EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM

In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this pa...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 100; p. 106954
Main Authors Yin, Yongqiang, Zheng, Xiangwei, Hu, Bin, Zhang, Yuang, Cui, Xinchun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this paper, we propose a novel emotion recognition method based on a novel deep learning model (ERDL). Firstly, EEG data is calibrated by 3s baseline data and divided into segments with 6s time window, and then differential entropy is extracted from each segment to construct feature cube. Secondly, the feature cube of each segment serves as input of the novel deep learning model which fuses graph convolutional neural network (GCNN) and long-short term memories neural networks (LSTM). In the fusion model, multiple GCNNs are applied to extract graph domain features while LSTM cells are used to memorize the change of the relationship between two channels within a specific time and extract temporal features, and Dense layer is used to attain the emotion classification results. At last, we conducted extensive experiments on DEAP dataset and experimental results demonstrate that the proposed method has better classification results than the state-of-the-art methods. We attained the average classification accuracy of 90.45% and 90.60% for valence and arousal in subject-dependent experiments while 84.81% and 85.27% in subject-independent experiments. •A fusion model of LSTM and GCNN for emotion classification is proposed.•Parallel GCNNs are constructed to extract graph domain features from each feature cube.•LSTM is utilized to memorize the relationship changes among EEG channels.
AbstractList In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this paper, we propose a novel emotion recognition method based on a novel deep learning model (ERDL). Firstly, EEG data is calibrated by 3s baseline data and divided into segments with 6s time window, and then differential entropy is extracted from each segment to construct feature cube. Secondly, the feature cube of each segment serves as input of the novel deep learning model which fuses graph convolutional neural network (GCNN) and long-short term memories neural networks (LSTM). In the fusion model, multiple GCNNs are applied to extract graph domain features while LSTM cells are used to memorize the change of the relationship between two channels within a specific time and extract temporal features, and Dense layer is used to attain the emotion classification results. At last, we conducted extensive experiments on DEAP dataset and experimental results demonstrate that the proposed method has better classification results than the state-of-the-art methods. We attained the average classification accuracy of 90.45% and 90.60% for valence and arousal in subject-dependent experiments while 84.81% and 85.27% in subject-independent experiments. •A fusion model of LSTM and GCNN for emotion classification is proposed.•Parallel GCNNs are constructed to extract graph domain features from each feature cube.•LSTM is utilized to memorize the relationship changes among EEG channels.
ArticleNumber 106954
Author Yin, Yongqiang
Zheng, Xiangwei
Cui, Xinchun
Hu, Bin
Zhang, Yuang
Author_xml – sequence: 1
  givenname: Yongqiang
  surname: Yin
  fullname: Yin, Yongqiang
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 2
  givenname: Xiangwei
  surname: Zheng
  fullname: Zheng, Xiangwei
  email: xwzhengcn@163.com
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 3
  givenname: Bin
  surname: Hu
  fullname: Hu, Bin
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 4
  givenname: Yuang
  surname: Zhang
  fullname: Zhang, Yuang
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 5
  givenname: Xinchun
  surname: Cui
  fullname: Cui, Xinchun
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
BookMark eNp9kMFOAyEQhompiW31BTzxAluBZVlIvJimVpMaD9aLF0KBrdQtNLCt8e1lW08eeuEfZvhI5huBgQ_eAnCL0QQjzO42E5WCnhBE-gYTFb0AQ8xrUgjG8SDXFeMFFZRdgVFKG5QhQfgQfMxmc2i3oXPBw2h1WHt3rPfJ-TVscuTLNhjbwtDAdVS7T6iDP4R2379TLfR2H4_RfYf4laDyBi7eli_X4LJRbbI3fzkG74-z5fSpWLzOn6cPi0KXCHUFVriphSCWGmXygVFlFBHUclJZs2q4UGU_5yXFFa1rvFqRlWGMIa41qWk5BuT0r44hpWgbuYtuq-KPxEj2duRG9nZkb0ee7GSI_4O061S_UReVa8-j9yfU5qUOzkaZtLNeW-OywE6a4M7hv8Bigw4
CitedBy_id crossref_primary_10_1002_int_22551
crossref_primary_10_1007_s12652_023_04746_y
crossref_primary_10_1145_3617503
crossref_primary_10_1088_1741_2552_acb79e
crossref_primary_10_3390_brainsci13050759
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_26599_IJCS_2024_9100022
crossref_primary_10_1109_LSP_2024_3353679
crossref_primary_10_1109_TNSRE_2022_3192533
crossref_primary_10_1016_j_bspc_2022_103612
crossref_primary_10_1155_2022_4064512
crossref_primary_10_1109_JSEN_2024_3380749
crossref_primary_10_3233_JIFS_221825
crossref_primary_10_1007_s11633_022_1352_1
crossref_primary_10_1109_TIM_2024_3400341
crossref_primary_10_3390_s21155092
crossref_primary_10_1007_s11042_022_13711_4
crossref_primary_10_34133_cbsystems_0074
crossref_primary_10_1016_j_rineng_2023_101027
crossref_primary_10_1109_TIM_2023_3307756
crossref_primary_10_1016_j_bspc_2023_105075
crossref_primary_10_3390_brainsci12080987
crossref_primary_10_1109_ACCESS_2023_3268233
crossref_primary_10_1109_ACCESS_2023_3270317
crossref_primary_10_1145_3503043
crossref_primary_10_1080_03772063_2024_2414834
crossref_primary_10_1109_ACCESS_2023_3275565
crossref_primary_10_1002_int_23096
crossref_primary_10_1016_j_aei_2024_102522
crossref_primary_10_1109_JSEN_2023_3265688
crossref_primary_10_1016_j_compbiomed_2022_106344
crossref_primary_10_1088_1361_6579_ad9661
crossref_primary_10_1088_1741_2552_ac63ec
crossref_primary_10_1142_S0129065724500412
crossref_primary_10_1049_rsn2_12297
crossref_primary_10_3390_e23080984
crossref_primary_10_1007_s11571_023_09968_6
crossref_primary_10_1016_j_bspc_2023_105863
crossref_primary_10_1109_JBHI_2023_3318419
crossref_primary_10_1016_j_bspc_2023_105744
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_3389_fnbot_2022_1067729
crossref_primary_10_1109_ACCESS_2024_3387357
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1016_j_neucom_2022_09_078
crossref_primary_10_1093_database_baad045
crossref_primary_10_4018_IJSSCI_312557
crossref_primary_10_1007_s10489_022_04228_2
crossref_primary_10_1007_s42979_024_03173_w
crossref_primary_10_1016_j_neucom_2023_126262
crossref_primary_10_1109_LSP_2023_3263433
crossref_primary_10_3390_app14062487
crossref_primary_10_1007_s42600_024_00351_w
crossref_primary_10_3390_computers11100152
crossref_primary_10_1109_TNSRE_2023_3321634
crossref_primary_10_1007_s10586_024_04994_3
crossref_primary_10_26599_BDMA_2023_9020018
crossref_primary_10_1016_j_compbiomed_2022_106002
crossref_primary_10_1016_j_asoc_2023_110104
crossref_primary_10_3390_bioengineering11080782
crossref_primary_10_3390_app12199525
crossref_primary_10_1109_JSEN_2021_3121293
crossref_primary_10_1016_j_eswa_2024_123777
crossref_primary_10_3233_MGS_220333
crossref_primary_10_1016_j_bspc_2024_106812
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_1080_10255842_2023_2252551
crossref_primary_10_1109_ACCESS_2024_3384303
crossref_primary_10_1016_j_asoc_2022_109534
crossref_primary_10_3389_fnins_2022_872311
crossref_primary_10_1016_j_bspc_2024_107473
crossref_primary_10_1016_j_bspc_2023_105312
crossref_primary_10_3389_fncom_2022_942979
crossref_primary_10_3390_electronics12143188
crossref_primary_10_1371_journal_pone_0274203
crossref_primary_10_1002_jsid_1343
crossref_primary_10_1088_1361_6579_acd675
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_3390_s22082976
crossref_primary_10_1007_s11571_024_10077_1
crossref_primary_10_1007_s00521_024_09573_6
crossref_primary_10_1007_s00500_021_06578_4
crossref_primary_10_1109_ACCESS_2021_3091487
crossref_primary_10_3390_s21248370
crossref_primary_10_3390_electronics13132530
crossref_primary_10_1371_journal_pone_0264537
crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1038_s41598_024_62990_4
crossref_primary_10_1007_s11277_024_11188_y
crossref_primary_10_1016_j_bspc_2023_105422
crossref_primary_10_1007_s00500_022_06804_7
crossref_primary_10_7717_peerj_cs_1977
crossref_primary_10_1007_s11042_024_19775_8
crossref_primary_10_1109_ACCESS_2024_3417525
crossref_primary_10_1016_j_knosys_2023_111011
crossref_primary_10_1016_j_compbiomed_2024_109463
crossref_primary_10_1109_TIM_2022_3204314
crossref_primary_10_54287_gujsa_1128006
crossref_primary_10_1109_TAFFC_2021_3130387
crossref_primary_10_1016_j_neucom_2023_126726
crossref_primary_10_1007_s00521_024_10248_5
crossref_primary_10_1109_JSEN_2024_3369062
crossref_primary_10_1016_j_bspc_2025_107632
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_1016_j_bspc_2023_104799
crossref_primary_10_1109_TAFFC_2022_3189222
crossref_primary_10_1155_2022_3749413
crossref_primary_10_1016_j_jksuci_2024_102245
crossref_primary_10_1002_int_22855
crossref_primary_10_3390_diagnostics12102508
crossref_primary_10_3389_fnins_2023_1275065
crossref_primary_10_1007_s12559_024_10358_1
crossref_primary_10_3390_math13020254
crossref_primary_10_3389_fpsyg_2023_1289816
crossref_primary_10_1088_2057_1976_ad31f9
crossref_primary_10_1007_s11571_024_10162_5
crossref_primary_10_1007_s40747_024_01682_y
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_33851_JMIS_2024_11_1_109
crossref_primary_10_1631_FITEE_2300781
crossref_primary_10_3389_fnetp_2022_890906
crossref_primary_10_3389_fnins_2023_1330077
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_1109_TNSRE_2021_3137340
crossref_primary_10_1109_TCSS_2022_3188891
crossref_primary_10_21541_apjess_1106001
crossref_primary_10_1088_2057_1976_acb942
crossref_primary_10_1109_JSEN_2022_3144689
crossref_primary_10_1016_j_bspc_2021_103290
crossref_primary_10_3390_bioengineering9060231
crossref_primary_10_1016_j_bspc_2024_106986
crossref_primary_10_1016_j_compbiomed_2021_104867
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_3390_app14020534
crossref_primary_10_1007_s13369_023_07920_8
crossref_primary_10_1016_j_asoc_2022_108471
crossref_primary_10_1109_ACCESS_2021_3111898
crossref_primary_10_1016_j_asoc_2024_111635
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_artmed_2021_102210
crossref_primary_10_3390_electronics11203316
crossref_primary_10_1007_s12652_022_04495_4
crossref_primary_10_3389_fpsyg_2024_1387089
crossref_primary_10_1016_j_bspc_2024_106276
crossref_primary_10_1007_s11571_023_10034_4
crossref_primary_10_1007_s11042_023_14354_9
crossref_primary_10_3390_brainsci12121649
crossref_primary_10_1145_3524499
crossref_primary_10_1007_s11042_023_17142_7
crossref_primary_10_1007_s00521_024_09809_5
crossref_primary_10_1142_S0129065724500242
crossref_primary_10_1016_j_bspc_2023_104806
crossref_primary_10_3390_info13110550
crossref_primary_10_1109_TIM_2025_3544334
crossref_primary_10_1063_5_0221637
crossref_primary_10_1109_ACCESS_2023_3245830
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_3389_fcomp_2021_786964
crossref_primary_10_1109_JSEN_2024_3358400
crossref_primary_10_1109_TCDS_2023_3293321
crossref_primary_10_1109_LSP_2022_3179946
crossref_primary_10_3390_s23010225
crossref_primary_10_1109_ACCESS_2023_3270177
crossref_primary_10_1109_TIM_2023_3240230
crossref_primary_10_1007_s13369_022_06617_8
crossref_primary_10_1088_1741_2552_ac6294
crossref_primary_10_1109_JBHI_2023_3242090
crossref_primary_10_1016_j_jksuci_2023_03_014
crossref_primary_10_1109_ACCESS_2023_3266117
crossref_primary_10_1109_MIS_2024_3363895
crossref_primary_10_1155_2023_9281230
crossref_primary_10_1080_20479700_2022_2141694
crossref_primary_10_1155_2024_6091523
crossref_primary_10_1109_JBHI_2021_3100297
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1109_TIM_2021_3121473
crossref_primary_10_3390_s21051870
crossref_primary_10_1016_j_jad_2024_06_042
crossref_primary_10_1080_08839514_2025_2450568
crossref_primary_10_1016_j_compbiomed_2022_106431
crossref_primary_10_1109_ACCESS_2023_3266804
crossref_primary_10_1016_j_ins_2024_121098
crossref_primary_10_1145_3712259
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_1051_itmconf_20224702044
crossref_primary_10_1016_j_measen_2023_100716
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_3390_electronics12132900
crossref_primary_10_1109_JSEN_2022_3168572
crossref_primary_10_1007_s11571_023_10004_w
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_asoc_2023_111181
crossref_primary_10_3389_fpsyg_2022_781448
crossref_primary_10_3390_app14020726
crossref_primary_10_3390_app13031954
crossref_primary_10_1016_j_bspc_2022_103788
crossref_primary_10_3233_JIFS_232465
crossref_primary_10_1016_j_bspc_2022_103544
crossref_primary_10_3390_robotics12040099
crossref_primary_10_1109_ACCESS_2024_3444494
crossref_primary_10_1016_j_aej_2024_10_059
crossref_primary_10_3389_fnhum_2023_1174104
crossref_primary_10_1016_j_heliyon_2024_e30174
crossref_primary_10_1016_j_ins_2024_120577
crossref_primary_10_3390_s23031255
crossref_primary_10_1109_JBHI_2024_3415163
crossref_primary_10_3390_diagnostics13050977
crossref_primary_10_1016_j_inffus_2025_102971
crossref_primary_10_1007_s10489_022_04366_7
crossref_primary_10_1109_ACCESS_2022_3224725
crossref_primary_10_1088_1741_2552_ad3c28
crossref_primary_10_1016_j_neuropsychologia_2024_109002
crossref_primary_10_1016_j_ins_2022_07_121
crossref_primary_10_1016_j_jvcir_2025_104415
crossref_primary_10_1016_j_bspc_2023_105942
crossref_primary_10_1016_j_bspc_2024_106877
crossref_primary_10_1016_j_bspc_2023_104851
crossref_primary_10_1007_s11760_022_02248_6
crossref_primary_10_1016_j_bspc_2021_102743
crossref_primary_10_1007_s11063_022_11120_0
crossref_primary_10_1016_j_ins_2024_121198
crossref_primary_10_1186_s13634_024_01146_y
crossref_primary_10_3390_s22186813
crossref_primary_10_3390_s22218467
crossref_primary_10_1016_j_eswa_2023_120122
crossref_primary_10_1016_j_asoc_2022_108740
crossref_primary_10_1016_j_bspc_2025_107594
crossref_primary_10_1109_JSEN_2024_3440340
crossref_primary_10_1109_TMI_2024_3467384
crossref_primary_10_1016_j_measurement_2022_112379
crossref_primary_10_3390_e26070540
crossref_primary_10_1109_ACCESS_2023_3344476
crossref_primary_10_1109_JSEN_2024_3400006
crossref_primary_10_1007_s11760_022_02373_2
crossref_primary_10_1016_j_measurement_2022_111724
crossref_primary_10_1016_j_knosys_2022_109038
crossref_primary_10_1007_s13534_023_00316_5
crossref_primary_10_1016_j_bspc_2021_103029
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_1016_j_knosys_2024_112599
crossref_primary_10_32604_cmc_2024_048813
crossref_primary_10_1109_TNSRE_2023_3246989
crossref_primary_10_1088_1361_6579_ad4953
Cites_doi 10.1016/j.biopsycho.2004.03.008
10.1109/TNN.2008.2005605
10.3389/fnbot.2019.00037
10.1007/s40708-016-0051-5
10.1016/j.asoc.2020.106426
10.1016/j.asoc.2015.01.007
10.1145/1961189.1961199
10.1162/neco_a_01199
10.1109/21.97458
10.1023/A:1010933404324
10.1109/ACCESS.2019.2908285
10.1007/s12559-017-9533-x
10.1109/JSTSP.2017.2726981
10.1109/LSENS.2020.2995060
10.1109/TAFFC.2017.2660485
10.1109/TAFFC.2017.2768030
10.1016/0013-4694(70)90143-4
10.1109/TAFFC.2020.2982143
10.1049/iet-ipr.2018.6224
10.1007/s10044-016-0567-6
10.1109/TITB.2009.2034649
10.1103/RevModPhys.65.413
10.1016/j.neucom.2020.01.067
10.1109/TSP.2018.2879624
10.18280/ts.360502
10.1109/TAFFC.2017.2714671
10.1007/BF02471106
10.1109/TIP.2018.2855422
10.1109/TNNLS.2016.2582924
10.1109/TITB.2010.2041553
10.1023/B:NEAB.0000038139.39812.eb
10.1109/TCBB.2019.2936351
10.1109/T-AFFC.2011.15
10.1109/TBME.2010.2048568
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106954
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106954
S1568494620308929
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-1a1f7992e4dade4d105da294e825edbf89a37992834154771bb2bd66608cc2743
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:08:45 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Long-short term memory neural network
Graph convolutional neural network
EEG
Differential entropy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1a1f7992e4dade4d105da294e825edbf89a37992834154771bb2bd66608cc2743
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106954
crossref_citationtrail_10_1016_j_asoc_2020_106954
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhang, Xu, Chen, Xing, Chen (b3) 2018
Levie, Monti, Bresson, Bronstein (b29) 2019; 67
Lan, Mullerputz, Wang, Liu, Sourina, Scherer (b52) 2016
Chang, Lin (b55) 2011; 2
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b26) 2009; 20
Zhu, Lin, Leung, Leung, Theodoidis (b28) 2020; 4
Davidson (b15) 2004; 67
Hjorth (b12) 1970; 29
Xing, Li, Xu, Shu, Hu, Xu (b39) 2019; 13
Petrantonakis, Hadjileontiadis (b14) 2010; 14
Wilaiprasitporn, Ditthapron, Matchaparn, Tongbuasirilai, Banluesombatkul, Chuangsuwanich (b6) 2020
Alhagry, Fahmy, Elkhoribi (b35) 2017; 8
Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b23) 2010; 57
Breiman (b57) 2001; 45
Zheng, Zhu, Peng, Lu (b19) 2014
Li, Lu (b16) 2009
Nie, Wang, Shi, Lu (b17) 2011
Yu, Rong, Liu, Zhou, Ouyang, Xiong (b34) 2019
Defferrard, Bresson, Vandergheynst (b25) 2016; 29
Shi, Zheng, Li (b21) 2018
Sbargoud, Djeha, Guiatni, Ababou (b24) 2019; 36
Chen, Hu, Moore, Zhang, Ma (b38) 2015; 30
Liu, Yu, Zhao, Song, Ge, Shi (b46) 2018; 9
Aftanas, Reva, Varlamov, Pavlov, Makhnev (b10) 2004; 34
Musha, Terasaki, Haque, Ivamitsky (b9) 1997; 1
Such, Sah, Dominguez, Pillai, Zhang, Michael, Cahill, Ptucha (b27) 2017; 11
Zhang, Chen, Hu, Cao, Kozma (b44) 2016
Wang, Huang, Mccane, Neo (b40) 2018
Chen, Zhang, Mao, Huang, Jiang, Zhang (b50) 2019; 7
Shi, Jiao, Lu (b18) 2013
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (b32) 2017; 28
Fu, Liu, Li, Zhou (b54) 2019; 13
Alarcao, Fonseca (b1) 2019; 10
Yang, Zhou, Ai, Bin, Hanjalic, Shen, Ji (b33) 2018; 27
Thammasan, Moriyama, Fukui, Numao (b43) 2017; 4
Liu, Sourina (b13) 2013
Hamalainen, Hari, Ilmoniemi, Knuutila, Lounasmaa (b2) 1993; 65
Candra, Yuwono, Chai, Handojoseno, Elamvazuthi, Nguyen, Su (b51) 2015
Frantzidis, Bratsas, Papadelis, Konstantinidis, Pappas, Bamidis (b22) 2010; 14
Thammasan, Fukui, Numao (b7) 2016
Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b4) 2017
Zhou, Kong, Fowlkes, Chen, Lei (b47) 2020; 392
Diego, Giulia, Enrico (b30) 2019
Fourati, Ammar, Sanchezmedina, Alimi (b48) 2020
Song, Zheng, Song, Cui (b8) 2019
Liu, Zheng, Lu (b41) 2016
Lin, Liu, Yang, Du (b20) 2015
Mert, Akan (b42) 2018; 21
Li, Song, Zhang, Yu, Hou, Hu (b5) 2016
Kim, Kim, Oh, Kim (b11) 2013; 2013
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b36) 2012; 3
He, Tan, Ying, Zhang (b45) 2020
Becker, Fleureau, Guillotel, Wendling, Merlet, Albera (b49) 2020; 11
Safavian, Landgrebe (b56) 1991; 21
Yu, Si, Hu, Zhang (b31) 2019; 31
Liu, Sourina (b37) 2014
Li, Zhang, He (b53) 2018; 10
Song (10.1016/j.asoc.2020.106954_b8) 2019
Frantzidis (10.1016/j.asoc.2020.106954_b22) 2010; 14
Candra (10.1016/j.asoc.2020.106954_b51) 2015
Tripathi (10.1016/j.asoc.2020.106954_b4) 2017
Shi (10.1016/j.asoc.2020.106954_b21) 2018
Shi (10.1016/j.asoc.2020.106954_b18) 2013
Wang (10.1016/j.asoc.2020.106954_b40) 2018
Alarcao (10.1016/j.asoc.2020.106954_b1) 2019; 10
Greff (10.1016/j.asoc.2020.106954_b32) 2017; 28
Zheng (10.1016/j.asoc.2020.106954_b19) 2014
Breiman (10.1016/j.asoc.2020.106954_b57) 2001; 45
He (10.1016/j.asoc.2020.106954_b45) 2020
Fu (10.1016/j.asoc.2020.106954_b54) 2019; 13
Li (10.1016/j.asoc.2020.106954_b16) 2009
Becker (10.1016/j.asoc.2020.106954_b49) 2020; 11
Nie (10.1016/j.asoc.2020.106954_b17) 2011
Chen (10.1016/j.asoc.2020.106954_b50) 2019; 7
Li (10.1016/j.asoc.2020.106954_b5) 2016
Liu (10.1016/j.asoc.2020.106954_b37) 2014
Hjorth (10.1016/j.asoc.2020.106954_b12) 1970; 29
Yang (10.1016/j.asoc.2020.106954_b33) 2018; 27
Scarselli (10.1016/j.asoc.2020.106954_b26) 2009; 20
Lan (10.1016/j.asoc.2020.106954_b52) 2016
Petrantonakis (10.1016/j.asoc.2020.106954_b14) 2010; 14
Xing (10.1016/j.asoc.2020.106954_b39) 2019; 13
Liu (10.1016/j.asoc.2020.106954_b46) 2018; 9
Li (10.1016/j.asoc.2020.106954_b53) 2018; 10
Sbargoud (10.1016/j.asoc.2020.106954_b24) 2019; 36
Diego (10.1016/j.asoc.2020.106954_b30) 2019
Musha (10.1016/j.asoc.2020.106954_b9) 1997; 1
Aftanas (10.1016/j.asoc.2020.106954_b10) 2004; 34
Liu (10.1016/j.asoc.2020.106954_b13) 2013
Chen (10.1016/j.asoc.2020.106954_b38) 2015; 30
Wilaiprasitporn (10.1016/j.asoc.2020.106954_b6) 2020
Davidson (10.1016/j.asoc.2020.106954_b15) 2004; 67
Yu (10.1016/j.asoc.2020.106954_b34) 2019
Koelstra (10.1016/j.asoc.2020.106954_b36) 2012; 3
Lin (10.1016/j.asoc.2020.106954_b23) 2010; 57
Zhou (10.1016/j.asoc.2020.106954_b47) 2020; 392
Zhang (10.1016/j.asoc.2020.106954_b44) 2016
Fourati (10.1016/j.asoc.2020.106954_b48) 2020
Safavian (10.1016/j.asoc.2020.106954_b56) 1991; 21
Mert (10.1016/j.asoc.2020.106954_b42) 2018; 21
Thammasan (10.1016/j.asoc.2020.106954_b7) 2016
Levie (10.1016/j.asoc.2020.106954_b29) 2019; 67
Lin (10.1016/j.asoc.2020.106954_b20) 2015
Zhu (10.1016/j.asoc.2020.106954_b28) 2020; 4
Chang (10.1016/j.asoc.2020.106954_b55) 2011; 2
Hamalainen (10.1016/j.asoc.2020.106954_b2) 1993; 65
Alhagry (10.1016/j.asoc.2020.106954_b35) 2017; 8
Yu (10.1016/j.asoc.2020.106954_b31) 2019; 31
Liu (10.1016/j.asoc.2020.106954_b41) 2016
Defferrard (10.1016/j.asoc.2020.106954_b25) 2016; 29
Wang (10.1016/j.asoc.2020.106954_b3) 2018
Thammasan (10.1016/j.asoc.2020.106954_b43) 2017; 4
Kim (10.1016/j.asoc.2020.106954_b11) 2013; 2013
Such (10.1016/j.asoc.2020.106954_b27) 2017; 11
References_xml – volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: b36
  article-title: DEAP: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 101
  year: 2013
  end-page: 120
  ident: b13
  article-title: Real-time fractal-based valence level recognition from EEG
  publication-title: Transactions on Computational Science XVIII, Vol. 18
– start-page: 1
  year: 2019
  ident: b34
  article-title: LSTM-based end-to-end framework for biomedical event extraction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b26
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
– volume: 2
  start-page: 27:1
  year: 2011
  end-page: 27:27
  ident: b55
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 4
  start-page: 39
  year: 2017
  end-page: 50
  ident: b43
  article-title: Familiarity effects in EEG-based emotion recognition
  publication-title: Brain Inform.
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: b32
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw.
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: b12
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 11
  start-page: 884
  year: 2017
  end-page: 896
  ident: b27
  article-title: Robust spatial filtering with graph convolutional neural networks
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 14
  start-page: 589
  year: 2010
  end-page: 597
  ident: b22
  article-title: Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 57
  start-page: 1798
  year: 2010
  end-page: 1806
  ident: b23
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2018
  end-page: 7
  ident: b40
  article-title: Emotionet: A 3-D convolutional neural network for EEG-based emotion recognition
  publication-title: 2018 International Joint Conference on Neural Networks (IJCNN)
– volume: 392
  start-page: 38
  year: 2020
  end-page: 49
  ident: b47
  article-title: Fine-grained facial expression analysis using dimensional emotion model
  publication-title: Neurocomputing
– volume: 21
  start-page: 81
  year: 2018
  end-page: 89
  ident: b42
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
– volume: 13
  start-page: 37
  year: 2019
  ident: b39
  article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorobot.
– start-page: 7250
  year: 2015
  end-page: 7253
  ident: b51
  article-title: Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b57
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 36
  start-page: 383
  year: 2019
  end-page: 391
  ident: b24
  article-title: WPT-ANN and belief theory based EEG/EMG data fusion for movement identification
  publication-title: Trait. Signal
– start-page: 2399
  year: 2019
  end-page: 2403
  ident: b30
  article-title: Image denoising with graph-convolutional neural networks
  publication-title: 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019
– start-page: 3166
  year: 2014
  end-page: 3171
  ident: b37
  article-title: EEG-based subject-dependent emotion recognition algorithm using fractal dimension
  publication-title: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 13
  start-page: 2763
  year: 2019
  end-page: 2771
  ident: b54
  article-title: Two-order graph convolutional networks for semi-supervised classification
  publication-title: Iet Image Process.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b19
  article-title: EEG-based emotion classification using deep belief networks
  publication-title: 2014 IEEE International Conference on Multimedia and Expo (ICME)
– volume: 27
  start-page: 5600
  year: 2018
  end-page: 5611
  ident: b33
  article-title: Video captioning by adversarial LSTM
  publication-title: IEEE Trans. Image Process.
– start-page: 521
  year: 2016
  end-page: 529
  ident: b41
  article-title: Emotion recognition using multimodal deep learning
  publication-title: Neural Information Processing
– volume: 34
  start-page: 859
  year: 2004
  end-page: 867
  ident: b10
  article-title: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics
  publication-title: Neurosci. Behav. Physiol.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b31
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– start-page: 1
  year: 2020
  ident: b6
  article-title: Affective EEG-based person identification using the deep learning approach
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 67
  start-page: 97
  year: 2019
  end-page: 109
  ident: b29
  article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans. Signal Process.
– volume: 10
  start-page: 374
  year: 2019
  end-page: 393
  ident: b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Trans. Affect. Comput.
– volume: 67
  start-page: 219
  year: 2004
  end-page: 234
  ident: b15
  article-title: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research
  publication-title: Biol. Psychol.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 4
  ident: b28
  article-title: Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network
  publication-title: IEEE Sensors Lett.
– year: 2020
  ident: b45
  article-title: Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: b2
  article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Modern Phys.
– start-page: 002319
  year: 2016
  end-page: 002323
  ident: b44
  article-title: PNN for EEG-based emotion recognition
  publication-title: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– start-page: 1221
  year: 2018
  end-page: 1226
  ident: b21
  article-title: Unconscious emotion recognition based on multi-scale sample entropy
  publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– start-page: 1
  year: 2020
  ident: b48
  article-title: Unsupervised learning in reservoir computing for EEG-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 30
  start-page: 663
  year: 2015
  end-page: 674
  ident: b38
  article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2019
  ident: b8
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 002558
  year: 2016
  end-page: 002563
  ident: b52
  article-title: Using support vector regression to estimate valence level from EEG
  publication-title: Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on
– start-page: 1223
  year: 2009
  end-page: 1226
  ident: b16
  article-title: Emotion classification based on gamma-band EEG
  publication-title: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2009
– volume: 8
  year: 2017
  ident: b35
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 1240
  year: 2018
  end-page: 1244
  ident: b3
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system
  publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 29
  start-page: 3844
  year: 2016
  end-page: 3852
  ident: b25
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 550
  year: 2018
  end-page: 562
  ident: b46
  article-title: Real-time movie-induced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 4746
  year: 2017
  end-page: 4752
  ident: b4
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA
– start-page: 352
  year: 2016
  end-page: 359
  ident: b5
  article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network
  publication-title: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– start-page: 395
  year: 2015
  end-page: 399
  ident: b20
  article-title: Neurophysiological markers of identifying regret by 64 channels EEG signal
  publication-title: 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)
– start-page: 6627
  year: 2013
  end-page: 6630
  ident: b18
  article-title: Differential entropy feature for EEG-based vigilance estimation
  publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vol. 2013
– volume: 2013
  start-page: 573734
  year: 2013
  ident: b11
  article-title: A review on the computational methods for emotional state estimation from the human EEG
  publication-title: Comput. Math. Methods Med.
– volume: 1
  start-page: 15
  year: 1997
  end-page: 19
  ident: b9
  article-title: Feature extraction from EEGs associated with emotions
  publication-title: Artif. Life Robot.
– volume: 11
  start-page: 244
  year: 2020
  end-page: 257
  ident: b49
  article-title: Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 667
  year: 2011
  end-page: 670
  ident: b17
  article-title: EEG-based emotion recognition during watching movies
  publication-title: 2011 5th International IEEE/EMBS Conference on Neural Engineering
– start-page: 881
  year: 2016
  end-page: 888
  ident: b7
  article-title: Application of deep belief networks in eeg-based dynamic music-emotion recognition
  publication-title: 2016 International Joint Conference on Neural Networks (IJCNN)
– volume: 21
  start-page: 660
  year: 1991
  end-page: 674
  ident: b56
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 7
  start-page: 44317
  year: 2019
  end-page: 44328
  ident: b50
  article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks
  publication-title: IEEE Access
– volume: 10
  start-page: 368
  year: 2018
  end-page: 380
  ident: b53
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cogn. Comput.
– volume: 14
  start-page: 186
  year: 2010
  end-page: 197
  ident: b14
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 67
  start-page: 219
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2020.106954_b15
  article-title: What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2004.03.008
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106954_b26
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 13
  start-page: 37
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b39
  article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00037
– volume: 4
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106954_b43
  article-title: Familiarity effects in EEG-based emotion recognition
  publication-title: Brain Inform.
  doi: 10.1007/s40708-016-0051-5
– start-page: 002558
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b52
  article-title: Using support vector regression to estimate valence level from EEG
– start-page: 6627
  year: 2013
  ident: 10.1016/j.asoc.2020.106954_b18
  article-title: Differential entropy feature for EEG-based vigilance estimation
– year: 2020
  ident: 10.1016/j.asoc.2020.106954_b45
  article-title: Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106426
– start-page: 7250
  year: 2015
  ident: 10.1016/j.asoc.2020.106954_b51
  article-title: Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine
– start-page: 2399
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b30
  article-title: Image denoising with graph-convolutional neural networks
– volume: 30
  start-page: 663
  year: 2015
  ident: 10.1016/j.asoc.2020.106954_b38
  article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.007
– start-page: 667
  year: 2011
  ident: 10.1016/j.asoc.2020.106954_b17
  article-title: EEG-based emotion recognition during watching movies
– volume: 2
  start-page: 27:1
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2020.106954_b55
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b8
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b31
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 21
  start-page: 660
  issue: 3
  year: 1991
  ident: 10.1016/j.asoc.2020.106954_b56
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.97458
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2020.106954_b57
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 7
  start-page: 44317
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b50
  article-title: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908285
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b40
  article-title: Emotionet: A 3-D convolutional neural network for EEG-based emotion recognition
– volume: 10
  start-page: 368
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b53
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9533-x
– start-page: 1240
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b3
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106954_b6
  article-title: Affective EEG-based person identification using the deep learning approach
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 101
  year: 2013
  ident: 10.1016/j.asoc.2020.106954_b13
  article-title: Real-time fractal-based valence level recognition from EEG
– volume: 11
  start-page: 884
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2020.106954_b27
  article-title: Robust spatial filtering with graph convolutional neural networks
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2017.2726981
– volume: 4
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2020.106954_b28
  article-title: Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network
  publication-title: IEEE Sensors Lett.
  doi: 10.1109/LSENS.2020.2995060
– volume: 9
  start-page: 550
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b46
  article-title: Real-time movie-induced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2660485
– start-page: 4746
  year: 2017
  ident: 10.1016/j.asoc.2020.106954_b4
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
– volume: 11
  start-page: 244
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2020.106954_b49
  article-title: Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2768030
– start-page: 881
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b7
  article-title: Application of deep belief networks in eeg-based dynamic music-emotion recognition
– start-page: 521
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b41
  article-title: Emotion recognition using multimodal deep learning
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 10.1016/j.asoc.2020.106954_b12
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– start-page: 002319
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b44
  article-title: PNN for EEG-based emotion recognition
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106954_b48
  article-title: Unsupervised learning in reservoir computing for EEG-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2982143
– volume: 13
  start-page: 2763
  issue: 14
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b54
  article-title: Two-order graph convolutional networks for semi-supervised classification
  publication-title: Iet Image Process.
  doi: 10.1049/iet-ipr.2018.6224
– volume: 21
  start-page: 81
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b42
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-016-0567-6
– volume: 14
  start-page: 186
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2020.106954_b14
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– volume: 65
  start-page: 413
  issue: 2
  year: 1993
  ident: 10.1016/j.asoc.2020.106954_b2
  article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 29
  start-page: 3844
  issue: 2016
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b25
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 392
  start-page: 38
  year: 2020
  ident: 10.1016/j.asoc.2020.106954_b47
  article-title: Fine-grained facial expression analysis using dimensional emotion model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.067
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106954_b19
  article-title: EEG-based emotion classification using deep belief networks
– volume: 67
  start-page: 97
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b29
  article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2879624
– volume: 36
  start-page: 383
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b24
  article-title: WPT-ANN and belief theory based EEG/EMG data fusion for movement identification
  publication-title: Trait. Signal
  doi: 10.18280/ts.360502
– volume: 10
  start-page: 374
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 1
  start-page: 15
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106954_b9
  article-title: Feature extraction from EEGs associated with emotions
  publication-title: Artif. Life Robot.
  doi: 10.1007/BF02471106
– volume: 2013
  start-page: 573734
  issue: 2013
  year: 2013
  ident: 10.1016/j.asoc.2020.106954_b11
  article-title: A review on the computational methods for emotional state estimation from the human EEG
  publication-title: Comput. Math. Methods Med.
– start-page: 395
  year: 2015
  ident: 10.1016/j.asoc.2020.106954_b20
  article-title: Neurophysiological markers of identifying regret by 64 channels EEG signal
– start-page: 1221
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b21
  article-title: Unconscious emotion recognition based on multi-scale sample entropy
– start-page: 3166
  year: 2014
  ident: 10.1016/j.asoc.2020.106954_b37
  article-title: EEG-based subject-dependent emotion recognition algorithm using fractal dimension
– start-page: 352
  year: 2016
  ident: 10.1016/j.asoc.2020.106954_b5
  article-title: Emotion recognition from multi-channel EEG data through convolutional recurrent neural network
– volume: 27
  start-page: 5600
  issue: 11
  year: 2018
  ident: 10.1016/j.asoc.2020.106954_b33
  article-title: Video captioning by adversarial LSTM
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2855422
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2020.106954_b32
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 14
  start-page: 589
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2020.106954_b22
  article-title: Toward emotion aware computing: An integrated approach using multichannel neurophysiological recordings and affective visual stimuli
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2041553
– volume: 34
  start-page: 859
  issue: 8
  year: 2004
  ident: 10.1016/j.asoc.2020.106954_b10
  article-title: Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics
  publication-title: Neurosci. Behav. Physiol.
  doi: 10.1023/B:NEAB.0000038139.39812.eb
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106954_b34
  article-title: LSTM-based end-to-end framework for biomedical event extraction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2936351
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.106954_b36
  article-title: DEAP: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2020.106954_b23
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– start-page: 1223
  year: 2009
  ident: 10.1016/j.asoc.2020.106954_b16
  article-title: Emotion classification based on gamma-band EEG
– volume: 8
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2020.106954_b35
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
SSID ssj0016928
Score 2.6890934
Snippet In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106954
SubjectTerms Differential entropy
EEG
Emotion recognition
Graph convolutional neural network
Long-short term memory neural network
Title EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
URI https://dx.doi.org/10.1016/j.asoc.2020.106954
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bcQP0oM3M9lH17VHQkBUIEYgIV6Wbm0NxgyicPVvt6_riCaGg5d16V6z5e3tfay_9x5C11wpXxJuwhIdEc-41JnHSc48mggaUKZ9mcGO7nBE-1PyMItnNdSpcmEAVul0f6nTrbZ2My3HzdZyPm-NTeTBCCc0hJIrxspDBjtJQMpvvzYwj4By218ViD2gdokzJcZLGA6YGDGECcpj8rdx-mFwegdoz3mKuF0-zCGqqeII7VddGLD7KI_RS7d7h1XZjQdv8EDmHCDtr1iv4X8Yth1v8EJjW6EaA9jcCZ25BxS1tIOFhH9iUUg8GE-GJ2ja6046fc91TPDyyPdXXiACnXAeKiKFNAfjPEkRcqJMHKhkphkXEVxnxnbFJEmCLAszaSIYn-W5iU-jU1QvFoU6QzhPIgAoayFhFzghTHJNfKlYRJmvOGmgoGJVmrty4tDV4j2tcGNvKbA3BfamJXsb6GazZlkW09hKHVdvIP0lEqnR9lvWnf9z3QXaDQGwYgFml6i--lirK-NxrLKmFakm2ml3ngdPMN4_9kffk2PVuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGDhjXjjASYUmoeb2AMDgpZCWxZaqWIJSeygIhQqWoRY-FP8Qe4SpwIJdUBiSSInTpzL6R7x5_sADqXWtuIS05LU4xaG1LEleSIsP4h8xxeprWKa0e3c-M0ev-7X-hX4LNfCEKzS2P7CpufW2rRUjTSrw8GgeouZh-CS-y6VXEEvb5CVLf3-hnnb6PTqAj_ykes26t3zpmWoBazEs-2x5UROGkjpaq4ihRuMMlTkSq4xYdIqToWMPDov0MjXeBA4cezGCkN9WyQJJnIe3ncG5jiaC6JNOPmY4EocX-aErjQ6i4ZnVuoUoLIIRY5JqUsNvqzx373hNw_XWIZFE5qys-LtV6Cis1VYKmkfmLECa3BXr18yXdD_sAkACY8JQ__A0lf6Acdyih32nLK8JDYjdLvRcnwGVdHMdzkGfcSiTLH2bbezDr1_keMGzGbPmd4ElgQeIaLTSNG0c8CFkim3lRaeL2wt-RY4pajCxNQvJxqNp7AEqj2GJN6QxBsW4t2C40mfYVG9Y-rVtfILhD90MET3MqXf9h_7HcB8s9tph-2rm9YOLLiElsnRbbswO3551XsY7ozj_Vy9GNz_tz5_AZrgDuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+emotion+recognition+using+fusion+model+of+graph+convolutional+neural+networks+and+LSTM&rft.jtitle=Applied+soft+computing&rft.au=Yin%2C+Yongqiang&rft.au=Zheng%2C+Xiangwei&rft.au=Hu%2C+Bin&rft.au=Zhang%2C+Yuang&rft.date=2021-03-01&rft.issn=1568-4946&rft.volume=100&rft.spage=106954&rft_id=info:doi/10.1016%2Fj.asoc.2020.106954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon