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots
  publication-title: J. Phys. Conf. Ser.
– volume: 497
  start-page: 51
  year: 2016
  ident: 10.1016/j.spmi.2021.107052_bib24
  article-title: Energies and wave functions of an off-centre donor in hemispherical quantum dot: two-dimensional finite difference approach and Ritz variational principle
  publication-title: Physica B
  doi: 10.1016/j.physb.2016.05.028
– volume: 52
  start-page: 1078
  year: 2012
  ident: 10.1016/j.spmi.2021.107052_bib38
  article-title: Tilted electric field effects on the electronic states in a GaAs quantum disk
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2012.08.005
– volume: 5
  issue: 12pp
  year: 2019
  ident: 10.1016/j.spmi.2021.107052_bib7
  article-title: Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay
  publication-title: Heliyon
SSID ssj0009417
Score 2.1017184
Snippet In this paper we have studied the spectrum of an off-center donor impurity confined in the GaAs conical quantum dot with spherical edge surrounded by finite...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107052
SubjectTerms Conical quantum dot with spherical edge
Diamagnetic susceptibility
Dipole moment
Hydrostatic pressure
Impurity binding energy
Temperature
Title Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge
URI https://dx.doi.org/10.1016/j.spmi.2021.107052
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IVsX6Yg7eZG2TbpLNsRQlKvaigrew2QdWalL7OHjx5A93drPxAeLBHAJZZkLITOax-WaGkJNAswLVJqShNIYyoRkttBBU61gZk6BHcEP7boZxds-uHqKHJTJoamEsrNLb_tqmO2vtVzr-bXYmo1HnFp0fht9ogAPnyG3ezlhitfzs7QvmkTI3ddcSU0vtC2dqjNds8jzCHDEMcCHpRuHvzumbw7nYJBs-UoR-_TBbZEmXLbI2aAa0tciqQ2_K2TZ5z16Vrd6w3VfBIVsXUw2iVGA7T_m2yeChG1CV4Oorp4tnqAyS4dlQi9LUU7BbB2MNCnPpcg6jEgTIytVOwssCl5AH81iw27d4l0f3u2cMdlNuh9xfnN8NMurHK1DZ63bnNDBJoFWkOEulYpE2sUow2OilXAoMRLiJMDUqwpRzTHEiY1gsuDYoUjwSGareLlkuq1LvEShiLk1s0iI1ivGYc9UTkhVJVODnLhLVJkHzXnPpe4_bERjjvAGZPeVWFrmVRV7Lok1OP3kmdeeNP6mjRlz5D_3J0TX8wbf_T74Dsm6v6qrEQ7KMMtNHGJ7Mi2Onf8dkpX95nQ0_AJhG55A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BVhVcKgpFbFvoHOCE3N1kncQ59IBo0fK8ABK31PFDLNrNbvehiktP_Uf9g4wdp6VSxaESOeTgeCzbM5rxON_MAOxGhpckNjGLlbWMS8NZaaRkxqTa2owsgi_ad36R9q_5yU1yswS_mlgYB6sMur_W6V5bh5ZO2M3OZDDoXJLxo-M3KeDIG_JuQFaemvvv5LfNPh1_JibvxfHRl6vDPgulBZjqdbtzFtksMjrRgudK88TYVGdkaHu5UJKMsLAJuQVlnAtBx_vEWp5KYSwth55MxbpH4y7DC07qwpVN-PjjD64k577Mr5sdc9MLkTo1qGw2GQ3IKY0jasi6Sfxva_jIwh2twatwNMWDevWvYclU67By2FSEW4eXHi6qZhvws3-vXbiIS_eKHkq7mBqUlUaX6irkacaAFcFxhT6gc7oY4dhSN3pb5mChZorurmJoUJPzXs1xUKFENfbBmvhtQU1EQ44zuvtiGuXW_18aorsFfAPXz7Lpm9CqxpXZAixToWxq8zK3motUCN2TipdZUpJ-kZluQ9Tsa6FCsnNXc2NYNKi2u8LxonC8KGpetGH_N82kTvXxZO-kYVfxl8AWZIueoHv7n3QfYKV_dX5WnB1fnL6DVfelDol8Dy3in9mms9G83PGyiPD1uYX_AeKpJDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrostatic+pressure+and+temperature+effects+on+spectrum+of+an+off-center+single+dopant+in+a+conical+quantum+dot+with+spherical+edge&rft.jtitle=Superlattices+and+microstructures&rft.au=Chnafi%2C+M.&rft.au=Belamkadem%2C+L.&rft.au=Mommadi%2C+O.&rft.au=Boussetta%2C+R.&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107052&rft_id=info:doi/10.1016%2Fj.spmi.2021.107052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon