Likelihood-based inference for the multivariate skew-t regression with censored or missing responses
Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regr...
Saved in:
Published in | Journal of multivariate analysis Vol. 196; p. 105174 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regression model for multiple censored or missing data based on the multivariate skew-t distribution for such data structures. This approach allows us to model data with great flexibility, simultaneously accommodating heavy tails and skewness. We develop an analytically simple yet efficient EM-type algorithm to conduct maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated multivariate Student’s-t, skew-t, and extended skew-t distributions. Furthermore, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regression model for multiple censored or missing data based on the multivariate skew-t distribution for such data structures. This approach allows us to model data with great flexibility, simultaneously accommodating heavy tails and skewness. We develop an analytically simple yet efficient EM-type algorithm to conduct maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated multivariate Student’s-t, skew-t, and extended skew-t distributions. Furthermore, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed method. |
ArticleNumber | 105174 |
Author | Valeriano, Katherine A.L. Galarza, Christian E. Lachos, Victor H. Matos, Larissa A. |
Author_xml | – sequence: 1 givenname: Katherine A.L. surname: Valeriano fullname: Valeriano, Katherine A.L. organization: Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil – sequence: 2 givenname: Christian E. orcidid: 0000-0002-4818-6006 surname: Galarza fullname: Galarza, Christian E. email: chedgala@espol.edu.ec organization: Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Vía Perimetral Km. 30.5, Guayaquil, Ecuador – sequence: 3 givenname: Larissa A. surname: Matos fullname: Matos, Larissa A. organization: Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil – sequence: 4 givenname: Victor H. surname: Lachos fullname: Lachos, Victor H. organization: Department of Statistics, University of Connecticut, Storrs, CT 06269, USA |
BookMark | eNp9kM9qwzAMh83oYF23F9jJL5BOTpw4gV1G2T8o7LLBbsZxlNZpEhfba9nbz6E77dCTQNIn9PuuyWy0IxJyx2DJgBX33bIbDmqZQprFRs4EvyBzBlWeiJRnMzIH4CJJ8-rrilx73wEwlgs-J83a7LA3W2ubpFYeG2rGFh2OGmlrHQ1bpMN3H8xBOaMCUr_DYxKow41D740d6dGELdU4eusiHpnBxMG4iTt-b0eP_oZctqr3ePtXF-Tz-elj9Zqs31_eVo_rRGcAIWE6FcBaDrqoeJlXBU9BAauRNzFEI7hoa6g0AywL1dRZCVwxoUSJULWqVtmClKe72lnvHbZSm6BCfDI4ZXrJQE62ZCcnW3KyJU-2Ipr-Q_fODMr9nIceThDGUAeDTnptJnWNcaiDbKw5h_8C38iHrA |
CitedBy_id | crossref_primary_10_1007_s00180_024_01459_4 crossref_primary_10_1007_s11222_025_10575_0 crossref_primary_10_1144_qjegh2023_140 crossref_primary_10_1080_02664763_2025_2461715 crossref_primary_10_1145_3669942 crossref_primary_10_29220_CSAM_2023_30_6_605 crossref_primary_10_1016_j_datak_2025_102430 crossref_primary_10_1016_j_jmva_2024_105357 |
Cites_doi | 10.1111/j.2517-6161.1989.tb01754.x 10.1080/02331888.2014.958489 10.1051/0004-6361:20020280 10.2307/3316064 10.1016/j.jmva.2021.104944 10.1177/0962280214551191 10.1007/s00184-020-00802-1 10.1007/s13253-014-0194-x 10.1111/1467-9868.00391 10.1093/biomet/81.4.633 10.1016/j.csda.2011.06.026 10.1007/s11749-018-0603-5 10.1007/s11634-021-00448-5 10.1111/j.1751-5823.2007.00016.x 10.1007/BF03263536 10.1080/02664763.2017.1408788 10.1111/j.2517-6161.1977.tb01600.x 10.1111/j.2517-6161.1982.tb01203.x 10.1007/s11222-009-9128-9 10.1016/j.jmva.2004.10.002 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmva.2023.105174 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-7243 |
ExternalDocumentID | 10_1016_j_jmva_2023_105174 S0047259X23000209 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEFU ABFNM ABIVO ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UHS WUQ XFK XOL XPP YHZ ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-1c2701f40c6948596420a01be4d243d747fb09c10e86adb3804a17a78e09faba3 |
IEDL.DBID | .~1 |
ISSN | 0047-259X |
IngestDate | Tue Jul 01 01:21:49 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Fri Feb 23 02:39:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | secondary Censored data Truncated distributions Extended skew-t distribution EM algorithm Missing observations primary |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1c2701f40c6948596420a01be4d243d747fb09c10e86adb3804a17a78e09faba3 |
ORCID | 0000-0002-4818-6006 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmva_2023_105174 crossref_primary_10_1016_j_jmva_2023_105174 elsevier_sciencedirect_doi_10_1016_j_jmva_2023_105174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of multivariate analysis |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dempster, Laird, Rubin (b9) 1977; 39 Arellano-Valle, Genton (b2) 2010; 68 McLachlan, Krishnan (b26) 2008 Galarza, Lin, Wang, Lachos (b13) 2021; 84 Hoffman, Johnson (b17) 2015; 20 Lin (b19) 2010; 20 Matos, Prates, Chen, Lachos (b24) 2013; 23 Garay, Castro, Leskow, Lachos (b16) 2017; 26 Galarza, Matos, Lachos (b15) 2022 Wu (b31) 2010 Massuia, Cabral, Matos, Lachos (b22) 2015; 49 Cabral, Lachos, Prates (b7) 2012; 56 Feigelson, Babu (b11) 2012 Feigelson (b10) 2014 Louis (b21) 1982; 44 Valeriano, Matos, Galarza (b30) 2022 Mattos, Garay, Lachos (b25) 2018; 45 Azzalini, Capitanio (b4) 2003; 65 Matos, Lachos, Lin, Castro (b23) 2019; 28 Meilijson (b27) 1989; 51 Santos, López, Israelian, Mayor, Rebolo, García-Gil, Randich (b29) 2002; 386 Azzalini, Genton (b5) 2008; 76 Galarza, Kan, Lachos (b12) 2021 Lachos, Ghosh, Arellano-Valle (b18) 2010; 20 Galarza, Matos, Castro, Lachos (b14) 2022; 189 Arellano-Valle, Genton (b1) 2005; 96 De Alencar, Galarza, Matos, Lachos (b8) 2022; 16 Sahu, Dey, Branco (b28) 2003; 31 Liu, Rubin (b20) 1994; 81 Arellano-Valle, Genton (b3) 2010; 1 Brent (b6) 2013 De Alencar (10.1016/j.jmva.2023.105174_b8) 2022; 16 Santos (10.1016/j.jmva.2023.105174_b29) 2002; 386 Wu (10.1016/j.jmva.2023.105174_b31) 2010 Lachos (10.1016/j.jmva.2023.105174_b18) 2010; 20 Liu (10.1016/j.jmva.2023.105174_b20) 1994; 81 Hoffman (10.1016/j.jmva.2023.105174_b17) 2015; 20 Meilijson (10.1016/j.jmva.2023.105174_b27) 1989; 51 Matos (10.1016/j.jmva.2023.105174_b24) 2013; 23 Azzalini (10.1016/j.jmva.2023.105174_b4) 2003; 65 Feigelson (10.1016/j.jmva.2023.105174_b10) 2014 Massuia (10.1016/j.jmva.2023.105174_b22) 2015; 49 Brent (10.1016/j.jmva.2023.105174_b6) 2013 Matos (10.1016/j.jmva.2023.105174_b23) 2019; 28 Azzalini (10.1016/j.jmva.2023.105174_b5) 2008; 76 Galarza (10.1016/j.jmva.2023.105174_b13) 2021; 84 Arellano-Valle (10.1016/j.jmva.2023.105174_b3) 2010; 1 Dempster (10.1016/j.jmva.2023.105174_b9) 1977; 39 Garay (10.1016/j.jmva.2023.105174_b16) 2017; 26 Arellano-Valle (10.1016/j.jmva.2023.105174_b1) 2005; 96 Valeriano (10.1016/j.jmva.2023.105174_b30) 2022 Feigelson (10.1016/j.jmva.2023.105174_b11) 2012 Mattos (10.1016/j.jmva.2023.105174_b25) 2018; 45 Galarza (10.1016/j.jmva.2023.105174_b12) 2021 Cabral (10.1016/j.jmva.2023.105174_b7) 2012; 56 Arellano-Valle (10.1016/j.jmva.2023.105174_b2) 2010; 68 McLachlan (10.1016/j.jmva.2023.105174_b26) 2008 Galarza (10.1016/j.jmva.2023.105174_b15) 2022 Louis (10.1016/j.jmva.2023.105174_b21) 1982; 44 Galarza (10.1016/j.jmva.2023.105174_b14) 2022; 189 Sahu (10.1016/j.jmva.2023.105174_b28) 2003; 31 Lin (10.1016/j.jmva.2023.105174_b19) 2010; 20 |
References_xml | – volume: 26 start-page: 542 year: 2017 end-page: 566 ident: b16 article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution publication-title: Stat. Methods Med. Res. – volume: 20 start-page: 343 year: 2010 end-page: 356 ident: b19 article-title: Robust mixture modeling using multivariate skew publication-title: Stat. Comput. – year: 2012 ident: b11 article-title: Modern Statistical Methods for Astronomy: With R Applications – volume: 20 start-page: 156 year: 2015 end-page: 171 ident: b17 article-title: Pseudo-likelihood estimation of multivariate normal parameters in the presence of left-censored data publication-title: J. Agric. Biol. Environ. Stat. – year: 2014 ident: b10 article-title: astrodatR: Astronomical data – volume: 81 start-page: 633 year: 1994 end-page: 648 ident: b20 article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika – volume: 28 start-page: 844 year: 2019 end-page: 878 ident: b23 article-title: Heavy-tailed longitudinal regression models for censored data: a robust parametric approach publication-title: Test – volume: 96 start-page: 93 year: 2005 end-page: 116 ident: b1 article-title: On fundamental skew distributions publication-title: J. Multivariate Anal. – volume: 68 start-page: 201 year: 2010 end-page: 234 ident: b2 article-title: Multivariate extended skew- publication-title: Metron – volume: 51 start-page: 127 year: 1989 end-page: 138 ident: b27 article-title: A fast improvement to the EM algorithm on its own terms publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – year: 2021 ident: b12 article-title: MomTrunc: Moments of folded and doubly truncated multivariate distributions – year: 2010 ident: b31 article-title: Mixed Effects Models for Complex Data – volume: 84 start-page: 825 year: 2021 end-page: 850 ident: b13 article-title: On moments of folded and truncated multivariate student-t distributions based on recurrence relations publication-title: Metrika – volume: 56 start-page: 126 year: 2012 end-page: 142 ident: b7 article-title: Multivariate mixture modeling using skew-normal independent distributions publication-title: Comput. Statist. Data Anal. – volume: 65 start-page: 367 year: 2003 end-page: 389 ident: b4 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 1 year: 2022 end-page: 23 ident: b15 article-title: An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses publication-title: METRON – volume: 31 start-page: 129 year: 2003 end-page: 150 ident: b28 article-title: A new class of multivariate skew distributions with applications to Bayesian regression models publication-title: Canad. J. Statist. – volume: 386 start-page: 1028 year: 2002 end-page: 1038 ident: b29 article-title: Beryllium abundances in stars hosting giant planets publication-title: Astron. Astrophys. – volume: 1 start-page: 17 year: 2010 end-page: 33 ident: b3 article-title: Multivariate unified skew-elliptical distributions publication-title: Chil. J. Stat. – year: 2022 ident: b30 article-title: relliptical: The truncated elliptical family of distributions – volume: 45 start-page: 2039 year: 2018 end-page: 2066 ident: b25 article-title: Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions publication-title: J. Appl. Stat. – volume: 16 start-page: 521 year: 2022 end-page: 557 ident: b8 article-title: Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution publication-title: Adv. Data Anal. Classif. – volume: 44 start-page: 226 year: 1982 end-page: 233 ident: b21 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – year: 2008 ident: b26 article-title: The EM Algorithm and Extensions – volume: 76 start-page: 106 year: 2008 end-page: 129 ident: b5 article-title: Robust likelihood methods based on the skew-t and related distributions publication-title: Internat. Statist. Rev. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b9 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 189 year: 2022 ident: b14 article-title: Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution publication-title: J. Multivariate Anal. – volume: 23 start-page: 1323 year: 2013 end-page: 1342 ident: b24 article-title: Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution publication-title: Statist. Sinica – year: 2013 ident: b6 article-title: Algorithms for Minimization Without Derivatives – volume: 20 start-page: 303 year: 2010 ident: b18 article-title: Likelihood-based inference for skew-normal independent linear mixed models publication-title: Statist. Sinica – volume: 49 start-page: 1074 year: 2015 end-page: 1094 ident: b22 article-title: Influence diagnostics for student-t censored linear regression models publication-title: Statistics – year: 2021 ident: 10.1016/j.jmva.2023.105174_b12 – volume: 23 start-page: 1323 year: 2013 ident: 10.1016/j.jmva.2023.105174_b24 article-title: Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution publication-title: Statist. Sinica – volume: 51 start-page: 127 year: 1989 ident: 10.1016/j.jmva.2023.105174_b27 article-title: A fast improvement to the EM algorithm on its own terms publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1989.tb01754.x – volume: 49 start-page: 1074 year: 2015 ident: 10.1016/j.jmva.2023.105174_b22 article-title: Influence diagnostics for student-t censored linear regression models publication-title: Statistics doi: 10.1080/02331888.2014.958489 – volume: 386 start-page: 1028 year: 2002 ident: 10.1016/j.jmva.2023.105174_b29 article-title: Beryllium abundances in stars hosting giant planets publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20020280 – year: 2008 ident: 10.1016/j.jmva.2023.105174_b26 – volume: 31 start-page: 129 year: 2003 ident: 10.1016/j.jmva.2023.105174_b28 article-title: A new class of multivariate skew distributions with applications to Bayesian regression models publication-title: Canad. J. Statist. doi: 10.2307/3316064 – volume: 189 year: 2022 ident: 10.1016/j.jmva.2023.105174_b14 article-title: Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2021.104944 – volume: 26 start-page: 542 year: 2017 ident: 10.1016/j.jmva.2023.105174_b16 article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280214551191 – volume: 20 start-page: 303 year: 2010 ident: 10.1016/j.jmva.2023.105174_b18 article-title: Likelihood-based inference for skew-normal independent linear mixed models publication-title: Statist. Sinica – volume: 84 start-page: 825 year: 2021 ident: 10.1016/j.jmva.2023.105174_b13 article-title: On moments of folded and truncated multivariate student-t distributions based on recurrence relations publication-title: Metrika doi: 10.1007/s00184-020-00802-1 – volume: 20 start-page: 156 year: 2015 ident: 10.1016/j.jmva.2023.105174_b17 article-title: Pseudo-likelihood estimation of multivariate normal parameters in the presence of left-censored data publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-014-0194-x – volume: 65 start-page: 367 year: 2003 ident: 10.1016/j.jmva.2023.105174_b4 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00391 – year: 2014 ident: 10.1016/j.jmva.2023.105174_b10 – volume: 81 start-page: 633 year: 1994 ident: 10.1016/j.jmva.2023.105174_b20 article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – start-page: 1 year: 2022 ident: 10.1016/j.jmva.2023.105174_b15 article-title: An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses publication-title: METRON – year: 2010 ident: 10.1016/j.jmva.2023.105174_b31 – year: 2012 ident: 10.1016/j.jmva.2023.105174_b11 – volume: 56 start-page: 126 year: 2012 ident: 10.1016/j.jmva.2023.105174_b7 article-title: Multivariate mixture modeling using skew-normal independent distributions publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2011.06.026 – volume: 28 start-page: 844 year: 2019 ident: 10.1016/j.jmva.2023.105174_b23 article-title: Heavy-tailed longitudinal regression models for censored data: a robust parametric approach publication-title: Test doi: 10.1007/s11749-018-0603-5 – volume: 16 start-page: 521 year: 2022 ident: 10.1016/j.jmva.2023.105174_b8 article-title: Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-021-00448-5 – volume: 76 start-page: 106 year: 2008 ident: 10.1016/j.jmva.2023.105174_b5 article-title: Robust likelihood methods based on the skew-t and related distributions publication-title: Internat. Statist. Rev. doi: 10.1111/j.1751-5823.2007.00016.x – volume: 68 start-page: 201 year: 2010 ident: 10.1016/j.jmva.2023.105174_b2 article-title: Multivariate extended skew-t distributions and related families publication-title: Metron doi: 10.1007/BF03263536 – volume: 45 start-page: 2039 year: 2018 ident: 10.1016/j.jmva.2023.105174_b25 article-title: Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions publication-title: J. Appl. Stat. doi: 10.1080/02664763.2017.1408788 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.jmva.2023.105174_b9 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 44 start-page: 226 year: 1982 ident: 10.1016/j.jmva.2023.105174_b21 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 1 start-page: 17 year: 2010 ident: 10.1016/j.jmva.2023.105174_b3 article-title: Multivariate unified skew-elliptical distributions publication-title: Chil. J. Stat. – year: 2013 ident: 10.1016/j.jmva.2023.105174_b6 – volume: 20 start-page: 343 year: 2010 ident: 10.1016/j.jmva.2023.105174_b19 article-title: Robust mixture modeling using multivariate skew t distributions publication-title: Stat. Comput. doi: 10.1007/s11222-009-9128-9 – volume: 96 start-page: 93 year: 2005 ident: 10.1016/j.jmva.2023.105174_b1 article-title: On fundamental skew distributions publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2004.10.002 – year: 2022 ident: 10.1016/j.jmva.2023.105174_b30 |
SSID | ssj0011574 |
Score | 2.399253 |
Snippet | Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105174 |
SubjectTerms | Censored data EM algorithm Extended skew-[formula omitted] distribution Missing observations Truncated distributions |
Title | Likelihood-based inference for the multivariate skew-t regression with censored or missing responses |
URI | https://dx.doi.org/10.1016/j.jmva.2023.105174 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIrykgc2ZGonTpOMVUVVXp2olC2KYwelLWnVlrLx27mLkwok1IExkU-Kzpe776zvPhNy40GV8bkSTOgMGhQVpgxwcsAAyeqAYwFWJdti2BmM5GPkRQ3Sq2dhkFZZ5X6b08tsXb1pV95sz_McZ3ylD-A9AhCNoAeH-KT0McrvvjY0D9SSsUrMpSJBGFWDM5bjNX5fo_aQ4-J1t8KXfxenHwWnf0D2K6RIu_ZjDknDFEdk72Ujs7o8Jvo5n5hpjsrEDMuRpnk9v0cBjFJYSkvG4Bo6YgCVdDkxn2xFF-bN0l8LiuewNIVedrYAc7CBfcfjA1hTkmfN8oSM-vevvQGrrk1gKXhixUTq-FxkkqcdlH4JocPgCRfKSO1IV0P_kCkepoKboJNo5QZcJsJP_MDwMEtU4p6SZjErzBmh8DPrDBzohSaBzo8rz1ESDL1EKVTibxFR-ytOK01xvNpiGtfksXGMPo7Rx7H1cYvcbmzmVlFj62qv3ob4V1zEkPK32J3_0-6C7OKTJeRekuZq8WGuAHas1HUZV9dkp_vwNBh-A4761n0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdvpmGXtrQ9EiIp8jhBwq3ptltTQCBQ8e87026JJsaD13YnaWZ3Z77ZfvMtwJONWcbhUhgiTrBAkV5kIE52DUSyscspAcucbTFq-RPrdWpPK9Ape2GIVqljfxHT82itnzS0NxvrNKUeX8tB8D5FEE2gxzuAGqlT2VWotXt9f7T_mSBsLcacixJ4U907U9C8Zu87kh9qmnTjrXCs3_PTt5zTPYUTDRZZu_ieM6io5TkcD_dKq9sLiAfpXC1SEic2KCPFLC1b-BjiUYZDWU4a3GFRjLiSbefq08jYRr0VDNglo6NYFmE5u9qgOdrg1NMJAo7J-bNqewmT7su44xv65gQjQmdkhoiaDheJxaMWqb94WGTwkAuprLhpmTGWEInkXiS4clthLE2XW6FwQsdV3EtCGZpXUF2uluoaGO7nOEEH2p4Ksfjj0m5KCw3tUEoS46-DKP0VRFpWnG63WAQlf2wWkI8D8nFQ-LgOz3ubdSGq8edou5yG4MfSCDDq_2F380-7Rzj0x8NBMOiN-rdwRG8Kfu4dVLPNh7pHFJLJB73KvgD1mtku |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood-based+inference+for+the+multivariate+skew-+t+regression+with+censored+or+missing+responses&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Valeriano%2C+Katherine+A.L.&rft.au=Galarza%2C+Christian+E.&rft.au=Matos%2C+Larissa+A.&rft.au=Lachos%2C+Victor+H.&rft.date=2023-07-01&rft.issn=0047-259X&rft.volume=196&rft.spage=105174&rft_id=info:doi/10.1016%2Fj.jmva.2023.105174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2023_105174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon |