A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification

Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this proble...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 221; p. 119711
Main Authors He, Ziyang, Chen, Yufei, Yuan, Shuaiying, Zhao, Jianhui, Yuan, Zhiyong, Polat, Kemal, Alhudhaif, Adi, Alenezi, Fayadh, Hamid, Arwa
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this problem, we propose a novel multi-level unsupervised domain adaptation framework (MLUDAF) to diagnose arrhythmias. During feature extraction, we use the atrous spatial pyramid pooling residual (ASPP-R) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN) module is used to extract the data structure features. During domain adaptation, we design three alignment mechanisms: domain alignment, semantic alignment, and structure alignment. The three alignment strategies are integrated into a unified deep network to guide the feature extractor to extract domain sharing and distinguishable semantic representations, which can reduce the differences between the source and target domains. Experimental results based on the MIT-BIH database show that the proposed method achieves an overall accuracy of 96.8% for arrhythmia detection. Compared to other methods, the proposed method achieves competitive performance. Cross-domain experiments between databases also demonstrate its strong generalizability. Therefore, the proposed method is promising for application in medical diagnosis systems. •We design a novel unsupervised domain adaptation framework for ECG classification.•GCN is used to extract the data structure features.•Our method integrates domain alignment, semantic alignment and structure alignment.•Our method exhibits satisfactory results compared to previous work.
AbstractList Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this problem, we propose a novel multi-level unsupervised domain adaptation framework (MLUDAF) to diagnose arrhythmias. During feature extraction, we use the atrous spatial pyramid pooling residual (ASPP-R) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN) module is used to extract the data structure features. During domain adaptation, we design three alignment mechanisms: domain alignment, semantic alignment, and structure alignment. The three alignment strategies are integrated into a unified deep network to guide the feature extractor to extract domain sharing and distinguishable semantic representations, which can reduce the differences between the source and target domains. Experimental results based on the MIT-BIH database show that the proposed method achieves an overall accuracy of 96.8% for arrhythmia detection. Compared to other methods, the proposed method achieves competitive performance. Cross-domain experiments between databases also demonstrate its strong generalizability. Therefore, the proposed method is promising for application in medical diagnosis systems. •We design a novel unsupervised domain adaptation framework for ECG classification.•GCN is used to extract the data structure features.•Our method integrates domain alignment, semantic alignment and structure alignment.•Our method exhibits satisfactory results compared to previous work.
ArticleNumber 119711
Author Yuan, Shuaiying
Hamid, Arwa
He, Ziyang
Chen, Yufei
Polat, Kemal
Zhao, Jianhui
Yuan, Zhiyong
Alenezi, Fayadh
Alhudhaif, Adi
Author_xml – sequence: 1
  givenname: Ziyang
  orcidid: 0000-0003-3286-7138
  surname: He
  fullname: He, Ziyang
  email: heziyang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Yufei
  orcidid: 0000-0003-4508-9726
  surname: Chen
  fullname: Chen, Yufei
  email: yufeichen2019@outlook.com
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
– sequence: 3
  givenname: Shuaiying
  orcidid: 0000-0002-8878-2021
  surname: Yuan
  fullname: Yuan, Shuaiying
  email: yuanshuaiying@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: Jianhui
  orcidid: 0000-0001-5803-2564
  surname: Zhao
  fullname: Zhao, Jianhui
  email: jianhuizhao@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: Zhiyong
  orcidid: 0000-0001-9608-6037
  surname: Yuan
  fullname: Yuan, Zhiyong
  email: zhiyongyuan@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
– sequence: 6
  givenname: Kemal
  orcidid: 0000-0003-1840-9958
  surname: Polat
  fullname: Polat, Kemal
  email: kpolat@ibu.edu.tr
  organization: Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
– sequence: 7
  givenname: Adi
  orcidid: 0000-0002-7201-6963
  surname: Alhudhaif
  fullname: Alhudhaif, Adi
  email: a.alhudhaif@psau.edu.sa
  organization: Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia
– sequence: 8
  givenname: Fayadh
  orcidid: 0000-0002-4099-1254
  surname: Alenezi
  fullname: Alenezi, Fayadh
  email: fshenezi@ju.edu.sa
  organization: Department of Electrical Engineering, College of Engineering, Jouf University, 72238, Saudi Arabia
– sequence: 9
  givenname: Arwa
  orcidid: 0000-0003-2750-536X
  surname: Hamid
  fullname: Hamid, Arwa
  email: a.hamid@arabou.edu.sa
  organization: Faculty of Computer Studies, Arab Open University, Riyadh 11462, Saudi Arabia
BookMark eNp9kMFqGzEQhkVJoU6aF-hJL7CuRuu1dqGXYNKkEMilPYtZaZTI1UpG0jr0Xfqw9cY95ZDTwPB__zDfJbuIKRJjX0CsQcD2635N5QXXUsh2DTAogA9sBb1qm60a2gu2EkOnmg2ozSd2WcpeCFBCqBX7e8NjOlLgcyzzgfLRF7Lcpgl95GjxULH6FLnLONFLyr_5iEvitHrKeHjmJsVjCvMSwsAj1dcQRsunOVTfBFraHWGdM3EM_ilOFCt3KXMfK-WmzOOeTOW3uztuApbinTevVz-zjw5Doev_84r9-n77c3ffPDze_djdPDSmFaI2MIJyaKEDGuzWDL1VbW-kExKNlYhG0gawc70cpZQKhLUdgDIOhtHIrm-vmDz3mpxKyeT0IfsJ8x8NQi9-9V4vfvXiV5_9nqD-DWT8WVbN6MP76LczSqenjp6yLsZTNGR9PpnQNvn38H-PTZ2G
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1016_j_eswa_2024_125764
crossref_primary_10_1109_TIM_2024_3376017
crossref_primary_10_3390_app14167227
crossref_primary_10_1016_j_iswa_2024_200385
crossref_primary_10_1038_s41598_024_59890_y
crossref_primary_10_1016_j_knosys_2024_111855
crossref_primary_10_1109_ACCESS_2024_3519297
crossref_primary_10_1109_TIM_2025_3541691
crossref_primary_10_1016_j_ins_2023_118978
crossref_primary_10_1016_j_knosys_2024_111906
crossref_primary_10_3390_computation12020021
crossref_primary_10_1016_j_cmpb_2025_108725
crossref_primary_10_1016_j_cosrev_2024_100719
crossref_primary_10_3390_app13148551
crossref_primary_10_1109_TMECH_2024_3395436
crossref_primary_10_1016_j_eswa_2024_125460
crossref_primary_10_1016_j_eswa_2023_121498
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1016_j_eswa_2023_122065
Cites_doi 10.1016/j.apacoust.2020.107346
10.1109/CVPR.2017.547
10.1007/s40747-020-00261-1
10.1016/j.cmpb.2021.106379
10.1016/j.ins.2016.01.082
10.1109/ACCESS.2021.3088783
10.1016/j.ins.2022.05.070
10.1016/j.bspc.2022.104238
10.1109/CVPR.2019.00846
10.3390/s22218537
10.1109/ACCESS.2018.2833841
10.1016/j.cmpb.2020.105479
10.1109/CVPR.2014.183
10.1109/TBME.2022.3187874
10.1016/j.neucom.2018.05.083
10.1161/01.CIR.101.23.e215
10.1007/s11263-014-0696-6
10.1109/JBHI.2021.3090421
10.1109/JBHI.2020.2981526
10.1016/j.eswa.2020.113411
10.1109/51.932724
10.1007/s11760-020-01688-2
10.1109/TPAMI.2019.2945942
10.4018/978-1-6684-3947-0.ch005
10.1016/j.eswa.2018.12.037
10.1109/TBME.1985.325532
10.1016/j.eswa.2022.117013
10.1016/j.ins.2021.09.046
10.1016/j.bspc.2018.08.007
10.1016/j.cmpb.2019.02.005
10.1109/TPAMI.2017.2699184
10.1109/JBHI.2015.2468224
10.3390/ijerph191710707
10.1016/j.knosys.2021.107508
10.1016/j.ins.2022.06.091
10.1016/j.ins.2018.06.062
10.1016/j.bspc.2022.103548
10.1109/CVPR.2016.90
10.3390/ijerph18063056
10.1109/TIP.2015.2510498
10.1016/j.knosys.2020.106122
10.1016/j.eswa.2018.03.038
10.1109/ACCESS.2019.2921991
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119711
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119711
S0957417423002129
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-1b17fad151e9d6c98d738c2f02acd2aac2e41a5f82b222710dd5117cf19bc2583
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:08 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Fri Feb 23 02:38:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Graph convolutional network
Multi-level unsupervised domain adaptation
ECG classification
Individual differences
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1b17fad151e9d6c98d738c2f02acd2aac2e41a5f82b222710dd5117cf19bc2583
ORCID 0000-0001-5803-2564
0000-0002-7201-6963
0000-0003-1840-9958
0000-0003-3286-7138
0000-0003-4508-9726
0000-0003-2750-536X
0000-0002-8878-2021
0000-0002-4099-1254
0000-0001-9608-6037
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_119711
crossref_citationtrail_10_1016_j_eswa_2023_119711
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Association for the Advancement of Medical Instrumentation (b6) 1998
Wang, Deng (b47) 2018; 312
He, Yuan, Zhao, Yuan, Chen (b24) 2023; 80
Wang, Fan, Li (b48) 2020; 24
Zhai, Zhou, Tin (b58) 2020; 158
Wang, Ma, Zhao, Tian (b50) 2020
Arora, Hu, Kothari (b5) 2018
Jin, Qin, Liu, Lin, Shi, Huang (b29) 2020; 203
Glowacz (b18) 2022; 22
He, Yuan, Zhao, Du, Yuan, Alhudhaif (b23) 2022
Andayeshgar, Abdali-Mohammadi, Sepahvand, Daneshkhah, Almasi, Salari (b4) 2022; 19
Shi, Wang, Huang, Zhao, Qin, Liu (b44) 2019; 171
Moody, Mark (b38) 2001; 20
(pp. 1859–1867).
Ge, Jiang, Tong, Feng, Zhou, Xu (b17) 2021; 233
Ye, Kumar, Coimbra (b54) 2015; 20
Defferrard, Bresson, Vandergheynst (b12) 2016; 29
Zhang, J., Li, W., & Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. In
Xu, Fang, Wu, Li, Zhang (b53) 2015; 25
Tyagi, Rathore, Parashar, Agrawal (b46) 2022
Zhang, Wang, Zhao, Gao, Lin, Yang (b60) 2017
.
He, Yuan, An, Zhao, Du (b22) 2021; 210
Bruna, Zaremba, Szlam, LeCun (b7) 2013
Wang, Jia, Tian, Xiao (b49) 2022; 200
Deng, Tu, Xu (b13) 2021
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b19) 2000; 101
Ebrahimi, Loni, Daneshtalab, Gharehbaghi (b14) 2020; 7
Abdalla, Wu, Ullah, Ren, Noor, Mkindu (b1) 2020; 14
(pp. 8266–8276).
Zhai, Tin (b57) 2018; 6
Mondéjar-Guerra, Novo, Rouco, Penedo, Ortega (b37) 2019; 47
Shao, Kit, Fu (b43) 2014; 109
Lin, Huang, Chen, Fujita, Wang (b34) 2021; 7
Tang, Zhang, He, Li, Mou, Du (b45) 2022; 75
(pp. 1410–1417).
Gretton, Sejdinovic, Strathmann, Balakrishnan, Pontil, Fukumizu (b20) 2012; 25
Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. In
Sellami, Hwang (b42) 2019; 122
Kipf, Welling (b30) 2016
Li, Xu, Chen, Liu (b32) 2019; 7
Kouw, Loog (b31) 2019; 43
Pan, Tompkins (b40) 1985
Chen, Wang, Liu, Chang, Wang, He (b10) 2020; 193
Ye, Luo, Huang, Sun, Li (b55) 2022
Li, Zhao, Sun, Yan, Chen (b33) 2021; 70
(pp. 770–778).
Zahid, Kiranyaz, Gabbouj (b56) 2022; 70
Ganin, Lempitsky (b16) 2015
Feng, Fu, Ge, Wang, Zhou, Zhou (b15) 2022; 582
Wang, Zhang, Liu, Yang, Fu, Wang (b51) 2019; 501
Jiang, Almeida, Schlindwein, Ng, Zhou, Li (b28) 2020
Niu, Chen, Liu, Zhou, Shu (b39) 2020
Almalki, Qayyum, Irfan, Haider, Glowacz, Alshehri (b3) 2021
Chen, Papandreou, Kokkinos, Murphy, Yuille (b8) 2017; 40
Raj, Ray (b41) 2018; 105
Irfan, Iftikhar, Yasin, Draz, Ali, Hussain (b27) 2021; 18
He, Lin, Xu, Yao, Chen, Alhudhaif (b21) 2022; 608
Al Rahhal, Bazi, AlHichri, Alajlan, Melgani, Yager (b2) 2016; 345
Chen, Wang, Ding, Li, Yang (b9) 2020
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Houssein, Abdelminaam, Ibrahim, Hassaballah, Wazery (b26) 2021; 9
Ma, X., Zhang, T., & Xu, C. (2019). Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In
Xiao, Liu, Yang, Liu, Wang, Zhu (b52) 2021; 26
Daldal, Sengur, Polat, Cömert (b11) 2020; 166
Ye (10.1016/j.eswa.2023.119711_b54) 2015; 20
He (10.1016/j.eswa.2023.119711_b21) 2022; 608
Abdalla (10.1016/j.eswa.2023.119711_b1) 2020; 14
Kipf (10.1016/j.eswa.2023.119711_b30) 2016
Sellami (10.1016/j.eswa.2023.119711_b42) 2019; 122
Bruna (10.1016/j.eswa.2023.119711_b7) 2013
Xiao (10.1016/j.eswa.2023.119711_b52) 2021; 26
Wang (10.1016/j.eswa.2023.119711_b51) 2019; 501
Pan (10.1016/j.eswa.2023.119711_b40) 1985
Jin (10.1016/j.eswa.2023.119711_b29) 2020; 203
Kouw (10.1016/j.eswa.2023.119711_b31) 2019; 43
Feng (10.1016/j.eswa.2023.119711_b15) 2022; 582
Moody (10.1016/j.eswa.2023.119711_b38) 2001; 20
Wang (10.1016/j.eswa.2023.119711_b50) 2020
Glowacz (10.1016/j.eswa.2023.119711_b18) 2022; 22
Zahid (10.1016/j.eswa.2023.119711_b56) 2022; 70
Ge (10.1016/j.eswa.2023.119711_b17) 2021; 233
Zhai (10.1016/j.eswa.2023.119711_b58) 2020; 158
He (10.1016/j.eswa.2023.119711_b23) 2022
Al Rahhal (10.1016/j.eswa.2023.119711_b2) 2016; 345
He (10.1016/j.eswa.2023.119711_b22) 2021; 210
Deng (10.1016/j.eswa.2023.119711_b13) 2021
Zhai (10.1016/j.eswa.2023.119711_b57) 2018; 6
He (10.1016/j.eswa.2023.119711_b24) 2023; 80
Ganin (10.1016/j.eswa.2023.119711_b16) 2015
Li (10.1016/j.eswa.2023.119711_b33) 2021; 70
10.1016/j.eswa.2023.119711_b35
Tyagi (10.1016/j.eswa.2023.119711_b46) 2022
Xu (10.1016/j.eswa.2023.119711_b53) 2015; 25
10.1016/j.eswa.2023.119711_b36
Chen (10.1016/j.eswa.2023.119711_b8) 2017; 40
Lin (10.1016/j.eswa.2023.119711_b34) 2021; 7
Arora (10.1016/j.eswa.2023.119711_b5) 2018
Wang (10.1016/j.eswa.2023.119711_b49) 2022; 200
Chen (10.1016/j.eswa.2023.119711_b9) 2020
Chen (10.1016/j.eswa.2023.119711_b10) 2020; 193
Mondéjar-Guerra (10.1016/j.eswa.2023.119711_b37) 2019; 47
Niu (10.1016/j.eswa.2023.119711_b39) 2020
Shi (10.1016/j.eswa.2023.119711_b44) 2019; 171
Wang (10.1016/j.eswa.2023.119711_b47) 2018; 312
Wang (10.1016/j.eswa.2023.119711_b48) 2020; 24
Andayeshgar (10.1016/j.eswa.2023.119711_b4) 2022; 19
Houssein (10.1016/j.eswa.2023.119711_b26) 2021; 9
Tang (10.1016/j.eswa.2023.119711_b45) 2022; 75
10.1016/j.eswa.2023.119711_b25
Jiang (10.1016/j.eswa.2023.119711_b28) 2020
Li (10.1016/j.eswa.2023.119711_b32) 2019; 7
Irfan (10.1016/j.eswa.2023.119711_b27) 2021; 18
Ye (10.1016/j.eswa.2023.119711_b55) 2022
Ebrahimi (10.1016/j.eswa.2023.119711_b14) 2020; 7
Raj (10.1016/j.eswa.2023.119711_b41) 2018; 105
Zhang (10.1016/j.eswa.2023.119711_b60) 2017
Defferrard (10.1016/j.eswa.2023.119711_b12) 2016; 29
10.1016/j.eswa.2023.119711_b59
Shao (10.1016/j.eswa.2023.119711_b43) 2014; 109
Daldal (10.1016/j.eswa.2023.119711_b11) 2020; 166
Gretton (10.1016/j.eswa.2023.119711_b20) 2012; 25
Almalki (10.1016/j.eswa.2023.119711_b3) 2021
Goldberger (10.1016/j.eswa.2023.119711_b19) 2000; 101
Association for the Advancement of Medical Instrumentation (10.1016/j.eswa.2023.119711_b6) 1998
References_xml – volume: 22
  start-page: 8537
  year: 2022
  ident: b18
  article-title: Thermographic fault diagnosis of shaft of BLDC motor
  publication-title: Sensors
– volume: 14
  start-page: 1431
  year: 2020
  end-page: 1439
  ident: b1
  article-title: Deep convolutional neural network application to classify the ECG arrhythmia
  publication-title: Signal, Image and Video Processing
– volume: 608
  start-page: 1093
  year: 2022
  end-page: 1112
  ident: b21
  article-title: Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture
  publication-title: Information Sciences
– reference: (pp. 8266–8276).
– volume: 80
  year: 2023
  ident: b24
  article-title: A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering
  publication-title: Biomedical Signal Processing and Control
– volume: 171
  start-page: 1
  year: 2019
  end-page: 10
  ident: b44
  article-title: A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 75
  year: 2022
  ident: b45
  article-title: Deep adaptation network for subject-specific sleep stage classification based on a single-lead ECG
  publication-title: Biomedical Signal Processing and Control
– volume: 200
  year: 2022
  ident: b49
  article-title: Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring
  publication-title: Expert Systems with Applications
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b16
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International conference on machine learning
– reference: (pp. 770–778).
– volume: 105
  start-page: 49
  year: 2018
  end-page: 64
  ident: b41
  article-title: Sparse representation of ECG signals for automated recognition of cardiac arrhythmias
  publication-title: Expert Systems with Applications
– reference: (pp. 1410–1417).
– start-page: 46
  year: 1998
  ident: b6
  article-title: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms
  publication-title: ANSI/AAMI EC38, Vol. 1998
– volume: 7
  start-page: 76295
  year: 2019
  end-page: 76304
  ident: b32
  article-title: Automated heartbeat classification using 3-D inputs based on convolutional neural network with multi-fields of view
  publication-title: IEEE Access
– volume: 210
  year: 2021
  ident: b22
  article-title: MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 9
  start-page: 86194
  year: 2021
  end-page: 86206
  ident: b26
  article-title: A hybrid heartbeats classification approach based on marine predators algorithm and convolution neural networks
  publication-title: IEEE Access
– volume: 47
  start-page: 41
  year: 2019
  end-page: 48
  ident: b37
  article-title: Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers
  publication-title: Biomedical Signal Processing and Control
– volume: 19
  start-page: 10707
  year: 2022
  ident: b4
  article-title: Developing graph convolutional networks and mutual information for arrhythmic diagnosis based on multichannel ECG signals
  publication-title: International Journal of Environmental Research and Public Health
– start-page: 1
  year: 2020
  end-page: 4
  ident: b28
  article-title: Diagnostic of multiple cardiac disorders from 12-lead ECGs using graph convolutional network based multi-label classification
  publication-title: 2020 computing in cardiology
– volume: 24
  start-page: 2461
  year: 2020
  end-page: 2472
  ident: b48
  article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 7
  year: 2020
  ident: b14
  article-title: A review on deep learning methods for ECG arrhythmia classification
  publication-title: Expert Systems with Applications: X
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b47
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– reference: Zhang, J., Li, W., & Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. In
– start-page: 63
  year: 2017
  end-page: 67
  ident: b60
  article-title: Patient-specific ECG classification based on recurrent neural networks and clustering technique
  publication-title: 2017 13th IASTED international conference on biomedical engineering (BioMed)
– start-page: 854
  year: 2021
  end-page: 859
  ident: b13
  article-title: Multi-source unsupervised domain adaptation for ECG classification
  publication-title: 2021 IEEE international conference on bioinformatics and biomedicine
– volume: 18
  start-page: 3056
  year: 2021
  ident: b27
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: International Journal of Environmental Research and Public Health
– year: 2016
  ident: b30
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 495
  year: 2022
  end-page: 499
  ident: b55
  article-title: ECG-based cross-subject mental stress detection via discriminative clustering enhanced adversarial domain adaptation
  publication-title: 2022 16th IEEE international conference on signal processing (ICSP), Vol. 1
– volume: 193
  year: 2020
  ident: b10
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 29
  year: 2016
  ident: b12
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  year: 2012
  ident: b20
  article-title: Optimal kernel choice for large-scale two-sample tests
  publication-title: Advances in Neural Information Processing Systems
– volume: 26
  start-page: 206
  year: 2021
  end-page: 217
  ident: b52
  article-title: ULECGNet: An ultra-lightweight end-to-end ECG classification neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: b33
  article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 437
  year: 2020
  ident: b39
  article-title: A deep-learning approach to ECG classification based on adversarial domain adaptation
  publication-title: Healthcare, Vol. 8
– volume: 109
  start-page: 74
  year: 2014
  end-page: 93
  ident: b43
  article-title: Generalized transfer subspace learning through low-rank constraint
  publication-title: International Journal of Computer Vision
– volume: 6
  start-page: 27465
  year: 2018
  end-page: 27472
  ident: b57
  article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
– start-page: 522
  year: 2021
  ident: b3
  article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images
  publication-title: Healthcare, Vol. 9
– year: 2013
  ident: b7
  article-title: Spectral networks and locally connected networks on graphs
– start-page: 230
  year: 1985
  end-page: 236
  ident: b40
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. In
– start-page: 1
  year: 2020
  end-page: 26
  ident: b50
  article-title: A comprehensive survey of loss functions in machine learning
  publication-title: Annals of Data Science
– volume: 122
  start-page: 75
  year: 2019
  end-page: 84
  ident: b42
  article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
  publication-title: Expert Systems with Applications
– start-page: 304
  year: 2020
  end-page: 307
  ident: b9
  article-title: Unsupervised domain adaptation for ECG arrhythmia classification
  publication-title: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society
– volume: 25
  start-page: 850
  year: 2015
  end-page: 863
  ident: b53
  article-title: Discriminative transfer subspace learning via low-rank and sparse representation
  publication-title: IEEE Transactions on Image Processing
– year: 2022
  ident: b23
  article-title: A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning
  publication-title: Information Sciences
– volume: 501
  start-page: 523
  year: 2019
  end-page: 542
  ident: b51
  article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning
  publication-title: Information Sciences
– volume: 70
  start-page: 205
  year: 2022
  end-page: 215
  ident: b56
  article-title: Global ECG classification by self-operational neural networks with feature injection
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 20
  start-page: 1485
  year: 2015
  end-page: 1492
  ident: b54
  article-title: An automatic subject-adaptable heartbeat classifier based on multiview learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: b8
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 7
  start-page: 1025
  year: 2021
  end-page: 1043
  ident: b34
  article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis
  publication-title: Complex & Intelligent Systems
– start-page: 98
  year: 2022
  end-page: 111
  ident: b46
  article-title: A review of automated diagnosis of ECG arrhythmia using deep learning methods
  publication-title: AI-Enabled Smart Healthcare using Biomedical Signals
– start-page: 1455
  year: 2018
  end-page: 1462
  ident: b5
  article-title: An analysis of the t-sne algorithm for data visualization
  publication-title: Conference on learning theory
– volume: 582
  start-page: 509
  year: 2022
  end-page: 528
  ident: b15
  article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection
  publication-title: Information Sciences
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b38
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– reference: .
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– volume: 43
  start-page: 766
  year: 2019
  end-page: 785
  ident: b31
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 166
  year: 2020
  ident: b11
  article-title: A novel demodulation system for base band digital modulation signals based on the deep long short-term memory model
  publication-title: Applied Acoustics
– reference: Ma, X., Zhang, T., & Xu, C. (2019). Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In
– volume: 233
  year: 2021
  ident: b17
  article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis
  publication-title: Knowledge-Based Systems
– volume: 158
  year: 2020
  ident: b58
  article-title: Semi-supervised learning for ECG classification without patient-specific labeled data
  publication-title: Expert Systems with Applications
– reference: (pp. 1859–1867).
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b19
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 203
  year: 2020
  ident: b29
  article-title: A novel domain adaptive residual network for automatic atrial fibrillation detection
  publication-title: Knowledge-Based Systems
– volume: 345
  start-page: 340
  year: 2016
  end-page: 354
  ident: b2
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Information Sciences
– volume: 7
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b14
  article-title: A review on deep learning methods for ECG arrhythmia classification
  publication-title: Expert Systems with Applications: X
– volume: 166
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b11
  article-title: A novel demodulation system for base band digital modulation signals based on the deep long short-term memory model
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2020.107346
– ident: 10.1016/j.eswa.2023.119711_b59
  doi: 10.1109/CVPR.2017.547
– volume: 7
  start-page: 1025
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b34
  article-title: Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-020-00261-1
– volume: 210
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b22
  article-title: MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2021.106379
– start-page: 522
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b3
  article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b50
  article-title: A comprehensive survey of loss functions in machine learning
  publication-title: Annals of Data Science
– volume: 345
  start-page: 340
  year: 2016
  ident: 10.1016/j.eswa.2023.119711_b2
  article-title: Deep learning approach for active classification of electrocardiogram signals
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.01.082
– volume: 9
  start-page: 86194
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b26
  article-title: A hybrid heartbeats classification approach based on marine predators algorithm and convolution neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088783
– year: 2022
  ident: 10.1016/j.eswa.2023.119711_b23
  article-title: A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.05.070
– volume: 80
  year: 2023
  ident: 10.1016/j.eswa.2023.119711_b24
  article-title: A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104238
– volume: 25
  year: 2012
  ident: 10.1016/j.eswa.2023.119711_b20
  article-title: Optimal kernel choice for large-scale two-sample tests
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.eswa.2023.119711_b36
  doi: 10.1109/CVPR.2019.00846
– volume: 22
  start-page: 8537
  issue: 21
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b18
  article-title: Thermographic fault diagnosis of shaft of BLDC motor
  publication-title: Sensors
  doi: 10.3390/s22218537
– volume: 6
  start-page: 27465
  year: 2018
  ident: 10.1016/j.eswa.2023.119711_b57
  article-title: Automated ECG classification using dual heartbeat coupling based on convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833841
– volume: 193
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b10
  article-title: Multi-information fusion neural networks for arrhythmia automatic detection
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105479
– ident: 10.1016/j.eswa.2023.119711_b35
  doi: 10.1109/CVPR.2014.183
– volume: 70
  start-page: 205
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b56
  article-title: Global ECG classification by self-operational neural networks with feature injection
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2022.3187874
– year: 2016
  ident: 10.1016/j.eswa.2023.119711_b30
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b28
  article-title: Diagnostic of multiple cardiac disorders from 12-lead ECGs using graph convolutional network based multi-label classification
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.eswa.2023.119711_b47
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.eswa.2023.119711_b19
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 109
  start-page: 74
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2023.119711_b43
  article-title: Generalized transfer subspace learning through low-rank constraint
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0696-6
– volume: 26
  start-page: 206
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b52
  article-title: ULECGNet: An ultra-lightweight end-to-end ECG classification neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2021.3090421
– volume: 24
  start-page: 2461
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b48
  article-title: Deep multi-scale fusion neural network for multi-class arrhythmia detection
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.2981526
– volume: 158
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b58
  article-title: Semi-supervised learning for ECG classification without patient-specific labeled data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113411
– volume: 29
  year: 2016
  ident: 10.1016/j.eswa.2023.119711_b12
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2023.119711_b38
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.932724
– volume: 14
  start-page: 1431
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b1
  article-title: Deep convolutional neural network application to classify the ECG arrhythmia
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-020-01688-2
– volume: 43
  start-page: 766
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b31
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2945942
– start-page: 1455
  year: 2018
  ident: 10.1016/j.eswa.2023.119711_b5
  article-title: An analysis of the t-sne algorithm for data visualization
– start-page: 98
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b46
  article-title: A review of automated diagnosis of ECG arrhythmia using deep learning methods
  publication-title: AI-Enabled Smart Healthcare using Biomedical Signals
  doi: 10.4018/978-1-6684-3947-0.ch005
– volume: 122
  start-page: 75
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b42
  article-title: A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.12.037
– start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2023.119711_b40
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1985.325532
– volume: 200
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b49
  article-title: Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117013
– volume: 582
  start-page: 509
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b15
  article-title: Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.09.046
– volume: 47
  start-page: 41
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b37
  article-title: Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.08.007
– volume: 171
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b44
  article-title: A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.02.005
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2023.119711_b8
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2699184
– volume: 20
  start-page: 1485
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2023.119711_b54
  article-title: An automatic subject-adaptable heartbeat classifier based on multiview learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2468224
– volume: 19
  start-page: 10707
  issue: 17
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b4
  article-title: Developing graph convolutional networks and mutual information for arrhythmic diagnosis based on multichannel ECG signals
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph191710707
– start-page: 46
  year: 1998
  ident: 10.1016/j.eswa.2023.119711_b6
  article-title: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms
– start-page: 304
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b9
  article-title: Unsupervised domain adaptation for ECG arrhythmia classification
– start-page: 1180
  year: 2015
  ident: 10.1016/j.eswa.2023.119711_b16
  article-title: Unsupervised domain adaptation by backpropagation
– start-page: 437
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b39
  article-title: A deep-learning approach to ECG classification based on adversarial domain adaptation
– start-page: 854
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b13
  article-title: Multi-source unsupervised domain adaptation for ECG classification
– volume: 233
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b17
  article-title: Multi-label correlation guided feature fusion network for abnormal ECG diagnosis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107508
– volume: 608
  start-page: 1093
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b21
  article-title: Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.06.091
– volume: 501
  start-page: 523
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b51
  article-title: A global and updatable ECG beat classification system based on recurrent neural networks and active learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.062
– year: 2013
  ident: 10.1016/j.eswa.2023.119711_b7
– start-page: 495
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b55
  article-title: ECG-based cross-subject mental stress detection via discriminative clustering enhanced adversarial domain adaptation
– volume: 75
  year: 2022
  ident: 10.1016/j.eswa.2023.119711_b45
  article-title: Deep adaptation network for subject-specific sleep stage classification based on a single-lead ECG
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103548
– ident: 10.1016/j.eswa.2023.119711_b25
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 3056
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b27
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph18063056
– volume: 25
  start-page: 850
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2023.119711_b53
  article-title: Discriminative transfer subspace learning via low-rank and sparse representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2510498
– volume: 203
  year: 2020
  ident: 10.1016/j.eswa.2023.119711_b29
  article-title: A novel domain adaptive residual network for automatic atrial fibrillation detection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106122
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119711_b33
  article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 105
  start-page: 49
  year: 2018
  ident: 10.1016/j.eswa.2023.119711_b41
  article-title: Sparse representation of ECG signals for automated recognition of cardiac arrhythmias
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.03.038
– volume: 7
  start-page: 76295
  year: 2019
  ident: 10.1016/j.eswa.2023.119711_b32
  article-title: Automated heartbeat classification using 3-D inputs based on convolutional neural network with multi-fields of view
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921991
– start-page: 63
  year: 2017
  ident: 10.1016/j.eswa.2023.119711_b60
  article-title: Patient-specific ECG classification based on recurrent neural networks and clustering technique
SSID ssj0017007
Score 2.52327
Snippet Electrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119711
SubjectTerms Deep learning
ECG classification
Graph convolutional network
Individual differences
Multi-level unsupervised domain adaptation
Title A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification
URI https://dx.doi.org/10.1016/j.eswa.2023.119711
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i2_m4E1im-wj6bEUa1X0ooK3JZuHKHVbbKs3f4k_1swmKwriweOGDFkyk8y3m2--EHIkuZPCWUGF7iQ0TbSmMrOa5olwHt2ypOxg7fDVdT68Sy_us_sW6Te1MEirjHt_2NPr3Tq2tONstiePj-0bDw58OsSTxlqnHIv40lRglJ-8f9E8UH5OBL09QbF3LJwJHC87fUPtIZ6c4GkaY78np28JZ7BKliNShF54mTXSstU6WWluYYC4KDfIRw-q8asdwbyazie49KfWgBk_-29-UEZNwmE7uIaGBZi5DPimWq0akHgeA9CPVwVeOKjKQM02pCPkFYGztQQoeNz-UDMIwMNdQLWJFzqdl_g7B077Z6ARjiP_qB51k9wNTm_7QxrvXKDaT-OMspIJp4zHAbZrct2VRiRSc9fhShuulOY2ZSpzkpdYRcs6xnjIJrRj3VLzTCZbZKEaV3abgMylcn6JW2-dGq67Sap4nnnHGqNdqXcIaya70FGQHO_FGBUN8-ypQAcV6KAiOGiHHH_ZTIIcx5-9s8aHxY-gKny--MNu9592e2QJnwKbd58szF7m9sBjlll5WAflIVnsnV8Orz8Bh2rv7Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBeSktblULpHLhV7sbOyzmuVsDy2ktB4hY5flSgbXbF7rZ_hh-LJ3ZQkSoOXB2PHHlsz5fMN58BDqRwsnS2ZKVOUpalWjOZW82KtHQe3fK0Sah2-GJaTK6y0-v8egPGfS0M0Srj2R_O9O60ji3DOJvDxc3N8KcHBz4cUqax0ymvXsEmqVPlA9gcnZxNpo_JhDIJVdO-PyODWDsTaF52-Zfkh0T6gxJqnP8_Pv0Tc47ewdsIFnEU3uc9bNh2G7b6ixgw7ssPcD_Cdv7HznDdLtcL2v1La9DMf_vPflRGLUK-HV3PxEIKXgZ9UydYjcQ9j2vQj9cGajiq1mBHOGQzohahs50KKHro_qsjEaBHvEiCE3dsuW7ojw4ejo9REyInClI36ke4Ojq8HE9YvHaBaT-TK8YbXjplPBSwlSl0JU2ZSi1cIpQ2QiktbMZV7qRoqJCWJ8Z41FZqx6tGi1ymn2DQzlv7GVAWUjm_y623zozQVZopUeTet8Zo1-gd4P1k1zpqktPVGLO6J5_d1uSgmhxUBwftwPdHm0VQ5Hi2d977sH6yrmofMp6x-_JCu2_wenJ5cV6fn0zPduENPQnk3j0YrO7W9quHMKtmPy7RB7fG8p4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+unsupervised+domain+adaptation+framework+based+on+graph+convolutional+network+and+multi-level+feature+alignment+for+inter-subject+ECG+classification&rft.jtitle=Expert+systems+with+applications&rft.au=He%2C+Ziyang&rft.au=Chen%2C+Yufei&rft.au=Yuan%2C+Shuaiying&rft.au=Zhao%2C+Jianhui&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=221&rft_id=info:doi/10.1016%2Fj.eswa.2023.119711&rft.externalDocID=S0957417423002129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon