On energy tests of normality
The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypoth...
Saved in:
Published in | Journal of statistical planning and inference Vol. 213; pp. 1 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3758 1873-1171 |
DOI | 10.1016/j.jspi.2020.11.001 |
Cover
Loading…
Abstract | The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypothesis of normality. The parameters of the limit distribution are the eigenvalues of the integral operator determined by the energy distance. Although a Monte Carlo approach provides excellent approximations to the sampling distribution of the test statistic for finite samples, in this work we develop two methods to obtain the eigenvalues and the asymptotic distribution of the energy test statistic. We derive the explicit integral equations for the eigenvalue problem for the simple and composite hypotheses of normality and solve them by a variation of Nyström’s method. For the simple hypothesis, we also obtain the eigenvalues by an empirical approach which we call the sample kernel method. Numerical results are summarized in tables of derived eigenvalues for several cases. The resulting probability distribution in each case is obtained by Imhof’s method. We also include simulation results that illustrate that for large samples the derived limit distribution is quite accurate in the upper tail. Software is available in the energy package for R to implement the tests by the original (Monte Carlo) approach and by applying the new methods using the derived asymptotic distribution.
•The energy test of normality is an affine invariant consistent test based on energy distance.•Parameters of the limit distribution are eigenvalues of an integral operator.•Derive integral equations for simple and composite hypotheses of normality.•Solve them numerically for four cases of known or estimated parameters.•Software available in the energy package for R. |
---|---|
AbstractList | The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypothesis of normality. The parameters of the limit distribution are the eigenvalues of the integral operator determined by the energy distance. Although a Monte Carlo approach provides excellent approximations to the sampling distribution of the test statistic for finite samples, in this work we develop two methods to obtain the eigenvalues and the asymptotic distribution of the energy test statistic. We derive the explicit integral equations for the eigenvalue problem for the simple and composite hypotheses of normality and solve them by a variation of Nyström’s method. For the simple hypothesis, we also obtain the eigenvalues by an empirical approach which we call the sample kernel method. Numerical results are summarized in tables of derived eigenvalues for several cases. The resulting probability distribution in each case is obtained by Imhof’s method. We also include simulation results that illustrate that for large samples the derived limit distribution is quite accurate in the upper tail. Software is available in the energy package for R to implement the tests by the original (Monte Carlo) approach and by applying the new methods using the derived asymptotic distribution.
•The energy test of normality is an affine invariant consistent test based on energy distance.•Parameters of the limit distribution are eigenvalues of an integral operator.•Derive integral equations for simple and composite hypotheses of normality.•Solve them numerically for four cases of known or estimated parameters.•Software available in the energy package for R. |
Author | Rizzo, Maria L. Székely, Gábor J. Móri, Tamás F. |
Author_xml | – sequence: 1 givenname: Tamás F. surname: Móri fullname: Móri, Tamás F. email: tfmori@gmail.com organization: Rényi Institute of Mathematics, Budapest, Hungary – sequence: 2 givenname: Gábor J. surname: Székely fullname: Székely, Gábor J. email: gszekely@nsf.gov organization: Rényi Institute of Mathematics, Budapest, Hungary – sequence: 3 givenname: Maria L. surname: Rizzo fullname: Rizzo, Maria L. email: mrizzo@bgsu.edu organization: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA |
BookMark | eNp9z1FLwzAQwPEgE-ymX0B86BdovWvaJgFfZOgUBnvR5xDTq6R06UiCsG9vx3zyYfdycPA7-C_Zwk-eGLtHKBGwfRzKIR5cWUE1H7AEwCuWoRS8QBS4YBlwIQsuGnnDljEOME8LTcYedj4nT-H7mCeKKeZTn_sp7M3o0vGWXfdmjHT3t1fs8_XlY_1WbHeb9_XztrAcIBXYVUrWVhlp7FdrJLdN04maS1OjVKIn2yireMVbJEWyq4xUUrU1Ee9BQMtXTJ7_2jDFGKjX1iWT3ORTMG7UCPpUqQd9qtSnSo2o58qZVv_oIbi9CcfL6OmMaI76cRR0tI68pc4Fskl3k7vEfwFppWwg |
CitedBy_id | crossref_primary_10_3758_s13428_023_02287_y crossref_primary_10_20982_tqmp_19_4_p302 crossref_primary_10_1007_s11749_020_00741_z crossref_primary_10_1080_02331888_2021_1998054 crossref_primary_10_1016_j_jmva_2022_105140 crossref_primary_10_1007_s00184_022_00891_0 crossref_primary_10_1016_j_chbr_2024_100530 crossref_primary_10_1111_jtsa_12713 crossref_primary_10_1016_j_cviu_2023_103748 crossref_primary_10_1214_22_STS873 |
Cites_doi | 10.1214/aos/1176349948 10.1093/biomet/70.3.723 10.1080/03610918.2015.1011334 10.1016/j.csda.2009.11.025 10.1080/00949655.2012.739620 10.1103/PhysRev.28.1049 10.1093/biomet/52.3-4.591 10.1016/j.jmva.2003.12.002 10.1111/j.2517-6161.1976.tb01566.x 10.1214/aos/1176348894 10.1016/j.csda.2010.12.004 10.1093/biomet/48.3-4.419 10.1007/s00440-003-0262-6 10.1214/aoms/1177729437 10.1080/01621459.1972.10481232 10.1080/03610929008830400 10.1007/s00362-002-0119-6 10.1093/biomet/22.1-2.239 10.1016/j.jspi.2013.03.018 10.2307/3318636 10.1006/jmva.1997.1684 10.1080/10618600.2017.1328364 10.1080/01621459.1973.10481358 10.1093/biomet/57.3.519 10.1090/S0025-5718-1981-0606510-2 10.1080/03610929408831303 10.1090/S0002-9939-96-03691-X 10.1007/BF02613322 10.1080/01621459.1993.10476304 10.11648/j.ajtas.20160501.12 10.1016/S0167-7152(03)00169-X 10.1016/0378-3758(94)00058-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jspi.2020.11.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1873-1171 |
EndPage | 15 |
ExternalDocumentID | 10_1016_j_jspi_2020_11_001 S0378375820301154 |
GrantInformation_xml | – fundername: National Science Foundation, USA funderid: http://dx.doi.org/10.13039/100000001 – fundername: Hungarian National Research, Development and Innovation Office NKFIH, Hungary grantid: K125569 funderid: http://dx.doi.org/10.13039/501100011019 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6P2 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEHJ ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A NHB O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH VH1 WUQ XFK ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-1d2984c9a8acb6a83c55d7438a41897fec59c932361e9e8d2a898964ee3f07063 |
IEDL.DBID | .~1 |
ISSN | 0378-3758 |
IngestDate | Tue Jul 01 00:30:11 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Fri Feb 23 02:48:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Eigenvalues Gaussian quadratic form Multivariate normality 62F03 Goodness-of-fit Energy statistics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1d2984c9a8acb6a83c55d7438a41897fec59c932361e9e8d2a898964ee3f07063 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jspi_2020_11_001 crossref_primary_10_1016_j_jspi_2020_11_001 elsevier_sciencedirect_doi_10_1016_j_jspi_2020_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of statistical planning and inference |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Das, Imon (b7) 2016; 5 Székely, Rizzo (b36) 2013; 143 Mardia (b23) 1974; 36 Anderson, Darling (b1) 1952; 23 Duchesne, Lafaye De Micheaux (b8) 2010; 54 Fisher (b10) 1930; 130 Sarkadi, Tusnády (b29) 1977 Malkovich, Afifi (b21) 1973; 68 Schrödinger (b30) 1926; 28 Lehmann (b20) 1983 Tenreiro (b37) 2011; 55 Mersmann (b24) 2019 Koltchinskii, Giné (b18) 2000; 6 Henze, Zirkler (b15) 1990; 19 Xue, Liang (b41) 2017; 26 Csörgő (b6) 1986; 14 Henze, Visagie (b13) 2019; 5 Sloan (b33) 1981; 36 Mardia (b22) 1970; 57 Rizzo (b27) 2002 Zhu, Wong, Fan (b42) 1995; 45 Henze, Wagner (b14) 1997; 62 Pearson (b25) 1930; 22 Rizzo, Székely (b28) 2020 Baringhaus (b2) 1996; 124 Henze (b11) 1994; 23 Epps, Pulley (b9) 1983; 70 Shapiro, Francia (b31) 1972; 67 Henze (b12) 2002; 43 Székely, Bakirov (b34) 2003; 126 Thas, Ottoy (b39) 2003; 64 Joenssen, Vogel (b17) 2014; 84 Tenreiro (b38) 2017; 46 (b26) 2019 Baringhaus, Henze (b4) 1992; 20 Vasicek (b40) 1976; 38 Baringhaus, Henze (b3) 1988; 35 Bowman, Foster (b5) 1993; 88 Szekely, Rizzo (b35) 2005; 93 Koroljuk, Borovskich (b19) 1994; vol. 273 Imhof (b16) 1961; 48 Shapiro, Wilk (b32) 1965; 52 Tenreiro (10.1016/j.jspi.2020.11.001_b37) 2011; 55 Henze (10.1016/j.jspi.2020.11.001_b12) 2002; 43 Henze (10.1016/j.jspi.2020.11.001_b15) 1990; 19 Mersmann (10.1016/j.jspi.2020.11.001_b24) 2019 Imhof (10.1016/j.jspi.2020.11.001_b16) 1961; 48 Székely (10.1016/j.jspi.2020.11.001_b36) 2013; 143 Das (10.1016/j.jspi.2020.11.001_b7) 2016; 5 Pearson (10.1016/j.jspi.2020.11.001_b25) 1930; 22 Henze (10.1016/j.jspi.2020.11.001_b11) 1994; 23 Shapiro (10.1016/j.jspi.2020.11.001_b31) 1972; 67 (10.1016/j.jspi.2020.11.001_b26) 2019 Thas (10.1016/j.jspi.2020.11.001_b39) 2003; 64 Koltchinskii (10.1016/j.jspi.2020.11.001_b18) 2000; 6 Szekely (10.1016/j.jspi.2020.11.001_b35) 2005; 93 Baringhaus (10.1016/j.jspi.2020.11.001_b4) 1992; 20 Bowman (10.1016/j.jspi.2020.11.001_b5) 1993; 88 Xue (10.1016/j.jspi.2020.11.001_b41) 2017; 26 Koroljuk (10.1016/j.jspi.2020.11.001_b19) 1994; vol. 273 Rizzo (10.1016/j.jspi.2020.11.001_b27) 2002 Vasicek (10.1016/j.jspi.2020.11.001_b40) 1976; 38 Csörgő (10.1016/j.jspi.2020.11.001_b6) 1986; 14 Székely (10.1016/j.jspi.2020.11.001_b34) 2003; 126 Joenssen (10.1016/j.jspi.2020.11.001_b17) 2014; 84 Lehmann (10.1016/j.jspi.2020.11.001_b20) 1983 Baringhaus (10.1016/j.jspi.2020.11.001_b3) 1988; 35 Epps (10.1016/j.jspi.2020.11.001_b9) 1983; 70 Henze (10.1016/j.jspi.2020.11.001_b14) 1997; 62 Malkovich (10.1016/j.jspi.2020.11.001_b21) 1973; 68 Mardia (10.1016/j.jspi.2020.11.001_b23) 1974; 36 Baringhaus (10.1016/j.jspi.2020.11.001_b2) 1996; 124 Shapiro (10.1016/j.jspi.2020.11.001_b32) 1965; 52 Henze (10.1016/j.jspi.2020.11.001_b13) 2019; 5 Mardia (10.1016/j.jspi.2020.11.001_b22) 1970; 57 Tenreiro (10.1016/j.jspi.2020.11.001_b38) 2017; 46 Sloan (10.1016/j.jspi.2020.11.001_b33) 1981; 36 Sarkadi (10.1016/j.jspi.2020.11.001_b29) 1977 Anderson (10.1016/j.jspi.2020.11.001_b1) 1952; 23 Schrödinger (10.1016/j.jspi.2020.11.001_b30) 1926; 28 Fisher (10.1016/j.jspi.2020.11.001_b10) 1930; 130 Rizzo (10.1016/j.jspi.2020.11.001_b28) 2020 Zhu (10.1016/j.jspi.2020.11.001_b42) 1995; 45 Duchesne (10.1016/j.jspi.2020.11.001_b8) 2010; 54 |
References_xml | – volume: 35 start-page: 339 year: 1988 end-page: 348 ident: b3 article-title: A consistent test for multivariate normality based on the empirical characteristic function publication-title: Metrika – volume: 93 start-page: 58 year: 2005 end-page: 80 ident: b35 article-title: A new test for multivariate normality publication-title: J. Multivariate Anal. – volume: 46 start-page: 1746 year: 2017 end-page: 1759 ident: b38 article-title: A new test for multivariate normality by combining extreme and nonextreme BHEP tests publication-title: Commun. Stat.–Simul. Comput. – volume: 14 start-page: 708 year: 1986 end-page: 723 ident: b6 article-title: Testing for normality in arbitrary dimension publication-title: Ann. Statist. – volume: 19 start-page: 3595 year: 1990 end-page: 3617 ident: b15 article-title: A class of invariant and consistent tests for multivariate normality publication-title: Commun. Stat.: Theory Methods – volume: 130 start-page: 16 year: 1930 end-page: 28 ident: b10 article-title: The moments of the distribution for normal samples of measures of departure from normality publication-title: Proc. R. Soc. Lond. – volume: 124 start-page: 3875 year: 1996 end-page: 3884 ident: b2 article-title: Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes publication-title: Proc. Amer. Math. Soc. – volume: 84 start-page: 1055 year: 2014 end-page: 1078 ident: b17 article-title: A power study of goodness-of-fit tests for multivariate normality implemented in r publication-title: J. Stat. Comput. Simul. – volume: 22 start-page: 239 year: 1930 end-page: 249 ident: b25 article-title: A further development of tests for normality publication-title: Biometrika – volume: 36 start-page: 115 year: 1974 end-page: 128 ident: b23 article-title: Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies publication-title: Sankhya A – volume: vol. 273 year: 1994 ident: b19 publication-title: Theory of U-Statistics, Mathematics and Its Applications – volume: 57 start-page: 519 year: 1970 end-page: 530 ident: b22 article-title: Measures of multivariate skewness and kurtosis with applications publication-title: Biometrika – volume: 48 start-page: 419 year: 1961 end-page: 426 ident: b16 article-title: Computing the distribution of quadratic forms in normal variables publication-title: Biometrika – volume: 68 start-page: 176 year: 1973 end-page: 179 ident: b21 article-title: On tests for multivariate normality publication-title: J. Amer. Statist. Assoc. – year: 2019 ident: b26 article-title: R: A Language and Environment for Statistical Computing – volume: 62 start-page: 1 year: 1997 end-page: 23 ident: b14 article-title: A new approach to the BHEP tests for multivariate normality publication-title: J. Multivariate Anal. – volume: 20 start-page: 1889 year: 1992 end-page: 1902 ident: b4 article-title: Limit distributions for mardia’s measure of multivariate skewness publication-title: Ann. Statist. – volume: 143 start-page: 1249 year: 2013 end-page: 1272 ident: b36 article-title: Energy statistics: A class of statistics based on distances publication-title: J. Statist. Plann. Inference – volume: 23 start-page: 193 year: 1952 end-page: 212 ident: b1 article-title: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes publication-title: Ann. Math. Statist. – volume: 67 start-page: 215 year: 1972 end-page: 216 ident: b31 article-title: An approximate analysis of variance test for normality publication-title: J. Amer. Statist. Assoc. – volume: 52 start-page: 591 year: 1965 end-page: 611 ident: b32 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika – volume: 5 start-page: 5 year: 2016 end-page: 12 ident: b7 article-title: A brief review of tests for normality publication-title: Amer. J. Theor. Appl. Statist. – volume: 36 start-page: 511 year: 1981 end-page: 523 ident: b33 article-title: Quadrature methods for integral equations of the second kind over infinite intervals publication-title: Math. Comp. – volume: 26 start-page: 803 year: 2017 end-page: 813 ident: b41 article-title: A robust model-free feature screening method for ultrahigh-dimensional data publication-title: J. Comput. Graph. Statist. – volume: 45 start-page: 373 year: 1995 end-page: 385 ident: b42 article-title: A test for multivariate normality based on sample entropy and projection pursuit publication-title: J. Statist. Plann. Inference – volume: 23 start-page: 1031 year: 1994 end-page: 1045 ident: b11 article-title: On mardia’s kurtosis test for multivariate normality publication-title: Commun. Stat. Theory Methods – volume: 55 start-page: 1980 year: 2011 end-page: 1992 ident: b37 article-title: An affine invariant multiple test procedure for assessing multivariate normality publication-title: Comput. Statist. Data Anal. – volume: 54 start-page: 858 year: 2010 end-page: 862 ident: b8 article-title: Computing the distribution of quadratic forms: Further comparisons between the liu-tang-zhang approximation and exact methods publication-title: Comput. Statist. Data Anal. – volume: 43 start-page: 467 year: 2002 end-page: 506 ident: b12 article-title: Invariant tests for multivariate normality: a critical review publication-title: Statist. Pap. – start-page: 99 year: 1977 end-page: 118 ident: b29 article-title: Testing for normality and for exponential distribution publication-title: Proc. Fifth Conference on Probability Theory 1974, Brasov – volume: 70 start-page: 723 year: 1983 end-page: 726 ident: b9 article-title: A test for normality based on the empirical characteristic function publication-title: Biometrika – year: 2019 ident: b24 article-title: Microbenchmark: Accurate timing functions. R package version 1.4-7 – year: 2002 ident: b27 article-title: A New Rotation Invariant Goodness-of-Fit Test – year: 2020 ident: b28 article-title: eNergy: E-statistics: multivariate inference via the energy of data (R package version 1.7-8) – volume: 28 start-page: 1049 year: 1926 end-page: 1070 ident: b30 article-title: An undulatory theory of the mechanics of atoms and molecules publication-title: Phys. Rev. – volume: 38 start-page: 54 year: 1976 end-page: 59 ident: b40 article-title: A test for normality based on sample entropy publication-title: J. R. Stat. Soc. Ser. B – volume: 88 start-page: 529 year: 1993 end-page: 537 ident: b5 article-title: Adaptive smoothing and density based tests of multivariate normality publication-title: J. Amer. Statist. Assoc. – year: 1983 ident: b20 article-title: Theory of Point Estimation – volume: 126 start-page: 184 year: 2003 end-page: 202 ident: b34 article-title: Extremal probabilities for Gaussian quadratic forms publication-title: Probab. Theory Related Fields – volume: 5 start-page: 1 year: 2019 end-page: 28 ident: b13 article-title: Testing for normality in any dimension based on a partial differential equation involving the moment generating function publication-title: Ann. Inst. Statist. Math. – volume: 6 start-page: 113 year: 2000 end-page: 167 ident: b18 article-title: Random matrix approximation of spectra of integral operators publication-title: Bernoulli – volume: 64 start-page: 255 year: 2003 end-page: 261 ident: b39 article-title: Some generalizations of the Anderson–Darling statistic publication-title: Statist. Probab. Lett. – volume: 14 start-page: 708 issue: 2 year: 1986 ident: 10.1016/j.jspi.2020.11.001_b6 article-title: Testing for normality in arbitrary dimension publication-title: Ann. Statist. doi: 10.1214/aos/1176349948 – volume: 70 start-page: 723 year: 1983 ident: 10.1016/j.jspi.2020.11.001_b9 article-title: A test for normality based on the empirical characteristic function publication-title: Biometrika doi: 10.1093/biomet/70.3.723 – volume: 46 start-page: 1746 issue: 3 year: 2017 ident: 10.1016/j.jspi.2020.11.001_b38 article-title: A new test for multivariate normality by combining extreme and nonextreme BHEP tests publication-title: Commun. Stat.–Simul. Comput. doi: 10.1080/03610918.2015.1011334 – volume: 54 start-page: 858 year: 2010 ident: 10.1016/j.jspi.2020.11.001_b8 article-title: Computing the distribution of quadratic forms: Further comparisons between the liu-tang-zhang approximation and exact methods publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2009.11.025 – volume: 84 start-page: 1055 issue: 5 year: 2014 ident: 10.1016/j.jspi.2020.11.001_b17 article-title: A power study of goodness-of-fit tests for multivariate normality implemented in r publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2012.739620 – year: 2019 ident: 10.1016/j.jspi.2020.11.001_b24 – volume: 28 start-page: 1049 issue: 6 year: 1926 ident: 10.1016/j.jspi.2020.11.001_b30 article-title: An undulatory theory of the mechanics of atoms and molecules publication-title: Phys. Rev. doi: 10.1103/PhysRev.28.1049 – volume: 52 start-page: 591 issue: 3–4 year: 1965 ident: 10.1016/j.jspi.2020.11.001_b32 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 93 start-page: 58 issue: 1 year: 2005 ident: 10.1016/j.jspi.2020.11.001_b35 article-title: A new test for multivariate normality publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2003.12.002 – volume: 38 start-page: 54 issue: 1 year: 1976 ident: 10.1016/j.jspi.2020.11.001_b40 article-title: A test for normality based on sample entropy publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1976.tb01566.x – year: 1983 ident: 10.1016/j.jspi.2020.11.001_b20 – year: 2020 ident: 10.1016/j.jspi.2020.11.001_b28 – start-page: 99 year: 1977 ident: 10.1016/j.jspi.2020.11.001_b29 article-title: Testing for normality and for exponential distribution – year: 2019 ident: 10.1016/j.jspi.2020.11.001_b26 – volume: 20 start-page: 1889 year: 1992 ident: 10.1016/j.jspi.2020.11.001_b4 article-title: Limit distributions for mardia’s measure of multivariate skewness publication-title: Ann. Statist. doi: 10.1214/aos/1176348894 – volume: 55 start-page: 1980 issue: 5 year: 2011 ident: 10.1016/j.jspi.2020.11.001_b37 article-title: An affine invariant multiple test procedure for assessing multivariate normality publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.12.004 – volume: 48 start-page: 419 issue: 3–4 year: 1961 ident: 10.1016/j.jspi.2020.11.001_b16 article-title: Computing the distribution of quadratic forms in normal variables publication-title: Biometrika doi: 10.1093/biomet/48.3-4.419 – volume: 126 start-page: 184 year: 2003 ident: 10.1016/j.jspi.2020.11.001_b34 article-title: Extremal probabilities for Gaussian quadratic forms publication-title: Probab. Theory Related Fields doi: 10.1007/s00440-003-0262-6 – volume: 23 start-page: 193 issue: 2 year: 1952 ident: 10.1016/j.jspi.2020.11.001_b1 article-title: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729437 – volume: 67 start-page: 215 year: 1972 ident: 10.1016/j.jspi.2020.11.001_b31 article-title: An approximate analysis of variance test for normality publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1972.10481232 – volume: 19 start-page: 3595 year: 1990 ident: 10.1016/j.jspi.2020.11.001_b15 article-title: A class of invariant and consistent tests for multivariate normality publication-title: Commun. Stat.: Theory Methods doi: 10.1080/03610929008830400 – volume: 43 start-page: 467 issue: 4 year: 2002 ident: 10.1016/j.jspi.2020.11.001_b12 article-title: Invariant tests for multivariate normality: a critical review publication-title: Statist. Pap. doi: 10.1007/s00362-002-0119-6 – volume: 22 start-page: 239 year: 1930 ident: 10.1016/j.jspi.2020.11.001_b25 article-title: A further development of tests for normality publication-title: Biometrika doi: 10.1093/biomet/22.1-2.239 – volume: 143 start-page: 1249 issue: 8 year: 2013 ident: 10.1016/j.jspi.2020.11.001_b36 article-title: Energy statistics: A class of statistics based on distances publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2013.03.018 – volume: 6 start-page: 113 issue: 1 year: 2000 ident: 10.1016/j.jspi.2020.11.001_b18 article-title: Random matrix approximation of spectra of integral operators publication-title: Bernoulli doi: 10.2307/3318636 – volume: 62 start-page: 1 year: 1997 ident: 10.1016/j.jspi.2020.11.001_b14 article-title: A new approach to the BHEP tests for multivariate normality publication-title: J. Multivariate Anal. doi: 10.1006/jmva.1997.1684 – volume: 36 start-page: 115 year: 1974 ident: 10.1016/j.jspi.2020.11.001_b23 article-title: Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies publication-title: Sankhya A – volume: 26 start-page: 803 issue: 4 year: 2017 ident: 10.1016/j.jspi.2020.11.001_b41 article-title: A robust model-free feature screening method for ultrahigh-dimensional data publication-title: J. Comput. Graph. Statist. doi: 10.1080/10618600.2017.1328364 – volume: 5 start-page: 1 issue: 2019 year: 2019 ident: 10.1016/j.jspi.2020.11.001_b13 article-title: Testing for normality in any dimension based on a partial differential equation involving the moment generating function publication-title: Ann. Inst. Statist. Math. – volume: 68 start-page: 176 issue: 341 year: 1973 ident: 10.1016/j.jspi.2020.11.001_b21 article-title: On tests for multivariate normality publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1973.10481358 – volume: 130 start-page: 16 year: 1930 ident: 10.1016/j.jspi.2020.11.001_b10 article-title: The moments of the distribution for normal samples of measures of departure from normality publication-title: Proc. R. Soc. Lond. – volume: 57 start-page: 519 year: 1970 ident: 10.1016/j.jspi.2020.11.001_b22 article-title: Measures of multivariate skewness and kurtosis with applications publication-title: Biometrika doi: 10.1093/biomet/57.3.519 – volume: 36 start-page: 511 issue: 154 year: 1981 ident: 10.1016/j.jspi.2020.11.001_b33 article-title: Quadrature methods for integral equations of the second kind over infinite intervals publication-title: Math. Comp. doi: 10.1090/S0025-5718-1981-0606510-2 – volume: vol. 273 year: 1994 ident: 10.1016/j.jspi.2020.11.001_b19 – volume: 23 start-page: 1031 year: 1994 ident: 10.1016/j.jspi.2020.11.001_b11 article-title: On mardia’s kurtosis test for multivariate normality publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610929408831303 – volume: 124 start-page: 3875 issue: 12 year: 1996 ident: 10.1016/j.jspi.2020.11.001_b2 article-title: Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-96-03691-X – year: 2002 ident: 10.1016/j.jspi.2020.11.001_b27 – volume: 35 start-page: 339 year: 1988 ident: 10.1016/j.jspi.2020.11.001_b3 article-title: A consistent test for multivariate normality based on the empirical characteristic function publication-title: Metrika doi: 10.1007/BF02613322 – volume: 88 start-page: 529 year: 1993 ident: 10.1016/j.jspi.2020.11.001_b5 article-title: Adaptive smoothing and density based tests of multivariate normality publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1993.10476304 – volume: 5 start-page: 5 issue: 1 year: 2016 ident: 10.1016/j.jspi.2020.11.001_b7 article-title: A brief review of tests for normality publication-title: Amer. J. Theor. Appl. Statist. doi: 10.11648/j.ajtas.20160501.12 – volume: 64 start-page: 255 year: 2003 ident: 10.1016/j.jspi.2020.11.001_b39 article-title: Some generalizations of the Anderson–Darling statistic publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(03)00169-X – volume: 45 start-page: 373 year: 1995 ident: 10.1016/j.jspi.2020.11.001_b42 article-title: A test for multivariate normality based on sample entropy and projection pursuit publication-title: J. Statist. Plann. Inference doi: 10.1016/0378-3758(94)00058-4 |
SSID | ssj0000605 |
Score | 2.3640697 |
Snippet | The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Eigenvalues Energy statistics Gaussian quadratic form Goodness-of-fit Multivariate normality |
Title | On energy tests of normality |
URI | https://dx.doi.org/10.1016/j.jspi.2020.11.001 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvdSDaFWs1pKDN4lNsrtJ9liKpSqtBy30FpLNLrRIGmy8-tudyUepID14DTuQTHZn3iRv3gDcGYTJSSrwfGvj2KQwZyeYKew40Cl3XdxTij4NzOb-dMGfl2LZgnHTC0O0yjr2VzG9jNb1lWHtzWG-Wg3fHBZgdSUwhbFSVIY62HlA-vkP3-5eNK5ojIxoALi6bpypOF7rbb7CGtGjyEH_JP5OTnsJZ3IKJzVStEbVzZxBS2ddOJ7tZFa3XegQVKyUls-h_5pZuuzksxA-FltrY6yMECkB7QtYTB7fx1O7nn1gK-Y4he2mngy5knEYq8SPQ6aESDHbhzF3QxkYrYRUiL2Y72qpw9SLaQ6kz7VmBk-xzy6hnW0yfQUW12lijAqkI1MeaD9RJhGKSeVLQyVXD9zmoSNVC4PTfIqPqGGArSNyVESOwoqBaHA9uN_Z5JUsxsHVovFl9OvlRhi3D9hd_9PuBjoeUU9KVm0f2sXnl75F7FAkg3JzDOBo9PQynf8AK_vA0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gHsSDUdSIovbgzVRadrftHg2RoAIehIRb0253E4gpROrV3-5MPwgmhoPXZjdpp7Mzb9o3bwDuDMLkOBF4vrVxbFKYs2PMFHbk64S7LvqUok8Do7E3mPKXmZjVoFf1whCtsoz9RUzPo3V5pVNas7OazzvvDvOxuhKYwlguKrMH-1wwn1z74dvdCscFj5ERDwCXl50zBclrsV7NsUjsUuignxJ_Z6etjNM_hqMSKlqPxd2cQE2nTTgcbXRW101oEFYspJZPof2WWjpv5bMQP2Zra2mslCApIe0zmPafJr2BXQ4_sBVznMx2k64MuJJREKnYiwKmhEgw3QcRdwPpG62EVAi-mOdqqYOkG9EgSI9rzQweY4-dQz1dpvoCLK6T2BjlS0cm3NderEwsFJPKk4Zqrha41UOHqlQGpwEVH2FFAVuEZKiQDIUlA_HgWnC_2bMqdDF2rhaVLcNfbzfEwL1j3-U_993CwWAyGobD5_HrFTS6xEPJKbZtqGefX_oagUQW3-SO8gPnU8Jm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+energy+tests+of+normality&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=M%C3%B3ri%2C+Tam%C3%A1s+F.&rft.au=Sz%C3%A9kely%2C+G%C3%A1bor+J.&rft.au=Rizzo%2C+Maria+L.&rft.date=2021-07-01&rft.issn=0378-3758&rft.volume=213&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.jspi.2020.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jspi_2020_11_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon |