A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flig...
Saved in:
Published in | Applied soft computing Vol. 89; p. 106099 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flight environment. In this paper, a novel reinforcement learning based grey wolf optimizer algorithm called RLGWO has been presented for solving this problem. In the proposed algorithm, the reinforcement learning is inserted that the individual is controlled to switch operations adaptively according to the accumulated performance. Considering that the proposed algorithm is designed to serve for UAVs path planning, four operations have been introduced for each individual: exploration, exploitation, geometric adjustment, and optimal adjustment. In addition, the cubic B-spline curve is used to smooth the generated flight route and make the planning path be suitable for the UAVs. The simulation experimental results show that the RLGWO algorithm can acquire a feasible and effective route successfully in complicated environment.
•A novel reinforcement learning-based grey wolf optimizer algorithm called RLGWO is proposed to solve the UAVs three-dimensional path planning problem.•The RLGWO includes four operations: exploration, exploitation, geometric adjustment and optimal adjustment. Each individual in RLGWO perform their operations independently. |
---|---|
AbstractList | Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flight environment. In this paper, a novel reinforcement learning based grey wolf optimizer algorithm called RLGWO has been presented for solving this problem. In the proposed algorithm, the reinforcement learning is inserted that the individual is controlled to switch operations adaptively according to the accumulated performance. Considering that the proposed algorithm is designed to serve for UAVs path planning, four operations have been introduced for each individual: exploration, exploitation, geometric adjustment, and optimal adjustment. In addition, the cubic B-spline curve is used to smooth the generated flight route and make the planning path be suitable for the UAVs. The simulation experimental results show that the RLGWO algorithm can acquire a feasible and effective route successfully in complicated environment.
•A novel reinforcement learning-based grey wolf optimizer algorithm called RLGWO is proposed to solve the UAVs three-dimensional path planning problem.•The RLGWO includes four operations: exploration, exploitation, geometric adjustment and optimal adjustment. Each individual in RLGWO perform their operations independently. |
ArticleNumber | 106099 |
Author | Gai, Wendong Zhang, Jing Zhong, Maiying Qu, Chengzhi |
Author_xml | – sequence: 1 givenname: Chengzhi orcidid: 0000-0002-9147-2614 surname: Qu fullname: Qu, Chengzhi – sequence: 2 givenname: Wendong orcidid: 0000-0002-7718-5918 surname: Gai fullname: Gai, Wendong email: gwd2011@sdust.edu.cn – sequence: 3 givenname: Maiying surname: Zhong fullname: Zhong, Maiying – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing |
BookMark | eNp9kE1LAzEQhoNUsK3-AU856mFrkm7TLHgpxS8oeLFeQzY7aVOySUlipf56d6knDz3NMLzPC_OM0MAHDwjdUjKhhPKH3USloCeMsP7ASVVdoCEVc1ZUXNBBt8-4KMqq5FdolNKOdFDFxBDlBfbhAA5HsN6EqKEFn7EDFb31G1yrBA3eRDji7-AMDvtsW_sDESu3CdHmbYs7DH_5VnnfRRVEqxw-wNZqBwnfrRef6R7vVd7ivesyXes1ujTKJbj5m2O0fn76WL4Wq_eXt-ViVegpIbmgGkrKy1mj5zUYYMAVq0BxMII3TJe0ruqGi7nhphRzRXRNSF1NGzGjWrDGTMeInXp1DClFMHIfbaviUVIie29yJ3tvsvcmT946SPyDtM0q2-BzVNadRx9PKHRPHSxEmbQFr6GxEXSWTbDn8F_XBY4D |
CitedBy_id | crossref_primary_10_1007_s00521_021_06702_3 crossref_primary_10_1007_s40430_024_05304_z crossref_primary_10_1017_S0263574723000231 crossref_primary_10_1007_s11440_023_02136_4 crossref_primary_10_1109_JIOT_2024_3440017 crossref_primary_10_1007_s43684_021_00013_z crossref_primary_10_1016_j_jocs_2023_102149 crossref_primary_10_3390_electronics10090999 crossref_primary_10_1142_S0129183122501388 crossref_primary_10_3390_biomimetics8080615 crossref_primary_10_1016_j_neucom_2024_128820 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1016_j_ins_2024_120924 crossref_primary_10_3390_drones9010026 crossref_primary_10_1080_21642583_2024_2449156 crossref_primary_10_62762_TSCC_2024_211408 crossref_primary_10_1016_j_isatra_2020_12_054 crossref_primary_10_1109_ACCESS_2022_3203072 crossref_primary_10_1109_TITS_2023_3281522 crossref_primary_10_1016_j_asoc_2020_106796 crossref_primary_10_1007_s42235_023_00391_5 crossref_primary_10_1016_j_neucom_2024_127506 crossref_primary_10_3390_app142411816 crossref_primary_10_1007_s10489_021_02353_y crossref_primary_10_1016_j_compag_2021_106608 crossref_primary_10_1007_s10489_021_02795_4 crossref_primary_10_1016_j_swevo_2023_101255 crossref_primary_10_1002_dac_5641 crossref_primary_10_3390_app12094695 crossref_primary_10_1016_j_jii_2021_100233 crossref_primary_10_1007_s11227_024_06498_8 crossref_primary_10_1109_TII_2022_3142723 crossref_primary_10_1016_j_oceaneng_2021_110121 crossref_primary_10_1016_j_eswa_2024_124955 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_1016_j_knosys_2022_109075 crossref_primary_10_55525_tjst_1219845 crossref_primary_10_1007_s12008_025_02241_6 crossref_primary_10_3390_drones8020051 crossref_primary_10_3390_app14051909 crossref_primary_10_1007_s11277_023_10534_w crossref_primary_10_3390_robotics13080117 crossref_primary_10_1016_j_knosys_2021_107044 crossref_primary_10_1016_j_swevo_2021_100985 crossref_primary_10_1109_JIOT_2022_3182798 crossref_primary_10_1109_JIOT_2024_3459918 crossref_primary_10_32604_iasc_2025_060364 crossref_primary_10_1016_j_matcom_2021_10_032 crossref_primary_10_1016_j_asoc_2023_110916 crossref_primary_10_1007_s42044_024_00179_8 crossref_primary_10_3390_act10100255 crossref_primary_10_3390_drones9030212 crossref_primary_10_1016_j_cma_2024_116964 crossref_primary_10_1155_2023_1578273 crossref_primary_10_3390_drones9030219 crossref_primary_10_1016_j_procir_2023_02_115 crossref_primary_10_3390_aerospace11020157 crossref_primary_10_3390_jmse9111267 crossref_primary_10_1016_j_knosys_2024_111409 crossref_primary_10_1007_s11227_024_06651_3 crossref_primary_10_3390_drones7010055 crossref_primary_10_1016_j_eswa_2021_114993 crossref_primary_10_3390_app12030943 crossref_primary_10_3390_app12115634 crossref_primary_10_1016_j_eswa_2023_121975 crossref_primary_10_32604_cmc_2023_034892 crossref_primary_10_3390_aerospace10050487 crossref_primary_10_1007_s12065_023_00820_8 crossref_primary_10_1109_TITS_2023_3248841 crossref_primary_10_3390_act13010026 crossref_primary_10_1007_s11227_025_07002_6 crossref_primary_10_3390_drones8120749 crossref_primary_10_3390_machines13020162 crossref_primary_10_1016_j_engappai_2024_108362 crossref_primary_10_1016_j_asoc_2023_110701 crossref_primary_10_1007_s11768_023_00139_w crossref_primary_10_1016_j_asoc_2025_112927 crossref_primary_10_4274_imj_galenos_2023_92972 crossref_primary_10_1016_j_knosys_2024_112632 crossref_primary_10_3390_aerospace9110658 crossref_primary_10_1016_j_swevo_2024_101487 crossref_primary_10_1007_s11042_022_12882_4 crossref_primary_10_2478_jsiot_2023_0016 crossref_primary_10_1007_s00521_023_09202_8 crossref_primary_10_3390_drones5040144 crossref_primary_10_1016_j_asoc_2020_106857 crossref_primary_10_1007_s00607_024_01309_7 crossref_primary_10_1007_s11633_022_1405_5 crossref_primary_10_1109_ACCESS_2023_3234057 crossref_primary_10_1007_s00521_022_07080_0 crossref_primary_10_1016_j_asoc_2023_110156 crossref_primary_10_1080_00207543_2022_2113928 crossref_primary_10_3390_biomimetics9100596 crossref_primary_10_1109_ACCESS_2023_3339227 crossref_primary_10_1016_j_eswa_2023_119910 crossref_primary_10_1007_s41315_023_00294_y crossref_primary_10_1139_dsa_2023_0093 crossref_primary_10_3390_drones9020108 crossref_primary_10_1016_j_asoc_2023_110959 crossref_primary_10_1016_j_swevo_2025_101874 crossref_primary_10_1109_TCDS_2022_3212062 crossref_primary_10_1155_2021_5158304 crossref_primary_10_1016_j_asoc_2020_106602 crossref_primary_10_3390_aerospace10070612 crossref_primary_10_1016_j_knosys_2024_112569 crossref_primary_10_1109_COMST_2024_3395358 crossref_primary_10_1109_TVT_2024_3435759 crossref_primary_10_1007_s42235_021_0018_y crossref_primary_10_1007_s11370_024_00566_x crossref_primary_10_1016_j_renene_2024_120886 crossref_primary_10_1007_s00500_023_08924_0 crossref_primary_10_3390_electronics11142197 crossref_primary_10_1007_s40860_022_00196_z crossref_primary_10_1016_j_seta_2023_103032 crossref_primary_10_1007_s40430_022_03399_w crossref_primary_10_1109_TITS_2021_3131473 crossref_primary_10_1007_s00500_023_08016_z crossref_primary_10_1177_1748006X221105395 crossref_primary_10_1007_s10586_024_04941_2 crossref_primary_10_1016_j_knosys_2020_106209 crossref_primary_10_3390_axioms12070702 crossref_primary_10_1007_s10846_022_01608_1 crossref_primary_10_1109_ACCESS_2024_3375083 crossref_primary_10_1093_jcde_qwad094 crossref_primary_10_1088_1742_6596_2891_11_112001 crossref_primary_10_3390_drones8060274 crossref_primary_10_1155_2021_6642160 crossref_primary_10_3390_app14188265 crossref_primary_10_1109_ACCESS_2020_3047816 crossref_primary_10_1016_j_matcom_2023_02_003 crossref_primary_10_1007_s13042_023_02087_y crossref_primary_10_32604_csse_2023_032737 crossref_primary_10_1038_s41598_024_71485_1 crossref_primary_10_1109_TTE_2022_3142150 crossref_primary_10_3390_s23083988 crossref_primary_10_3390_drones8060272 crossref_primary_10_1109_JIOT_2022_3185012 crossref_primary_10_3390_s22186843 crossref_primary_10_1016_j_asoc_2021_107900 crossref_primary_10_1007_s40747_024_01536_7 crossref_primary_10_1016_j_ast_2022_107374 crossref_primary_10_1002_cpe_7942 crossref_primary_10_7161_omuanajas_1394616 crossref_primary_10_3390_drones7110675 crossref_primary_10_1038_s41598_022_11622_w crossref_primary_10_1007_s10661_022_10590_y crossref_primary_10_1007_s11831_022_09742_7 crossref_primary_10_1016_j_ins_2021_10_070 crossref_primary_10_1016_j_measurement_2021_109347 crossref_primary_10_1016_j_comcom_2023_04_032 crossref_primary_10_1109_ACCESS_2021_3050764 crossref_primary_10_16984_saufenbilder_800067 crossref_primary_10_3390_app14114461 crossref_primary_10_1007_s00500_021_06194_2 crossref_primary_10_1109_ACCESS_2022_3197628 crossref_primary_10_1109_JIOT_2022_3165523 crossref_primary_10_32604_cmc_2022_026672 crossref_primary_10_1007_s12145_020_00538_6 crossref_primary_10_1016_j_csite_2021_101250 crossref_primary_10_3390_drones6050126 crossref_primary_10_1109_ACCESS_2022_3209260 crossref_primary_10_1111_exsy_13224 crossref_primary_10_1007_s11276_022_03198_0 crossref_primary_10_1016_j_eswa_2023_120827 crossref_primary_10_3390_jmse11091720 crossref_primary_10_1016_j_enbuild_2025_115323 crossref_primary_10_1016_j_eswa_2023_120713 crossref_primary_10_1016_j_eswa_2021_115690 crossref_primary_10_1016_j_eij_2024_100468 crossref_primary_10_3390_drones8110644 crossref_primary_10_1016_j_asoc_2021_107486 crossref_primary_10_1016_j_knosys_2022_109844 crossref_primary_10_1177_15485129251323291 crossref_primary_10_1016_j_asoc_2024_112243 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1109_TCDS_2020_3035778 crossref_primary_10_3390_s21113820 crossref_primary_10_1007_s10489_022_04172_1 crossref_primary_10_1108_ACI_12_2023_0195 crossref_primary_10_23919_CSMS_2022_0006 crossref_primary_10_1007_s41315_023_00298_8 crossref_primary_10_1016_j_asoc_2023_110776 crossref_primary_10_1038_s41598_023_49754_2 crossref_primary_10_1016_j_asoc_2022_108865 crossref_primary_10_1109_ACCESS_2020_3043539 crossref_primary_10_1016_j_autcon_2023_105110 crossref_primary_10_1016_j_ast_2021_107287 crossref_primary_10_1016_j_ast_2024_109320 crossref_primary_10_1109_TCE_2024_3449451 crossref_primary_10_3390_drones7060368 crossref_primary_10_1002_cpe_8120 crossref_primary_10_1016_j_energy_2024_131833 crossref_primary_10_3846_aviation_2023_18461 crossref_primary_10_1007_s11277_021_08947_6 crossref_primary_10_1016_j_asoc_2023_110660 crossref_primary_10_1109_OJVT_2023_3316181 crossref_primary_10_1016_j_engappai_2021_104183 crossref_primary_10_3390_aerospace11110870 |
Cites_doi | 10.1007/s00521-016-2179-x 10.1177/0278364913495721 10.1016/j.ast.2015.12.021 10.1109/JIOT.2018.2796243 10.1016/j.knosys.2018.05.033 10.1016/j.autcon.2017.04.013 10.1109/TSMCB.2009.2015956 10.1109/JSEN.2012.2207950 10.1016/j.ast.2018.02.031 10.1109/TSMCC.2012.2218595 10.1016/j.apm.2018.03.005 10.1016/j.knosys.2013.01.011 10.1016/j.advengsoft.2017.05.008 10.1016/j.neucom.2018.06.032 10.1016/j.autcon.2018.05.024 10.1016/j.neucom.2015.06.083 10.1016/j.neucom.2015.07.044 10.1016/j.ast.2015.11.040 10.1016/j.robot.2018.05.016 10.1016/j.engappai.2013.05.008 10.1080/00207721.2014.929191 10.1016/j.advengsoft.2013.12.007 10.1109/ACCESS.2018.2872751 10.1016/j.neucom.2017.05.059 10.1109/TITS.2017.2673778 10.1016/j.neucom.2016.08.108 10.1016/j.swevo.2015.10.004 10.1109/MCS.2013.2287568 10.1007/s10846-012-9776-4 10.1007/BF00115009 10.1016/j.neucom.2017.10.037 10.1109/TNNLS.2017.2773458 10.1016/j.asoc.2018.05.032 10.1016/j.engappai.2017.10.024 10.1016/j.knosys.2017.05.017 10.1016/j.asoc.2018.05.030 10.1109/TSMCA.2012.2227719 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106099 S1568494620300399 |
GrantInformation_xml | – fundername: SDUST Young Teachers Teaching Talent Training Plan grantid: BJRC20180503 – fundername: Taishan Scholar Project of Shandong Province of China funderid: http://dx.doi.org/10.13039/501100010040 – fundername: National Natural Science Foundation grantid: 61603220; 61873149; 61733009 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-1ce41645dc7befe2e6a29ea6ef86d2c41b9bd687f6f487a0cb00b93d851c82df3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:08:21 EDT 2025 Tue Jul 01 01:50:05 EDT 2025 Fri Feb 23 02:47:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unmanned aerial vehicles (UAVs) Grey wolf optimizer Reinforcement learning Three-dimensional path planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1ce41645dc7befe2e6a29ea6ef86d2c41b9bd687f6f487a0cb00b93d851c82df3 |
ORCID | 0000-0002-9147-2614 0000-0002-7718-5918 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106099 crossref_citationtrail_10_1016_j_asoc_2020_106099 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Radmanesh, Kumar, Sarim (b22) 2018; 77 Phung, Cong, Dinh (b16) 2017; 81 Sutton (b29) 1988; 3 Sujit, Saripalli, Sousa (b2) 2014; 34 Guha, Roy, Banerjee (b20) 2015; 27 Kumar, Kumar (b24) 2017; 112 Emary, Zawbaa, Hassanien (b21) 2015; 172 Long, Jiao, Liang (b23) 2018; 60 Alshawi, Yan, Pan (b6) 2012; 12 Wei, Wang, Zheng (b31) 2018; 6 Cruz, Yu (b32) 2017; 233 Chen, Luo, Mei (b7) 2016; 47 Chen, Mei, Yu (b37) 2017; 266 Zhang, Duan (b1) 2018; 313 Daniel, Anitha, Gnanaraj (b19) 2017; 131 Grondman, Busoniu, Lopes (b27) 2012; 42 Manjarres, Landatorres, Gillopez (b10) 2013; 26 Kober, Bagnell, Peters (b26) 2013; 32 Guo, Chen, Wang (b11) 2016; 28 Long, Jiao, Liang (b25) 2018; 68 Wu, Wang, Li (b17) 2017; 275 Zhan, Zhang, Li (b35) 2009; 39 Konar, Chakraborty, Singh (b30) 2013; 43 Chen, Yu, Mei (b34) 2016; 171 Lin, Saripalli (b5) 2017; 18 Kumar, Garg, Singh (b15) 2018; 5 Mirjalili, Mirjalili, Lewis (b18) 2014; 69 Kothari, Postlethwaite (b9) 2013; 71 Zhang, Lu, Jia (b36) 2018; 70 Zhao, Zheng, Liu (b13) 2018; 158 Kiumarsi, Vamvoudakis, Modares (b28) 2018; 29 Carlucho, Paula, Wang (b33) 2018; 107 Yang, Tsai, Kang (b3) 2018; 93 Wang, Chu, Mirjalili (b14) 2016; 49 Radmanesh, Kumar (b8) 2016; 50 Liu, Zheng, Cai (b4) 2013; 44 Younis, Yang (b12) 2018; 72 Lin (10.1016/j.asoc.2020.106099_b5) 2017; 18 Phung (10.1016/j.asoc.2020.106099_b16) 2017; 81 Guha (10.1016/j.asoc.2020.106099_b20) 2015; 27 Guo (10.1016/j.asoc.2020.106099_b11) 2016; 28 Alshawi (10.1016/j.asoc.2020.106099_b6) 2012; 12 Mirjalili (10.1016/j.asoc.2020.106099_b18) 2014; 69 Radmanesh (10.1016/j.asoc.2020.106099_b22) 2018; 77 Liu (10.1016/j.asoc.2020.106099_b4) 2013; 44 Cruz (10.1016/j.asoc.2020.106099_b32) 2017; 233 Zhao (10.1016/j.asoc.2020.106099_b13) 2018; 158 Kober (10.1016/j.asoc.2020.106099_b26) 2013; 32 Grondman (10.1016/j.asoc.2020.106099_b27) 2012; 42 Chen (10.1016/j.asoc.2020.106099_b37) 2017; 266 Daniel (10.1016/j.asoc.2020.106099_b19) 2017; 131 Sutton (10.1016/j.asoc.2020.106099_b29) 1988; 3 Konar (10.1016/j.asoc.2020.106099_b30) 2013; 43 Younis (10.1016/j.asoc.2020.106099_b12) 2018; 72 Chen (10.1016/j.asoc.2020.106099_b7) 2016; 47 Kumar (10.1016/j.asoc.2020.106099_b24) 2017; 112 Kiumarsi (10.1016/j.asoc.2020.106099_b28) 2018; 29 Wang (10.1016/j.asoc.2020.106099_b14) 2016; 49 Long (10.1016/j.asoc.2020.106099_b25) 2018; 68 Long (10.1016/j.asoc.2020.106099_b23) 2018; 60 Radmanesh (10.1016/j.asoc.2020.106099_b8) 2016; 50 Zhang (10.1016/j.asoc.2020.106099_b1) 2018; 313 Emary (10.1016/j.asoc.2020.106099_b21) 2015; 172 Chen (10.1016/j.asoc.2020.106099_b34) 2016; 171 Wei (10.1016/j.asoc.2020.106099_b31) 2018; 6 Yang (10.1016/j.asoc.2020.106099_b3) 2018; 93 Manjarres (10.1016/j.asoc.2020.106099_b10) 2013; 26 Wu (10.1016/j.asoc.2020.106099_b17) 2017; 275 Zhan (10.1016/j.asoc.2020.106099_b35) 2009; 39 Sujit (10.1016/j.asoc.2020.106099_b2) 2014; 34 Kumar (10.1016/j.asoc.2020.106099_b15) 2018; 5 Carlucho (10.1016/j.asoc.2020.106099_b33) 2018; 107 Kothari (10.1016/j.asoc.2020.106099_b9) 2013; 71 Zhang (10.1016/j.asoc.2020.106099_b36) 2018; 70 |
References_xml | – volume: 42 start-page: 1291 year: 2012 end-page: 1307 ident: b27 article-title: A survey of actor-critic reinforcement learning: Standard and natural policy gradients publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 107 start-page: 71 year: 2018 end-page: 86 ident: b33 article-title: Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning publication-title: Robot. Auton. Syst. – volume: 26 start-page: 1818 year: 2013 end-page: 1831 ident: b10 article-title: A survey on applications of the harmony search algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 275 start-page: 2055 year: 2017 end-page: 2065 ident: b17 article-title: Path planning for solar-powered UAV in urban environment publication-title: Neurocomputing – volume: 3 start-page: 9 year: 1988 end-page: 14 ident: b29 article-title: Learning to predict by the methods of temporal differences publication-title: Mach. Learn. – volume: 172 start-page: 371 year: 2015 end-page: 381 ident: b21 article-title: Binary gray wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 60 start-page: 112 year: 2018 end-page: 126 ident: b23 article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems publication-title: Appl. Math. Model. – volume: 12 start-page: 3010 year: 2012 end-page: 3018 ident: b6 article-title: Lifetime enhancement in wireless sensor networks using fuzzy approach and A-star algorithm publication-title: IEEE Sens. J. – volume: 313 start-page: 229 year: 2018 end-page: 246 ident: b1 article-title: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning publication-title: Neurocomputing – volume: 6 start-page: 57814 year: 2018 end-page: 57825 ident: b31 article-title: UGV navigation optimization aided by reinforcement learning-based path tracking publication-title: IEEE Access – volume: 233 start-page: 34 year: 2017 end-page: 42 ident: b32 article-title: Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning publication-title: Neurocomputing – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: b35 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. – volume: 72 start-page: 498 year: 2018 end-page: 517 ident: b12 article-title: Hybrid meta-heuristic algorithms for independent job scheduling in grid computing publication-title: Appl. Soft Comput. – volume: 77 start-page: 168 year: 2018 end-page: 179 ident: b22 article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment publication-title: Aerosp. Sci. Technol. – volume: 18 start-page: 3179 year: 2017 end-page: 3192 ident: b5 article-title: Sampling-based path planning for UAV collision avoidance publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 29 start-page: 2042 year: 2018 end-page: 2062 ident: b28 article-title: Optimal and autonomous control using reinforcement learning: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 47 start-page: 1407 year: 2016 end-page: 1420 ident: b7 article-title: UAV path planning using artificial potential field method updated by optimal control theory publication-title: Internat. J. Systems Sci. – volume: 158 start-page: 54 year: 2018 end-page: 64 ident: b13 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl.-Based Syst. – volume: 71 start-page: 231 year: 2013 end-page: 253 ident: b9 article-title: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees publication-title: J. Intell. Robot. Syst. – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: b25 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. – volume: 28 start-page: 1909 year: 2016 end-page: 1926 ident: b11 article-title: A survey of biogeography-based optimization publication-title: Neural Comput. Appl. – volume: 43 start-page: 1141 year: 2013 end-page: 1153 ident: b30 article-title: A deterministic improved Q-learning for path planning of a mobile robot publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 49 start-page: 231 year: 2016 end-page: 238 ident: b14 article-title: Three-dimensional path planning for UCAV using an improved bat algorithm publication-title: Aerosp. Sci. Technol. – volume: 50 start-page: 149 year: 2016 end-page: 160 ident: b8 article-title: Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming publication-title: Aerosp. Sci. Technol. – volume: 44 start-page: 34 year: 2013 end-page: 47 ident: b4 article-title: Bi-level programming based real-time path planning for unmanned aerial vehicles publication-title: Knowl.-Based Syst. – volume: 70 start-page: 371 year: 2018 end-page: 388 ident: b36 article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning publication-title: Appl. Soft Comput. – volume: 27 start-page: 97 year: 2015 end-page: 115 ident: b20 article-title: Load frequency control of interconnected power system using grey wolf optimization publication-title: Swarm Evol. Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 93 start-page: 214 year: 2018 end-page: 230 ident: b3 article-title: UAV path planning method for digital terrain model reconstruction - A debris fan example publication-title: Autom. Constr. – volume: 34 start-page: 42 year: 2014 end-page: 59 ident: b2 article-title: Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless publication-title: IEEE Control Syst. – volume: 266 start-page: 445 year: 2017 end-page: 457 ident: b37 article-title: Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm publication-title: Neurocomputing – volume: 5 start-page: 1698 year: 2018 end-page: 1707 ident: b15 article-title: MVO-based 2D path planning scheme for providing quality of service in UAV environment publication-title: IEEE Internet Things J. – volume: 32 start-page: 1238 year: 2013 end-page: 1274 ident: b26 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. – volume: 131 start-page: 58 year: 2017 end-page: 69 ident: b19 article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search – grey wolf optimization algorithm publication-title: Knowl.-Based Syst. – volume: 112 start-page: 231 year: 2017 end-page: 254 ident: b24 article-title: An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems publication-title: Adv. Eng. Softw. – volume: 171 start-page: 878 year: 2016 end-page: 888 ident: b34 article-title: Modified central force optimization (MCFO) algorithm for 3D UAV path planning publication-title: Neurocomputing – volume: 81 start-page: 25 year: 2017 end-page: 33 ident: b16 article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection publication-title: Autom. Constr. – volume: 28 start-page: 1909 issue: 8 year: 2016 ident: 10.1016/j.asoc.2020.106099_b11 article-title: A survey of biogeography-based optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2179-x – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 10.1016/j.asoc.2020.106099_b26 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – volume: 50 start-page: 149 year: 2016 ident: 10.1016/j.asoc.2020.106099_b8 article-title: Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.12.021 – volume: 5 start-page: 1698 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106099_b15 article-title: MVO-based 2D path planning scheme for providing quality of service in UAV environment publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2796243 – volume: 158 start-page: 54 year: 2018 ident: 10.1016/j.asoc.2020.106099_b13 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.033 – volume: 81 start-page: 25 year: 2017 ident: 10.1016/j.asoc.2020.106099_b16 article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.04.013 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.asoc.2020.106099_b35 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2009.2015956 – volume: 12 start-page: 3010 issue: 10 year: 2012 ident: 10.1016/j.asoc.2020.106099_b6 article-title: Lifetime enhancement in wireless sensor networks using fuzzy approach and A-star algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2012.2207950 – volume: 77 start-page: 168 year: 2018 ident: 10.1016/j.asoc.2020.106099_b22 article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.02.031 – volume: 42 start-page: 1291 issue: 6 year: 2012 ident: 10.1016/j.asoc.2020.106099_b27 article-title: A survey of actor-critic reinforcement learning: Standard and natural policy gradients publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2012.2218595 – volume: 60 start-page: 112 year: 2018 ident: 10.1016/j.asoc.2020.106099_b23 article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.03.005 – volume: 44 start-page: 34 year: 2013 ident: 10.1016/j.asoc.2020.106099_b4 article-title: Bi-level programming based real-time path planning for unmanned aerial vehicles publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.01.011 – volume: 112 start-page: 231 year: 2017 ident: 10.1016/j.asoc.2020.106099_b24 article-title: An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.008 – volume: 313 start-page: 229 year: 2018 ident: 10.1016/j.asoc.2020.106099_b1 article-title: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.032 – volume: 93 start-page: 214 year: 2018 ident: 10.1016/j.asoc.2020.106099_b3 article-title: UAV path planning method for digital terrain model reconstruction - A debris fan example publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.05.024 – volume: 172 start-page: 371 year: 2015 ident: 10.1016/j.asoc.2020.106099_b21 article-title: Binary gray wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 171 start-page: 878 year: 2016 ident: 10.1016/j.asoc.2020.106099_b34 article-title: Modified central force optimization (MCFO) algorithm for 3D UAV path planning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.044 – volume: 49 start-page: 231 year: 2016 ident: 10.1016/j.asoc.2020.106099_b14 article-title: Three-dimensional path planning for UCAV using an improved bat algorithm publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.11.040 – volume: 107 start-page: 71 year: 2018 ident: 10.1016/j.asoc.2020.106099_b33 article-title: Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.05.016 – volume: 26 start-page: 1818 issue: 8 year: 2013 ident: 10.1016/j.asoc.2020.106099_b10 article-title: A survey on applications of the harmony search algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.05.008 – volume: 47 start-page: 1407 issue: 6 year: 2016 ident: 10.1016/j.asoc.2020.106099_b7 article-title: UAV path planning using artificial potential field method updated by optimal control theory publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2014.929191 – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 10.1016/j.asoc.2020.106099_b18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 6 start-page: 57814 year: 2018 ident: 10.1016/j.asoc.2020.106099_b31 article-title: UGV navigation optimization aided by reinforcement learning-based path tracking publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872751 – volume: 266 start-page: 445 year: 2017 ident: 10.1016/j.asoc.2020.106099_b37 article-title: Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.059 – volume: 18 start-page: 3179 issue: 11 year: 2017 ident: 10.1016/j.asoc.2020.106099_b5 article-title: Sampling-based path planning for UAV collision avoidance publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2673778 – volume: 233 start-page: 34 year: 2017 ident: 10.1016/j.asoc.2020.106099_b32 article-title: Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.108 – volume: 27 start-page: 97 year: 2015 ident: 10.1016/j.asoc.2020.106099_b20 article-title: Load frequency control of interconnected power system using grey wolf optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.10.004 – volume: 34 start-page: 42 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106099_b2 article-title: Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless publication-title: IEEE Control Syst. doi: 10.1109/MCS.2013.2287568 – volume: 71 start-page: 231 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106099_b9 article-title: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-012-9776-4 – volume: 3 start-page: 9 issue: 1 year: 1988 ident: 10.1016/j.asoc.2020.106099_b29 article-title: Learning to predict by the methods of temporal differences publication-title: Mach. Learn. doi: 10.1007/BF00115009 – volume: 275 start-page: 2055 year: 2017 ident: 10.1016/j.asoc.2020.106099_b17 article-title: Path planning for solar-powered UAV in urban environment publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.037 – volume: 29 start-page: 2042 issue: 6 year: 2018 ident: 10.1016/j.asoc.2020.106099_b28 article-title: Optimal and autonomous control using reinforcement learning: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2773458 – volume: 72 start-page: 498 year: 2018 ident: 10.1016/j.asoc.2020.106099_b12 article-title: Hybrid meta-heuristic algorithms for independent job scheduling in grid computing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.032 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.asoc.2020.106099_b25 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.024 – volume: 131 start-page: 58 year: 2017 ident: 10.1016/j.asoc.2020.106099_b19 article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search – grey wolf optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.05.017 – volume: 70 start-page: 371 year: 2018 ident: 10.1016/j.asoc.2020.106099_b36 article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.030 – volume: 43 start-page: 1141 issue: 5 year: 2013 ident: 10.1016/j.asoc.2020.106099_b30 article-title: A deterministic improved Q-learning for path planning of a mobile robot publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMCA.2012.2227719 |
SSID | ssj0016928 |
Score | 2.639553 |
Snippet | Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106099 |
SubjectTerms | Grey wolf optimizer Reinforcement learning Three-dimensional path planning Unmanned aerial vehicles (UAVs) |
Title | A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106099 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTdz8KBI3W02TZvjsijrE1FXvJU0TdaV3XZZq6IHf7uZNhUF8eCpNMyE8nUyjzAPQnY1pSZSEffCwHCPpUx6kjZbnvHtKfeNH2qFF_oXl7zbY6f3wf0U6dS1MJhW6XR_pdNLbe1WGg7NxngwaNzYyCNignG7NVaYYhEfYyFK-eHHV5qHz0U5XxWJPaR2hTNVjpe0CNgYkeICb5b9X38xTt8MzvECmXOeIrSrj1kkUzpbIvP1FAZwh3KZFG3I8hc9hIkuu6Cq8sIP3DiIPqCdSsGG1W_wmg8N5FZJjAbvdgs57OeTQfEwAssGz9lIotIFWQolvOiHMmUO9nrtu6d9wNnFMHYzjlZI7_jottP13CwFT1l0Cs9X2rpeLEhVmGijqeaSCi25NhFPqWJ-IpKUR6HhxoYwsqnscUxEK7UOmYpoalqrZDrLM71GQIWBaEosvZbY2lBHgdAiNZFQLJQJba0TvwYxVq7ROM67GMZ1RtljjMDHCHxcAb9ODr54xlWbjT-pg_rfxD-EJbZ24A--jX_ybZJZfKsSdrbIdDF51tvWFymSnVLYdshMu3N9foXPk7Pu5Se-6-Fm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRry5gQGEQhvXceKxQqDyXKCILXIcuxS1SVUCCAZ-O-fEQSAhBtbEZ0VffC_r7j5C9jSlJlIR98LAcI-lTHqSNlue8VHLfeOHWtkL_atr3umy8_vgfoIc170wtqzS2f7KppfW2j1pODQbo36_cYOZR8QE47i17TAVk2SaofpaGoOjj686D5-LkmDVrvbsctc5UxV5SYQAk0RqH_BmOQD2F-_0zeOcLpA5FypCu_qaRTKhsyUyX9MwgNPKZVK0Ictf9ADGuhyDqsobP3B8ED2wjioFzKvf4DUfGMjRSgz777iFHPTycb94GAKKwXM2lNbqgixPJbzoh7JmDva77bunA7DkxTByJEcrpHt6cnvc8RyZgqcQnsLzlcbYiwWpChNtNNVcUqEl1ybiKVXMT0SS8ig03GAOI5sK9TERrRQjMhXR1LRWyVSWZ3qNgAoD0ZS291ra2YY6CoQWqYmEYqFMaGud-DWIsXKTxi3hxSCuS8oeYwt8bIGPK-DXyeGXzKias_Hn6qD-N_GP0xKjI_hDbuOfcrtkpnN7dRlfnl1fbJJZ-6aq3tkiU8X4WW9jYFIkO-XB-wTxGeFf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+reinforcement+learning+based+grey+wolf+optimizer+algorithm+for+unmanned+aerial+vehicles+%28UAVs%29+path+planning&rft.jtitle=Applied+soft+computing&rft.au=Qu%2C+Chengzhi&rft.au=Gai%2C+Wendong&rft.au=Zhong%2C+Maiying&rft.au=Zhang%2C+Jing&rft.date=2020-04-01&rft.issn=1568-4946&rft.volume=89&rft.spage=106099&rft_id=info:doi/10.1016%2Fj.asoc.2020.106099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |