EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this pa...
Saved in:
Published in | Applied soft computing Vol. 100; p. 106954 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this paper, we propose a novel emotion recognition method based on a novel deep learning model (ERDL). Firstly, EEG data is calibrated by 3s baseline data and divided into segments with 6s time window, and then differential entropy is extracted from each segment to construct feature cube. Secondly, the feature cube of each segment serves as input of the novel deep learning model which fuses graph convolutional neural network (GCNN) and long-short term memories neural networks (LSTM). In the fusion model, multiple GCNNs are applied to extract graph domain features while LSTM cells are used to memorize the change of the relationship between two channels within a specific time and extract temporal features, and Dense layer is used to attain the emotion classification results. At last, we conducted extensive experiments on DEAP dataset and experimental results demonstrate that the proposed method has better classification results than the state-of-the-art methods. We attained the average classification accuracy of 90.45% and 90.60% for valence and arousal in subject-dependent experiments while 84.81% and 85.27% in subject-independent experiments.
•A fusion model of LSTM and GCNN for emotion classification is proposed.•Parallel GCNNs are constructed to extract graph domain features from each feature cube.•LSTM is utilized to memorize the relationship changes among EEG channels. |
---|---|
AbstractList | In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this paper, we propose a novel emotion recognition method based on a novel deep learning model (ERDL). Firstly, EEG data is calibrated by 3s baseline data and divided into segments with 6s time window, and then differential entropy is extracted from each segment to construct feature cube. Secondly, the feature cube of each segment serves as input of the novel deep learning model which fuses graph convolutional neural network (GCNN) and long-short term memories neural networks (LSTM). In the fusion model, multiple GCNNs are applied to extract graph domain features while LSTM cells are used to memorize the change of the relationship between two channels within a specific time and extract temporal features, and Dense layer is used to attain the emotion classification results. At last, we conducted extensive experiments on DEAP dataset and experimental results demonstrate that the proposed method has better classification results than the state-of-the-art methods. We attained the average classification accuracy of 90.45% and 90.60% for valence and arousal in subject-dependent experiments while 84.81% and 85.27% in subject-independent experiments.
•A fusion model of LSTM and GCNN for emotion classification is proposed.•Parallel GCNNs are constructed to extract graph domain features from each feature cube.•LSTM is utilized to memorize the relationship changes among EEG channels. |
ArticleNumber | 106954 |
Author | Yin, Yongqiang Zheng, Xiangwei Cui, Xinchun Hu, Bin Zhang, Yuang |
Author_xml | – sequence: 1 givenname: Yongqiang surname: Yin fullname: Yin, Yongqiang organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 2 givenname: Xiangwei surname: Zheng fullname: Zheng, Xiangwei email: xwzhengcn@163.com organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 3 givenname: Bin surname: Hu fullname: Hu, Bin organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 4 givenname: Yuang surname: Zhang fullname: Zhang, Yuang organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 5 givenname: Xinchun surname: Cui fullname: Cui, Xinchun organization: School of Computer Science, Qufu Normal University, Rizhao, China |
BookMark | eNp9kMFOAyEQhompiW31BTzxAluBZVlIvJimVpMaD9aLF0KBrdQtNLCt8e1lW08eeuEfZvhI5huBgQ_eAnCL0QQjzO42E5WCnhBE-gYTFb0AQ8xrUgjG8SDXFeMFFZRdgVFKG5QhQfgQfMxmc2i3oXPBw2h1WHt3rPfJ-TVscuTLNhjbwtDAdVS7T6iDP4R2379TLfR2H4_RfYf4laDyBi7eli_X4LJRbbI3fzkG74-z5fSpWLzOn6cPi0KXCHUFVriphSCWGmXygVFlFBHUclJZs2q4UGU_5yXFFa1rvFqRlWGMIa41qWk5BuT0r44hpWgbuYtuq-KPxEj2duRG9nZkb0ee7GSI_4O061S_UReVa8-j9yfU5qUOzkaZtLNeW-OywE6a4M7hv8Bigw4 |
CitedBy_id | crossref_primary_10_1002_int_22551 crossref_primary_10_1007_s12652_023_04746_y crossref_primary_10_1145_3617503 crossref_primary_10_1088_1741_2552_acb79e crossref_primary_10_3390_brainsci13050759 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_26599_IJCS_2024_9100022 crossref_primary_10_1109_LSP_2024_3353679 crossref_primary_10_1109_TNSRE_2022_3192533 crossref_primary_10_1016_j_bspc_2022_103612 crossref_primary_10_1155_2022_4064512 crossref_primary_10_1109_JSEN_2024_3380749 crossref_primary_10_3233_JIFS_221825 crossref_primary_10_1007_s11633_022_1352_1 crossref_primary_10_1109_TIM_2024_3400341 crossref_primary_10_3390_s21155092 crossref_primary_10_1007_s11042_022_13711_4 crossref_primary_10_34133_cbsystems_0074 crossref_primary_10_1016_j_rineng_2023_101027 crossref_primary_10_1109_TIM_2023_3307756 crossref_primary_10_1016_j_bspc_2023_105075 crossref_primary_10_3390_brainsci12080987 crossref_primary_10_1109_ACCESS_2023_3268233 crossref_primary_10_1109_ACCESS_2023_3270317 crossref_primary_10_1145_3503043 crossref_primary_10_1080_03772063_2024_2414834 crossref_primary_10_1109_ACCESS_2023_3275565 crossref_primary_10_1002_int_23096 crossref_primary_10_1016_j_aei_2024_102522 crossref_primary_10_1109_JSEN_2023_3265688 crossref_primary_10_1016_j_compbiomed_2022_106344 crossref_primary_10_1088_1361_6579_ad9661 crossref_primary_10_1088_1741_2552_ac63ec crossref_primary_10_1142_S0129065724500412 crossref_primary_10_1049_rsn2_12297 crossref_primary_10_3390_e23080984 crossref_primary_10_1007_s11571_023_09968_6 crossref_primary_10_1016_j_bspc_2023_105863 crossref_primary_10_1109_JBHI_2023_3318419 crossref_primary_10_1016_j_bspc_2023_105744 crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_3389_fnbot_2022_1067729 crossref_primary_10_1109_ACCESS_2024_3387357 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1016_j_neucom_2022_09_078 crossref_primary_10_1093_database_baad045 crossref_primary_10_4018_IJSSCI_312557 crossref_primary_10_1007_s10489_022_04228_2 crossref_primary_10_1007_s42979_024_03173_w crossref_primary_10_1016_j_neucom_2023_126262 crossref_primary_10_1109_LSP_2023_3263433 crossref_primary_10_3390_app14062487 crossref_primary_10_1007_s42600_024_00351_w crossref_primary_10_3390_computers11100152 crossref_primary_10_1109_TNSRE_2023_3321634 crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_26599_BDMA_2023_9020018 crossref_primary_10_1016_j_compbiomed_2022_106002 crossref_primary_10_1016_j_asoc_2023_110104 crossref_primary_10_3390_bioengineering11080782 crossref_primary_10_3390_app12199525 crossref_primary_10_1109_JSEN_2021_3121293 crossref_primary_10_1016_j_eswa_2024_123777 crossref_primary_10_3233_MGS_220333 crossref_primary_10_1016_j_bspc_2024_106812 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_1080_10255842_2023_2252551 crossref_primary_10_1109_ACCESS_2024_3384303 crossref_primary_10_1016_j_asoc_2022_109534 crossref_primary_10_3389_fnins_2022_872311 crossref_primary_10_1016_j_bspc_2024_107473 crossref_primary_10_1016_j_bspc_2023_105312 crossref_primary_10_3389_fncom_2022_942979 crossref_primary_10_3390_electronics12143188 crossref_primary_10_1371_journal_pone_0274203 crossref_primary_10_1002_jsid_1343 crossref_primary_10_1088_1361_6579_acd675 crossref_primary_10_1109_JBHI_2024_3395622 crossref_primary_10_3390_s22082976 crossref_primary_10_1007_s11571_024_10077_1 crossref_primary_10_1007_s00521_024_09573_6 crossref_primary_10_1007_s00500_021_06578_4 crossref_primary_10_1109_ACCESS_2021_3091487 crossref_primary_10_3390_s21248370 crossref_primary_10_3390_electronics13132530 crossref_primary_10_1371_journal_pone_0264537 crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1038_s41598_024_62990_4 crossref_primary_10_1007_s11277_024_11188_y crossref_primary_10_1016_j_bspc_2023_105422 crossref_primary_10_1007_s00500_022_06804_7 crossref_primary_10_7717_peerj_cs_1977 crossref_primary_10_1007_s11042_024_19775_8 crossref_primary_10_1109_ACCESS_2024_3417525 crossref_primary_10_1016_j_knosys_2023_111011 crossref_primary_10_1016_j_compbiomed_2024_109463 crossref_primary_10_1109_TIM_2022_3204314 crossref_primary_10_54287_gujsa_1128006 crossref_primary_10_1109_TAFFC_2021_3130387 crossref_primary_10_1016_j_neucom_2023_126726 crossref_primary_10_1007_s00521_024_10248_5 crossref_primary_10_1109_JSEN_2024_3369062 crossref_primary_10_1016_j_bspc_2025_107632 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_1016_j_bspc_2023_104799 crossref_primary_10_1109_TAFFC_2022_3189222 crossref_primary_10_1155_2022_3749413 crossref_primary_10_1016_j_jksuci_2024_102245 crossref_primary_10_1002_int_22855 crossref_primary_10_3390_diagnostics12102508 crossref_primary_10_3389_fnins_2023_1275065 crossref_primary_10_1007_s12559_024_10358_1 crossref_primary_10_3390_math13020254 crossref_primary_10_3389_fpsyg_2023_1289816 crossref_primary_10_1088_2057_1976_ad31f9 crossref_primary_10_1007_s11571_024_10162_5 crossref_primary_10_1007_s40747_024_01682_y crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_33851_JMIS_2024_11_1_109 crossref_primary_10_1631_FITEE_2300781 crossref_primary_10_3389_fnetp_2022_890906 crossref_primary_10_3389_fnins_2023_1330077 crossref_primary_10_4103_jmss_jmss_59_22 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_1109_TCSS_2022_3188891 crossref_primary_10_21541_apjess_1106001 crossref_primary_10_1088_2057_1976_acb942 crossref_primary_10_1109_JSEN_2022_3144689 crossref_primary_10_1016_j_bspc_2021_103290 crossref_primary_10_3390_bioengineering9060231 crossref_primary_10_1016_j_bspc_2024_106986 crossref_primary_10_1016_j_compbiomed_2021_104867 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_1109_TCSS_2024_3386621 crossref_primary_10_3390_app14020534 crossref_primary_10_1007_s13369_023_07920_8 crossref_primary_10_1016_j_asoc_2022_108471 crossref_primary_10_1109_ACCESS_2021_3111898 crossref_primary_10_1016_j_asoc_2024_111635 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_artmed_2021_102210 crossref_primary_10_3390_electronics11203316 crossref_primary_10_1007_s12652_022_04495_4 crossref_primary_10_3389_fpsyg_2024_1387089 crossref_primary_10_1016_j_bspc_2024_106276 crossref_primary_10_1007_s11571_023_10034_4 crossref_primary_10_1007_s11042_023_14354_9 crossref_primary_10_3390_brainsci12121649 crossref_primary_10_1145_3524499 crossref_primary_10_1007_s11042_023_17142_7 crossref_primary_10_1007_s00521_024_09809_5 crossref_primary_10_1142_S0129065724500242 crossref_primary_10_1016_j_bspc_2023_104806 crossref_primary_10_3390_info13110550 crossref_primary_10_1109_TIM_2025_3544334 crossref_primary_10_1063_5_0221637 crossref_primary_10_1109_ACCESS_2023_3245830 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_3389_fcomp_2021_786964 crossref_primary_10_1109_JSEN_2024_3358400 crossref_primary_10_1109_TCDS_2023_3293321 crossref_primary_10_1109_LSP_2022_3179946 crossref_primary_10_3390_s23010225 crossref_primary_10_1109_ACCESS_2023_3270177 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1007_s13369_022_06617_8 crossref_primary_10_1088_1741_2552_ac6294 crossref_primary_10_1109_JBHI_2023_3242090 crossref_primary_10_1016_j_jksuci_2023_03_014 crossref_primary_10_1109_ACCESS_2023_3266117 crossref_primary_10_1109_MIS_2024_3363895 crossref_primary_10_1155_2023_9281230 crossref_primary_10_1080_20479700_2022_2141694 crossref_primary_10_1155_2024_6091523 crossref_primary_10_1109_JBHI_2021_3100297 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1109_TIM_2021_3121473 crossref_primary_10_3390_s21051870 crossref_primary_10_1016_j_jad_2024_06_042 crossref_primary_10_1080_08839514_2025_2450568 crossref_primary_10_1016_j_compbiomed_2022_106431 crossref_primary_10_1109_ACCESS_2023_3266804 crossref_primary_10_1016_j_ins_2024_121098 crossref_primary_10_1145_3712259 crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_1051_itmconf_20224702044 crossref_primary_10_1016_j_measen_2023_100716 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_3390_electronics12132900 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1007_s11571_023_10004_w crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_asoc_2023_111181 crossref_primary_10_3389_fpsyg_2022_781448 crossref_primary_10_3390_app14020726 crossref_primary_10_3390_app13031954 crossref_primary_10_1016_j_bspc_2022_103788 crossref_primary_10_3233_JIFS_232465 crossref_primary_10_1016_j_bspc_2022_103544 crossref_primary_10_3390_robotics12040099 crossref_primary_10_1109_ACCESS_2024_3444494 crossref_primary_10_1016_j_aej_2024_10_059 crossref_primary_10_3389_fnhum_2023_1174104 crossref_primary_10_1016_j_heliyon_2024_e30174 crossref_primary_10_1016_j_ins_2024_120577 crossref_primary_10_3390_s23031255 crossref_primary_10_1109_JBHI_2024_3415163 crossref_primary_10_3390_diagnostics13050977 crossref_primary_10_1016_j_inffus_2025_102971 crossref_primary_10_1007_s10489_022_04366_7 crossref_primary_10_1109_ACCESS_2022_3224725 crossref_primary_10_1088_1741_2552_ad3c28 crossref_primary_10_1016_j_neuropsychologia_2024_109002 crossref_primary_10_1016_j_ins_2022_07_121 crossref_primary_10_1016_j_jvcir_2025_104415 crossref_primary_10_1016_j_bspc_2023_105942 crossref_primary_10_1016_j_bspc_2024_106877 crossref_primary_10_1016_j_bspc_2023_104851 crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_1016_j_bspc_2021_102743 crossref_primary_10_1007_s11063_022_11120_0 crossref_primary_10_1016_j_ins_2024_121198 crossref_primary_10_1186_s13634_024_01146_y crossref_primary_10_3390_s22186813 crossref_primary_10_3390_s22218467 crossref_primary_10_1016_j_eswa_2023_120122 crossref_primary_10_1016_j_asoc_2022_108740 crossref_primary_10_1016_j_bspc_2025_107594 crossref_primary_10_1109_JSEN_2024_3440340 crossref_primary_10_1109_TMI_2024_3467384 crossref_primary_10_1016_j_measurement_2022_112379 crossref_primary_10_3390_e26070540 crossref_primary_10_1109_ACCESS_2023_3344476 crossref_primary_10_1109_JSEN_2024_3400006 crossref_primary_10_1007_s11760_022_02373_2 crossref_primary_10_1016_j_measurement_2022_111724 crossref_primary_10_1016_j_knosys_2022_109038 crossref_primary_10_1007_s13534_023_00316_5 crossref_primary_10_1016_j_bspc_2021_103029 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1016_j_knosys_2024_112599 crossref_primary_10_32604_cmc_2024_048813 crossref_primary_10_1109_TNSRE_2023_3246989 crossref_primary_10_1088_1361_6579_ad4953 |
Cites_doi | 10.1016/j.biopsycho.2004.03.008 10.1109/TNN.2008.2005605 10.3389/fnbot.2019.00037 10.1007/s40708-016-0051-5 10.1016/j.asoc.2020.106426 10.1016/j.asoc.2015.01.007 10.1145/1961189.1961199 10.1162/neco_a_01199 10.1109/21.97458 10.1023/A:1010933404324 10.1109/ACCESS.2019.2908285 10.1007/s12559-017-9533-x 10.1109/JSTSP.2017.2726981 10.1109/LSENS.2020.2995060 10.1109/TAFFC.2017.2660485 10.1109/TAFFC.2017.2768030 10.1016/0013-4694(70)90143-4 10.1109/TAFFC.2020.2982143 10.1049/iet-ipr.2018.6224 10.1007/s10044-016-0567-6 10.1109/TITB.2009.2034649 10.1103/RevModPhys.65.413 10.1016/j.neucom.2020.01.067 10.1109/TSP.2018.2879624 10.18280/ts.360502 10.1109/TAFFC.2017.2714671 10.1007/BF02471106 10.1109/TIP.2018.2855422 10.1109/TNNLS.2016.2582924 10.1109/TITB.2010.2041553 10.1023/B:NEAB.0000038139.39812.eb 10.1109/TCBB.2019.2936351 10.1109/T-AFFC.2011.15 10.1109/TBME.2010.2048568 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106954 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106954 S1568494620308929 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-1a1f7992e4dade4d105da294e825edbf89a37992834154771bb2bd66608cc2743 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Long-short term memory neural network Graph convolutional neural network EEG Differential entropy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-1a1f7992e4dade4d105da294e825edbf89a37992834154771bb2bd66608cc2743 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106954 crossref_citationtrail_10_1016_j_asoc_2020_106954 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Zhang, Xu, Chen, Xing, Chen (b3) 2018 Levie, Monti, Bresson, Bronstein (b29) 2019; 67 Lan, Mullerputz, Wang, Liu, Sourina, Scherer (b52) 2016 Chang, Lin (b55) 2011; 2 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b26) 2009; 20 Zhu, Lin, Leung, Leung, Theodoidis (b28) 2020; 4 Davidson (b15) 2004; 67 Hjorth (b12) 1970; 29 Xing, Li, Xu, Shu, Hu, Xu (b39) 2019; 13 Petrantonakis, Hadjileontiadis (b14) 2010; 14 Wilaiprasitporn, Ditthapron, Matchaparn, Tongbuasirilai, Banluesombatkul, Chuangsuwanich (b6) 2020 Alhagry, Fahmy, Elkhoribi (b35) 2017; 8 Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b23) 2010; 57 Breiman (b57) 2001; 45 Zheng, Zhu, Peng, Lu (b19) 2014 Li, Lu (b16) 2009 Nie, Wang, Shi, Lu (b17) 2011 Yu, Rong, Liu, Zhou, Ouyang, Xiong (b34) 2019 Defferrard, Bresson, Vandergheynst (b25) 2016; 29 Shi, Zheng, Li (b21) 2018 Sbargoud, Djeha, Guiatni, Ababou (b24) 2019; 36 Chen, Hu, Moore, Zhang, Ma (b38) 2015; 30 Liu, Yu, Zhao, Song, Ge, Shi (b46) 2018; 9 Aftanas, Reva, Varlamov, Pavlov, Makhnev (b10) 2004; 34 Musha, Terasaki, Haque, Ivamitsky (b9) 1997; 1 Such, Sah, Dominguez, Pillai, Zhang, Michael, Cahill, Ptucha (b27) 2017; 11 Zhang, Chen, Hu, Cao, Kozma (b44) 2016 Wang, Huang, Mccane, Neo (b40) 2018 Chen, Zhang, Mao, Huang, Jiang, Zhang (b50) 2019; 7 Shi, Jiao, Lu (b18) 2013 Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (b32) 2017; 28 Fu, Liu, Li, Zhou (b54) 2019; 13 Alarcao, Fonseca (b1) 2019; 10 Yang, Zhou, Ai, Bin, Hanjalic, Shen, Ji (b33) 2018; 27 Thammasan, Moriyama, Fukui, Numao (b43) 2017; 4 Liu, Sourina (b13) 2013 Hamalainen, Hari, Ilmoniemi, Knuutila, Lounasmaa (b2) 1993; 65 Candra, Yuwono, Chai, Handojoseno, Elamvazuthi, Nguyen, Su (b51) 2015 Frantzidis, Bratsas, Papadelis, Konstantinidis, Pappas, Bamidis (b22) 2010; 14 Thammasan, Fukui, Numao (b7) 2016 Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b4) 2017 Zhou, Kong, Fowlkes, Chen, Lei (b47) 2020; 392 Diego, Giulia, Enrico (b30) 2019 Fourati, Ammar, Sanchezmedina, Alimi (b48) 2020 Song, Zheng, Song, Cui (b8) 2019 Liu, Zheng, Lu (b41) 2016 Lin, Liu, Yang, Du (b20) 2015 Mert, Akan (b42) 2018; 21 Li, Song, Zhang, Yu, Hou, Hu (b5) 2016 Kim, Kim, Oh, Kim (b11) 2013; 2013 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b36) 2012; 3 He, Tan, Ying, Zhang (b45) 2020 Becker, Fleureau, Guillotel, Wendling, Merlet, Albera (b49) 2020; 11 Safavian, Landgrebe (b56) 1991; 21 Yu, Si, Hu, Zhang (b31) 2019; 31 Liu, Sourina (b37) 2014 Li, Zhang, He (b53) 2018; 10 Song (10.1016/j.asoc.2020.106954_b8) 2019 Frantzidis (10.1016/j.asoc.2020.106954_b22) 2010; 14 Candra (10.1016/j.asoc.2020.106954_b51) 2015 Tripathi (10.1016/j.asoc.2020.106954_b4) 2017 Shi (10.1016/j.asoc.2020.106954_b21) 2018 Shi (10.1016/j.asoc.2020.106954_b18) 2013 Wang (10.1016/j.asoc.2020.106954_b40) 2018 Alarcao (10.1016/j.asoc.2020.106954_b1) 2019; 10 Greff (10.1016/j.asoc.2020.106954_b32) 2017; 28 Zheng (10.1016/j.asoc.2020.106954_b19) 2014 Breiman (10.1016/j.asoc.2020.106954_b57) 2001; 45 He (10.1016/j.asoc.2020.106954_b45) 2020 Fu (10.1016/j.asoc.2020.106954_b54) 2019; 13 Li (10.1016/j.asoc.2020.106954_b16) 2009 Becker (10.1016/j.asoc.2020.106954_b49) 2020; 11 Nie (10.1016/j.asoc.2020.106954_b17) 2011 Chen (10.1016/j.asoc.2020.106954_b50) 2019; 7 Li (10.1016/j.asoc.2020.106954_b5) 2016 Liu (10.1016/j.asoc.2020.106954_b37) 2014 Hjorth (10.1016/j.asoc.2020.106954_b12) 1970; 29 Yang (10.1016/j.asoc.2020.106954_b33) 2018; 27 Scarselli (10.1016/j.asoc.2020.106954_b26) 2009; 20 Lan (10.1016/j.asoc.2020.106954_b52) 2016 Petrantonakis (10.1016/j.asoc.2020.106954_b14) 2010; 14 Xing (10.1016/j.asoc.2020.106954_b39) 2019; 13 Liu (10.1016/j.asoc.2020.106954_b46) 2018; 9 Li (10.1016/j.asoc.2020.106954_b53) 2018; 10 Sbargoud (10.1016/j.asoc.2020.106954_b24) 2019; 36 Diego (10.1016/j.asoc.2020.106954_b30) 2019 Musha (10.1016/j.asoc.2020.106954_b9) 1997; 1 Aftanas (10.1016/j.asoc.2020.106954_b10) 2004; 34 Liu (10.1016/j.asoc.2020.106954_b13) 2013 Chen (10.1016/j.asoc.2020.106954_b38) 2015; 30 Wilaiprasitporn (10.1016/j.asoc.2020.106954_b6) 2020 Davidson (10.1016/j.asoc.2020.106954_b15) 2004; 67 Yu (10.1016/j.asoc.2020.106954_b34) 2019 Koelstra (10.1016/j.asoc.2020.106954_b36) 2012; 3 Lin (10.1016/j.asoc.2020.106954_b23) 2010; 57 Zhou (10.1016/j.asoc.2020.106954_b47) 2020; 392 Zhang (10.1016/j.asoc.2020.106954_b44) 2016 Fourati (10.1016/j.asoc.2020.106954_b48) 2020 Safavian (10.1016/j.asoc.2020.106954_b56) 1991; 21 Mert (10.1016/j.asoc.2020.106954_b42) 2018; 21 Thammasan (10.1016/j.asoc.2020.106954_b7) 2016 Levie (10.1016/j.asoc.2020.106954_b29) 2019; 67 Lin (10.1016/j.asoc.2020.106954_b20) 2015 Zhu (10.1016/j.asoc.2020.106954_b28) 2020; 4 Chang (10.1016/j.asoc.2020.106954_b55) 2011; 2 Hamalainen (10.1016/j.asoc.2020.106954_b2) 1993; 65 Alhagry (10.1016/j.asoc.2020.106954_b35) 2017; 8 Yu (10.1016/j.asoc.2020.106954_b31) 2019; 31 Liu (10.1016/j.asoc.2020.106954_b41) 2016 Defferrard (10.1016/j.asoc.2020.106954_b25) 2016; 29 Wang (10.1016/j.asoc.2020.106954_b3) 2018 Thammasan (10.1016/j.asoc.2020.106954_b43) 2017; 4 Kim (10.1016/j.asoc.2020.106954_b11) 2013; 2013 Such (10.1016/j.asoc.2020.106954_b27) 2017; 11 |
References_xml | – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: b36 article-title: DEAP: A database for emotion analysis ;using physiological signals publication-title: IEEE Trans. Affect. Comput. – start-page: 101 year: 2013 end-page: 120 ident: b13 article-title: Real-time fractal-based valence level recognition from EEG publication-title: Transactions on Computational Science XVIII, Vol. 18 – start-page: 1 year: 2019 ident: b34 article-title: LSTM-based end-to-end framework for biomedical event extraction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: b26 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: b55 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 4 start-page: 39 year: 2017 end-page: 50 ident: b43 article-title: Familiarity effects in EEG-based emotion recognition publication-title: Brain Inform. – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: b32 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. – volume: 29 start-page: 306 year: 1970 end-page: 310 ident: b12 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 11 start-page: 884 year: 2017 end-page: 896 ident: b27 article-title: Robust spatial filtering with graph convolutional neural networks publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 14 start-page: 589 year: 2010 end-page: 597 ident: b22 article-title: Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 57 start-page: 1798 year: 2010 end-page: 1806 ident: b23 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2018 end-page: 7 ident: b40 article-title: Emotionet: A 3-D convolutional neural network for EEG-based emotion recognition publication-title: 2018 International Joint Conference on Neural Networks (IJCNN) – volume: 392 start-page: 38 year: 2020 end-page: 49 ident: b47 article-title: Fine-grained facial expression analysis using dimensional emotion model publication-title: Neurocomputing – volume: 21 start-page: 81 year: 2018 end-page: 89 ident: b42 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. – volume: 13 start-page: 37 year: 2019 ident: b39 article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. – start-page: 7250 year: 2015 end-page: 7253 ident: b51 article-title: Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b57 article-title: Random forests publication-title: Mach. Learn. – volume: 36 start-page: 383 year: 2019 end-page: 391 ident: b24 article-title: WPT-ANN and belief theory based EEG/EMG data fusion for movement identification publication-title: Trait. Signal – start-page: 2399 year: 2019 end-page: 2403 ident: b30 article-title: Image denoising with graph-convolutional neural networks publication-title: 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019 – start-page: 3166 year: 2014 end-page: 3171 ident: b37 article-title: EEG-based subject-dependent emotion recognition algorithm using fractal dimension publication-title: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 13 start-page: 2763 year: 2019 end-page: 2771 ident: b54 article-title: Two-order graph convolutional networks for semi-supervised classification publication-title: Iet Image Process. – start-page: 1 year: 2014 end-page: 6 ident: b19 article-title: EEG-based emotion classification using deep belief networks publication-title: 2014 IEEE International Conference on Multimedia and Expo (ICME) – volume: 27 start-page: 5600 year: 2018 end-page: 5611 ident: b33 article-title: Video captioning by adversarial LSTM publication-title: IEEE Trans. Image Process. – start-page: 521 year: 2016 end-page: 529 ident: b41 article-title: Emotion recognition using multimodal deep learning publication-title: Neural Information Processing – volume: 34 start-page: 859 year: 2004 end-page: 867 ident: b10 article-title: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics publication-title: Neurosci. Behav. Physiol. – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b31 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. – start-page: 1 year: 2020 ident: b6 article-title: Affective EEG-based person identification using the deep learning approach publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 67 start-page: 97 year: 2019 end-page: 109 ident: b29 article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters publication-title: IEEE Trans. Signal Process. – volume: 10 start-page: 374 year: 2019 end-page: 393 ident: b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. – volume: 67 start-page: 219 year: 2004 end-page: 234 ident: b15 article-title: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research publication-title: Biol. Psychol. – volume: 4 start-page: 1 year: 2020 end-page: 4 ident: b28 article-title: Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network publication-title: IEEE Sensors Lett. – year: 2020 ident: b45 article-title: Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm publication-title: Appl. Soft Comput. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: b2 article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Modern Phys. – start-page: 002319 year: 2016 end-page: 002323 ident: b44 article-title: PNN for EEG-based emotion recognition publication-title: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – start-page: 1221 year: 2018 end-page: 1226 ident: b21 article-title: Unconscious emotion recognition based on multi-scale sample entropy publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – start-page: 1 year: 2020 ident: b48 article-title: Unsupervised learning in reservoir computing for EEG-based emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 30 start-page: 663 year: 2015 end-page: 674 ident: b38 article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques publication-title: Appl. Soft Comput. – start-page: 1 year: 2019 ident: b8 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – start-page: 002558 year: 2016 end-page: 002563 ident: b52 article-title: Using support vector regression to estimate valence level from EEG publication-title: Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on – start-page: 1223 year: 2009 end-page: 1226 ident: b16 article-title: Emotion classification based on gamma-band EEG publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2009 – volume: 8 year: 2017 ident: b35 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 1240 year: 2018 end-page: 1244 ident: b3 article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 29 start-page: 3844 year: 2016 end-page: 3852 ident: b25 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 550 year: 2018 end-page: 562 ident: b46 article-title: Real-time movie-induced discrete emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. – start-page: 4746 year: 2017 end-page: 4752 ident: b4 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA – start-page: 352 year: 2016 end-page: 359 ident: b5 article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network publication-title: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – start-page: 395 year: 2015 end-page: 399 ident: b20 article-title: Neurophysiological markers of identifying regret by 64 channels EEG signal publication-title: 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) – start-page: 6627 year: 2013 end-page: 6630 ident: b18 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 2013 – volume: 2013 start-page: 573734 year: 2013 ident: b11 article-title: A review on the computational methods for emotional state estimation from the human EEG publication-title: Comput. Math. Methods Med. – volume: 1 start-page: 15 year: 1997 end-page: 19 ident: b9 article-title: Feature extraction from EEGs associated with emotions publication-title: Artif. Life Robot. – volume: 11 start-page: 244 year: 2020 end-page: 257 ident: b49 article-title: Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources publication-title: IEEE Trans. Affect. Comput. – start-page: 667 year: 2011 end-page: 670 ident: b17 article-title: EEG-based emotion recognition during watching movies publication-title: 2011 5th International IEEE/EMBS Conference on Neural Engineering – start-page: 881 year: 2016 end-page: 888 ident: b7 article-title: Application of deep belief networks in eeg-based dynamic music-emotion recognition publication-title: 2016 International Joint Conference on Neural Networks (IJCNN) – volume: 21 start-page: 660 year: 1991 end-page: 674 ident: b56 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man Cybern. – volume: 7 start-page: 44317 year: 2019 end-page: 44328 ident: b50 article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks publication-title: IEEE Access – volume: 10 start-page: 368 year: 2018 end-page: 380 ident: b53 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cogn. Comput. – volume: 14 start-page: 186 year: 2010 end-page: 197 ident: b14 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 67 start-page: 219 issue: 1 year: 2004 ident: 10.1016/j.asoc.2020.106954_b15 article-title: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2004.03.008 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.asoc.2020.106954_b26 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 13 start-page: 37 year: 2019 ident: 10.1016/j.asoc.2020.106954_b39 article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – volume: 4 start-page: 39 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106954_b43 article-title: Familiarity effects in EEG-based emotion recognition publication-title: Brain Inform. doi: 10.1007/s40708-016-0051-5 – start-page: 002558 year: 2016 ident: 10.1016/j.asoc.2020.106954_b52 article-title: Using support vector regression to estimate valence level from EEG – start-page: 6627 year: 2013 ident: 10.1016/j.asoc.2020.106954_b18 article-title: Differential entropy feature for EEG-based vigilance estimation – year: 2020 ident: 10.1016/j.asoc.2020.106954_b45 article-title: Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106426 – start-page: 7250 year: 2015 ident: 10.1016/j.asoc.2020.106954_b51 article-title: Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine – start-page: 2399 year: 2019 ident: 10.1016/j.asoc.2020.106954_b30 article-title: Image denoising with graph-convolutional neural networks – volume: 30 start-page: 663 year: 2015 ident: 10.1016/j.asoc.2020.106954_b38 article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.007 – start-page: 667 year: 2011 ident: 10.1016/j.asoc.2020.106954_b17 article-title: EEG-based emotion recognition during watching movies – volume: 2 start-page: 27:1 issue: 3 year: 2011 ident: 10.1016/j.asoc.2020.106954_b55 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106954_b8 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 31 start-page: 1235 issue: 7 year: 2019 ident: 10.1016/j.asoc.2020.106954_b31 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 21 start-page: 660 issue: 3 year: 1991 ident: 10.1016/j.asoc.2020.106954_b56 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.97458 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2020.106954_b57 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 7 start-page: 44317 year: 2019 ident: 10.1016/j.asoc.2020.106954_b50 article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908285 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106954_b40 article-title: Emotionet: A 3-D convolutional neural network for EEG-based emotion recognition – volume: 10 start-page: 368 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106954_b53 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9533-x – start-page: 1240 year: 2018 ident: 10.1016/j.asoc.2020.106954_b3 article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106954_b6 article-title: Affective EEG-based person identification using the deep learning approach publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 101 year: 2013 ident: 10.1016/j.asoc.2020.106954_b13 article-title: Real-time fractal-based valence level recognition from EEG – volume: 11 start-page: 884 issue: 6 year: 2017 ident: 10.1016/j.asoc.2020.106954_b27 article-title: Robust spatial filtering with graph convolutional neural networks publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2017.2726981 – volume: 4 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.asoc.2020.106954_b28 article-title: Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network publication-title: IEEE Sensors Lett. doi: 10.1109/LSENS.2020.2995060 – volume: 9 start-page: 550 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106954_b46 article-title: Real-time movie-induced discrete emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2660485 – start-page: 4746 year: 2017 ident: 10.1016/j.asoc.2020.106954_b4 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset – volume: 11 start-page: 244 issue: 2 year: 2020 ident: 10.1016/j.asoc.2020.106954_b49 article-title: Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2768030 – start-page: 881 year: 2016 ident: 10.1016/j.asoc.2020.106954_b7 article-title: Application of deep belief networks in eeg-based dynamic music-emotion recognition – start-page: 521 year: 2016 ident: 10.1016/j.asoc.2020.106954_b41 article-title: Emotion recognition using multimodal deep learning – volume: 29 start-page: 306 issue: 3 year: 1970 ident: 10.1016/j.asoc.2020.106954_b12 article-title: EEG analysis based on time domain properties publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – start-page: 002319 year: 2016 ident: 10.1016/j.asoc.2020.106954_b44 article-title: PNN for EEG-based emotion recognition – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106954_b48 article-title: Unsupervised learning in reservoir computing for EEG-based emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.2982143 – volume: 13 start-page: 2763 issue: 14 year: 2019 ident: 10.1016/j.asoc.2020.106954_b54 article-title: Two-order graph convolutional networks for semi-supervised classification publication-title: Iet Image Process. doi: 10.1049/iet-ipr.2018.6224 – volume: 21 start-page: 81 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106954_b42 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-016-0567-6 – volume: 14 start-page: 186 issue: 2 year: 2010 ident: 10.1016/j.asoc.2020.106954_b14 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2034649 – volume: 65 start-page: 413 issue: 2 year: 1993 ident: 10.1016/j.asoc.2020.106954_b2 article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.65.413 – volume: 29 start-page: 3844 issue: 2016 year: 2016 ident: 10.1016/j.asoc.2020.106954_b25 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – volume: 392 start-page: 38 year: 2020 ident: 10.1016/j.asoc.2020.106954_b47 article-title: Fine-grained facial expression analysis using dimensional emotion model publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.067 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2020.106954_b19 article-title: EEG-based emotion classification using deep belief networks – volume: 67 start-page: 97 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106954_b29 article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2879624 – volume: 36 start-page: 383 issue: 5 year: 2019 ident: 10.1016/j.asoc.2020.106954_b24 article-title: WPT-ANN and belief theory based EEG/EMG data fusion for movement identification publication-title: Trait. Signal doi: 10.18280/ts.360502 – volume: 10 start-page: 374 issue: 3 year: 2019 ident: 10.1016/j.asoc.2020.106954_b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2714671 – volume: 1 start-page: 15 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106954_b9 article-title: Feature extraction from EEGs associated with emotions publication-title: Artif. Life Robot. doi: 10.1007/BF02471106 – volume: 2013 start-page: 573734 issue: 2013 year: 2013 ident: 10.1016/j.asoc.2020.106954_b11 article-title: A review on the computational methods for emotional state estimation from the human EEG publication-title: Comput. Math. Methods Med. – start-page: 395 year: 2015 ident: 10.1016/j.asoc.2020.106954_b20 article-title: Neurophysiological markers of identifying regret by 64 channels EEG signal – start-page: 1221 year: 2018 ident: 10.1016/j.asoc.2020.106954_b21 article-title: Unconscious emotion recognition based on multi-scale sample entropy – start-page: 3166 year: 2014 ident: 10.1016/j.asoc.2020.106954_b37 article-title: EEG-based subject-dependent emotion recognition algorithm using fractal dimension – start-page: 352 year: 2016 ident: 10.1016/j.asoc.2020.106954_b5 article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network – volume: 27 start-page: 5600 issue: 11 year: 2018 ident: 10.1016/j.asoc.2020.106954_b33 article-title: Video captioning by adversarial LSTM publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2855422 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 10.1016/j.asoc.2020.106954_b32 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNNLS.2016.2582924 – volume: 14 start-page: 589 issue: 3 year: 2010 ident: 10.1016/j.asoc.2020.106954_b22 article-title: Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2041553 – volume: 34 start-page: 859 issue: 8 year: 2004 ident: 10.1016/j.asoc.2020.106954_b10 article-title: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics publication-title: Neurosci. Behav. Physiol. doi: 10.1023/B:NEAB.0000038139.39812.eb – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106954_b34 article-title: LSTM-based end-to-end framework for biomedical event extraction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2936351 – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106954_b36 article-title: DEAP: A database for emotion analysis ;using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 57 start-page: 1798 issue: 7 year: 2010 ident: 10.1016/j.asoc.2020.106954_b23 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – start-page: 1223 year: 2009 ident: 10.1016/j.asoc.2020.106954_b16 article-title: Emotion classification based on gamma-band EEG – volume: 8 issue: 10 year: 2017 ident: 10.1016/j.asoc.2020.106954_b35 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl. |
SSID | ssj0016928 |
Score | 2.6890934 |
Snippet | In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106954 |
SubjectTerms | Differential entropy EEG Emotion recognition Graph convolutional neural network Long-short term memory neural network |
Title | EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106954 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bcQP0oM3M9lH17VHQkBUIEYgIV6Wbm0NxgyicPVvt6_riCaGg5d16V6z5e3tfay_9x5C11wpXxJuwhIdEc-41JnHSc48mggaUKZ9mcGO7nBE-1PyMItnNdSpcmEAVul0f6nTrbZ2My3HzdZyPm-NTeTBCCc0hJIrxspDBjtJQMpvvzYwj4By218ViD2gdokzJcZLGA6YGDGECcpj8rdx-mFwegdoz3mKuF0-zCGqqeII7VddGLD7KI_RS7d7h1XZjQdv8EDmHCDtr1iv4X8Yth1v8EJjW6EaA9jcCZ25BxS1tIOFhH9iUUg8GE-GJ2ja6046fc91TPDyyPdXXiACnXAeKiKFNAfjPEkRcqJMHKhkphkXEVxnxnbFJEmCLAszaSIYn-W5iU-jU1QvFoU6QzhPIgAoayFhFzghTHJNfKlYRJmvOGmgoGJVmrty4tDV4j2tcGNvKbA3BfamJXsb6GazZlkW09hKHVdvIP0lEqnR9lvWnf9z3QXaDQGwYgFml6i--lirK-NxrLKmFakm2ml3ngdPMN4_9kffk2PVuA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGDhjXjjASYUmoeb2AMDgpZCWxZaqWIJSeygIhQqWoRY-FP8Qe4SpwIJdUBiSSInTpzL6R7x5_sADqXWtuIS05LU4xaG1LEleSIsP4h8xxeprWKa0e3c-M0ev-7X-hX4LNfCEKzS2P7CpufW2rRUjTSrw8GgeouZh-CS-y6VXEEvb5CVLf3-hnnb6PTqAj_ykes26t3zpmWoBazEs-2x5UROGkjpaq4ihRuMMlTkSq4xYdIqToWMPDov0MjXeBA4cezGCkN9WyQJJnIe3ncG5jiaC6JNOPmY4EocX-aErjQ6i4ZnVuoUoLIIRY5JqUsNvqzx373hNw_XWIZFE5qys-LtV6Cis1VYKmkfmLECa3BXr18yXdD_sAkACY8JQ__A0lf6Acdyih32nLK8JDYjdLvRcnwGVdHMdzkGfcSiTLH2bbezDr1_keMGzGbPmd4ElgQeIaLTSNG0c8CFkim3lRaeL2wt-RY4pajCxNQvJxqNp7AEqj2GJN6QxBsW4t2C40mfYVG9Y-rVtfILhD90MET3MqXf9h_7HcB8s9tph-2rm9YOLLiElsnRbbswO3551XsY7ozj_Vy9GNz_tz5_AZrgDuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+emotion+recognition+using+fusion+model+of+graph+convolutional+neural+networks+and+LSTM&rft.jtitle=Applied+soft+computing&rft.au=Yin%2C+Yongqiang&rft.au=Zheng%2C+Xiangwei&rft.au=Hu%2C+Bin&rft.au=Zhang%2C+Yuang&rft.date=2021-03-01&rft.issn=1568-4946&rft.volume=100&rft.spage=106954&rft_id=info:doi/10.1016%2Fj.asoc.2020.106954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |