A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification
Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this proble...
Saved in:
Published in | Expert systems with applications Vol. 221; p. 119711 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this problem, we propose a novel multi-level unsupervised domain adaptation framework (MLUDAF) to diagnose arrhythmias. During feature extraction, we use the atrous spatial pyramid pooling residual (ASPP-R) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN) module is used to extract the data structure features. During domain adaptation, we design three alignment mechanisms: domain alignment, semantic alignment, and structure alignment. The three alignment strategies are integrated into a unified deep network to guide the feature extractor to extract domain sharing and distinguishable semantic representations, which can reduce the differences between the source and target domains. Experimental results based on the MIT-BIH database show that the proposed method achieves an overall accuracy of 96.8% for arrhythmia detection. Compared to other methods, the proposed method achieves competitive performance. Cross-domain experiments between databases also demonstrate its strong generalizability. Therefore, the proposed method is promising for application in medical diagnosis systems.
•We design a novel unsupervised domain adaptation framework for ECG classification.•GCN is used to extract the data structure features.•Our method integrates domain alignment, semantic alignment and structure alignment.•Our method exhibits satisfactory results compared to previous work. |
---|---|
AbstractList | Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this problem, we propose a novel multi-level unsupervised domain adaptation framework (MLUDAF) to diagnose arrhythmias. During feature extraction, we use the atrous spatial pyramid pooling residual (ASPP-R) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN) module is used to extract the data structure features. During domain adaptation, we design three alignment mechanisms: domain alignment, semantic alignment, and structure alignment. The three alignment strategies are integrated into a unified deep network to guide the feature extractor to extract domain sharing and distinguishable semantic representations, which can reduce the differences between the source and target domains. Experimental results based on the MIT-BIH database show that the proposed method achieves an overall accuracy of 96.8% for arrhythmia detection. Compared to other methods, the proposed method achieves competitive performance. Cross-domain experiments between databases also demonstrate its strong generalizability. Therefore, the proposed method is promising for application in medical diagnosis systems.
•We design a novel unsupervised domain adaptation framework for ECG classification.•GCN is used to extract the data structure features.•Our method integrates domain alignment, semantic alignment and structure alignment.•Our method exhibits satisfactory results compared to previous work. |
ArticleNumber | 119711 |
Author | Yuan, Shuaiying Hamid, Arwa He, Ziyang Chen, Yufei Polat, Kemal Zhao, Jianhui Yuan, Zhiyong Alenezi, Fayadh Alhudhaif, Adi |
Author_xml | – sequence: 1 givenname: Ziyang orcidid: 0000-0003-3286-7138 surname: He fullname: He, Ziyang email: heziyang@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Yufei orcidid: 0000-0003-4508-9726 surname: Chen fullname: Chen, Yufei email: yufeichen2019@outlook.com organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China – sequence: 3 givenname: Shuaiying orcidid: 0000-0002-8878-2021 surname: Yuan fullname: Yuan, Shuaiying email: yuanshuaiying@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 4 givenname: Jianhui orcidid: 0000-0001-5803-2564 surname: Zhao fullname: Zhao, Jianhui email: jianhuizhao@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 5 givenname: Zhiyong orcidid: 0000-0001-9608-6037 surname: Yuan fullname: Yuan, Zhiyong email: zhiyongyuan@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan 430072, China – sequence: 6 givenname: Kemal orcidid: 0000-0003-1840-9958 surname: Polat fullname: Polat, Kemal email: kpolat@ibu.edu.tr organization: Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey – sequence: 7 givenname: Adi orcidid: 0000-0002-7201-6963 surname: Alhudhaif fullname: Alhudhaif, Adi email: a.alhudhaif@psau.edu.sa organization: Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia – sequence: 8 givenname: Fayadh orcidid: 0000-0002-4099-1254 surname: Alenezi fullname: Alenezi, Fayadh email: fshenezi@ju.edu.sa organization: Department of Electrical Engineering, College of Engineering, Jouf University, 72238, Saudi Arabia – sequence: 9 givenname: Arwa orcidid: 0000-0003-2750-536X surname: Hamid fullname: Hamid, Arwa email: a.hamid@arabou.edu.sa organization: Faculty of Computer Studies, Arab Open University, Riyadh 11462, Saudi Arabia |
BookMark | eNp9kMFqGzEQhkVJoU6aF-hJL7CuRuu1dqGXYNKkEMilPYtZaZTI1UpG0jr0Xfqw9cY95ZDTwPB__zDfJbuIKRJjX0CsQcD2635N5QXXUsh2DTAogA9sBb1qm60a2gu2EkOnmg2ozSd2WcpeCFBCqBX7e8NjOlLgcyzzgfLRF7Lcpgl95GjxULH6FLnLONFLyr_5iEvitHrKeHjmJsVjCvMSwsAj1dcQRsunOVTfBFraHWGdM3EM_ilOFCt3KXMfK-WmzOOeTOW3uztuApbinTevVz-zjw5Doev_84r9-n77c3ffPDze_djdPDSmFaI2MIJyaKEDGuzWDL1VbW-kExKNlYhG0gawc70cpZQKhLUdgDIOhtHIrm-vmDz3mpxKyeT0IfsJ8x8NQi9-9V4vfvXiV5_9nqD-DWT8WVbN6MP76LczSqenjp6yLsZTNGR9PpnQNvn38H-PTZ2G |
CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1016_j_eswa_2024_125764 crossref_primary_10_1109_TIM_2024_3376017 crossref_primary_10_3390_app14167227 crossref_primary_10_1016_j_iswa_2024_200385 crossref_primary_10_1038_s41598_024_59890_y crossref_primary_10_1016_j_knosys_2024_111855 crossref_primary_10_1109_ACCESS_2024_3519297 crossref_primary_10_1109_TIM_2025_3541691 crossref_primary_10_1016_j_ins_2023_118978 crossref_primary_10_1016_j_knosys_2024_111906 crossref_primary_10_3390_computation12020021 crossref_primary_10_1016_j_cmpb_2025_108725 crossref_primary_10_1016_j_cosrev_2024_100719 crossref_primary_10_3390_app13148551 crossref_primary_10_1109_TMECH_2024_3395436 crossref_primary_10_1016_j_eswa_2024_125460 crossref_primary_10_1016_j_eswa_2023_121498 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_1016_j_eswa_2023_122065 |
Cites_doi | 10.1016/j.apacoust.2020.107346 10.1109/CVPR.2017.547 10.1007/s40747-020-00261-1 10.1016/j.cmpb.2021.106379 10.1016/j.ins.2016.01.082 10.1109/ACCESS.2021.3088783 10.1016/j.ins.2022.05.070 10.1016/j.bspc.2022.104238 10.1109/CVPR.2019.00846 10.3390/s22218537 10.1109/ACCESS.2018.2833841 10.1016/j.cmpb.2020.105479 10.1109/CVPR.2014.183 10.1109/TBME.2022.3187874 10.1016/j.neucom.2018.05.083 10.1161/01.CIR.101.23.e215 10.1007/s11263-014-0696-6 10.1109/JBHI.2021.3090421 10.1109/JBHI.2020.2981526 10.1016/j.eswa.2020.113411 10.1109/51.932724 10.1007/s11760-020-01688-2 10.1109/TPAMI.2019.2945942 10.4018/978-1-6684-3947-0.ch005 10.1016/j.eswa.2018.12.037 10.1109/TBME.1985.325532 10.1016/j.eswa.2022.117013 10.1016/j.ins.2021.09.046 10.1016/j.bspc.2018.08.007 10.1016/j.cmpb.2019.02.005 10.1109/TPAMI.2017.2699184 10.1109/JBHI.2015.2468224 10.3390/ijerph191710707 10.1016/j.knosys.2021.107508 10.1016/j.ins.2022.06.091 10.1016/j.ins.2018.06.062 10.1016/j.bspc.2022.103548 10.1109/CVPR.2016.90 10.3390/ijerph18063056 10.1109/TIP.2015.2510498 10.1016/j.knosys.2020.106122 10.1016/j.eswa.2018.03.038 10.1109/ACCESS.2019.2921991 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.119711 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_119711 S0957417423002129 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-1b17fad151e9d6c98d738c2f02acd2aac2e41a5f82b222710dd5117cf19bc2583 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:08 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Fri Feb 23 02:38:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Graph convolutional network Multi-level unsupervised domain adaptation ECG classification Individual differences |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1b17fad151e9d6c98d738c2f02acd2aac2e41a5f82b222710dd5117cf19bc2583 |
ORCID | 0000-0001-5803-2564 0000-0002-7201-6963 0000-0003-1840-9958 0000-0003-3286-7138 0000-0003-4508-9726 0000-0003-2750-536X 0000-0002-8878-2021 0000-0002-4099-1254 0000-0001-9608-6037 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_119711 crossref_citationtrail_10_1016_j_eswa_2023_119711 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Association for the Advancement of Medical Instrumentation (b6) 1998 Wang, Deng (b47) 2018; 312 He, Yuan, Zhao, Yuan, Chen (b24) 2023; 80 Wang, Fan, Li (b48) 2020; 24 Zhai, Zhou, Tin (b58) 2020; 158 Wang, Ma, Zhao, Tian (b50) 2020 Arora, Hu, Kothari (b5) 2018 Jin, Qin, Liu, Lin, Shi, Huang (b29) 2020; 203 Glowacz (b18) 2022; 22 He, Yuan, Zhao, Du, Yuan, Alhudhaif (b23) 2022 Andayeshgar, Abdali-Mohammadi, Sepahvand, Daneshkhah, Almasi, Salari (b4) 2022; 19 Shi, Wang, Huang, Zhao, Qin, Liu (b44) 2019; 171 Moody, Mark (b38) 2001; 20 (pp. 1859–1867). Ge, Jiang, Tong, Feng, Zhou, Xu (b17) 2021; 233 Ye, Kumar, Coimbra (b54) 2015; 20 Defferrard, Bresson, Vandergheynst (b12) 2016; 29 Zhang, J., Li, W., & Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. In Xu, Fang, Wu, Li, Zhang (b53) 2015; 25 Tyagi, Rathore, Parashar, Agrawal (b46) 2022 Zhang, Wang, Zhao, Gao, Lin, Yang (b60) 2017 . He, Yuan, An, Zhao, Du (b22) 2021; 210 Bruna, Zaremba, Szlam, LeCun (b7) 2013 Wang, Jia, Tian, Xiao (b49) 2022; 200 Deng, Tu, Xu (b13) 2021 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b19) 2000; 101 Ebrahimi, Loni, Daneshtalab, Gharehbaghi (b14) 2020; 7 Abdalla, Wu, Ullah, Ren, Noor, Mkindu (b1) 2020; 14 (pp. 8266–8276). Zhai, Tin (b57) 2018; 6 Mondéjar-Guerra, Novo, Rouco, Penedo, Ortega (b37) 2019; 47 Shao, Kit, Fu (b43) 2014; 109 Lin, Huang, Chen, Fujita, Wang (b34) 2021; 7 Tang, Zhang, He, Li, Mou, Du (b45) 2022; 75 (pp. 1410–1417). Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu (b20) 2012; 25 Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. In Sellami, Hwang (b42) 2019; 122 Kipf, Welling (b30) 2016 Li, Xu, Chen, Liu (b32) 2019; 7 Kouw, Loog (b31) 2019; 43 Pan, Tompkins (b40) 1985 Chen, Wang, Liu, Chang, Wang, He (b10) 2020; 193 Ye, Luo, Huang, Sun, Li (b55) 2022 Li, Zhao, Sun, Yan, Chen (b33) 2021; 70 (pp. 770–778). Zahid, Kiranyaz, Gabbouj (b56) 2022; 70 Ganin, Lempitsky (b16) 2015 Feng, Fu, Ge, Wang, Zhou, Zhou (b15) 2022; 582 Wang, Zhang, Liu, Yang, Fu, Wang (b51) 2019; 501 Jiang, Almeida, Schlindwein, Ng, Zhou, Li (b28) 2020 Niu, Chen, Liu, Zhou, Shu (b39) 2020 Almalki, Qayyum, Irfan, Haider, Glowacz, Alshehri (b3) 2021 Chen, Papandreou, Kokkinos, Murphy, Yuille (b8) 2017; 40 Raj, Ray (b41) 2018; 105 Irfan, Iftikhar, Yasin, Draz, Ali, Hussain (b27) 2021; 18 He, Lin, Xu, Yao, Chen, Alhudhaif (b21) 2022; 608 Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b2) 2016; 345 Chen, Wang, Ding, Li, Yang (b9) 2020 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Houssein, Abdelminaam, Ibrahim, Hassaballah, Wazery (b26) 2021; 9 Ma, X., Zhang, T., & Xu, C. (2019). Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In Xiao, Liu, Yang, Liu, Wang, Zhu (b52) 2021; 26 Daldal, Sengur, Polat, Cömert (b11) 2020; 166 Ye (10.1016/j.eswa.2023.119711_b54) 2015; 20 He (10.1016/j.eswa.2023.119711_b21) 2022; 608 Abdalla (10.1016/j.eswa.2023.119711_b1) 2020; 14 Kipf (10.1016/j.eswa.2023.119711_b30) 2016 Sellami (10.1016/j.eswa.2023.119711_b42) 2019; 122 Bruna (10.1016/j.eswa.2023.119711_b7) 2013 Xiao (10.1016/j.eswa.2023.119711_b52) 2021; 26 Wang (10.1016/j.eswa.2023.119711_b51) 2019; 501 Pan (10.1016/j.eswa.2023.119711_b40) 1985 Jin (10.1016/j.eswa.2023.119711_b29) 2020; 203 Kouw (10.1016/j.eswa.2023.119711_b31) 2019; 43 Feng (10.1016/j.eswa.2023.119711_b15) 2022; 582 Moody (10.1016/j.eswa.2023.119711_b38) 2001; 20 Wang (10.1016/j.eswa.2023.119711_b50) 2020 Glowacz (10.1016/j.eswa.2023.119711_b18) 2022; 22 Zahid (10.1016/j.eswa.2023.119711_b56) 2022; 70 Ge (10.1016/j.eswa.2023.119711_b17) 2021; 233 Zhai (10.1016/j.eswa.2023.119711_b58) 2020; 158 He (10.1016/j.eswa.2023.119711_b23) 2022 Al Rahhal (10.1016/j.eswa.2023.119711_b2) 2016; 345 He (10.1016/j.eswa.2023.119711_b22) 2021; 210 Deng (10.1016/j.eswa.2023.119711_b13) 2021 Zhai (10.1016/j.eswa.2023.119711_b57) 2018; 6 He (10.1016/j.eswa.2023.119711_b24) 2023; 80 Ganin (10.1016/j.eswa.2023.119711_b16) 2015 Li (10.1016/j.eswa.2023.119711_b33) 2021; 70 10.1016/j.eswa.2023.119711_b35 Tyagi (10.1016/j.eswa.2023.119711_b46) 2022 Xu (10.1016/j.eswa.2023.119711_b53) 2015; 25 10.1016/j.eswa.2023.119711_b36 Chen (10.1016/j.eswa.2023.119711_b8) 2017; 40 Lin (10.1016/j.eswa.2023.119711_b34) 2021; 7 Arora (10.1016/j.eswa.2023.119711_b5) 2018 Wang (10.1016/j.eswa.2023.119711_b49) 2022; 200 Chen (10.1016/j.eswa.2023.119711_b9) 2020 Chen (10.1016/j.eswa.2023.119711_b10) 2020; 193 Mondéjar-Guerra (10.1016/j.eswa.2023.119711_b37) 2019; 47 Niu (10.1016/j.eswa.2023.119711_b39) 2020 Shi (10.1016/j.eswa.2023.119711_b44) 2019; 171 Wang (10.1016/j.eswa.2023.119711_b47) 2018; 312 Wang (10.1016/j.eswa.2023.119711_b48) 2020; 24 Andayeshgar (10.1016/j.eswa.2023.119711_b4) 2022; 19 Houssein (10.1016/j.eswa.2023.119711_b26) 2021; 9 Tang (10.1016/j.eswa.2023.119711_b45) 2022; 75 10.1016/j.eswa.2023.119711_b25 Jiang (10.1016/j.eswa.2023.119711_b28) 2020 Li (10.1016/j.eswa.2023.119711_b32) 2019; 7 Irfan (10.1016/j.eswa.2023.119711_b27) 2021; 18 Ye (10.1016/j.eswa.2023.119711_b55) 2022 Ebrahimi (10.1016/j.eswa.2023.119711_b14) 2020; 7 Raj (10.1016/j.eswa.2023.119711_b41) 2018; 105 Zhang (10.1016/j.eswa.2023.119711_b60) 2017 Defferrard (10.1016/j.eswa.2023.119711_b12) 2016; 29 10.1016/j.eswa.2023.119711_b59 Shao (10.1016/j.eswa.2023.119711_b43) 2014; 109 Daldal (10.1016/j.eswa.2023.119711_b11) 2020; 166 Gretton (10.1016/j.eswa.2023.119711_b20) 2012; 25 Almalki (10.1016/j.eswa.2023.119711_b3) 2021 Goldberger (10.1016/j.eswa.2023.119711_b19) 2000; 101 Association for the Advancement of Medical Instrumentation (10.1016/j.eswa.2023.119711_b6) 1998 |
References_xml | – volume: 22 start-page: 8537 year: 2022 ident: b18 article-title: Thermographic fault diagnosis of shaft of BLDC motor publication-title: Sensors – volume: 14 start-page: 1431 year: 2020 end-page: 1439 ident: b1 article-title: Deep convolutional neural network application to classify the ECG arrhythmia publication-title: Signal, Image and Video Processing – volume: 608 start-page: 1093 year: 2022 end-page: 1112 ident: b21 article-title: Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture publication-title: Information Sciences – reference: (pp. 8266–8276). – volume: 80 year: 2023 ident: b24 article-title: A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering publication-title: Biomedical Signal Processing and Control – volume: 171 start-page: 1 year: 2019 end-page: 10 ident: b44 article-title: A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification publication-title: Computer Methods and Programs in Biomedicine – volume: 75 year: 2022 ident: b45 article-title: Deep adaptation network for subject-specific sleep stage classification based on a single-lead ECG publication-title: Biomedical Signal Processing and Control – volume: 200 year: 2022 ident: b49 article-title: Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring publication-title: Expert Systems with Applications – start-page: 1180 year: 2015 end-page: 1189 ident: b16 article-title: Unsupervised domain adaptation by backpropagation publication-title: International conference on machine learning – reference: (pp. 770–778). – volume: 105 start-page: 49 year: 2018 end-page: 64 ident: b41 article-title: Sparse representation of ECG signals for automated recognition of cardiac arrhythmias publication-title: Expert Systems with Applications – reference: (pp. 1410–1417). – start-page: 46 year: 1998 ident: b6 article-title: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms publication-title: ANSI/AAMI EC38, Vol. 1998 – volume: 7 start-page: 76295 year: 2019 end-page: 76304 ident: b32 article-title: Automated heartbeat classification using 3-D inputs based on convolutional neural network with multi-fields of view publication-title: IEEE Access – volume: 210 year: 2021 ident: b22 article-title: MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning publication-title: Computer Methods and Programs in Biomedicine – volume: 9 start-page: 86194 year: 2021 end-page: 86206 ident: b26 article-title: A hybrid heartbeats classification approach based on marine predators algorithm and convolution neural networks publication-title: IEEE Access – volume: 47 start-page: 41 year: 2019 end-page: 48 ident: b37 article-title: Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers publication-title: Biomedical Signal Processing and Control – volume: 19 start-page: 10707 year: 2022 ident: b4 article-title: Developing graph convolutional networks and mutual information for arrhythmic diagnosis based on multichannel ECG signals publication-title: International Journal of Environmental Research and Public Health – start-page: 1 year: 2020 end-page: 4 ident: b28 article-title: Diagnostic of multiple cardiac disorders from 12-lead ECGs using graph convolutional network based multi-label classification publication-title: 2020 computing in cardiology – volume: 24 start-page: 2461 year: 2020 end-page: 2472 ident: b48 article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 7 year: 2020 ident: b14 article-title: A review on deep learning methods for ECG arrhythmia classification publication-title: Expert Systems with Applications: X – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b47 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – reference: Zhang, J., Li, W., & Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. In – start-page: 63 year: 2017 end-page: 67 ident: b60 article-title: Patient-specific ECG classification based on recurrent neural networks and clustering technique publication-title: 2017 13th IASTED international conference on biomedical engineering (BioMed) – start-page: 854 year: 2021 end-page: 859 ident: b13 article-title: Multi-source unsupervised domain adaptation for ECG classification publication-title: 2021 IEEE international conference on bioinformatics and biomedicine – volume: 18 start-page: 3056 year: 2021 ident: b27 article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19 publication-title: International Journal of Environmental Research and Public Health – year: 2016 ident: b30 article-title: Semi-supervised classification with graph convolutional networks – start-page: 495 year: 2022 end-page: 499 ident: b55 article-title: ECG-based cross-subject mental stress detection via discriminative clustering enhanced adversarial domain adaptation publication-title: 2022 16th IEEE international conference on signal processing (ICSP), Vol. 1 – volume: 193 year: 2020 ident: b10 article-title: Multi-information fusion neural networks for arrhythmia automatic detection publication-title: Computer Methods and Programs in Biomedicine – volume: 29 year: 2016 ident: b12 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems – volume: 25 year: 2012 ident: b20 article-title: Optimal kernel choice for large-scale two-sample tests publication-title: Advances in Neural Information Processing Systems – volume: 26 start-page: 206 year: 2021 end-page: 217 ident: b52 article-title: ULECGNet: An ultra-lightweight end-to-end ECG classification neural network publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: b33 article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions publication-title: IEEE Transactions on Instrumentation and Measurement – start-page: 437 year: 2020 ident: b39 article-title: A deep-learning approach to ECG classification based on adversarial domain adaptation publication-title: Healthcare, Vol. 8 – volume: 109 start-page: 74 year: 2014 end-page: 93 ident: b43 article-title: Generalized transfer subspace learning through low-rank constraint publication-title: International Journal of Computer Vision – volume: 6 start-page: 27465 year: 2018 end-page: 27472 ident: b57 article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network publication-title: IEEE Access – start-page: 522 year: 2021 ident: b3 article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images publication-title: Healthcare, Vol. 9 – year: 2013 ident: b7 article-title: Spectral networks and locally connected networks on graphs – start-page: 230 year: 1985 end-page: 236 ident: b40 article-title: A real-time QRS detection algorithm publication-title: IEEE Transactions on Biomedical Engineering – reference: Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. In – start-page: 1 year: 2020 end-page: 26 ident: b50 article-title: A comprehensive survey of loss functions in machine learning publication-title: Annals of Data Science – volume: 122 start-page: 75 year: 2019 end-page: 84 ident: b42 article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification publication-title: Expert Systems with Applications – start-page: 304 year: 2020 end-page: 307 ident: b9 article-title: Unsupervised domain adaptation for ECG arrhythmia classification publication-title: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society – volume: 25 start-page: 850 year: 2015 end-page: 863 ident: b53 article-title: Discriminative transfer subspace learning via low-rank and sparse representation publication-title: IEEE Transactions on Image Processing – year: 2022 ident: b23 article-title: A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning publication-title: Information Sciences – volume: 501 start-page: 523 year: 2019 end-page: 542 ident: b51 article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning publication-title: Information Sciences – volume: 70 start-page: 205 year: 2022 end-page: 215 ident: b56 article-title: Global ECG classification by self-operational neural networks with feature injection publication-title: IEEE Transactions on Biomedical Engineering – volume: 20 start-page: 1485 year: 2015 end-page: 1492 ident: b54 article-title: An automatic subject-adaptable heartbeat classifier based on multiview learning publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b8 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 7 start-page: 1025 year: 2021 end-page: 1043 ident: b34 article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis publication-title: Complex & Intelligent Systems – start-page: 98 year: 2022 end-page: 111 ident: b46 article-title: A review of automated diagnosis of ECG arrhythmia using deep learning methods publication-title: AI-Enabled Smart Healthcare using Biomedical Signals – start-page: 1455 year: 2018 end-page: 1462 ident: b5 article-title: An analysis of the t-sne algorithm for data visualization publication-title: Conference on learning theory – volume: 582 start-page: 509 year: 2022 end-page: 528 ident: b15 article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection publication-title: Information Sciences – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b38 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Engineering in Medicine and Biology Magazine – reference: . – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In – volume: 43 start-page: 766 year: 2019 end-page: 785 ident: b31 article-title: A review of domain adaptation without target labels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 166 year: 2020 ident: b11 article-title: A novel demodulation system for base band digital modulation signals based on the deep long short-term memory model publication-title: Applied Acoustics – reference: Ma, X., Zhang, T., & Xu, C. (2019). Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In – volume: 233 year: 2021 ident: b17 article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis publication-title: Knowledge-Based Systems – volume: 158 year: 2020 ident: b58 article-title: Semi-supervised learning for ECG classification without patient-specific labeled data publication-title: Expert Systems with Applications – reference: (pp. 1859–1867). – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b19 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 203 year: 2020 ident: b29 article-title: A novel domain adaptive residual network for automatic atrial fibrillation detection publication-title: Knowledge-Based Systems – volume: 345 start-page: 340 year: 2016 end-page: 354 ident: b2 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Information Sciences – volume: 7 year: 2020 ident: 10.1016/j.eswa.2023.119711_b14 article-title: A review on deep learning methods for ECG arrhythmia classification publication-title: Expert Systems with Applications: X – volume: 166 year: 2020 ident: 10.1016/j.eswa.2023.119711_b11 article-title: A novel demodulation system for base band digital modulation signals based on the deep long short-term memory model publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2020.107346 – ident: 10.1016/j.eswa.2023.119711_b59 doi: 10.1109/CVPR.2017.547 – volume: 7 start-page: 1025 year: 2021 ident: 10.1016/j.eswa.2023.119711_b34 article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-020-00261-1 – volume: 210 year: 2021 ident: 10.1016/j.eswa.2023.119711_b22 article-title: MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2021.106379 – start-page: 522 year: 2021 ident: 10.1016/j.eswa.2023.119711_b3 article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.119711_b50 article-title: A comprehensive survey of loss functions in machine learning publication-title: Annals of Data Science – volume: 345 start-page: 340 year: 2016 ident: 10.1016/j.eswa.2023.119711_b2 article-title: Deep learning approach for active classification of electrocardiogram signals publication-title: Information Sciences doi: 10.1016/j.ins.2016.01.082 – volume: 9 start-page: 86194 year: 2021 ident: 10.1016/j.eswa.2023.119711_b26 article-title: A hybrid heartbeats classification approach based on marine predators algorithm and convolution neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088783 – year: 2022 ident: 10.1016/j.eswa.2023.119711_b23 article-title: A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning publication-title: Information Sciences doi: 10.1016/j.ins.2022.05.070 – volume: 80 year: 2023 ident: 10.1016/j.eswa.2023.119711_b24 article-title: A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.104238 – volume: 25 year: 2012 ident: 10.1016/j.eswa.2023.119711_b20 article-title: Optimal kernel choice for large-scale two-sample tests publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.eswa.2023.119711_b36 doi: 10.1109/CVPR.2019.00846 – volume: 22 start-page: 8537 issue: 21 year: 2022 ident: 10.1016/j.eswa.2023.119711_b18 article-title: Thermographic fault diagnosis of shaft of BLDC motor publication-title: Sensors doi: 10.3390/s22218537 – volume: 6 start-page: 27465 year: 2018 ident: 10.1016/j.eswa.2023.119711_b57 article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833841 – volume: 193 year: 2020 ident: 10.1016/j.eswa.2023.119711_b10 article-title: Multi-information fusion neural networks for arrhythmia automatic detection publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105479 – ident: 10.1016/j.eswa.2023.119711_b35 doi: 10.1109/CVPR.2014.183 – volume: 70 start-page: 205 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.119711_b56 article-title: Global ECG classification by self-operational neural networks with feature injection publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2022.3187874 – year: 2016 ident: 10.1016/j.eswa.2023.119711_b30 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.119711_b28 article-title: Diagnostic of multiple cardiac disorders from 12-lead ECGs using graph convolutional network based multi-label classification – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.eswa.2023.119711_b47 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.eswa.2023.119711_b19 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 109 start-page: 74 issue: 1 year: 2014 ident: 10.1016/j.eswa.2023.119711_b43 article-title: Generalized transfer subspace learning through low-rank constraint publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0696-6 – volume: 26 start-page: 206 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.119711_b52 article-title: ULECGNet: An ultra-lightweight end-to-end ECG classification neural network publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2021.3090421 – volume: 24 start-page: 2461 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.119711_b48 article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.2981526 – volume: 158 year: 2020 ident: 10.1016/j.eswa.2023.119711_b58 article-title: Semi-supervised learning for ECG classification without patient-specific labeled data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113411 – volume: 29 year: 2016 ident: 10.1016/j.eswa.2023.119711_b12 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.eswa.2023.119711_b38 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.932724 – volume: 14 start-page: 1431 year: 2020 ident: 10.1016/j.eswa.2023.119711_b1 article-title: Deep convolutional neural network application to classify the ECG arrhythmia publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-020-01688-2 – volume: 43 start-page: 766 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.119711_b31 article-title: A review of domain adaptation without target labels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2945942 – start-page: 1455 year: 2018 ident: 10.1016/j.eswa.2023.119711_b5 article-title: An analysis of the t-sne algorithm for data visualization – start-page: 98 year: 2022 ident: 10.1016/j.eswa.2023.119711_b46 article-title: A review of automated diagnosis of ECG arrhythmia using deep learning methods publication-title: AI-Enabled Smart Healthcare using Biomedical Signals doi: 10.4018/978-1-6684-3947-0.ch005 – volume: 122 start-page: 75 year: 2019 ident: 10.1016/j.eswa.2023.119711_b42 article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.12.037 – start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.eswa.2023.119711_b40 article-title: A real-time QRS detection algorithm publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.1985.325532 – volume: 200 year: 2022 ident: 10.1016/j.eswa.2023.119711_b49 article-title: Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117013 – volume: 582 start-page: 509 year: 2022 ident: 10.1016/j.eswa.2023.119711_b15 article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection publication-title: Information Sciences doi: 10.1016/j.ins.2021.09.046 – volume: 47 start-page: 41 year: 2019 ident: 10.1016/j.eswa.2023.119711_b37 article-title: Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2018.08.007 – volume: 171 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2023.119711_b44 article-title: A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.02.005 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.eswa.2023.119711_b8 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2699184 – volume: 20 start-page: 1485 issue: 6 year: 2015 ident: 10.1016/j.eswa.2023.119711_b54 article-title: An automatic subject-adaptable heartbeat classifier based on multiview learning publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2015.2468224 – volume: 19 start-page: 10707 issue: 17 year: 2022 ident: 10.1016/j.eswa.2023.119711_b4 article-title: Developing graph convolutional networks and mutual information for arrhythmic diagnosis based on multichannel ECG signals publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph191710707 – start-page: 46 year: 1998 ident: 10.1016/j.eswa.2023.119711_b6 article-title: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms – start-page: 304 year: 2020 ident: 10.1016/j.eswa.2023.119711_b9 article-title: Unsupervised domain adaptation for ECG arrhythmia classification – start-page: 1180 year: 2015 ident: 10.1016/j.eswa.2023.119711_b16 article-title: Unsupervised domain adaptation by backpropagation – start-page: 437 year: 2020 ident: 10.1016/j.eswa.2023.119711_b39 article-title: A deep-learning approach to ECG classification based on adversarial domain adaptation – start-page: 854 year: 2021 ident: 10.1016/j.eswa.2023.119711_b13 article-title: Multi-source unsupervised domain adaptation for ECG classification – volume: 233 year: 2021 ident: 10.1016/j.eswa.2023.119711_b17 article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107508 – volume: 608 start-page: 1093 year: 2022 ident: 10.1016/j.eswa.2023.119711_b21 article-title: Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture publication-title: Information Sciences doi: 10.1016/j.ins.2022.06.091 – volume: 501 start-page: 523 year: 2019 ident: 10.1016/j.eswa.2023.119711_b51 article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning publication-title: Information Sciences doi: 10.1016/j.ins.2018.06.062 – year: 2013 ident: 10.1016/j.eswa.2023.119711_b7 – start-page: 495 year: 2022 ident: 10.1016/j.eswa.2023.119711_b55 article-title: ECG-based cross-subject mental stress detection via discriminative clustering enhanced adversarial domain adaptation – volume: 75 year: 2022 ident: 10.1016/j.eswa.2023.119711_b45 article-title: Deep adaptation network for subject-specific sleep stage classification based on a single-lead ECG publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103548 – ident: 10.1016/j.eswa.2023.119711_b25 doi: 10.1109/CVPR.2016.90 – volume: 18 start-page: 3056 issue: 6 year: 2021 ident: 10.1016/j.eswa.2023.119711_b27 article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19 publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph18063056 – volume: 25 start-page: 850 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.119711_b53 article-title: Discriminative transfer subspace learning via low-rank and sparse representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2510498 – volume: 203 year: 2020 ident: 10.1016/j.eswa.2023.119711_b29 article-title: A novel domain adaptive residual network for automatic atrial fibrillation detection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106122 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.119711_b33 article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 105 start-page: 49 year: 2018 ident: 10.1016/j.eswa.2023.119711_b41 article-title: Sparse representation of ECG signals for automated recognition of cardiac arrhythmias publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.03.038 – volume: 7 start-page: 76295 year: 2019 ident: 10.1016/j.eswa.2023.119711_b32 article-title: Automated heartbeat classification using 3-D inputs based on convolutional neural network with multi-fields of view publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921991 – start-page: 63 year: 2017 ident: 10.1016/j.eswa.2023.119711_b60 article-title: Patient-specific ECG classification based on recurrent neural networks and clustering technique |
SSID | ssj0017007 |
Score | 2.52327 |
Snippet | Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119711 |
SubjectTerms | Deep learning ECG classification Graph convolutional network Individual differences Multi-level unsupervised domain adaptation |
Title | A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification |
URI | https://dx.doi.org/10.1016/j.eswa.2023.119711 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i2_m4E1im-wj6bEUa1X0ooK3JZuHKHVbbKs3f4k_1swmKwriweOGDFkyk8y3m2--EHIkuZPCWUGF7iQ0TbSmMrOa5olwHt2ypOxg7fDVdT68Sy_us_sW6Te1MEirjHt_2NPr3Tq2tONstiePj-0bDw58OsSTxlqnHIv40lRglJ-8f9E8UH5OBL09QbF3LJwJHC87fUPtIZ6c4GkaY78np28JZ7BKliNShF54mTXSstU6WWluYYC4KDfIRw-q8asdwbyazie49KfWgBk_-29-UEZNwmE7uIaGBZi5DPimWq0akHgeA9CPVwVeOKjKQM02pCPkFYGztQQoeNz-UDMIwMNdQLWJFzqdl_g7B077Z6ARjiP_qB51k9wNTm_7QxrvXKDaT-OMspIJp4zHAbZrct2VRiRSc9fhShuulOY2ZSpzkpdYRcs6xnjIJrRj3VLzTCZbZKEaV3abgMylcn6JW2-dGq67Sap4nnnHGqNdqXcIaya70FGQHO_FGBUN8-ypQAcV6KAiOGiHHH_ZTIIcx5-9s8aHxY-gKny--MNu9592e2QJnwKbd58szF7m9sBjlll5WAflIVnsnV8Orz8Bh2rv7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBeSktblULpHLhV7sbOyzmuVsDy2ktB4hY5flSgbXbF7rZ_hh-LJ3ZQkSoOXB2PHHlsz5fMN58BDqRwsnS2ZKVOUpalWjOZW82KtHQe3fK0Sah2-GJaTK6y0-v8egPGfS0M0Srj2R_O9O60ji3DOJvDxc3N8KcHBz4cUqax0ymvXsEmqVPlA9gcnZxNpo_JhDIJVdO-PyODWDsTaF52-Zfkh0T6gxJqnP8_Pv0Tc47ewdsIFnEU3uc9bNh2G7b6ixgw7ssPcD_Cdv7HznDdLtcL2v1La9DMf_vPflRGLUK-HV3PxEIKXgZ9UydYjcQ9j2vQj9cGajiq1mBHOGQzohahs50KKHro_qsjEaBHvEiCE3dsuW7ojw4ejo9REyInClI36ke4Ojq8HE9YvHaBaT-TK8YbXjplPBSwlSl0JU2ZSi1cIpQ2QiktbMZV7qRoqJCWJ8Z41FZqx6tGi1ymn2DQzlv7GVAWUjm_y623zozQVZopUeTet8Zo1-gd4P1k1zpqktPVGLO6J5_d1uSgmhxUBwftwPdHm0VQ5Hi2d977sH6yrmofMp6x-_JCu2_wenJ5cV6fn0zPduENPQnk3j0YrO7W9quHMKtmPy7RB7fG8p4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+unsupervised+domain+adaptation+framework+based+on+graph+convolutional+network+and+multi-level+feature+alignment+for+inter-subject+ECG+classification&rft.jtitle=Expert+systems+with+applications&rft.au=He%2C+Ziyang&rft.au=Chen%2C+Yufei&rft.au=Yuan%2C+Shuaiying&rft.au=Zhao%2C+Jianhui&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=221&rft_id=info:doi/10.1016%2Fj.eswa.2023.119711&rft.externalDocID=S0957417423002129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |