Likelihood-based inference for the multivariate skew-t regression with censored or missing responses

Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regr...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 196; p. 105174
Main Authors Valeriano, Katherine A.L., Galarza, Christian E., Matos, Larissa A., Lachos, Victor H.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regression model for multiple censored or missing data based on the multivariate skew-t distribution for such data structures. This approach allows us to model data with great flexibility, simultaneously accommodating heavy tails and skewness. We develop an analytically simple yet efficient EM-type algorithm to conduct maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated multivariate Student’s-t, skew-t, and extended skew-t distributions. Furthermore, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed method.
AbstractList Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or subject to some upper and/or lower detection limits because of the restriction of the experimental apparatus. We propose a novel robust regression model for multiple censored or missing data based on the multivariate skew-t distribution for such data structures. This approach allows us to model data with great flexibility, simultaneously accommodating heavy tails and skewness. We develop an analytically simple yet efficient EM-type algorithm to conduct maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated multivariate Student’s-t, skew-t, and extended skew-t distributions. Furthermore, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed method.
ArticleNumber 105174
Author Valeriano, Katherine A.L.
Galarza, Christian E.
Lachos, Victor H.
Matos, Larissa A.
Author_xml – sequence: 1
  givenname: Katherine A.L.
  surname: Valeriano
  fullname: Valeriano, Katherine A.L.
  organization: Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil
– sequence: 2
  givenname: Christian E.
  orcidid: 0000-0002-4818-6006
  surname: Galarza
  fullname: Galarza, Christian E.
  email: chedgala@espol.edu.ec
  organization: Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Vía Perimetral Km. 30.5, Guayaquil, Ecuador
– sequence: 3
  givenname: Larissa A.
  surname: Matos
  fullname: Matos, Larissa A.
  organization: Departamento de Estatística, Universidade Estadual de Campinas, Campinas, Brazil
– sequence: 4
  givenname: Victor H.
  surname: Lachos
  fullname: Lachos, Victor H.
  organization: Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
BookMark eNp9kM9qwzAMh83oYF23F9jJL5BOTpw4gV1G2T8o7LLBbsZxlNZpEhfba9nbz6E77dCTQNIn9PuuyWy0IxJyx2DJgBX33bIbDmqZQprFRs4EvyBzBlWeiJRnMzIH4CJJ8-rrilx73wEwlgs-J83a7LA3W2ubpFYeG2rGFh2OGmlrHQ1bpMN3H8xBOaMCUr_DYxKow41D740d6dGELdU4eusiHpnBxMG4iTt-b0eP_oZctqr3ePtXF-Tz-elj9Zqs31_eVo_rRGcAIWE6FcBaDrqoeJlXBU9BAauRNzFEI7hoa6g0AywL1dRZCVwxoUSJULWqVtmClKe72lnvHbZSm6BCfDI4ZXrJQE62ZCcnW3KyJU-2Ipr-Q_fODMr9nIceThDGUAeDTnptJnWNcaiDbKw5h_8C38iHrA
CitedBy_id crossref_primary_10_1007_s00180_024_01459_4
crossref_primary_10_1007_s11222_025_10575_0
crossref_primary_10_1144_qjegh2023_140
crossref_primary_10_1080_02664763_2025_2461715
crossref_primary_10_1145_3669942
crossref_primary_10_29220_CSAM_2023_30_6_605
crossref_primary_10_1016_j_datak_2025_102430
crossref_primary_10_1016_j_jmva_2024_105357
Cites_doi 10.1111/j.2517-6161.1989.tb01754.x
10.1080/02331888.2014.958489
10.1051/0004-6361:20020280
10.2307/3316064
10.1016/j.jmva.2021.104944
10.1177/0962280214551191
10.1007/s00184-020-00802-1
10.1007/s13253-014-0194-x
10.1111/1467-9868.00391
10.1093/biomet/81.4.633
10.1016/j.csda.2011.06.026
10.1007/s11749-018-0603-5
10.1007/s11634-021-00448-5
10.1111/j.1751-5823.2007.00016.x
10.1007/BF03263536
10.1080/02664763.2017.1408788
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.2517-6161.1982.tb01203.x
10.1007/s11222-009-9128-9
10.1016/j.jmva.2004.10.002
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jmva.2023.105174
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7243
ExternalDocumentID 10_1016_j_jmva_2023_105174
S0047259X23000209
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1c2701f40c6948596420a01be4d243d747fb09c10e86adb3804a17a78e09faba3
IEDL.DBID .~1
ISSN 0047-259X
IngestDate Tue Jul 01 01:21:49 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Fri Feb 23 02:39:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords secondary
Censored data
Truncated distributions
Extended skew-t distribution
EM algorithm
Missing observations
primary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1c2701f40c6948596420a01be4d243d747fb09c10e86adb3804a17a78e09faba3
ORCID 0000-0002-4818-6006
ParticipantIDs crossref_citationtrail_10_1016_j_jmva_2023_105174
crossref_primary_10_1016_j_jmva_2023_105174
elsevier_sciencedirect_doi_10_1016_j_jmva_2023_105174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Journal of multivariate analysis
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dempster, Laird, Rubin (b9) 1977; 39
Arellano-Valle, Genton (b2) 2010; 68
McLachlan, Krishnan (b26) 2008
Galarza, Lin, Wang, Lachos (b13) 2021; 84
Hoffman, Johnson (b17) 2015; 20
Lin (b19) 2010; 20
Matos, Prates, Chen, Lachos (b24) 2013; 23
Garay, Castro, Leskow, Lachos (b16) 2017; 26
Galarza, Matos, Lachos (b15) 2022
Wu (b31) 2010
Massuia, Cabral, Matos, Lachos (b22) 2015; 49
Cabral, Lachos, Prates (b7) 2012; 56
Feigelson, Babu (b11) 2012
Feigelson (b10) 2014
Louis (b21) 1982; 44
Valeriano, Matos, Galarza (b30) 2022
Mattos, Garay, Lachos (b25) 2018; 45
Azzalini, Capitanio (b4) 2003; 65
Matos, Lachos, Lin, Castro (b23) 2019; 28
Meilijson (b27) 1989; 51
Santos, López, Israelian, Mayor, Rebolo, García-Gil, Randich (b29) 2002; 386
Azzalini, Genton (b5) 2008; 76
Galarza, Kan, Lachos (b12) 2021
Lachos, Ghosh, Arellano-Valle (b18) 2010; 20
Galarza, Matos, Castro, Lachos (b14) 2022; 189
Arellano-Valle, Genton (b1) 2005; 96
De Alencar, Galarza, Matos, Lachos (b8) 2022; 16
Sahu, Dey, Branco (b28) 2003; 31
Liu, Rubin (b20) 1994; 81
Arellano-Valle, Genton (b3) 2010; 1
Brent (b6) 2013
De Alencar (10.1016/j.jmva.2023.105174_b8) 2022; 16
Santos (10.1016/j.jmva.2023.105174_b29) 2002; 386
Wu (10.1016/j.jmva.2023.105174_b31) 2010
Lachos (10.1016/j.jmva.2023.105174_b18) 2010; 20
Liu (10.1016/j.jmva.2023.105174_b20) 1994; 81
Hoffman (10.1016/j.jmva.2023.105174_b17) 2015; 20
Meilijson (10.1016/j.jmva.2023.105174_b27) 1989; 51
Matos (10.1016/j.jmva.2023.105174_b24) 2013; 23
Azzalini (10.1016/j.jmva.2023.105174_b4) 2003; 65
Feigelson (10.1016/j.jmva.2023.105174_b10) 2014
Massuia (10.1016/j.jmva.2023.105174_b22) 2015; 49
Brent (10.1016/j.jmva.2023.105174_b6) 2013
Matos (10.1016/j.jmva.2023.105174_b23) 2019; 28
Azzalini (10.1016/j.jmva.2023.105174_b5) 2008; 76
Galarza (10.1016/j.jmva.2023.105174_b13) 2021; 84
Arellano-Valle (10.1016/j.jmva.2023.105174_b3) 2010; 1
Dempster (10.1016/j.jmva.2023.105174_b9) 1977; 39
Garay (10.1016/j.jmva.2023.105174_b16) 2017; 26
Arellano-Valle (10.1016/j.jmva.2023.105174_b1) 2005; 96
Valeriano (10.1016/j.jmva.2023.105174_b30) 2022
Feigelson (10.1016/j.jmva.2023.105174_b11) 2012
Mattos (10.1016/j.jmva.2023.105174_b25) 2018; 45
Galarza (10.1016/j.jmva.2023.105174_b12) 2021
Cabral (10.1016/j.jmva.2023.105174_b7) 2012; 56
Arellano-Valle (10.1016/j.jmva.2023.105174_b2) 2010; 68
McLachlan (10.1016/j.jmva.2023.105174_b26) 2008
Galarza (10.1016/j.jmva.2023.105174_b15) 2022
Louis (10.1016/j.jmva.2023.105174_b21) 1982; 44
Galarza (10.1016/j.jmva.2023.105174_b14) 2022; 189
Sahu (10.1016/j.jmva.2023.105174_b28) 2003; 31
Lin (10.1016/j.jmva.2023.105174_b19) 2010; 20
References_xml – volume: 26
  start-page: 542
  year: 2017
  end-page: 566
  ident: b16
  article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution
  publication-title: Stat. Methods Med. Res.
– volume: 20
  start-page: 343
  year: 2010
  end-page: 356
  ident: b19
  article-title: Robust mixture modeling using multivariate skew
  publication-title: Stat. Comput.
– year: 2012
  ident: b11
  article-title: Modern Statistical Methods for Astronomy: With R Applications
– volume: 20
  start-page: 156
  year: 2015
  end-page: 171
  ident: b17
  article-title: Pseudo-likelihood estimation of multivariate normal parameters in the presence of left-censored data
  publication-title: J. Agric. Biol. Environ. Stat.
– year: 2014
  ident: b10
  article-title: astrodatR: Astronomical data
– volume: 81
  start-page: 633
  year: 1994
  end-page: 648
  ident: b20
  article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
– volume: 28
  start-page: 844
  year: 2019
  end-page: 878
  ident: b23
  article-title: Heavy-tailed longitudinal regression models for censored data: a robust parametric approach
  publication-title: Test
– volume: 96
  start-page: 93
  year: 2005
  end-page: 116
  ident: b1
  article-title: On fundamental skew distributions
  publication-title: J. Multivariate Anal.
– volume: 68
  start-page: 201
  year: 2010
  end-page: 234
  ident: b2
  article-title: Multivariate extended skew-
  publication-title: Metron
– volume: 51
  start-page: 127
  year: 1989
  end-page: 138
  ident: b27
  article-title: A fast improvement to the EM algorithm on its own terms
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2021
  ident: b12
  article-title: MomTrunc: Moments of folded and doubly truncated multivariate distributions
– year: 2010
  ident: b31
  article-title: Mixed Effects Models for Complex Data
– volume: 84
  start-page: 825
  year: 2021
  end-page: 850
  ident: b13
  article-title: On moments of folded and truncated multivariate student-t distributions based on recurrence relations
  publication-title: Metrika
– volume: 56
  start-page: 126
  year: 2012
  end-page: 142
  ident: b7
  article-title: Multivariate mixture modeling using skew-normal independent distributions
  publication-title: Comput. Statist. Data Anal.
– volume: 65
  start-page: 367
  year: 2003
  end-page: 389
  ident: b4
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 1
  year: 2022
  end-page: 23
  ident: b15
  article-title: An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses
  publication-title: METRON
– volume: 31
  start-page: 129
  year: 2003
  end-page: 150
  ident: b28
  article-title: A new class of multivariate skew distributions with applications to Bayesian regression models
  publication-title: Canad. J. Statist.
– volume: 386
  start-page: 1028
  year: 2002
  end-page: 1038
  ident: b29
  article-title: Beryllium abundances in stars hosting giant planets
  publication-title: Astron. Astrophys.
– volume: 1
  start-page: 17
  year: 2010
  end-page: 33
  ident: b3
  article-title: Multivariate unified skew-elliptical distributions
  publication-title: Chil. J. Stat.
– year: 2022
  ident: b30
  article-title: relliptical: The truncated elliptical family of distributions
– volume: 45
  start-page: 2039
  year: 2018
  end-page: 2066
  ident: b25
  article-title: Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions
  publication-title: J. Appl. Stat.
– volume: 16
  start-page: 521
  year: 2022
  end-page: 557
  ident: b8
  article-title: Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution
  publication-title: Adv. Data Anal. Classif.
– volume: 44
  start-page: 226
  year: 1982
  end-page: 233
  ident: b21
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2008
  ident: b26
  article-title: The EM Algorithm and Extensions
– volume: 76
  start-page: 106
  year: 2008
  end-page: 129
  ident: b5
  article-title: Robust likelihood methods based on the skew-t and related distributions
  publication-title: Internat. Statist. Rev.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b9
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 189
  year: 2022
  ident: b14
  article-title: Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution
  publication-title: J. Multivariate Anal.
– volume: 23
  start-page: 1323
  year: 2013
  end-page: 1342
  ident: b24
  article-title: Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution
  publication-title: Statist. Sinica
– year: 2013
  ident: b6
  article-title: Algorithms for Minimization Without Derivatives
– volume: 20
  start-page: 303
  year: 2010
  ident: b18
  article-title: Likelihood-based inference for skew-normal independent linear mixed models
  publication-title: Statist. Sinica
– volume: 49
  start-page: 1074
  year: 2015
  end-page: 1094
  ident: b22
  article-title: Influence diagnostics for student-t censored linear regression models
  publication-title: Statistics
– year: 2021
  ident: 10.1016/j.jmva.2023.105174_b12
– volume: 23
  start-page: 1323
  year: 2013
  ident: 10.1016/j.jmva.2023.105174_b24
  article-title: Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution
  publication-title: Statist. Sinica
– volume: 51
  start-page: 127
  year: 1989
  ident: 10.1016/j.jmva.2023.105174_b27
  article-title: A fast improvement to the EM algorithm on its own terms
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1989.tb01754.x
– volume: 49
  start-page: 1074
  year: 2015
  ident: 10.1016/j.jmva.2023.105174_b22
  article-title: Influence diagnostics for student-t censored linear regression models
  publication-title: Statistics
  doi: 10.1080/02331888.2014.958489
– volume: 386
  start-page: 1028
  year: 2002
  ident: 10.1016/j.jmva.2023.105174_b29
  article-title: Beryllium abundances in stars hosting giant planets
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20020280
– year: 2008
  ident: 10.1016/j.jmva.2023.105174_b26
– volume: 31
  start-page: 129
  year: 2003
  ident: 10.1016/j.jmva.2023.105174_b28
  article-title: A new class of multivariate skew distributions with applications to Bayesian regression models
  publication-title: Canad. J. Statist.
  doi: 10.2307/3316064
– volume: 189
  year: 2022
  ident: 10.1016/j.jmva.2023.105174_b14
  article-title: Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2021.104944
– volume: 26
  start-page: 542
  year: 2017
  ident: 10.1016/j.jmva.2023.105174_b16
  article-title: Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280214551191
– volume: 20
  start-page: 303
  year: 2010
  ident: 10.1016/j.jmva.2023.105174_b18
  article-title: Likelihood-based inference for skew-normal independent linear mixed models
  publication-title: Statist. Sinica
– volume: 84
  start-page: 825
  year: 2021
  ident: 10.1016/j.jmva.2023.105174_b13
  article-title: On moments of folded and truncated multivariate student-t distributions based on recurrence relations
  publication-title: Metrika
  doi: 10.1007/s00184-020-00802-1
– volume: 20
  start-page: 156
  year: 2015
  ident: 10.1016/j.jmva.2023.105174_b17
  article-title: Pseudo-likelihood estimation of multivariate normal parameters in the presence of left-censored data
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-014-0194-x
– volume: 65
  start-page: 367
  year: 2003
  ident: 10.1016/j.jmva.2023.105174_b4
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00391
– year: 2014
  ident: 10.1016/j.jmva.2023.105174_b10
– volume: 81
  start-page: 633
  year: 1994
  ident: 10.1016/j.jmva.2023.105174_b20
  article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– start-page: 1
  year: 2022
  ident: 10.1016/j.jmva.2023.105174_b15
  article-title: An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses
  publication-title: METRON
– year: 2010
  ident: 10.1016/j.jmva.2023.105174_b31
– year: 2012
  ident: 10.1016/j.jmva.2023.105174_b11
– volume: 56
  start-page: 126
  year: 2012
  ident: 10.1016/j.jmva.2023.105174_b7
  article-title: Multivariate mixture modeling using skew-normal independent distributions
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2011.06.026
– volume: 28
  start-page: 844
  year: 2019
  ident: 10.1016/j.jmva.2023.105174_b23
  article-title: Heavy-tailed longitudinal regression models for censored data: a robust parametric approach
  publication-title: Test
  doi: 10.1007/s11749-018-0603-5
– volume: 16
  start-page: 521
  year: 2022
  ident: 10.1016/j.jmva.2023.105174_b8
  article-title: Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-021-00448-5
– volume: 76
  start-page: 106
  year: 2008
  ident: 10.1016/j.jmva.2023.105174_b5
  article-title: Robust likelihood methods based on the skew-t and related distributions
  publication-title: Internat. Statist. Rev.
  doi: 10.1111/j.1751-5823.2007.00016.x
– volume: 68
  start-page: 201
  year: 2010
  ident: 10.1016/j.jmva.2023.105174_b2
  article-title: Multivariate extended skew-t distributions and related families
  publication-title: Metron
  doi: 10.1007/BF03263536
– volume: 45
  start-page: 2039
  year: 2018
  ident: 10.1016/j.jmva.2023.105174_b25
  article-title: Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2017.1408788
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.jmva.2023.105174_b9
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 44
  start-page: 226
  year: 1982
  ident: 10.1016/j.jmva.2023.105174_b21
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 1
  start-page: 17
  year: 2010
  ident: 10.1016/j.jmva.2023.105174_b3
  article-title: Multivariate unified skew-elliptical distributions
  publication-title: Chil. J. Stat.
– year: 2013
  ident: 10.1016/j.jmva.2023.105174_b6
– volume: 20
  start-page: 343
  year: 2010
  ident: 10.1016/j.jmva.2023.105174_b19
  article-title: Robust mixture modeling using multivariate skew t distributions
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9128-9
– volume: 96
  start-page: 93
  year: 2005
  ident: 10.1016/j.jmva.2023.105174_b1
  article-title: On fundamental skew distributions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2004.10.002
– year: 2022
  ident: 10.1016/j.jmva.2023.105174_b30
SSID ssj0011574
Score 2.399253
Snippet Skew-t regression models have been widely used to model and analyze asymmetric heavy-tailed data. Moreover, observations in this kind of data can be missing or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105174
SubjectTerms Censored data
EM algorithm
Extended skew-[formula omitted] distribution
Missing observations
Truncated distributions
Title Likelihood-based inference for the multivariate skew-t regression with censored or missing responses
URI https://dx.doi.org/10.1016/j.jmva.2023.105174
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIrykgc2ZGonTpOMVUVVXp2olC2KYwelLWnVlrLx27mLkwok1IExkU-Kzpe776zvPhNy40GV8bkSTOgMGhQVpgxwcsAAyeqAYwFWJdti2BmM5GPkRQ3Sq2dhkFZZ5X6b08tsXb1pV95sz_McZ3ylD-A9AhCNoAeH-KT0McrvvjY0D9SSsUrMpSJBGFWDM5bjNX5fo_aQ4-J1t8KXfxenHwWnf0D2K6RIu_ZjDknDFEdk72Ujs7o8Jvo5n5hpjsrEDMuRpnk9v0cBjFJYSkvG4Bo6YgCVdDkxn2xFF-bN0l8LiuewNIVedrYAc7CBfcfjA1hTkmfN8oSM-vevvQGrrk1gKXhixUTq-FxkkqcdlH4JocPgCRfKSO1IV0P_kCkepoKboJNo5QZcJsJP_MDwMEtU4p6SZjErzBmh8DPrDBzohSaBzo8rz1ESDL1EKVTibxFR-ytOK01xvNpiGtfksXGMPo7Rx7H1cYvcbmzmVlFj62qv3ob4V1zEkPK32J3_0-6C7OKTJeRekuZq8WGuAHas1HUZV9dkp_vwNBh-A4761n0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdvpmGXtrQ9EiIp8jhBwq3ptltTQCBQ8e87026JJsaD13YnaWZ3Z77ZfvMtwJONWcbhUhgiTrBAkV5kIE52DUSyscspAcucbTFq-RPrdWpPK9Ape2GIVqljfxHT82itnzS0NxvrNKUeX8tB8D5FEE2gxzuAGqlT2VWotXt9f7T_mSBsLcacixJ4U907U9C8Zu87kh9qmnTjrXCs3_PTt5zTPYUTDRZZu_ieM6io5TkcD_dKq9sLiAfpXC1SEic2KCPFLC1b-BjiUYZDWU4a3GFRjLiSbefq08jYRr0VDNglo6NYFmE5u9qgOdrg1NMJAo7J-bNqewmT7su44xv65gQjQmdkhoiaDheJxaMWqb94WGTwkAuprLhpmTGWEInkXiS4clthLE2XW6FwQsdV3EtCGZpXUF2uluoaGO7nOEEH2p4Ksfjj0m5KCw3tUEoS46-DKP0VRFpWnG63WAQlf2wWkI8D8nFQ-LgOz3ubdSGq8edou5yG4MfSCDDq_2F380-7Rzj0x8NBMOiN-rdwRG8Kfu4dVLPNh7pHFJLJB73KvgD1mtku
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood-based+inference+for+the+multivariate+skew-+t+regression+with+censored+or+missing+responses&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Valeriano%2C+Katherine+A.L.&rft.au=Galarza%2C+Christian+E.&rft.au=Matos%2C+Larissa+A.&rft.au=Lachos%2C+Victor+H.&rft.date=2023-07-01&rft.issn=0047-259X&rft.volume=196&rft.spage=105174&rft_id=info:doi/10.1016%2Fj.jmva.2023.105174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2023_105174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon