A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning

Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flig...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 89; p. 106099
Main Authors Qu, Chengzhi, Gai, Wendong, Zhong, Maiying, Zhang, Jing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flight environment. In this paper, a novel reinforcement learning based grey wolf optimizer algorithm called RLGWO has been presented for solving this problem. In the proposed algorithm, the reinforcement learning is inserted that the individual is controlled to switch operations adaptively according to the accumulated performance. Considering that the proposed algorithm is designed to serve for UAVs path planning, four operations have been introduced for each individual: exploration, exploitation, geometric adjustment, and optimal adjustment. In addition, the cubic B-spline curve is used to smooth the generated flight route and make the planning path be suitable for the UAVs. The simulation experimental results show that the RLGWO algorithm can acquire a feasible and effective route successfully in complicated environment. •A novel reinforcement learning-based grey wolf optimizer algorithm called RLGWO is proposed to solve the UAVs three-dimensional path planning problem.•The RLGWO includes four operations: exploration, exploitation, geometric adjustment and optimal adjustment. Each individual in RLGWO perform their operations independently.
AbstractList Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their applications. However, many algorithms reported in the literature may not feasible or efficient, especially in the face of three-dimensional complex flight environment. In this paper, a novel reinforcement learning based grey wolf optimizer algorithm called RLGWO has been presented for solving this problem. In the proposed algorithm, the reinforcement learning is inserted that the individual is controlled to switch operations adaptively according to the accumulated performance. Considering that the proposed algorithm is designed to serve for UAVs path planning, four operations have been introduced for each individual: exploration, exploitation, geometric adjustment, and optimal adjustment. In addition, the cubic B-spline curve is used to smooth the generated flight route and make the planning path be suitable for the UAVs. The simulation experimental results show that the RLGWO algorithm can acquire a feasible and effective route successfully in complicated environment. •A novel reinforcement learning-based grey wolf optimizer algorithm called RLGWO is proposed to solve the UAVs three-dimensional path planning problem.•The RLGWO includes four operations: exploration, exploitation, geometric adjustment and optimal adjustment. Each individual in RLGWO perform their operations independently.
ArticleNumber 106099
Author Gai, Wendong
Zhang, Jing
Zhong, Maiying
Qu, Chengzhi
Author_xml – sequence: 1
  givenname: Chengzhi
  orcidid: 0000-0002-9147-2614
  surname: Qu
  fullname: Qu, Chengzhi
– sequence: 2
  givenname: Wendong
  orcidid: 0000-0002-7718-5918
  surname: Gai
  fullname: Gai, Wendong
  email: gwd2011@sdust.edu.cn
– sequence: 3
  givenname: Maiying
  surname: Zhong
  fullname: Zhong, Maiying
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
BookMark eNp9kE1LAzEQhoNUsK3-AU856mFrkm7TLHgpxS8oeLFeQzY7aVOySUlipf56d6knDz3NMLzPC_OM0MAHDwjdUjKhhPKH3USloCeMsP7ASVVdoCEVc1ZUXNBBt8-4KMqq5FdolNKOdFDFxBDlBfbhAA5HsN6EqKEFn7EDFb31G1yrBA3eRDji7-AMDvtsW_sDESu3CdHmbYs7DH_5VnnfRRVEqxw-wNZqBwnfrRef6R7vVd7ivesyXes1ujTKJbj5m2O0fn76WL4Wq_eXt-ViVegpIbmgGkrKy1mj5zUYYMAVq0BxMII3TJe0ruqGi7nhphRzRXRNSF1NGzGjWrDGTMeInXp1DClFMHIfbaviUVIie29yJ3tvsvcmT946SPyDtM0q2-BzVNadRx9PKHRPHSxEmbQFr6GxEXSWTbDn8F_XBY4D
CitedBy_id crossref_primary_10_1007_s00521_021_06702_3
crossref_primary_10_1007_s40430_024_05304_z
crossref_primary_10_1017_S0263574723000231
crossref_primary_10_1007_s11440_023_02136_4
crossref_primary_10_1109_JIOT_2024_3440017
crossref_primary_10_1007_s43684_021_00013_z
crossref_primary_10_1016_j_jocs_2023_102149
crossref_primary_10_3390_electronics10090999
crossref_primary_10_1142_S0129183122501388
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_1016_j_neucom_2024_128820
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1016_j_ins_2024_120924
crossref_primary_10_3390_drones9010026
crossref_primary_10_1080_21642583_2024_2449156
crossref_primary_10_62762_TSCC_2024_211408
crossref_primary_10_1016_j_isatra_2020_12_054
crossref_primary_10_1109_ACCESS_2022_3203072
crossref_primary_10_1109_TITS_2023_3281522
crossref_primary_10_1016_j_asoc_2020_106796
crossref_primary_10_1007_s42235_023_00391_5
crossref_primary_10_1016_j_neucom_2024_127506
crossref_primary_10_3390_app142411816
crossref_primary_10_1007_s10489_021_02353_y
crossref_primary_10_1016_j_compag_2021_106608
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1016_j_swevo_2023_101255
crossref_primary_10_1002_dac_5641
crossref_primary_10_3390_app12094695
crossref_primary_10_1016_j_jii_2021_100233
crossref_primary_10_1007_s11227_024_06498_8
crossref_primary_10_1109_TII_2022_3142723
crossref_primary_10_1016_j_oceaneng_2021_110121
crossref_primary_10_1016_j_eswa_2024_124955
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1016_j_knosys_2022_109075
crossref_primary_10_55525_tjst_1219845
crossref_primary_10_1007_s12008_025_02241_6
crossref_primary_10_3390_drones8020051
crossref_primary_10_3390_app14051909
crossref_primary_10_1007_s11277_023_10534_w
crossref_primary_10_3390_robotics13080117
crossref_primary_10_1016_j_knosys_2021_107044
crossref_primary_10_1016_j_swevo_2021_100985
crossref_primary_10_1109_JIOT_2022_3182798
crossref_primary_10_1109_JIOT_2024_3459918
crossref_primary_10_32604_iasc_2025_060364
crossref_primary_10_1016_j_matcom_2021_10_032
crossref_primary_10_1016_j_asoc_2023_110916
crossref_primary_10_1007_s42044_024_00179_8
crossref_primary_10_3390_act10100255
crossref_primary_10_3390_drones9030212
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1155_2023_1578273
crossref_primary_10_3390_drones9030219
crossref_primary_10_1016_j_procir_2023_02_115
crossref_primary_10_3390_aerospace11020157
crossref_primary_10_3390_jmse9111267
crossref_primary_10_1016_j_knosys_2024_111409
crossref_primary_10_1007_s11227_024_06651_3
crossref_primary_10_3390_drones7010055
crossref_primary_10_1016_j_eswa_2021_114993
crossref_primary_10_3390_app12030943
crossref_primary_10_3390_app12115634
crossref_primary_10_1016_j_eswa_2023_121975
crossref_primary_10_32604_cmc_2023_034892
crossref_primary_10_3390_aerospace10050487
crossref_primary_10_1007_s12065_023_00820_8
crossref_primary_10_1109_TITS_2023_3248841
crossref_primary_10_3390_act13010026
crossref_primary_10_1007_s11227_025_07002_6
crossref_primary_10_3390_drones8120749
crossref_primary_10_3390_machines13020162
crossref_primary_10_1016_j_engappai_2024_108362
crossref_primary_10_1016_j_asoc_2023_110701
crossref_primary_10_1007_s11768_023_00139_w
crossref_primary_10_1016_j_asoc_2025_112927
crossref_primary_10_4274_imj_galenos_2023_92972
crossref_primary_10_1016_j_knosys_2024_112632
crossref_primary_10_3390_aerospace9110658
crossref_primary_10_1016_j_swevo_2024_101487
crossref_primary_10_1007_s11042_022_12882_4
crossref_primary_10_2478_jsiot_2023_0016
crossref_primary_10_1007_s00521_023_09202_8
crossref_primary_10_3390_drones5040144
crossref_primary_10_1016_j_asoc_2020_106857
crossref_primary_10_1007_s00607_024_01309_7
crossref_primary_10_1007_s11633_022_1405_5
crossref_primary_10_1109_ACCESS_2023_3234057
crossref_primary_10_1007_s00521_022_07080_0
crossref_primary_10_1016_j_asoc_2023_110156
crossref_primary_10_1080_00207543_2022_2113928
crossref_primary_10_3390_biomimetics9100596
crossref_primary_10_1109_ACCESS_2023_3339227
crossref_primary_10_1016_j_eswa_2023_119910
crossref_primary_10_1007_s41315_023_00294_y
crossref_primary_10_1139_dsa_2023_0093
crossref_primary_10_3390_drones9020108
crossref_primary_10_1016_j_asoc_2023_110959
crossref_primary_10_1016_j_swevo_2025_101874
crossref_primary_10_1109_TCDS_2022_3212062
crossref_primary_10_1155_2021_5158304
crossref_primary_10_1016_j_asoc_2020_106602
crossref_primary_10_3390_aerospace10070612
crossref_primary_10_1016_j_knosys_2024_112569
crossref_primary_10_1109_COMST_2024_3395358
crossref_primary_10_1109_TVT_2024_3435759
crossref_primary_10_1007_s42235_021_0018_y
crossref_primary_10_1007_s11370_024_00566_x
crossref_primary_10_1016_j_renene_2024_120886
crossref_primary_10_1007_s00500_023_08924_0
crossref_primary_10_3390_electronics11142197
crossref_primary_10_1007_s40860_022_00196_z
crossref_primary_10_1016_j_seta_2023_103032
crossref_primary_10_1007_s40430_022_03399_w
crossref_primary_10_1109_TITS_2021_3131473
crossref_primary_10_1007_s00500_023_08016_z
crossref_primary_10_1177_1748006X221105395
crossref_primary_10_1007_s10586_024_04941_2
crossref_primary_10_1016_j_knosys_2020_106209
crossref_primary_10_3390_axioms12070702
crossref_primary_10_1007_s10846_022_01608_1
crossref_primary_10_1109_ACCESS_2024_3375083
crossref_primary_10_1093_jcde_qwad094
crossref_primary_10_1088_1742_6596_2891_11_112001
crossref_primary_10_3390_drones8060274
crossref_primary_10_1155_2021_6642160
crossref_primary_10_3390_app14188265
crossref_primary_10_1109_ACCESS_2020_3047816
crossref_primary_10_1016_j_matcom_2023_02_003
crossref_primary_10_1007_s13042_023_02087_y
crossref_primary_10_32604_csse_2023_032737
crossref_primary_10_1038_s41598_024_71485_1
crossref_primary_10_1109_TTE_2022_3142150
crossref_primary_10_3390_s23083988
crossref_primary_10_3390_drones8060272
crossref_primary_10_1109_JIOT_2022_3185012
crossref_primary_10_3390_s22186843
crossref_primary_10_1016_j_asoc_2021_107900
crossref_primary_10_1007_s40747_024_01536_7
crossref_primary_10_1016_j_ast_2022_107374
crossref_primary_10_1002_cpe_7942
crossref_primary_10_7161_omuanajas_1394616
crossref_primary_10_3390_drones7110675
crossref_primary_10_1038_s41598_022_11622_w
crossref_primary_10_1007_s10661_022_10590_y
crossref_primary_10_1007_s11831_022_09742_7
crossref_primary_10_1016_j_ins_2021_10_070
crossref_primary_10_1016_j_measurement_2021_109347
crossref_primary_10_1016_j_comcom_2023_04_032
crossref_primary_10_1109_ACCESS_2021_3050764
crossref_primary_10_16984_saufenbilder_800067
crossref_primary_10_3390_app14114461
crossref_primary_10_1007_s00500_021_06194_2
crossref_primary_10_1109_ACCESS_2022_3197628
crossref_primary_10_1109_JIOT_2022_3165523
crossref_primary_10_32604_cmc_2022_026672
crossref_primary_10_1007_s12145_020_00538_6
crossref_primary_10_1016_j_csite_2021_101250
crossref_primary_10_3390_drones6050126
crossref_primary_10_1109_ACCESS_2022_3209260
crossref_primary_10_1111_exsy_13224
crossref_primary_10_1007_s11276_022_03198_0
crossref_primary_10_1016_j_eswa_2023_120827
crossref_primary_10_3390_jmse11091720
crossref_primary_10_1016_j_enbuild_2025_115323
crossref_primary_10_1016_j_eswa_2023_120713
crossref_primary_10_1016_j_eswa_2021_115690
crossref_primary_10_1016_j_eij_2024_100468
crossref_primary_10_3390_drones8110644
crossref_primary_10_1016_j_asoc_2021_107486
crossref_primary_10_1016_j_knosys_2022_109844
crossref_primary_10_1177_15485129251323291
crossref_primary_10_1016_j_asoc_2024_112243
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1109_TCDS_2020_3035778
crossref_primary_10_3390_s21113820
crossref_primary_10_1007_s10489_022_04172_1
crossref_primary_10_1108_ACI_12_2023_0195
crossref_primary_10_23919_CSMS_2022_0006
crossref_primary_10_1007_s41315_023_00298_8
crossref_primary_10_1016_j_asoc_2023_110776
crossref_primary_10_1038_s41598_023_49754_2
crossref_primary_10_1016_j_asoc_2022_108865
crossref_primary_10_1109_ACCESS_2020_3043539
crossref_primary_10_1016_j_autcon_2023_105110
crossref_primary_10_1016_j_ast_2021_107287
crossref_primary_10_1016_j_ast_2024_109320
crossref_primary_10_1109_TCE_2024_3449451
crossref_primary_10_3390_drones7060368
crossref_primary_10_1002_cpe_8120
crossref_primary_10_1016_j_energy_2024_131833
crossref_primary_10_3846_aviation_2023_18461
crossref_primary_10_1007_s11277_021_08947_6
crossref_primary_10_1016_j_asoc_2023_110660
crossref_primary_10_1109_OJVT_2023_3316181
crossref_primary_10_1016_j_engappai_2021_104183
crossref_primary_10_3390_aerospace11110870
Cites_doi 10.1007/s00521-016-2179-x
10.1177/0278364913495721
10.1016/j.ast.2015.12.021
10.1109/JIOT.2018.2796243
10.1016/j.knosys.2018.05.033
10.1016/j.autcon.2017.04.013
10.1109/TSMCB.2009.2015956
10.1109/JSEN.2012.2207950
10.1016/j.ast.2018.02.031
10.1109/TSMCC.2012.2218595
10.1016/j.apm.2018.03.005
10.1016/j.knosys.2013.01.011
10.1016/j.advengsoft.2017.05.008
10.1016/j.neucom.2018.06.032
10.1016/j.autcon.2018.05.024
10.1016/j.neucom.2015.06.083
10.1016/j.neucom.2015.07.044
10.1016/j.ast.2015.11.040
10.1016/j.robot.2018.05.016
10.1016/j.engappai.2013.05.008
10.1080/00207721.2014.929191
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2018.2872751
10.1016/j.neucom.2017.05.059
10.1109/TITS.2017.2673778
10.1016/j.neucom.2016.08.108
10.1016/j.swevo.2015.10.004
10.1109/MCS.2013.2287568
10.1007/s10846-012-9776-4
10.1007/BF00115009
10.1016/j.neucom.2017.10.037
10.1109/TNNLS.2017.2773458
10.1016/j.asoc.2018.05.032
10.1016/j.engappai.2017.10.024
10.1016/j.knosys.2017.05.017
10.1016/j.asoc.2018.05.030
10.1109/TSMCA.2012.2227719
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106099
S1568494620300399
GrantInformation_xml – fundername: SDUST Young Teachers Teaching Talent Training Plan
  grantid: BJRC20180503
– fundername: Taishan Scholar Project of Shandong Province of China
  funderid: http://dx.doi.org/10.13039/501100010040
– fundername: National Natural Science Foundation
  grantid: 61603220; 61873149; 61733009
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1ce41645dc7befe2e6a29ea6ef86d2c41b9bd687f6f487a0cb00b93d851c82df3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unmanned aerial vehicles (UAVs)
Grey wolf optimizer
Reinforcement learning
Three-dimensional path planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1ce41645dc7befe2e6a29ea6ef86d2c41b9bd687f6f487a0cb00b93d851c82df3
ORCID 0000-0002-9147-2614
0000-0002-7718-5918
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106099
crossref_citationtrail_10_1016_j_asoc_2020_106099
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Radmanesh, Kumar, Sarim (b22) 2018; 77
Phung, Cong, Dinh (b16) 2017; 81
Sutton (b29) 1988; 3
Sujit, Saripalli, Sousa (b2) 2014; 34
Guha, Roy, Banerjee (b20) 2015; 27
Kumar, Kumar (b24) 2017; 112
Emary, Zawbaa, Hassanien (b21) 2015; 172
Long, Jiao, Liang (b23) 2018; 60
Alshawi, Yan, Pan (b6) 2012; 12
Wei, Wang, Zheng (b31) 2018; 6
Cruz, Yu (b32) 2017; 233
Chen, Luo, Mei (b7) 2016; 47
Chen, Mei, Yu (b37) 2017; 266
Zhang, Duan (b1) 2018; 313
Daniel, Anitha, Gnanaraj (b19) 2017; 131
Grondman, Busoniu, Lopes (b27) 2012; 42
Manjarres, Landatorres, Gillopez (b10) 2013; 26
Kober, Bagnell, Peters (b26) 2013; 32
Guo, Chen, Wang (b11) 2016; 28
Long, Jiao, Liang (b25) 2018; 68
Wu, Wang, Li (b17) 2017; 275
Zhan, Zhang, Li (b35) 2009; 39
Konar, Chakraborty, Singh (b30) 2013; 43
Chen, Yu, Mei (b34) 2016; 171
Lin, Saripalli (b5) 2017; 18
Kumar, Garg, Singh (b15) 2018; 5
Mirjalili, Mirjalili, Lewis (b18) 2014; 69
Kothari, Postlethwaite (b9) 2013; 71
Zhang, Lu, Jia (b36) 2018; 70
Zhao, Zheng, Liu (b13) 2018; 158
Kiumarsi, Vamvoudakis, Modares (b28) 2018; 29
Carlucho, Paula, Wang (b33) 2018; 107
Yang, Tsai, Kang (b3) 2018; 93
Wang, Chu, Mirjalili (b14) 2016; 49
Radmanesh, Kumar (b8) 2016; 50
Liu, Zheng, Cai (b4) 2013; 44
Younis, Yang (b12) 2018; 72
Lin (10.1016/j.asoc.2020.106099_b5) 2017; 18
Phung (10.1016/j.asoc.2020.106099_b16) 2017; 81
Guha (10.1016/j.asoc.2020.106099_b20) 2015; 27
Guo (10.1016/j.asoc.2020.106099_b11) 2016; 28
Alshawi (10.1016/j.asoc.2020.106099_b6) 2012; 12
Mirjalili (10.1016/j.asoc.2020.106099_b18) 2014; 69
Radmanesh (10.1016/j.asoc.2020.106099_b22) 2018; 77
Liu (10.1016/j.asoc.2020.106099_b4) 2013; 44
Cruz (10.1016/j.asoc.2020.106099_b32) 2017; 233
Zhao (10.1016/j.asoc.2020.106099_b13) 2018; 158
Kober (10.1016/j.asoc.2020.106099_b26) 2013; 32
Grondman (10.1016/j.asoc.2020.106099_b27) 2012; 42
Chen (10.1016/j.asoc.2020.106099_b37) 2017; 266
Daniel (10.1016/j.asoc.2020.106099_b19) 2017; 131
Sutton (10.1016/j.asoc.2020.106099_b29) 1988; 3
Konar (10.1016/j.asoc.2020.106099_b30) 2013; 43
Younis (10.1016/j.asoc.2020.106099_b12) 2018; 72
Chen (10.1016/j.asoc.2020.106099_b7) 2016; 47
Kumar (10.1016/j.asoc.2020.106099_b24) 2017; 112
Kiumarsi (10.1016/j.asoc.2020.106099_b28) 2018; 29
Wang (10.1016/j.asoc.2020.106099_b14) 2016; 49
Long (10.1016/j.asoc.2020.106099_b25) 2018; 68
Long (10.1016/j.asoc.2020.106099_b23) 2018; 60
Radmanesh (10.1016/j.asoc.2020.106099_b8) 2016; 50
Zhang (10.1016/j.asoc.2020.106099_b1) 2018; 313
Emary (10.1016/j.asoc.2020.106099_b21) 2015; 172
Chen (10.1016/j.asoc.2020.106099_b34) 2016; 171
Wei (10.1016/j.asoc.2020.106099_b31) 2018; 6
Yang (10.1016/j.asoc.2020.106099_b3) 2018; 93
Manjarres (10.1016/j.asoc.2020.106099_b10) 2013; 26
Wu (10.1016/j.asoc.2020.106099_b17) 2017; 275
Zhan (10.1016/j.asoc.2020.106099_b35) 2009; 39
Sujit (10.1016/j.asoc.2020.106099_b2) 2014; 34
Kumar (10.1016/j.asoc.2020.106099_b15) 2018; 5
Carlucho (10.1016/j.asoc.2020.106099_b33) 2018; 107
Kothari (10.1016/j.asoc.2020.106099_b9) 2013; 71
Zhang (10.1016/j.asoc.2020.106099_b36) 2018; 70
References_xml – volume: 42
  start-page: 1291
  year: 2012
  end-page: 1307
  ident: b27
  article-title: A survey of actor-critic reinforcement learning: Standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 107
  start-page: 71
  year: 2018
  end-page: 86
  ident: b33
  article-title: Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning
  publication-title: Robot. Auton. Syst.
– volume: 26
  start-page: 1818
  year: 2013
  end-page: 1831
  ident: b10
  article-title: A survey on applications of the harmony search algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 275
  start-page: 2055
  year: 2017
  end-page: 2065
  ident: b17
  article-title: Path planning for solar-powered UAV in urban environment
  publication-title: Neurocomputing
– volume: 3
  start-page: 9
  year: 1988
  end-page: 14
  ident: b29
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Mach. Learn.
– volume: 172
  start-page: 371
  year: 2015
  end-page: 381
  ident: b21
  article-title: Binary gray wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 60
  start-page: 112
  year: 2018
  end-page: 126
  ident: b23
  article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems
  publication-title: Appl. Math. Model.
– volume: 12
  start-page: 3010
  year: 2012
  end-page: 3018
  ident: b6
  article-title: Lifetime enhancement in wireless sensor networks using fuzzy approach and A-star algorithm
  publication-title: IEEE Sens. J.
– volume: 313
  start-page: 229
  year: 2018
  end-page: 246
  ident: b1
  article-title: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning
  publication-title: Neurocomputing
– volume: 6
  start-page: 57814
  year: 2018
  end-page: 57825
  ident: b31
  article-title: UGV navigation optimization aided by reinforcement learning-based path tracking
  publication-title: IEEE Access
– volume: 233
  start-page: 34
  year: 2017
  end-page: 42
  ident: b32
  article-title: Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning
  publication-title: Neurocomputing
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: b35
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 72
  start-page: 498
  year: 2018
  end-page: 517
  ident: b12
  article-title: Hybrid meta-heuristic algorithms for independent job scheduling in grid computing
  publication-title: Appl. Soft Comput.
– volume: 77
  start-page: 168
  year: 2018
  end-page: 179
  ident: b22
  article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment
  publication-title: Aerosp. Sci. Technol.
– volume: 18
  start-page: 3179
  year: 2017
  end-page: 3192
  ident: b5
  article-title: Sampling-based path planning for UAV collision avoidance
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 29
  start-page: 2042
  year: 2018
  end-page: 2062
  ident: b28
  article-title: Optimal and autonomous control using reinforcement learning: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 47
  start-page: 1407
  year: 2016
  end-page: 1420
  ident: b7
  article-title: UAV path planning using artificial potential field method updated by optimal control theory
  publication-title: Internat. J. Systems Sci.
– volume: 158
  start-page: 54
  year: 2018
  end-page: 64
  ident: b13
  article-title: Survey on computational-intelligence-based UAV path planning
  publication-title: Knowl.-Based Syst.
– volume: 71
  start-page: 231
  year: 2013
  end-page: 253
  ident: b9
  article-title: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees
  publication-title: J. Intell. Robot. Syst.
– volume: 68
  start-page: 63
  year: 2018
  end-page: 80
  ident: b25
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 28
  start-page: 1909
  year: 2016
  end-page: 1926
  ident: b11
  article-title: A survey of biogeography-based optimization
  publication-title: Neural Comput. Appl.
– volume: 43
  start-page: 1141
  year: 2013
  end-page: 1153
  ident: b30
  article-title: A deterministic improved Q-learning for path planning of a mobile robot
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 49
  start-page: 231
  year: 2016
  end-page: 238
  ident: b14
  article-title: Three-dimensional path planning for UCAV using an improved bat algorithm
  publication-title: Aerosp. Sci. Technol.
– volume: 50
  start-page: 149
  year: 2016
  end-page: 160
  ident: b8
  article-title: Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming
  publication-title: Aerosp. Sci. Technol.
– volume: 44
  start-page: 34
  year: 2013
  end-page: 47
  ident: b4
  article-title: Bi-level programming based real-time path planning for unmanned aerial vehicles
  publication-title: Knowl.-Based Syst.
– volume: 70
  start-page: 371
  year: 2018
  end-page: 388
  ident: b36
  article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 97
  year: 2015
  end-page: 115
  ident: b20
  article-title: Load frequency control of interconnected power system using grey wolf optimization
  publication-title: Swarm Evol. Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 93
  start-page: 214
  year: 2018
  end-page: 230
  ident: b3
  article-title: UAV path planning method for digital terrain model reconstruction - A debris fan example
  publication-title: Autom. Constr.
– volume: 34
  start-page: 42
  year: 2014
  end-page: 59
  ident: b2
  article-title: Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless
  publication-title: IEEE Control Syst.
– volume: 266
  start-page: 445
  year: 2017
  end-page: 457
  ident: b37
  article-title: Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm
  publication-title: Neurocomputing
– volume: 5
  start-page: 1698
  year: 2018
  end-page: 1707
  ident: b15
  article-title: MVO-based 2D path planning scheme for providing quality of service in UAV environment
  publication-title: IEEE Internet Things J.
– volume: 32
  start-page: 1238
  year: 2013
  end-page: 1274
  ident: b26
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Robot. Res.
– volume: 131
  start-page: 58
  year: 2017
  end-page: 69
  ident: b19
  article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search – grey wolf optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 112
  start-page: 231
  year: 2017
  end-page: 254
  ident: b24
  article-title: An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 171
  start-page: 878
  year: 2016
  end-page: 888
  ident: b34
  article-title: Modified central force optimization (MCFO) algorithm for 3D UAV path planning
  publication-title: Neurocomputing
– volume: 81
  start-page: 25
  year: 2017
  end-page: 33
  ident: b16
  article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection
  publication-title: Autom. Constr.
– volume: 28
  start-page: 1909
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2020.106099_b11
  article-title: A survey of biogeography-based optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2179-x
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  ident: 10.1016/j.asoc.2020.106099_b26
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– volume: 50
  start-page: 149
  year: 2016
  ident: 10.1016/j.asoc.2020.106099_b8
  article-title: Flight formation of UAVs in presence of moving obstacles using fast-dynamic mixed integer linear programming
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.12.021
– volume: 5
  start-page: 1698
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b15
  article-title: MVO-based 2D path planning scheme for providing quality of service in UAV environment
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2796243
– volume: 158
  start-page: 54
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b13
  article-title: Survey on computational-intelligence-based UAV path planning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.033
– volume: 81
  start-page: 25
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b16
  article-title: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.04.013
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.asoc.2020.106099_b35
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– volume: 12
  start-page: 3010
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2020.106099_b6
  article-title: Lifetime enhancement in wireless sensor networks using fuzzy approach and A-star algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2207950
– volume: 77
  start-page: 168
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b22
  article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.02.031
– volume: 42
  start-page: 1291
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2020.106099_b27
  article-title: A survey of actor-critic reinforcement learning: Standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2012.2218595
– volume: 60
  start-page: 112
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b23
  article-title: Inspired grey wolf optimizer for solving large-scale function optimization problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.03.005
– volume: 44
  start-page: 34
  year: 2013
  ident: 10.1016/j.asoc.2020.106099_b4
  article-title: Bi-level programming based real-time path planning for unmanned aerial vehicles
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.01.011
– volume: 112
  start-page: 231
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b24
  article-title: An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.008
– volume: 313
  start-page: 229
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b1
  article-title: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.032
– volume: 93
  start-page: 214
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b3
  article-title: UAV path planning method for digital terrain model reconstruction - A debris fan example
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.05.024
– volume: 172
  start-page: 371
  year: 2015
  ident: 10.1016/j.asoc.2020.106099_b21
  article-title: Binary gray wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 171
  start-page: 878
  year: 2016
  ident: 10.1016/j.asoc.2020.106099_b34
  article-title: Modified central force optimization (MCFO) algorithm for 3D UAV path planning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.044
– volume: 49
  start-page: 231
  year: 2016
  ident: 10.1016/j.asoc.2020.106099_b14
  article-title: Three-dimensional path planning for UCAV using an improved bat algorithm
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.11.040
– volume: 107
  start-page: 71
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b33
  article-title: Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.05.016
– volume: 26
  start-page: 1818
  issue: 8
  year: 2013
  ident: 10.1016/j.asoc.2020.106099_b10
  article-title: A survey on applications of the harmony search algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.05.008
– volume: 47
  start-page: 1407
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2020.106099_b7
  article-title: UAV path planning using artificial potential field method updated by optimal control theory
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2014.929191
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2020.106099_b18
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 6
  start-page: 57814
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b31
  article-title: UGV navigation optimization aided by reinforcement learning-based path tracking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872751
– volume: 266
  start-page: 445
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b37
  article-title: Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.059
– volume: 18
  start-page: 3179
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b5
  article-title: Sampling-based path planning for UAV collision avoidance
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2673778
– volume: 233
  start-page: 34
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b32
  article-title: Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.108
– volume: 27
  start-page: 97
  year: 2015
  ident: 10.1016/j.asoc.2020.106099_b20
  article-title: Load frequency control of interconnected power system using grey wolf optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.10.004
– volume: 34
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106099_b2
  article-title: Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2013.2287568
– volume: 71
  start-page: 231
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106099_b9
  article-title: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-012-9776-4
– volume: 3
  start-page: 9
  issue: 1
  year: 1988
  ident: 10.1016/j.asoc.2020.106099_b29
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Mach. Learn.
  doi: 10.1007/BF00115009
– volume: 275
  start-page: 2055
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b17
  article-title: Path planning for solar-powered UAV in urban environment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.037
– volume: 29
  start-page: 2042
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b28
  article-title: Optimal and autonomous control using reinforcement learning: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2773458
– volume: 72
  start-page: 498
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b12
  article-title: Hybrid meta-heuristic algorithms for independent job scheduling in grid computing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.032
– volume: 68
  start-page: 63
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b25
  article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.024
– volume: 131
  start-page: 58
  year: 2017
  ident: 10.1016/j.asoc.2020.106099_b19
  article-title: Optimum laplacian wavelet mask based medical image using hybrid cuckoo search – grey wolf optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.05.017
– volume: 70
  start-page: 371
  year: 2018
  ident: 10.1016/j.asoc.2020.106099_b36
  article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.030
– volume: 43
  start-page: 1141
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2020.106099_b30
  article-title: A deterministic improved Q-learning for path planning of a mobile robot
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMCA.2012.2227719
SSID ssj0016928
Score 2.639553
Snippet Unmanned aerial vehicles (UAVs) have been used in wide range of areas, and a high-quality path planning method is needed for UAVs to satisfy their...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106099
SubjectTerms Grey wolf optimizer
Reinforcement learning
Three-dimensional path planning
Unmanned aerial vehicles (UAVs)
Title A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
URI https://dx.doi.org/10.1016/j.asoc.2020.106099
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTdz8KBI3W02TZvjsijrE1FXvJU0TdaV3XZZq6IHf7uZNhUF8eCpNMyE8nUyjzAPQnY1pSZSEffCwHCPpUx6kjZbnvHtKfeNH2qFF_oXl7zbY6f3wf0U6dS1MJhW6XR_pdNLbe1WGg7NxngwaNzYyCNignG7NVaYYhEfYyFK-eHHV5qHz0U5XxWJPaR2hTNVjpe0CNgYkeICb5b9X38xTt8MzvECmXOeIrSrj1kkUzpbIvP1FAZwh3KZFG3I8hc9hIkuu6Cq8sIP3DiIPqCdSsGG1W_wmg8N5FZJjAbvdgs57OeTQfEwAssGz9lIotIFWQolvOiHMmUO9nrtu6d9wNnFMHYzjlZI7_jottP13CwFT1l0Cs9X2rpeLEhVmGijqeaSCi25NhFPqWJ-IpKUR6HhxoYwsqnscUxEK7UOmYpoalqrZDrLM71GQIWBaEosvZbY2lBHgdAiNZFQLJQJba0TvwYxVq7ROM67GMZ1RtljjMDHCHxcAb9ODr54xlWbjT-pg_rfxD-EJbZ24A--jX_ybZJZfKsSdrbIdDF51tvWFymSnVLYdshMu3N9foXPk7Pu5Se-6-Fm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRry5gQGEQhvXceKxQqDyXKCILXIcuxS1SVUCCAZ-O-fEQSAhBtbEZ0VffC_r7j5C9jSlJlIR98LAcI-lTHqSNlue8VHLfeOHWtkL_atr3umy8_vgfoIc170wtqzS2f7KppfW2j1pODQbo36_cYOZR8QE47i17TAVk2SaofpaGoOjj686D5-LkmDVrvbsctc5UxV5SYQAk0RqH_BmOQD2F-_0zeOcLpA5FypCu_qaRTKhsyUyX9MwgNPKZVK0Ictf9ADGuhyDqsobP3B8ED2wjioFzKvf4DUfGMjRSgz777iFHPTycb94GAKKwXM2lNbqgixPJbzoh7JmDva77bunA7DkxTByJEcrpHt6cnvc8RyZgqcQnsLzlcbYiwWpChNtNNVcUqEl1ybiKVXMT0SS8ig03GAOI5sK9TERrRQjMhXR1LRWyVSWZ3qNgAoD0ZS291ra2YY6CoQWqYmEYqFMaGud-DWIsXKTxi3hxSCuS8oeYwt8bIGPK-DXyeGXzKias_Hn6qD-N_GP0xKjI_hDbuOfcrtkpnN7dRlfnl1fbJJZ-6aq3tkiU8X4WW9jYFIkO-XB-wTxGeFf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+reinforcement+learning+based+grey+wolf+optimizer+algorithm+for+unmanned+aerial+vehicles+%28UAVs%29+path+planning&rft.jtitle=Applied+soft+computing&rft.au=Qu%2C+Chengzhi&rft.au=Gai%2C+Wendong&rft.au=Zhong%2C+Maiying&rft.au=Zhang%2C+Jing&rft.date=2020-04-01&rft.issn=1568-4946&rft.volume=89&rft.spage=106099&rft_id=info:doi/10.1016%2Fj.asoc.2020.106099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon