On energy tests of normality

The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypoth...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical planning and inference Vol. 213; pp. 1 - 15
Main Authors Móri, Tamás F., Székely, Gábor J., Rizzo, Maria L.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN0378-3758
1873-1171
DOI10.1016/j.jspi.2020.11.001

Cover

Loading…
Abstract The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypothesis of normality. The parameters of the limit distribution are the eigenvalues of the integral operator determined by the energy distance. Although a Monte Carlo approach provides excellent approximations to the sampling distribution of the test statistic for finite samples, in this work we develop two methods to obtain the eigenvalues and the asymptotic distribution of the energy test statistic. We derive the explicit integral equations for the eigenvalue problem for the simple and composite hypotheses of normality and solve them by a variation of Nyström’s method. For the simple hypothesis, we also obtain the eigenvalues by an empirical approach which we call the sample kernel method. Numerical results are summarized in tables of derived eigenvalues for several cases. The resulting probability distribution in each case is obtained by Imhof’s method. We also include simulation results that illustrate that for large samples the derived limit distribution is quite accurate in the upper tail. Software is available in the energy package for R to implement the tests by the original (Monte Carlo) approach and by applying the new methods using the derived asymptotic distribution. •The energy test of normality is an affine invariant consistent test based on energy distance.•Parameters of the limit distribution are eigenvalues of an integral operator.•Derive integral equations for simple and composite hypotheses of normality.•Solve them numerically for four cases of known or estimated parameters.•Software available in the energy package for R.
AbstractList The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic is a degenerate kernel V-statistic, which asymptotically has a sampling distribution that is a Gaussian quadratic form under the null hypothesis of normality. The parameters of the limit distribution are the eigenvalues of the integral operator determined by the energy distance. Although a Monte Carlo approach provides excellent approximations to the sampling distribution of the test statistic for finite samples, in this work we develop two methods to obtain the eigenvalues and the asymptotic distribution of the energy test statistic. We derive the explicit integral equations for the eigenvalue problem for the simple and composite hypotheses of normality and solve them by a variation of Nyström’s method. For the simple hypothesis, we also obtain the eigenvalues by an empirical approach which we call the sample kernel method. Numerical results are summarized in tables of derived eigenvalues for several cases. The resulting probability distribution in each case is obtained by Imhof’s method. We also include simulation results that illustrate that for large samples the derived limit distribution is quite accurate in the upper tail. Software is available in the energy package for R to implement the tests by the original (Monte Carlo) approach and by applying the new methods using the derived asymptotic distribution. •The energy test of normality is an affine invariant consistent test based on energy distance.•Parameters of the limit distribution are eigenvalues of an integral operator.•Derive integral equations for simple and composite hypotheses of normality.•Solve them numerically for four cases of known or estimated parameters.•Software available in the energy package for R.
Author Rizzo, Maria L.
Székely, Gábor J.
Móri, Tamás F.
Author_xml – sequence: 1
  givenname: Tamás F.
  surname: Móri
  fullname: Móri, Tamás F.
  email: tfmori@gmail.com
  organization: Rényi Institute of Mathematics, Budapest, Hungary
– sequence: 2
  givenname: Gábor J.
  surname: Székely
  fullname: Székely, Gábor J.
  email: gszekely@nsf.gov
  organization: Rényi Institute of Mathematics, Budapest, Hungary
– sequence: 3
  givenname: Maria L.
  surname: Rizzo
  fullname: Rizzo, Maria L.
  email: mrizzo@bgsu.edu
  organization: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
BookMark eNp9z1FLwzAQwPEgE-ymX0B86BdovWvaJgFfZOgUBnvR5xDTq6R06UiCsG9vx3zyYfdycPA7-C_Zwk-eGLtHKBGwfRzKIR5cWUE1H7AEwCuWoRS8QBS4YBlwIQsuGnnDljEOME8LTcYedj4nT-H7mCeKKeZTn_sp7M3o0vGWXfdmjHT3t1fs8_XlY_1WbHeb9_XztrAcIBXYVUrWVhlp7FdrJLdN04maS1OjVKIn2yireMVbJEWyq4xUUrU1Ee9BQMtXTJ7_2jDFGKjX1iWT3ORTMG7UCPpUqQd9qtSnSo2o58qZVv_oIbi9CcfL6OmMaI76cRR0tI68pc4Fskl3k7vEfwFppWwg
CitedBy_id crossref_primary_10_3758_s13428_023_02287_y
crossref_primary_10_20982_tqmp_19_4_p302
crossref_primary_10_1007_s11749_020_00741_z
crossref_primary_10_1080_02331888_2021_1998054
crossref_primary_10_1016_j_jmva_2022_105140
crossref_primary_10_1007_s00184_022_00891_0
crossref_primary_10_1016_j_chbr_2024_100530
crossref_primary_10_1111_jtsa_12713
crossref_primary_10_1016_j_cviu_2023_103748
crossref_primary_10_1214_22_STS873
Cites_doi 10.1214/aos/1176349948
10.1093/biomet/70.3.723
10.1080/03610918.2015.1011334
10.1016/j.csda.2009.11.025
10.1080/00949655.2012.739620
10.1103/PhysRev.28.1049
10.1093/biomet/52.3-4.591
10.1016/j.jmva.2003.12.002
10.1111/j.2517-6161.1976.tb01566.x
10.1214/aos/1176348894
10.1016/j.csda.2010.12.004
10.1093/biomet/48.3-4.419
10.1007/s00440-003-0262-6
10.1214/aoms/1177729437
10.1080/01621459.1972.10481232
10.1080/03610929008830400
10.1007/s00362-002-0119-6
10.1093/biomet/22.1-2.239
10.1016/j.jspi.2013.03.018
10.2307/3318636
10.1006/jmva.1997.1684
10.1080/10618600.2017.1328364
10.1080/01621459.1973.10481358
10.1093/biomet/57.3.519
10.1090/S0025-5718-1981-0606510-2
10.1080/03610929408831303
10.1090/S0002-9939-96-03691-X
10.1007/BF02613322
10.1080/01621459.1993.10476304
10.11648/j.ajtas.20160501.12
10.1016/S0167-7152(03)00169-X
10.1016/0378-3758(94)00058-4
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jspi.2020.11.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1873-1171
EndPage 15
ExternalDocumentID 10_1016_j_jspi_2020_11_001
S0378375820301154
GrantInformation_xml – fundername: National Science Foundation, USA
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Hungarian National Research, Development and Innovation Office NKFIH, Hungary
  grantid: K125569
  funderid: http://dx.doi.org/10.13039/501100011019
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6P2
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEHJ
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NHB
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1d2984c9a8acb6a83c55d7438a41897fec59c932361e9e8d2a898964ee3f07063
IEDL.DBID .~1
ISSN 0378-3758
IngestDate Tue Jul 01 00:30:11 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Fri Feb 23 02:48:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Eigenvalues
Gaussian quadratic form
Multivariate normality
62F03
Goodness-of-fit
Energy statistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1d2984c9a8acb6a83c55d7438a41897fec59c932361e9e8d2a898964ee3f07063
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_jspi_2020_11_001
crossref_primary_10_1016_j_jspi_2020_11_001
elsevier_sciencedirect_doi_10_1016_j_jspi_2020_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of statistical planning and inference
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Das, Imon (b7) 2016; 5
Székely, Rizzo (b36) 2013; 143
Mardia (b23) 1974; 36
Anderson, Darling (b1) 1952; 23
Duchesne, Lafaye De Micheaux (b8) 2010; 54
Fisher (b10) 1930; 130
Sarkadi, Tusnády (b29) 1977
Malkovich, Afifi (b21) 1973; 68
Schrödinger (b30) 1926; 28
Lehmann (b20) 1983
Tenreiro (b37) 2011; 55
Mersmann (b24) 2019
Koltchinskii, Giné (b18) 2000; 6
Henze, Zirkler (b15) 1990; 19
Xue, Liang (b41) 2017; 26
Csörgő (b6) 1986; 14
Henze, Visagie (b13) 2019; 5
Sloan (b33) 1981; 36
Mardia (b22) 1970; 57
Rizzo (b27) 2002
Zhu, Wong, Fan (b42) 1995; 45
Henze, Wagner (b14) 1997; 62
Pearson (b25) 1930; 22
Rizzo, Székely (b28) 2020
Baringhaus (b2) 1996; 124
Henze (b11) 1994; 23
Epps, Pulley (b9) 1983; 70
Shapiro, Francia (b31) 1972; 67
Henze (b12) 2002; 43
Székely, Bakirov (b34) 2003; 126
Thas, Ottoy (b39) 2003; 64
Joenssen, Vogel (b17) 2014; 84
Tenreiro (b38) 2017; 46
(b26) 2019
Baringhaus, Henze (b4) 1992; 20
Vasicek (b40) 1976; 38
Baringhaus, Henze (b3) 1988; 35
Bowman, Foster (b5) 1993; 88
Szekely, Rizzo (b35) 2005; 93
Koroljuk, Borovskich (b19) 1994; vol. 273
Imhof (b16) 1961; 48
Shapiro, Wilk (b32) 1965; 52
Tenreiro (10.1016/j.jspi.2020.11.001_b37) 2011; 55
Henze (10.1016/j.jspi.2020.11.001_b12) 2002; 43
Henze (10.1016/j.jspi.2020.11.001_b15) 1990; 19
Mersmann (10.1016/j.jspi.2020.11.001_b24) 2019
Imhof (10.1016/j.jspi.2020.11.001_b16) 1961; 48
Székely (10.1016/j.jspi.2020.11.001_b36) 2013; 143
Das (10.1016/j.jspi.2020.11.001_b7) 2016; 5
Pearson (10.1016/j.jspi.2020.11.001_b25) 1930; 22
Henze (10.1016/j.jspi.2020.11.001_b11) 1994; 23
Shapiro (10.1016/j.jspi.2020.11.001_b31) 1972; 67
(10.1016/j.jspi.2020.11.001_b26) 2019
Thas (10.1016/j.jspi.2020.11.001_b39) 2003; 64
Koltchinskii (10.1016/j.jspi.2020.11.001_b18) 2000; 6
Szekely (10.1016/j.jspi.2020.11.001_b35) 2005; 93
Baringhaus (10.1016/j.jspi.2020.11.001_b4) 1992; 20
Bowman (10.1016/j.jspi.2020.11.001_b5) 1993; 88
Xue (10.1016/j.jspi.2020.11.001_b41) 2017; 26
Koroljuk (10.1016/j.jspi.2020.11.001_b19) 1994; vol. 273
Rizzo (10.1016/j.jspi.2020.11.001_b27) 2002
Vasicek (10.1016/j.jspi.2020.11.001_b40) 1976; 38
Csörgő (10.1016/j.jspi.2020.11.001_b6) 1986; 14
Székely (10.1016/j.jspi.2020.11.001_b34) 2003; 126
Joenssen (10.1016/j.jspi.2020.11.001_b17) 2014; 84
Lehmann (10.1016/j.jspi.2020.11.001_b20) 1983
Baringhaus (10.1016/j.jspi.2020.11.001_b3) 1988; 35
Epps (10.1016/j.jspi.2020.11.001_b9) 1983; 70
Henze (10.1016/j.jspi.2020.11.001_b14) 1997; 62
Malkovich (10.1016/j.jspi.2020.11.001_b21) 1973; 68
Mardia (10.1016/j.jspi.2020.11.001_b23) 1974; 36
Baringhaus (10.1016/j.jspi.2020.11.001_b2) 1996; 124
Shapiro (10.1016/j.jspi.2020.11.001_b32) 1965; 52
Henze (10.1016/j.jspi.2020.11.001_b13) 2019; 5
Mardia (10.1016/j.jspi.2020.11.001_b22) 1970; 57
Tenreiro (10.1016/j.jspi.2020.11.001_b38) 2017; 46
Sloan (10.1016/j.jspi.2020.11.001_b33) 1981; 36
Sarkadi (10.1016/j.jspi.2020.11.001_b29) 1977
Anderson (10.1016/j.jspi.2020.11.001_b1) 1952; 23
Schrödinger (10.1016/j.jspi.2020.11.001_b30) 1926; 28
Fisher (10.1016/j.jspi.2020.11.001_b10) 1930; 130
Rizzo (10.1016/j.jspi.2020.11.001_b28) 2020
Zhu (10.1016/j.jspi.2020.11.001_b42) 1995; 45
Duchesne (10.1016/j.jspi.2020.11.001_b8) 2010; 54
References_xml – volume: 35
  start-page: 339
  year: 1988
  end-page: 348
  ident: b3
  article-title: A consistent test for multivariate normality based on the empirical characteristic function
  publication-title: Metrika
– volume: 93
  start-page: 58
  year: 2005
  end-page: 80
  ident: b35
  article-title: A new test for multivariate normality
  publication-title: J. Multivariate Anal.
– volume: 46
  start-page: 1746
  year: 2017
  end-page: 1759
  ident: b38
  article-title: A new test for multivariate normality by combining extreme and nonextreme BHEP tests
  publication-title: Commun. Stat.–Simul. Comput.
– volume: 14
  start-page: 708
  year: 1986
  end-page: 723
  ident: b6
  article-title: Testing for normality in arbitrary dimension
  publication-title: Ann. Statist.
– volume: 19
  start-page: 3595
  year: 1990
  end-page: 3617
  ident: b15
  article-title: A class of invariant and consistent tests for multivariate normality
  publication-title: Commun. Stat.: Theory Methods
– volume: 130
  start-page: 16
  year: 1930
  end-page: 28
  ident: b10
  article-title: The moments of the distribution for normal samples of measures of departure from normality
  publication-title: Proc. R. Soc. Lond.
– volume: 124
  start-page: 3875
  year: 1996
  end-page: 3884
  ident: b2
  article-title: Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes
  publication-title: Proc. Amer. Math. Soc.
– volume: 84
  start-page: 1055
  year: 2014
  end-page: 1078
  ident: b17
  article-title: A power study of goodness-of-fit tests for multivariate normality implemented in r
  publication-title: J. Stat. Comput. Simul.
– volume: 22
  start-page: 239
  year: 1930
  end-page: 249
  ident: b25
  article-title: A further development of tests for normality
  publication-title: Biometrika
– volume: 36
  start-page: 115
  year: 1974
  end-page: 128
  ident: b23
  article-title: Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies
  publication-title: Sankhya A
– volume: vol. 273
  year: 1994
  ident: b19
  publication-title: Theory of U-Statistics, Mathematics and Its Applications
– volume: 57
  start-page: 519
  year: 1970
  end-page: 530
  ident: b22
  article-title: Measures of multivariate skewness and kurtosis with applications
  publication-title: Biometrika
– volume: 48
  start-page: 419
  year: 1961
  end-page: 426
  ident: b16
  article-title: Computing the distribution of quadratic forms in normal variables
  publication-title: Biometrika
– volume: 68
  start-page: 176
  year: 1973
  end-page: 179
  ident: b21
  article-title: On tests for multivariate normality
  publication-title: J. Amer. Statist. Assoc.
– year: 2019
  ident: b26
  article-title: R: A Language and Environment for Statistical Computing
– volume: 62
  start-page: 1
  year: 1997
  end-page: 23
  ident: b14
  article-title: A new approach to the BHEP tests for multivariate normality
  publication-title: J. Multivariate Anal.
– volume: 20
  start-page: 1889
  year: 1992
  end-page: 1902
  ident: b4
  article-title: Limit distributions for mardia’s measure of multivariate skewness
  publication-title: Ann. Statist.
– volume: 143
  start-page: 1249
  year: 2013
  end-page: 1272
  ident: b36
  article-title: Energy statistics: A class of statistics based on distances
  publication-title: J. Statist. Plann. Inference
– volume: 23
  start-page: 193
  year: 1952
  end-page: 212
  ident: b1
  article-title: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes
  publication-title: Ann. Math. Statist.
– volume: 67
  start-page: 215
  year: 1972
  end-page: 216
  ident: b31
  article-title: An approximate analysis of variance test for normality
  publication-title: J. Amer. Statist. Assoc.
– volume: 52
  start-page: 591
  year: 1965
  end-page: 611
  ident: b32
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
– volume: 5
  start-page: 5
  year: 2016
  end-page: 12
  ident: b7
  article-title: A brief review of tests for normality
  publication-title: Amer. J. Theor. Appl. Statist.
– volume: 36
  start-page: 511
  year: 1981
  end-page: 523
  ident: b33
  article-title: Quadrature methods for integral equations of the second kind over infinite intervals
  publication-title: Math. Comp.
– volume: 26
  start-page: 803
  year: 2017
  end-page: 813
  ident: b41
  article-title: A robust model-free feature screening method for ultrahigh-dimensional data
  publication-title: J. Comput. Graph. Statist.
– volume: 45
  start-page: 373
  year: 1995
  end-page: 385
  ident: b42
  article-title: A test for multivariate normality based on sample entropy and projection pursuit
  publication-title: J. Statist. Plann. Inference
– volume: 23
  start-page: 1031
  year: 1994
  end-page: 1045
  ident: b11
  article-title: On mardia’s kurtosis test for multivariate normality
  publication-title: Commun. Stat. Theory Methods
– volume: 55
  start-page: 1980
  year: 2011
  end-page: 1992
  ident: b37
  article-title: An affine invariant multiple test procedure for assessing multivariate normality
  publication-title: Comput. Statist. Data Anal.
– volume: 54
  start-page: 858
  year: 2010
  end-page: 862
  ident: b8
  article-title: Computing the distribution of quadratic forms: Further comparisons between the liu-tang-zhang approximation and exact methods
  publication-title: Comput. Statist. Data Anal.
– volume: 43
  start-page: 467
  year: 2002
  end-page: 506
  ident: b12
  article-title: Invariant tests for multivariate normality: a critical review
  publication-title: Statist. Pap.
– start-page: 99
  year: 1977
  end-page: 118
  ident: b29
  article-title: Testing for normality and for exponential distribution
  publication-title: Proc. Fifth Conference on Probability Theory 1974, Brasov
– volume: 70
  start-page: 723
  year: 1983
  end-page: 726
  ident: b9
  article-title: A test for normality based on the empirical characteristic function
  publication-title: Biometrika
– year: 2019
  ident: b24
  article-title: Microbenchmark: Accurate timing functions. R package version 1.4-7
– year: 2002
  ident: b27
  article-title: A New Rotation Invariant Goodness-of-Fit Test
– year: 2020
  ident: b28
  article-title: eNergy: E-statistics: multivariate inference via the energy of data (R package version 1.7-8)
– volume: 28
  start-page: 1049
  year: 1926
  end-page: 1070
  ident: b30
  article-title: An undulatory theory of the mechanics of atoms and molecules
  publication-title: Phys. Rev.
– volume: 38
  start-page: 54
  year: 1976
  end-page: 59
  ident: b40
  article-title: A test for normality based on sample entropy
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 88
  start-page: 529
  year: 1993
  end-page: 537
  ident: b5
  article-title: Adaptive smoothing and density based tests of multivariate normality
  publication-title: J. Amer. Statist. Assoc.
– year: 1983
  ident: b20
  article-title: Theory of Point Estimation
– volume: 126
  start-page: 184
  year: 2003
  end-page: 202
  ident: b34
  article-title: Extremal probabilities for Gaussian quadratic forms
  publication-title: Probab. Theory Related Fields
– volume: 5
  start-page: 1
  year: 2019
  end-page: 28
  ident: b13
  article-title: Testing for normality in any dimension based on a partial differential equation involving the moment generating function
  publication-title: Ann. Inst. Statist. Math.
– volume: 6
  start-page: 113
  year: 2000
  end-page: 167
  ident: b18
  article-title: Random matrix approximation of spectra of integral operators
  publication-title: Bernoulli
– volume: 64
  start-page: 255
  year: 2003
  end-page: 261
  ident: b39
  article-title: Some generalizations of the Anderson–Darling statistic
  publication-title: Statist. Probab. Lett.
– volume: 14
  start-page: 708
  issue: 2
  year: 1986
  ident: 10.1016/j.jspi.2020.11.001_b6
  article-title: Testing for normality in arbitrary dimension
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176349948
– volume: 70
  start-page: 723
  year: 1983
  ident: 10.1016/j.jspi.2020.11.001_b9
  article-title: A test for normality based on the empirical characteristic function
  publication-title: Biometrika
  doi: 10.1093/biomet/70.3.723
– volume: 46
  start-page: 1746
  issue: 3
  year: 2017
  ident: 10.1016/j.jspi.2020.11.001_b38
  article-title: A new test for multivariate normality by combining extreme and nonextreme BHEP tests
  publication-title: Commun. Stat.–Simul. Comput.
  doi: 10.1080/03610918.2015.1011334
– volume: 54
  start-page: 858
  year: 2010
  ident: 10.1016/j.jspi.2020.11.001_b8
  article-title: Computing the distribution of quadratic forms: Further comparisons between the liu-tang-zhang approximation and exact methods
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2009.11.025
– volume: 84
  start-page: 1055
  issue: 5
  year: 2014
  ident: 10.1016/j.jspi.2020.11.001_b17
  article-title: A power study of goodness-of-fit tests for multivariate normality implemented in r
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.739620
– year: 2019
  ident: 10.1016/j.jspi.2020.11.001_b24
– volume: 28
  start-page: 1049
  issue: 6
  year: 1926
  ident: 10.1016/j.jspi.2020.11.001_b30
  article-title: An undulatory theory of the mechanics of atoms and molecules
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.28.1049
– volume: 52
  start-page: 591
  issue: 3–4
  year: 1965
  ident: 10.1016/j.jspi.2020.11.001_b32
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 93
  start-page: 58
  issue: 1
  year: 2005
  ident: 10.1016/j.jspi.2020.11.001_b35
  article-title: A new test for multivariate normality
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2003.12.002
– volume: 38
  start-page: 54
  issue: 1
  year: 1976
  ident: 10.1016/j.jspi.2020.11.001_b40
  article-title: A test for normality based on sample entropy
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1976.tb01566.x
– year: 1983
  ident: 10.1016/j.jspi.2020.11.001_b20
– year: 2020
  ident: 10.1016/j.jspi.2020.11.001_b28
– start-page: 99
  year: 1977
  ident: 10.1016/j.jspi.2020.11.001_b29
  article-title: Testing for normality and for exponential distribution
– year: 2019
  ident: 10.1016/j.jspi.2020.11.001_b26
– volume: 20
  start-page: 1889
  year: 1992
  ident: 10.1016/j.jspi.2020.11.001_b4
  article-title: Limit distributions for mardia’s measure of multivariate skewness
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176348894
– volume: 55
  start-page: 1980
  issue: 5
  year: 2011
  ident: 10.1016/j.jspi.2020.11.001_b37
  article-title: An affine invariant multiple test procedure for assessing multivariate normality
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.12.004
– volume: 48
  start-page: 419
  issue: 3–4
  year: 1961
  ident: 10.1016/j.jspi.2020.11.001_b16
  article-title: Computing the distribution of quadratic forms in normal variables
  publication-title: Biometrika
  doi: 10.1093/biomet/48.3-4.419
– volume: 126
  start-page: 184
  year: 2003
  ident: 10.1016/j.jspi.2020.11.001_b34
  article-title: Extremal probabilities for Gaussian quadratic forms
  publication-title: Probab. Theory Related Fields
  doi: 10.1007/s00440-003-0262-6
– volume: 23
  start-page: 193
  issue: 2
  year: 1952
  ident: 10.1016/j.jspi.2020.11.001_b1
  article-title: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729437
– volume: 67
  start-page: 215
  year: 1972
  ident: 10.1016/j.jspi.2020.11.001_b31
  article-title: An approximate analysis of variance test for normality
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1972.10481232
– volume: 19
  start-page: 3595
  year: 1990
  ident: 10.1016/j.jspi.2020.11.001_b15
  article-title: A class of invariant and consistent tests for multivariate normality
  publication-title: Commun. Stat.: Theory Methods
  doi: 10.1080/03610929008830400
– volume: 43
  start-page: 467
  issue: 4
  year: 2002
  ident: 10.1016/j.jspi.2020.11.001_b12
  article-title: Invariant tests for multivariate normality: a critical review
  publication-title: Statist. Pap.
  doi: 10.1007/s00362-002-0119-6
– volume: 22
  start-page: 239
  year: 1930
  ident: 10.1016/j.jspi.2020.11.001_b25
  article-title: A further development of tests for normality
  publication-title: Biometrika
  doi: 10.1093/biomet/22.1-2.239
– volume: 143
  start-page: 1249
  issue: 8
  year: 2013
  ident: 10.1016/j.jspi.2020.11.001_b36
  article-title: Energy statistics: A class of statistics based on distances
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2013.03.018
– volume: 6
  start-page: 113
  issue: 1
  year: 2000
  ident: 10.1016/j.jspi.2020.11.001_b18
  article-title: Random matrix approximation of spectra of integral operators
  publication-title: Bernoulli
  doi: 10.2307/3318636
– volume: 62
  start-page: 1
  year: 1997
  ident: 10.1016/j.jspi.2020.11.001_b14
  article-title: A new approach to the BHEP tests for multivariate normality
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.1997.1684
– volume: 36
  start-page: 115
  year: 1974
  ident: 10.1016/j.jspi.2020.11.001_b23
  article-title: Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies
  publication-title: Sankhya A
– volume: 26
  start-page: 803
  issue: 4
  year: 2017
  ident: 10.1016/j.jspi.2020.11.001_b41
  article-title: A robust model-free feature screening method for ultrahigh-dimensional data
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2017.1328364
– volume: 5
  start-page: 1
  issue: 2019
  year: 2019
  ident: 10.1016/j.jspi.2020.11.001_b13
  article-title: Testing for normality in any dimension based on a partial differential equation involving the moment generating function
  publication-title: Ann. Inst. Statist. Math.
– volume: 68
  start-page: 176
  issue: 341
  year: 1973
  ident: 10.1016/j.jspi.2020.11.001_b21
  article-title: On tests for multivariate normality
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1973.10481358
– volume: 130
  start-page: 16
  year: 1930
  ident: 10.1016/j.jspi.2020.11.001_b10
  article-title: The moments of the distribution for normal samples of measures of departure from normality
  publication-title: Proc. R. Soc. Lond.
– volume: 57
  start-page: 519
  year: 1970
  ident: 10.1016/j.jspi.2020.11.001_b22
  article-title: Measures of multivariate skewness and kurtosis with applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.3.519
– volume: 36
  start-page: 511
  issue: 154
  year: 1981
  ident: 10.1016/j.jspi.2020.11.001_b33
  article-title: Quadrature methods for integral equations of the second kind over infinite intervals
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1981-0606510-2
– volume: vol. 273
  year: 1994
  ident: 10.1016/j.jspi.2020.11.001_b19
– volume: 23
  start-page: 1031
  year: 1994
  ident: 10.1016/j.jspi.2020.11.001_b11
  article-title: On mardia’s kurtosis test for multivariate normality
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610929408831303
– volume: 124
  start-page: 3875
  issue: 12
  year: 1996
  ident: 10.1016/j.jspi.2020.11.001_b2
  article-title: Fibonacci numbers, Lucas numbers and integrals of certain Gaussian processes
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-96-03691-X
– year: 2002
  ident: 10.1016/j.jspi.2020.11.001_b27
– volume: 35
  start-page: 339
  year: 1988
  ident: 10.1016/j.jspi.2020.11.001_b3
  article-title: A consistent test for multivariate normality based on the empirical characteristic function
  publication-title: Metrika
  doi: 10.1007/BF02613322
– volume: 88
  start-page: 529
  year: 1993
  ident: 10.1016/j.jspi.2020.11.001_b5
  article-title: Adaptive smoothing and density based tests of multivariate normality
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1993.10476304
– volume: 5
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.jspi.2020.11.001_b7
  article-title: A brief review of tests for normality
  publication-title: Amer. J. Theor. Appl. Statist.
  doi: 10.11648/j.ajtas.20160501.12
– volume: 64
  start-page: 255
  year: 2003
  ident: 10.1016/j.jspi.2020.11.001_b39
  article-title: Some generalizations of the Anderson–Darling statistic
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(03)00169-X
– volume: 45
  start-page: 373
  year: 1995
  ident: 10.1016/j.jspi.2020.11.001_b42
  article-title: A test for multivariate normality based on sample entropy and projection pursuit
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(94)00058-4
SSID ssj0000605
Score 2.3640697
Snippet The energy test of multivariate normality is an affine invariant test based on a characterization of equal distributions by energy distance. The test statistic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Eigenvalues
Energy statistics
Gaussian quadratic form
Goodness-of-fit
Multivariate normality
Title On energy tests of normality
URI https://dx.doi.org/10.1016/j.jspi.2020.11.001
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KvdSDaFWs1pKDN4lNsrtJ9liKpSqtBy30FpLNLrRIGmy8-tudyUepID14DTuQTHZn3iRv3gDcGYTJSSrwfGvj2KQwZyeYKew40Cl3XdxTij4NzOb-dMGfl2LZgnHTC0O0yjr2VzG9jNb1lWHtzWG-Wg3fHBZgdSUwhbFSVIY62HlA-vkP3-5eNK5ojIxoALi6bpypOF7rbb7CGtGjyEH_JP5OTnsJZ3IKJzVStEbVzZxBS2ddOJ7tZFa3XegQVKyUls-h_5pZuuzksxA-FltrY6yMECkB7QtYTB7fx1O7nn1gK-Y4he2mngy5knEYq8SPQ6aESDHbhzF3QxkYrYRUiL2Y72qpw9SLaQ6kz7VmBk-xzy6hnW0yfQUW12lijAqkI1MeaD9RJhGKSeVLQyVXD9zmoSNVC4PTfIqPqGGArSNyVESOwoqBaHA9uN_Z5JUsxsHVovFl9OvlRhi3D9hd_9PuBjoeUU9KVm0f2sXnl75F7FAkg3JzDOBo9PQynf8AK_vA0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gHsSDUdSIovbgzVRadrftHg2RoAIehIRb0253E4gpROrV3-5MPwgmhoPXZjdpp7Mzb9o3bwDuDMLkOBF4vrVxbFKYs2PMFHbk64S7LvqUok8Do7E3mPKXmZjVoFf1whCtsoz9RUzPo3V5pVNas7OazzvvDvOxuhKYwlguKrMH-1wwn1z74dvdCscFj5ERDwCXl50zBclrsV7NsUjsUuignxJ_Z6etjNM_hqMSKlqPxd2cQE2nTTgcbXRW101oEFYspJZPof2WWjpv5bMQP2Zra2mslCApIe0zmPafJr2BXQ4_sBVznMx2k64MuJJREKnYiwKmhEgw3QcRdwPpG62EVAi-mOdqqYOkG9EgSI9rzQweY4-dQz1dpvoCLK6T2BjlS0cm3NderEwsFJPKk4Zqrha41UOHqlQGpwEVH2FFAVuEZKiQDIUlA_HgWnC_2bMqdDF2rhaVLcNfbzfEwL1j3-U_993CwWAyGobD5_HrFTS6xEPJKbZtqGefX_oagUQW3-SO8gPnU8Jm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+energy+tests+of+normality&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=M%C3%B3ri%2C+Tam%C3%A1s+F.&rft.au=Sz%C3%A9kely%2C+G%C3%A1bor+J.&rft.au=Rizzo%2C+Maria+L.&rft.date=2021-07-01&rft.issn=0378-3758&rft.volume=213&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.jspi.2020.11.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jspi_2020_11_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon