Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems

This study proposes improved tunicate swarm algorithm (ITSA) for solving and optimizing the dynamic economic emission dispatch (DEED) problem. The DEED optimization target is to reduce the fuel cost and pollutant emission of the power system. In addition, DEED is a complex optimization problem and c...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 108; p. 107504
Main Authors Li, Ling-Ling, Liu, Zhi-Feng, Tseng, Ming-Lang, Zheng, Sheng-Jie, Lim, Ming K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes improved tunicate swarm algorithm (ITSA) for solving and optimizing the dynamic economic emission dispatch (DEED) problem. The DEED optimization target is to reduce the fuel cost and pollutant emission of the power system. In addition, DEED is a complex optimization problem and contains multiple optimization goals. To strengthen the ability of the ITSA algorithm for solving DEED, the tent mapping is employed to generate initial population for improving the directionality in the optimization process. Meanwhile, the gray wolf optimizer is used to generate the global search vector for improving global exploration ability, and the Levy flight is introduced to expand the search range. Three test systems containing 5, 10 and 15 generator units are employed to verify the solving performance of ITSA. The test results show that the ITSA algorithm can provide a competitive scheduling plan for test systems containing different units. ITSA proposed algorithm gives the optimal economic and environmental dynamic dispatch scheme for achieving more precise dispatch strategy. [Display omitted] •This study proposes ITSA to solve the dynamic economic emission dispatch problem in power system.•The Tent mapping is used to generate initial population for improving the ITSA directionality in the optimization process.•The gray wolf optimizer is used to generate the global search vector for improving global ITSA optimization ability.•The Levy flight is introduced to expand the ITSA search range.•The results show that the ITSA has better optimization ability and stability.
AbstractList This study proposes improved tunicate swarm algorithm (ITSA) for solving and optimizing the dynamic economic emission dispatch (DEED) problem. The DEED optimization target is to reduce the fuel cost and pollutant emission of the power system. In addition, DEED is a complex optimization problem and contains multiple optimization goals. To strengthen the ability of the ITSA algorithm for solving DEED, the tent mapping is employed to generate initial population for improving the directionality in the optimization process. Meanwhile, the gray wolf optimizer is used to generate the global search vector for improving global exploration ability, and the Levy flight is introduced to expand the search range. Three test systems containing 5, 10 and 15 generator units are employed to verify the solving performance of ITSA. The test results show that the ITSA algorithm can provide a competitive scheduling plan for test systems containing different units. ITSA proposed algorithm gives the optimal economic and environmental dynamic dispatch scheme for achieving more precise dispatch strategy. [Display omitted] •This study proposes ITSA to solve the dynamic economic emission dispatch problem in power system.•The Tent mapping is used to generate initial population for improving the ITSA directionality in the optimization process.•The gray wolf optimizer is used to generate the global search vector for improving global ITSA optimization ability.•The Levy flight is introduced to expand the ITSA search range.•The results show that the ITSA has better optimization ability and stability.
ArticleNumber 107504
Author Lim, Ming K.
Liu, Zhi-Feng
Zheng, Sheng-Jie
Tseng, Ming-Lang
Li, Ling-Ling
Author_xml – sequence: 1
  givenname: Ling-Ling
  surname: Li
  fullname: Li, Ling-Ling
  email: lilinglinglaoshi@126.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 2
  givenname: Zhi-Feng
  surname: Liu
  fullname: Liu, Zhi-Feng
  email: tjliuzhifeng@126.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 3
  givenname: Ming-Lang
  surname: Tseng
  fullname: Tseng, Ming-Lang
  email: tsengminglang@asia.edu.tw, tsengminglang@gmail.com
  organization: Institute of Innovation and Circular Economy, Asia University, Taiwan
– sequence: 4
  givenname: Sheng-Jie
  surname: Zheng
  fullname: Zheng, Sheng-Jie
  email: hebutzsj@gmail.com
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
– sequence: 5
  givenname: Ming K.
  surname: Lim
  fullname: Lim, Ming K.
  email: ac2912@coventry.ac.uk
  organization: Faculty Research Centre for Business in Society, Coventry University, United Kingdom
BookMark eNp9kMtKAzEUhoMo2FZfwFVeYGou05mMuJHipVBwoW7chExypk2ZSUoSK317U-vKRVfn53C-H843RufOO0DohpIpJbS63UxV9HrKCKN5Uc9IeYZGVNSsaCpBz3OeVaIom7K6ROMYNyRDDRMj9LkYtsHvwOD05axWCXD8VmHAql_5YNN6uMNvvt9Zt8JpDdjsnRqsxqC9879hsDFa77CxcauSXuPc1_YwxCt00ak-wvXfnKCPp8f3-UuxfH1ezB-WheaEpIKqipUtmbVKm7pjinRlN-MNcMMUY4ILYLyjQEzLTa2qkuia5DNRa2q40Q2fIHbs1cHHGKCT22AHFfaSEnmwIzfyYEce7MijnQyJf5C2SaX8SArK9qfR-yMK-amdhSCjtuA0GBtAJ2m8PYX_AE1HhJI
CitedBy_id crossref_primary_10_1016_j_knosys_2023_111109
crossref_primary_10_3390_pr11061827
crossref_primary_10_1007_s00500_022_07297_0
crossref_primary_10_1007_s00500_022_07794_2
crossref_primary_10_1016_j_autcon_2022_104576
crossref_primary_10_1155_2021_6638436
crossref_primary_10_32604_cmc_2022_023004
crossref_primary_10_1016_j_enconman_2022_115541
crossref_primary_10_1080_01430750_2023_2237018
crossref_primary_10_1016_j_renene_2023_119379
crossref_primary_10_3389_fenrg_2023_1273760
crossref_primary_10_3390_electronics12153341
crossref_primary_10_3390_s23010366
crossref_primary_10_1016_j_aej_2022_05_018
crossref_primary_10_1016_j_renene_2023_01_010
crossref_primary_10_1016_j_est_2022_105073
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_1016_j_jclepro_2022_132709
crossref_primary_10_1007_s00500_022_07688_3
crossref_primary_10_1080_01430750_2024_2333915
crossref_primary_10_3390_su14159785
crossref_primary_10_1016_j_energy_2022_125428
crossref_primary_10_3934_mbe_2022303
crossref_primary_10_1016_j_advengsoft_2022_103387
crossref_primary_10_3389_fenrg_2023_1229695
crossref_primary_10_12944_CWE_19_2_26
crossref_primary_10_1016_j_est_2022_106135
crossref_primary_10_1016_j_egyr_2023_10_033
crossref_primary_10_3390_en17236023
crossref_primary_10_1007_s12652_022_03883_0
crossref_primary_10_1016_j_tust_2022_104979
crossref_primary_10_1007_s00500_021_06620_5
crossref_primary_10_3390_su142113942
crossref_primary_10_1016_j_aej_2023_04_052
crossref_primary_10_1080_15567036_2023_2207498
crossref_primary_10_3390_app12168203
crossref_primary_10_3390_sym14040791
crossref_primary_10_1016_j_heliyon_2023_e23012
crossref_primary_10_1007_s12597_024_00828_3
crossref_primary_10_3934_mbe_2023699
crossref_primary_10_1007_s11063_023_11188_2
crossref_primary_10_1016_j_energy_2022_124876
crossref_primary_10_1016_j_heliyon_2024_e30757
crossref_primary_10_1109_ACCESS_2024_3359587
crossref_primary_10_1016_j_applthermaleng_2023_120386
crossref_primary_10_1016_j_est_2023_107411
crossref_primary_10_3390_en15228417
crossref_primary_10_1016_j_apenergy_2022_119033
crossref_primary_10_1016_j_energy_2021_122715
crossref_primary_10_1016_j_eswa_2023_121540
crossref_primary_10_1016_j_est_2023_107658
crossref_primary_10_1016_j_est_2022_106512
crossref_primary_10_1016_j_est_2022_106478
crossref_primary_10_1016_j_epsr_2024_110925
crossref_primary_10_1016_j_energy_2023_129784
crossref_primary_10_3390_en15197366
crossref_primary_10_1016_j_eswa_2022_117492
crossref_primary_10_1016_j_cie_2022_108717
crossref_primary_10_1016_j_eswa_2022_117411
crossref_primary_10_1002_ese3_1203
crossref_primary_10_1016_j_eswa_2021_116445
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1016_j_asoc_2024_111845
crossref_primary_10_1016_j_jclepro_2022_133945
crossref_primary_10_32604_cmc_2024_049717
crossref_primary_10_1016_j_est_2022_105831
crossref_primary_10_1016_j_eswa_2023_120150
crossref_primary_10_1016_j_engappai_2022_104930
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_3390_su14169944
crossref_primary_10_3390_su14095554
crossref_primary_10_1109_ACCESS_2021_3102277
crossref_primary_10_32604_cmc_2023_038300
crossref_primary_10_1007_s13198_024_02609_z
crossref_primary_10_1371_journal_pone_0261709
crossref_primary_10_3233_AIC_220093
crossref_primary_10_1016_j_eswa_2023_121487
crossref_primary_10_3390_app12136749
crossref_primary_10_3390_info14060339
crossref_primary_10_1109_ACCESS_2022_3164734
crossref_primary_10_1016_j_cie_2022_108935
crossref_primary_10_3390_en15176404
crossref_primary_10_1016_j_asoc_2024_112121
crossref_primary_10_1016_j_eswa_2022_117512
crossref_primary_10_3233_JIFS_212735
crossref_primary_10_1080_08839514_2021_2014187
crossref_primary_10_1080_15325008_2024_2343397
crossref_primary_10_1016_j_energy_2023_128668
crossref_primary_10_1016_j_jclepro_2022_132758
crossref_primary_10_1016_j_eswa_2022_116944
crossref_primary_10_3390_su14138097
crossref_primary_10_1016_j_cie_2025_110969
crossref_primary_10_4018_IJSIR_308292
crossref_primary_10_1016_j_eswa_2022_117183
crossref_primary_10_1016_j_asoc_2023_111087
crossref_primary_10_1016_j_est_2024_112546
crossref_primary_10_1016_j_apenergy_2024_124853
crossref_primary_10_1016_j_egyr_2023_04_196
crossref_primary_10_1016_j_apenergy_2021_118245
crossref_primary_10_3390_agriculture12081185
crossref_primary_10_3389_fenrg_2021_757385
Cites_doi 10.3233/IFS-141126
10.1049/iet-gtd.2018.5364
10.1016/j.asoc.2017.06.041
10.1049/iet-gtd.2018.0369
10.1002/2050-7038.12026
10.1142/S0219876218500895
10.1016/j.epsr.2008.01.012
10.4249/scholarpedia.1486
10.1108/IMDS-04-2017-0145
10.1007/s00521-016-2481-7
10.1002/etep.2530
10.1016/j.asoc.2019.106044
10.1002/ese3.827
10.1287/mnsc.45.5.748
10.1016/j.ijepes.2007.06.009
10.1007/s00521-018-3399-z
10.1016/j.epsr.2006.11.012
10.1016/j.asoc.2020.107061
10.1109/JAS.2017.7510454
10.1007/s40998-018-0158-1
10.1016/j.neucom.2017.03.086
10.1016/j.ijepes.2018.03.019
10.1016/j.ijepes.2018.02.021
10.1049/iet-gtd.2017.0257
10.5370/JEET.2008.3.4.476
10.1016/j.energy.2019.07.131
10.1016/0167-8191(90)90086-O
10.1371/journal.pone.0185454
10.3390/en14051222
10.1080/15325000490195871
10.1016/j.engappai.2019.05.005
10.1504/IJHST.2021.117554
10.1016/j.engappai.2020.103541
10.9790/1676-110502141148
10.1109/ACCESS.2020.2995213
10.1080/15325000500241225
10.1002/etep.2683
10.5755/j01.eie.23.5.19267
10.1007/s00500-020-04861-4
10.1016/j.eswa.2021.114607
10.1016/j.ijepes.2015.11.121
10.1007/s00521-019-04151-7
10.1016/j.asej.2016.03.001
10.1109/59.336133
10.1080/15325000600596759
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107504
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107504
S1568494621004270
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1a624b05bacd7f2a0f4f539e3d2a22838e23f1e0db3d7a640c70f2a87c1d3dc93
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:10 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Fri Feb 23 02:43:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power system
Improved tunicate swarm algorithm
Soft-computing
Fuel cost
Dynamic economic emission dispatch
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1a624b05bacd7f2a0f4f539e3d2a22838e23f1e0db3d7a640c70f2a87c1d3dc93
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107504
crossref_citationtrail_10_1016_j_asoc_2021_107504
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Sang, Pan, Duan, Gao (b4) 2017; 6
Shen, Zou, Duan, Zhang (b10) 2019; 186
Edwin Selva Rex, Beno, Annrose (b2) 2019; 28
Dey, Roy, Bhattacharyya (b21) 2018; 22
Basu (b40) 2007; 8
Wang, Singh (b13) 2007; 77
Jevtic, Jovanovic, Radosavljevic, Klimenta (b20) 2017; 23
Li, Chang, Tseng, Liu, Lim (b44) 2020; 270
Sen, Mathur (b36) 2016; 78
Wang, Singh (b17) 2008; 78
Liang, Liu, Li, Shen (b5) 2018; 101
Li, Zou, Kong (b34) 2019; 84
Bai, Wu, Xia (b51) 2021; 9
Basu (b29) 2004; 32
Mason, Duggan, Howley (b46) 2018; 100
Mahdi, Vasant, Abdullah-Al-Wadud, Kallimani, Watada (b6) 2018; 31
Zhang, Lin, Mao, Liu, Dou, Liu (b42) 2021; 101
Karthik, Parvathy, Arul (b12) 2019; 29
Mason, Duggan, Howley (b49) 2017; 270
Muthusamy, Ravindran, Yaacob, Polat (b41) 2021; 172
Dorigo, Oca, Engelbrecht (b26) 2008; 3
Basu (b30) 2006; 34
Hardiansyah, Junaidi, Yandri (b16) 2016; 11
Gupta, Swarnkar, Wadhwani, Wadhwani (b15) 2012; 49
Mousavi, Akhondali, Naseri, Eslamian, Saadati (b25) 2021
Gherbi, Lakdja, Bouzeboudja, Gherbi (b38) 2019; 31
Chinnadurrai, Victoire (b47) 2020; 8
Muralidharan, Srikrishna, Subramanian (b24) 2006; 34
Maity, Banerjee, Chanda (b7) 2018; 43
Baziar, Rostami, Akbari-Zadeh (b14) 2014; 27
Alrefaei, Andradóttir (b28) 1999; 45
Liu, Zhu, Jiang (b50) 2018; 12
Qian, Wu, Xu (b35) 2020
Silva Chavez, Zamora-Mendez, Arrieta Paternina, Yrena Heredia, Cardenas-Javier (b39) 2019; 177
Kheshti, Kang, Li, Regulski, Terzija (b8) 2017; 12
Li, Yang, Tseng, Wang, Wu, Lim (b3) 2018; 118
Basu (b48) 2008; 30
Momoh, Guo, Ogbuobiri, Adapa (b23) 1994; 9
Daryani, Zare (b32) 2016; 9
Kenan Dosoglu, Guvenc, Duman, Sonmez, Tolga Kahraman (b19) 2016; 29
Elsheakh, Zou, Ma, Zhang (b22) 2018; 12
Rajagopalan, Kasinathan, Nagarajan, Ramachandaramurthy, Sengoden, Alavandar (b9) 2019; 29
Tudose, Picioroaga, Sidea, Bulac (b43) 2021; 14
Alomoush, Oweis (b1) 2018; 28
Kaur, Awasthi, Sangal, Dhiman (b18) 2020; 90
Naderi, Azizivahed, Narimani, Fathi, Narimani (b37) 2017; 61
Jayabarathi, Ramesh, Kothari, Pavan, Thumbi (b11) 2008; 3
Zhang, Lei, Wang, Yue, Xie (b45) 2017; 12
Vijay (b33) 2018; 15
Whitley, Starkweather, Bogart (b27) 1990; 14
Hagh, Kalajahi, Ghorbani (b31) 2020; 88
Momoh (10.1016/j.asoc.2021.107504_b23) 1994; 9
Sen (10.1016/j.asoc.2021.107504_b36) 2016; 78
Dorigo (10.1016/j.asoc.2021.107504_b26) 2008; 3
Muthusamy (10.1016/j.asoc.2021.107504_b41) 2021; 172
Gupta (10.1016/j.asoc.2021.107504_b15) 2012; 49
Chinnadurrai (10.1016/j.asoc.2021.107504_b47) 2020; 8
Basu (10.1016/j.asoc.2021.107504_b48) 2008; 30
Li (10.1016/j.asoc.2021.107504_b44) 2020; 270
Qian (10.1016/j.asoc.2021.107504_b35) 2020
Liu (10.1016/j.asoc.2021.107504_b50) 2018; 12
Maity (10.1016/j.asoc.2021.107504_b7) 2018; 43
Mahdi (10.1016/j.asoc.2021.107504_b6) 2018; 31
Elsheakh (10.1016/j.asoc.2021.107504_b22) 2018; 12
Shen (10.1016/j.asoc.2021.107504_b10) 2019; 186
Dey (10.1016/j.asoc.2021.107504_b21) 2018; 22
Edwin Selva Rex (10.1016/j.asoc.2021.107504_b2) 2019; 28
Liang (10.1016/j.asoc.2021.107504_b5) 2018; 101
Li (10.1016/j.asoc.2021.107504_b4) 2017; 6
Kenan Dosoglu (10.1016/j.asoc.2021.107504_b19) 2016; 29
Alrefaei (10.1016/j.asoc.2021.107504_b28) 1999; 45
Kheshti (10.1016/j.asoc.2021.107504_b8) 2017; 12
Jayabarathi (10.1016/j.asoc.2021.107504_b11) 2008; 3
Daryani (10.1016/j.asoc.2021.107504_b32) 2016; 9
Rajagopalan (10.1016/j.asoc.2021.107504_b9) 2019; 29
Karthik (10.1016/j.asoc.2021.107504_b12) 2019; 29
Basu (10.1016/j.asoc.2021.107504_b29) 2004; 32
Kaur (10.1016/j.asoc.2021.107504_b18) 2020; 90
Zhang (10.1016/j.asoc.2021.107504_b45) 2017; 12
Wang (10.1016/j.asoc.2021.107504_b13) 2007; 77
Baziar (10.1016/j.asoc.2021.107504_b14) 2014; 27
Tudose (10.1016/j.asoc.2021.107504_b43) 2021; 14
Wang (10.1016/j.asoc.2021.107504_b17) 2008; 78
Bai (10.1016/j.asoc.2021.107504_b51) 2021; 9
Jevtic (10.1016/j.asoc.2021.107504_b20) 2017; 23
Mousavi (10.1016/j.asoc.2021.107504_b25) 2021
Hardiansyah (10.1016/j.asoc.2021.107504_b16) 2016; 11
Li (10.1016/j.asoc.2021.107504_b3) 2018; 118
Basu (10.1016/j.asoc.2021.107504_b40) 2007; 8
Muralidharan (10.1016/j.asoc.2021.107504_b24) 2006; 34
Zhang (10.1016/j.asoc.2021.107504_b42) 2021; 101
Alomoush (10.1016/j.asoc.2021.107504_b1) 2018; 28
Whitley (10.1016/j.asoc.2021.107504_b27) 1990; 14
Li (10.1016/j.asoc.2021.107504_b34) 2019; 84
Vijay (10.1016/j.asoc.2021.107504_b33) 2018; 15
Basu (10.1016/j.asoc.2021.107504_b30) 2006; 34
Silva Chavez (10.1016/j.asoc.2021.107504_b39) 2019; 177
Mason (10.1016/j.asoc.2021.107504_b49) 2017; 270
Naderi (10.1016/j.asoc.2021.107504_b37) 2017; 61
Mason (10.1016/j.asoc.2021.107504_b46) 2018; 100
Gherbi (10.1016/j.asoc.2021.107504_b38) 2019; 31
Hagh (10.1016/j.asoc.2021.107504_b31) 2020; 88
References_xml – volume: 15
  year: 2018
  ident: b33
  article-title: Quorum sensing driven Bacterial Swarm Optimization to Solve Practical Dynamic Power Ecological Emission Economic dispatch
  publication-title: Int. J. Comput. Methods
– volume: 84
  start-page: 18
  year: 2019
  end-page: 40
  ident: b34
  article-title: A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss
  publication-title: Eng. Appl. Artif. Intell.
– volume: 101
  start-page: 103
  year: 2018
  end-page: 115
  ident: b5
  article-title: A multiobjective hybrid bat algorithm for combined economic/emission dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 22
  start-page: 55
  year: 2018
  end-page: 66
  ident: b21
  article-title: Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms
  publication-title: Eng. Sci. Technol. Int. J.
– year: 2021
  ident: b25
  article-title: Evaluation of whale and Particle Swarm Optimization Algorithms in Optimal Allocation of water resources of irrigation network to maximize net benefit case study: Salman Farsi
  publication-title: Int. J. Hydrol. Sci. Technol.
– volume: 27
  start-page: 1601
  year: 2014
  end-page: 1607
  ident: b14
  article-title: An intelligent approach based on bat algorithm for solving economic dispatch with practical constraints
  publication-title: J. Intell. Fuzzy Systems
– volume: 177
  year: 2019
  ident: b39
  article-title: A hybrid optimization framework for the non-convex economic dispatch problem via meta-heuristic algorithms
  publication-title: Electr. Power Syst. Res.
– volume: 31
  start-page: 8547
  year: 2019
  end-page: 8559
  ident: b38
  article-title: Hybridization of two metaheuristics for solving the combined economic and emission dispatch problem
  publication-title: Neural Comput. Appl.
– volume: 12
  start-page: 25
  year: 2017
  ident: b45
  article-title: Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty
  publication-title: Plos One
– volume: 6
  start-page: 1240
  year: 2017
  end-page: 1250
  ident: b4
  article-title: Solving multi-area environmental economic dispatch by Pareto-based chemical-reaction optimization algorithm
  publication-title: IEEE/CAA J. Automat. Sinica
– volume: 49
  start-page: 1
  year: 2012
  end-page: 6
  ident: b15
  article-title: Combined economic emission dispatch problem of thermal generating units using particle swarm optimization
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 141
  year: 2016
  end-page: 148
  ident: b16
  article-title: Combined economic Emission Dispatch Solution using Simulated Annealing Algorithm
  publication-title: IOSR J. Electr. Electron. Eng.
– volume: 8
  start-page: 94678
  year: 2020
  end-page: 94696
  ident: b47
  article-title: Dynamic economic emission dispatch considering wind uncertainty using non-Dominated Sorting Crisscross Optimization
  publication-title: IEEE Access
– volume: 270
  start-page: 188
  year: 2017
  end-page: 197
  ident: b49
  article-title: Multi-objective dynamic economic emission dispatch using particle swarm optimization variants
  publication-title: Neurocomputing
– volume: 43
  start-page: 77
  year: 2018
  end-page: 90
  ident: b7
  article-title: Bare bones teaching learning-based Optimization Technique for Economic Emission Load Dispatch Problem Considering Transmission losses
  publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng.
– volume: 34
  start-page: 343
  year: 2006
  end-page: 353
  ident: b24
  article-title: Emission Constrained Economic Dispatch—A new recursive approach
  publication-title: Electr. Power Compon. Syst.
– volume: 32
  start-page: 163
  year: 2004
  end-page: 173
  ident: b29
  article-title: An interactive fuzzy satisfying-based simulated annealing technique for economic emission load dispatch with non-smooth fuel cost and emission level functions
  publication-title: Electr. Power Compon. Syst.
– volume: 34
  start-page: 1015
  year: 2006
  end-page: 1025
  ident: b30
  article-title: Particle Swarm Optimization based Goal-attainment method for Dynamic Economic Emission Dispatch
  publication-title: Electr. Power Compon. Syst.
– volume: 29
  year: 2019
  ident: b12
  article-title: Multi-objective economic emission dispatch using interior search algorithm
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 100
  start-page: 201
  year: 2018
  end-page: 221
  ident: b46
  article-title: A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 172
  year: 2021
  ident: b41
  article-title: An improved elephant herding optimization using sine-cosine mechanism and opposition based learning for global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 316
  year: 2021
  end-page: 329
  ident: b51
  article-title: An enhanced multi-objective differential evolution algorithm for dynamic environmental economic dispatch of power system with wind power
  publication-title: Energy Sci. Eng.
– volume: 28
  year: 2018
  ident: b1
  article-title: Environmental-economic dispatch using stochastic fractal search algorithm
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 14
  start-page: 1222
  year: 2021
  ident: b43
  article-title: Solving single- and multi-objective optimal reactive power dispatch problems using an Improved Salp Swarm Algorithm
  publication-title: Energies
– volume: 8
  year: 2007
  ident: b40
  article-title: Dynamic economic Emission Dispatch using Evolutionary Programming and Fuzzy Satisfying Method
  publication-title: Int. J. Emerging Electr. Power Syst.
– volume: 29
  start-page: 721
  year: 2016
  end-page: 737
  ident: b19
  article-title: Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems
  publication-title: Neural Comput. Appl.
– volume: 61
  start-page: 1186
  year: 2017
  end-page: 1206
  ident: b37
  article-title: A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm
  publication-title: Appl. Soft Comput.
– volume: 78
  start-page: 1466
  year: 2008
  end-page: 1476
  ident: b17
  article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
– year: 2020
  ident: b35
  article-title: An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch
  publication-title: Soft Comput.
– volume: 3
  start-page: 1486
  year: 2008
  ident: b26
  article-title: Particle swarm optimization
  publication-title: Scholarpedia
– volume: 12
  start-page: 104
  year: 2017
  end-page: 116
  ident: b8
  article-title: Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints
  publication-title: IET Gener. Transm. Distrib.
– volume: 3
  start-page: 476
  year: 2008
  end-page: 483
  ident: b11
  article-title: Hybrid differential evolution technique for economic dispatch problems
  publication-title: J. Electr. Eng. Technol.
– volume: 12
  start-page: 3844
  year: 2018
  end-page: 3851
  ident: b22
  article-title: Decentralised gradient projection method for economic dispatch problem with valve point effect
  publication-title: IET Gener. Transm. Distrib.
– volume: 77
  start-page: 1654
  year: 2007
  end-page: 1664
  ident: b13
  article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 88
  year: 2020
  ident: b31
  article-title: Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method
  publication-title: Appl. Soft Comput.
– volume: 118
  start-page: 806
  year: 2018
  end-page: 827
  ident: b3
  article-title: A novel method to solve sustainable economic power loading dispatch problem
  publication-title: Ind. Manage. Data Syst.
– volume: 9
  start-page: 319
  year: 2016
  end-page: 328
  ident: b32
  article-title: Multiobjective power and emission dispatch using modified group search optimization method
  publication-title: Ain Shams Eng. J.
– volume: 14
  start-page: 347
  year: 1990
  end-page: 361
  ident: b27
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
– volume: 12
  start-page: 3972
  year: 2018
  end-page: 3984
  ident: b50
  article-title: Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis
  publication-title: Iet Gener. Transm. Distrib.
– volume: 28
  year: 2019
  ident: b2
  article-title: Optimal Power Flow-based Combined Economic and Emission Dispatch problems using hybrid PSGWO Algorithm
  publication-title: J. Circuits Syst. Comput.
– volume: 45
  start-page: 748
  year: 1999
  end-page: 764
  ident: b28
  article-title: A simulated annealing algorithm with constant temperature for discrete stochastic optimization
  publication-title: Manage. Sci.
– volume: 78
  start-page: 735
  year: 2016
  end-page: 744
  ident: b36
  article-title: A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 270
  year: 2020
  ident: b44
  article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm
  publication-title: J. Cleaner Prod.
– volume: 101
  year: 2021
  ident: b42
  article-title: Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization
  publication-title: Appl. Soft Comput.
– volume: 186
  year: 2019
  ident: b10
  article-title: An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch
  publication-title: Energy
– volume: 31
  start-page: 5857
  year: 2018
  end-page: 5869
  ident: b6
  article-title: Quantum-behaved bat algorithm for many-objective combined economic emission dispatch problem using cubic criterion function
  publication-title: Neural Comput. Appl.
– volume: 30
  start-page: 140
  year: 2008
  end-page: 149
  ident: b48
  article-title: Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 23
  start-page: 21
  year: 2017
  end-page: 28
  ident: b20
  article-title: Moth Swarm Algorithm for solving Combined Economic and emission Dispatch Problem
  publication-title: Elektron. Elektrotech.
– volume: 29
  year: 2019
  ident: b9
  article-title: Chaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraints
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 9
  start-page: 1327
  year: 1994
  end-page: 1336
  ident: b23
  article-title: The quadratic interior point method solving power system optimization problems
  publication-title: IEEE Trans. Power Syst.
– volume: 90
  year: 2020
  ident: b18
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 27
  start-page: 1601
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2021.107504_b14
  article-title: An intelligent approach based on bat algorithm for solving economic dispatch with practical constraints
  publication-title: J. Intell. Fuzzy Systems
  doi: 10.3233/IFS-141126
– volume: 12
  start-page: 3972
  issue: 17
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b50
  article-title: Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis
  publication-title: Iet Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5364
– volume: 61
  start-page: 1186
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b37
  article-title: A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.041
– volume: 12
  start-page: 3844
  issue: 16
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b22
  article-title: Decentralised gradient projection method for economic dispatch problem with valve point effect
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.0369
– volume: 29
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b9
  article-title: Chaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraints
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12026
– volume: 22
  start-page: 55
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b21
  article-title: Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 15
  issue: 03
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b33
  article-title: Quorum sensing driven Bacterial Swarm Optimization to Solve Practical Dynamic Power Ecological Emission Economic dispatch
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876218500895
– volume: 78
  start-page: 1466
  issue: 8
  year: 2008
  ident: 10.1016/j.asoc.2021.107504_b17
  article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.01.012
– volume: 3
  start-page: 1486
  issue: 8
  year: 2008
  ident: 10.1016/j.asoc.2021.107504_b26
  article-title: Particle swarm optimization
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1486
– volume: 118
  start-page: 806
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b3
  article-title: A novel method to solve sustainable economic power loading dispatch problem
  publication-title: Ind. Manage. Data Syst.
  doi: 10.1108/IMDS-04-2017-0145
– volume: 29
  start-page: 721
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2021.107504_b19
  article-title: Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2481-7
– volume: 28
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b1
  article-title: Environmental-economic dispatch using stochastic fractal search algorithm
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2530
– volume: 88
  year: 2020
  ident: 10.1016/j.asoc.2021.107504_b31
  article-title: Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106044
– volume: 9
  start-page: 316
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2021.107504_b51
  article-title: An enhanced multi-objective differential evolution algorithm for dynamic environmental economic dispatch of power system with wind power
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.827
– volume: 45
  start-page: 748
  issue: 5
  year: 1999
  ident: 10.1016/j.asoc.2021.107504_b28
  article-title: A simulated annealing algorithm with constant temperature for discrete stochastic optimization
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.45.5.748
– volume: 30
  start-page: 140
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2021.107504_b48
  article-title: Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2007.06.009
– volume: 28
  issue: 09
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b2
  article-title: Optimal Power Flow-based Combined Economic and Emission Dispatch problems using hybrid PSGWO Algorithm
  publication-title: J. Circuits Syst. Comput.
– volume: 31
  start-page: 5857
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b6
  article-title: Quantum-behaved bat algorithm for many-objective combined economic emission dispatch problem using cubic criterion function
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3399-z
– volume: 8
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2021.107504_b40
  article-title: Dynamic economic Emission Dispatch using Evolutionary Programming and Fuzzy Satisfying Method
  publication-title: Int. J. Emerging Electr. Power Syst.
– volume: 77
  start-page: 1654
  issue: 12
  year: 2007
  ident: 10.1016/j.asoc.2021.107504_b13
  article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2006.11.012
– volume: 101
  year: 2021
  ident: 10.1016/j.asoc.2021.107504_b42
  article-title: Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107061
– volume: 6
  start-page: 1240
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b4
  article-title: Solving multi-area environmental economic dispatch by Pareto-based chemical-reaction optimization algorithm
  publication-title: IEEE/CAA J. Automat. Sinica
  doi: 10.1109/JAS.2017.7510454
– volume: 43
  start-page: 77
  issue: S1
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b7
  article-title: Bare bones teaching learning-based Optimization Technique for Economic Emission Load Dispatch Problem Considering Transmission losses
  publication-title: Iran. J. Sci. Technol. Trans. Electr. Eng.
  doi: 10.1007/s40998-018-0158-1
– volume: 270
  start-page: 188
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b49
  article-title: Multi-objective dynamic economic emission dispatch using particle swarm optimization variants
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.086
– volume: 177
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b39
  article-title: A hybrid optimization framework for the non-convex economic dispatch problem via meta-heuristic algorithms
  publication-title: Electr. Power Syst. Res.
– volume: 101
  start-page: 103
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b5
  article-title: A multiobjective hybrid bat algorithm for combined economic/emission dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.03.019
– volume: 100
  start-page: 201
  year: 2018
  ident: 10.1016/j.asoc.2021.107504_b46
  article-title: A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.02.021
– volume: 12
  start-page: 104
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b8
  article-title: Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2017.0257
– volume: 49
  start-page: 1
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2021.107504_b15
  article-title: Combined economic emission dispatch problem of thermal generating units using particle swarm optimization
  publication-title: Int. J. Comput. Appl.
– volume: 3
  start-page: 476
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2021.107504_b11
  article-title: Hybrid differential evolution technique for economic dispatch problems
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2008.3.4.476
– volume: 186
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b10
  article-title: An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.131
– volume: 14
  start-page: 347
  issue: 3
  year: 1990
  ident: 10.1016/j.asoc.2021.107504_b27
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(90)90086-O
– volume: 12
  start-page: 25
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b45
  article-title: Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty
  publication-title: Plos One
  doi: 10.1371/journal.pone.0185454
– volume: 14
  start-page: 1222
  issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2021.107504_b43
  article-title: Solving single- and multi-objective optimal reactive power dispatch problems using an Improved Salp Swarm Algorithm
  publication-title: Energies
  doi: 10.3390/en14051222
– volume: 32
  start-page: 163
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2021.107504_b29
  article-title: An interactive fuzzy satisfying-based simulated annealing technique for economic emission load dispatch with non-smooth fuel cost and emission level functions
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000490195871
– volume: 84
  start-page: 18
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b34
  article-title: A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.05.005
– year: 2021
  ident: 10.1016/j.asoc.2021.107504_b25
  article-title: Evaluation of whale and Particle Swarm Optimization Algorithms in Optimal Allocation of water resources of irrigation network to maximize net benefit case study: Salman Farsi
  publication-title: Int. J. Hydrol. Sci. Technol.
  doi: 10.1504/IJHST.2021.117554
– volume: 90
  year: 2020
  ident: 10.1016/j.asoc.2021.107504_b18
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 11
  start-page: 141
  issue: 05
  year: 2016
  ident: 10.1016/j.asoc.2021.107504_b16
  article-title: Combined economic Emission Dispatch Solution using Simulated Annealing Algorithm
  publication-title: IOSR J. Electr. Electron. Eng.
  doi: 10.9790/1676-110502141148
– volume: 8
  start-page: 94678
  year: 2020
  ident: 10.1016/j.asoc.2021.107504_b47
  article-title: Dynamic economic emission dispatch considering wind uncertainty using non-Dominated Sorting Crisscross Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995213
– volume: 34
  start-page: 343
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2021.107504_b24
  article-title: Emission Constrained Economic Dispatch—A new recursive approach
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000500241225
– volume: 270
  issue: 12
  year: 2020
  ident: 10.1016/j.asoc.2021.107504_b44
  article-title: Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm
  publication-title: J. Cleaner Prod.
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b12
  article-title: Multi-objective economic emission dispatch using interior search algorithm
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2683
– volume: 23
  start-page: 21
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2021.107504_b20
  article-title: Moth Swarm Algorithm for solving Combined Economic and emission Dispatch Problem
  publication-title: Elektron. Elektrotech.
  doi: 10.5755/j01.eie.23.5.19267
– year: 2020
  ident: 10.1016/j.asoc.2021.107504_b35
  article-title: An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04861-4
– volume: 172
  year: 2021
  ident: 10.1016/j.asoc.2021.107504_b41
  article-title: An improved elephant herding optimization using sine-cosine mechanism and opposition based learning for global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114607
– volume: 78
  start-page: 735
  year: 2016
  ident: 10.1016/j.asoc.2021.107504_b36
  article-title: A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.121
– volume: 31
  start-page: 8547
  issue: 12
  year: 2019
  ident: 10.1016/j.asoc.2021.107504_b38
  article-title: Hybridization of two metaheuristics for solving the combined economic and emission dispatch problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04151-7
– volume: 9
  start-page: 319
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2021.107504_b32
  article-title: Multiobjective power and emission dispatch using modified group search optimization method
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.03.001
– volume: 9
  start-page: 1327
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2021.107504_b23
  article-title: The quadratic interior point method solving power system optimization problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.336133
– volume: 34
  start-page: 1015
  issue: 9
  year: 2006
  ident: 10.1016/j.asoc.2021.107504_b30
  article-title: Particle Swarm Optimization based Goal-attainment method for Dynamic Economic Emission Dispatch
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000600596759
SSID ssj0016928
Score 2.6067772
Snippet This study proposes improved tunicate swarm algorithm (ITSA) for solving and optimizing the dynamic economic emission dispatch (DEED) problem. The DEED...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107504
SubjectTerms Dynamic economic emission dispatch
Fuel cost
Improved tunicate swarm algorithm
Power system
Soft-computing
Title Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems
URI https://dx.doi.org/10.1016/j.asoc.2021.107504
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN1m422U3irRRLfRWxFoqXJa9qpS_aijd_u0mTLQrSg6fdDTOwTCaTmWFmPgDOlVKSUsEiKjiJrP-PIokojji1Aa60HghSLlB8aGetLrntpb0SaBS9MK6sMth-b9OX1jqs1II0a9PBoNaxkQcjnGQJWgJGuLidEOq0_PJrVeaBMr7EV3XEkaMOjTO-xktYCdgYMUF2wc05__ty-nHhNHfAVvAUYd3_zC4omfEe2C5QGGA4lPvgxecFjIYL3-lh4PxTzEZQDF8nNvR_G13BzmToEgfQentQewx6aEJLMnSIby5nBvXAmhe7izCgzMwPQLd5_dxoRQExIVI4jhcREllCZJxKoTTtJyLuk36KucE6EW7ODTMJ7iMTa4k1FRmJFY0tGaMKaawVx4egPJ6MzRGAWBjONWJCG0aElEwyzmTM7BvR1g-sAFSIKldhnLhDtRjmRd3Ye-7Emzvx5l68FXCx4pn6YRprqdNiB_JfKpFba7-G7_iffCdg0335ArJTUF7MPsyZ9TgWsrpUqSrYqDee7h_d8-au1f4G6dbXyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zPHLzJ0s0mu0m8SVGqrb20gnhZ8qpWaiu64t930mRFQTx4W7IzsEyyk_mSmfkQOjHGaM6VSLiSLIH4nySacJpIDgBXQwRCjAeKN4Oie8uu7_K7BurUtTA-rTL6_uDTF946jrSjNdsvk0l7CMhDMMmKjCwIIwC3L_nuVHkTLZ1f9bqDr8uEQi4oVr184hVi7UxI81JgBICJGYEB3-r89_3p255zuY5WY7CIz8P3bKCGm22itZqIAcf_cgvdh6MBZ3EVij0cfvtQr89YTR_mgP4fn8_wcD71ZwcYAj5sAw09drEqGXvSN39shu0EPAxMJI5EM2_b6PbyYtTpJpE0ITE0TauEqCJjOs21MpaPM5WO2Tin0lGbKd_qRriMjolLraaWq4KlhqcgJrghlloj6Q5qzuYzt4swVU5KS4SyTjCltdBCCp0KeGIWQsEWIrWpShM7intii2lZp449ld68pTdvGczbQqdfOi-hn8af0nk9A-WPVVGCw_9Db--fesdouTu66Zf9q0FvH634NyGf7AA1q9d3dwgBSKWP4gL7BJRl2OU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+tunicate+swarm+algorithm%3A+Solving+the+dynamic+economic+emission+dispatch+problems&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Ling-Ling&rft.au=Liu%2C+Zhi-Feng&rft.au=Tseng%2C+Ming-Lang&rft.au=Zheng%2C+Sheng-Jie&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=108&rft_id=info:doi/10.1016%2Fj.asoc.2021.107504&rft.externalDocID=S1568494621004270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon