Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai
Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effe...
Saved in:
Published in | Atmosphere Vol. 13; no. 6; p. 959 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effectively integrate spatial-temporal and meteorological factors and manage the dynamic edge relationship among scattered monitoring stations. In this paper, a ST-CCN-IAQI model is proposed based on spatial-temporal causal convolution networks. Both the spatial effects of multi-source air pollutants and meteorological factors were considered via spatial attention mechanism. Time-dependent features in the causal convolution network were extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-IAQI were tuned by Bayesian optimization. Shanghai air monitoring station data were employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results showed that: (1) For a single station, the RMSE and MAE values of ST-CCN-IAQI were 9.873 and 7.469, decreasing by 24.95% and 16.87% on average, respectively. R2 was 0.917, with an average 5.69% improvement; (2) For all nine stations, the mean RMSE and MAE of ST-CCN-IAQI were 9.849 and 7.527, respectively, and the R2 value was 0.906. (3) Shapley analysis showed PM10, humidity and NO2 were the most influencing factors in ST-CCN-IAQI. The Friedman test, under different resampling, further confirmed the advantage of ST-CCN-IAQI. The ST-CCN-IAQI provides a promising direction for fine-grained IAQI prediction. |
---|---|
AbstractList | Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effectively integrate spatial-temporal and meteorological factors and manage the dynamic edge relationship among scattered monitoring stations. In this paper, a ST-CCN-IAQI model is proposed based on spatial-temporal causal convolution networks. Both the spatial effects of multi-source air pollutants and meteorological factors were considered via spatial attention mechanism. Time-dependent features in the causal convolution network were extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-IAQI were tuned by Bayesian optimization. Shanghai air monitoring station data were employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results showed that: (1) For a single station, the RMSE and MAE values of ST-CCN-IAQI were 9.873 and 7.469, decreasing by 24.95% and 16.87% on average, respectively. R2 was 0.917, with an average 5.69% improvement; (2) For all nine stations, the mean RMSE and MAE of ST-CCN-IAQI were 9.849 and 7.527, respectively, and the R2 value was 0.906. (3) Shapley analysis showed PM10, humidity and NO2 were the most influencing factors in ST-CCN-IAQI. The Friedman test, under different resampling, further confirmed the advantage of ST-CCN-IAQI. The ST-CCN-IAQI provides a promising direction for fine-grained IAQI prediction. |
Author | Chai, Jinchuan Zhao, Junjie Wang, Shaohua Lin, Shaofu Liu, Xiliang Li, Jianqiang Gao, Yuyao Zhang, Yumin |
Author_xml | – sequence: 1 givenname: Xiliang orcidid: 0000-0001-5882-9389 surname: Liu fullname: Liu, Xiliang – sequence: 2 givenname: Junjie surname: Zhao fullname: Zhao, Junjie – sequence: 3 givenname: Shaofu orcidid: 0000-0002-3653-6531 surname: Lin fullname: Lin, Shaofu – sequence: 4 givenname: Jianqiang surname: Li fullname: Li, Jianqiang – sequence: 5 givenname: Shaohua orcidid: 0000-0001-8651-9505 surname: Wang fullname: Wang, Shaohua – sequence: 6 givenname: Yumin surname: Zhang fullname: Zhang, Yumin – sequence: 7 givenname: Yuyao surname: Gao fullname: Gao, Yuyao – sequence: 8 givenname: Jinchuan orcidid: 0000-0003-0714-0172 surname: Chai fullname: Chai, Jinchuan |
BookMark | eNpVUU1v1DAQtVCRKG2P3C1xgUOKHduJzW1Z9SNSVai2nK2J7bResvFiO4X9C_xqvF2EYC7vaebNm5Hea3Q0hckh9IaSc8YU-QB5ExJlpCFKqBfouCYtqzhn7Ogf_gqdpbQmpbhiNePH6Neln1x1FaGAxd1k_ZO3M4x44SO-K8Tn3b7tfuJ33eKue4-_RGe9yT5M-BOkslTIagvZw1jdu802xLK9hDntIUxPYZyfxbcu_wjx20e8KNPk8CrPdofDgFePMD08gj9FLwcYkzv7gyfo6-XF_fK6uvl81S0XN5VhhOSKSmkGToXsLR1qJ4TqgbROsoYL1hsjbC2kkzBwNvBWUkoaAQaoJbJoWs5OUHfwtQHWehv9BuJOB_D6uRHig4aYvRmdVrXse2drBVZyqUxvpeOWKtJIztQgitfbg9c2hu-zS1mvwxyn8r6um1Y1QpRwiqo6qEwMKUU3_L1Kid6np_9Lj_0GG4WOTw |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_107080 crossref_primary_10_1007_s44230_023_00039_x crossref_primary_10_3390_w15244227 |
Cites_doi | 10.1007/s11277-020-07862-6 10.1073/pnas.1812881116 10.1016/j.chemosphere.2021.133124 10.3390/atmos12050607 10.1016/j.atmosenv.2015.02.030 10.1016/j.neucom.2021.09.051 10.1109/ITAIC.2019.8785602 10.1371/journal.pone.0179763 10.1016/j.scitotenv.2019.07.367 10.3390/atmos12091172 10.24963/ijcai.2019/264 10.1016/j.jclepro.2020.123767 10.3390/atmos12091211 10.3390/atmos13040548 10.1109/TITS.2019.2935152 10.24963/ijcai.2018/505 10.1016/j.inffus.2016.11.015 10.1016/j.apr.2022.101352 10.3390/atmos11121303 10.1016/j.neucom.2021.01.138 10.1007/s00704-017-2245-z 10.1016/j.neucom.2021.02.046 10.1007/978-3-030-04167-0_33 10.1073/pnas.1816102116 10.1016/j.eswa.2020.114513 10.3390/atmos9060203 10.1016/j.jeconom.2005.07.020 10.1016/j.scs.2021.103045 10.1504/IJAHUC.2021.119098 10.3390/atmos12121626 10.1016/j.envpol.2017.08.114 10.1016/j.envc.2021.100155 10.1109/ICDE48307.2020.00126 10.20944/preprints202109.0130.v1 10.1016/j.scitotenv.2019.133956 10.1145/2487575.2488188 10.1016/j.jclepro.2020.121528 10.3390/atmos13020262 10.3390/atmos11040348 10.1016/j.scs.2021.102923 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI SOI DOA |
DOI | 10.3390/atmos13060959 |
DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2073-4433 |
ExternalDocumentID | oai_doaj_org_article_928bbed29ad8489cbd8e4d19068439f5 10_3390_atmos13060959 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO ITC K6- KQ8 MODMG M~E OK1 PCBAR PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PQEST PQQKQ PQUKI SOI |
ID | FETCH-LOGICAL-c300t-188cf4158bd1f2e559ba07e836453bcc5d258e8af43f47811065aca1d08836743 |
IEDL.DBID | BENPR |
ISSN | 2073-4433 |
IngestDate | Tue Oct 22 15:12:01 EDT 2024 Fri Nov 08 21:00:53 EST 2024 Wed Aug 07 14:07:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-188cf4158bd1f2e559ba07e836453bcc5d258e8af43f47811065aca1d08836743 |
ORCID | 0000-0002-3653-6531 0000-0001-8651-9505 0000-0001-5882-9389 0000-0003-0714-0172 |
OpenAccessLink | https://www.proquest.com/docview/2679655339?pq-origsite=%requestingapplication% |
PQID | 2679655339 |
PQPubID | 2032431 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_928bbed29ad8489cbd8e4d19068439f5 proquest_journals_2679655339 crossref_primary_10_3390_atmos13060959 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Atmosphere |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_2) 2020; 275 Bielza (ref_41) 2021; 456 ref_14 ref_36 ref_34 Ai (ref_3) 2019; 696 ref_11 Zhang (ref_40) 2018; 134 ref_30 Samal (ref_6) 2021; 70 Yang (ref_1) 2021; 72 ref_18 ref_16 ref_15 Li (ref_13) 2017; 231 Hong (ref_4) 2019; 116 Shi (ref_17) 2022; 291 Barthwal (ref_25) 2021; 116 Motesaddi (ref_31) 2015; 2 Wood (ref_28) 2022; 13 Gu (ref_26) 2022; 468 Weerakody (ref_12) 2021; 441 ref_24 ref_23 ref_22 Lento (ref_43) 2008; 7 ref_21 Feng (ref_37) 2015; 107 ref_20 Zhou (ref_33) 2020; 263 Marcellino (ref_42) 2006; 135 Chen (ref_39) 2017; 36 Bera (ref_32) 2021; 4 ref_29 Yan (ref_35) 2021; 169 Wang (ref_10) 2021; 38 ref_27 ref_9 ref_8 Zhao (ref_19) 2019; 21 Pak (ref_38) 2020; 699 Goodkind (ref_5) 2019; 116 ref_7 |
References_xml | – volume: 116 start-page: 3503 year: 2021 ident: ref_25 article-title: An IoT based Sensing System for Modeling and Forecasting Urban Air Quality publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07862-6 contributor: fullname: Barthwal – volume: 116 start-page: 17193 year: 2019 ident: ref_4 article-title: Impacts of climate change on future air quality and human health in China publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1812881116 contributor: fullname: Hong – volume: 291 start-page: 133124 year: 2022 ident: ref_17 article-title: A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.133124 contributor: fullname: Shi – ident: ref_27 doi: 10.3390/atmos12050607 – ident: ref_24 – volume: 107 start-page: 118 year: 2015 ident: ref_37 article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.02.030 contributor: fullname: Feng – volume: 2 start-page: 173 year: 2015 ident: ref_31 article-title: Sulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013 publication-title: Environ. Health Eng. Manag. J. contributor: fullname: Motesaddi – volume: 468 start-page: 123 year: 2022 ident: ref_26 article-title: Hybrid interpretable predictive machine learning model for air pollution prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.09.051 contributor: fullname: Gu – ident: ref_36 doi: 10.1109/ITAIC.2019.8785602 – ident: ref_34 doi: 10.1371/journal.pone.0179763 – volume: 699 start-page: 133561 year: 2020 ident: ref_38 article-title: Deep learning based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.367 contributor: fullname: Pak – ident: ref_9 doi: 10.3390/atmos12091172 – volume: 7 start-page: 11 year: 2008 ident: ref_43 article-title: Forecasting Security Returns with Simple Moving Averages publication-title: Int. Bus. Econ. Res. J. IBER contributor: fullname: Lento – ident: ref_20 doi: 10.24963/ijcai.2019/264 – volume: 275 start-page: 123767 year: 2020 ident: ref_2 article-title: Optimizing local climate zones to mitigate urban heat island effect in human settlements publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123767 contributor: fullname: Yang – ident: ref_14 doi: 10.3390/atmos12091211 – ident: ref_22 doi: 10.3390/atmos13040548 – volume: 21 start-page: 3848 year: 2019 ident: ref_19 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 contributor: fullname: Zhao – ident: ref_21 doi: 10.24963/ijcai.2018/505 – volume: 36 start-page: 225 year: 2017 ident: ref_39 article-title: Air quality data clustering using EPLS method publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.11.015 contributor: fullname: Chen – volume: 13 start-page: 101352 year: 2022 ident: ref_28 article-title: Trend decomposition aids forecasts of air particulate matter (PM2.5) assisted by machine and deep learning without recourse to exogenous data publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2022.101352 contributor: fullname: Wood – ident: ref_29 doi: 10.3390/atmos11121303 – volume: 456 start-page: 648 year: 2021 ident: ref_41 article-title: Bayesian networks for interpretable machine learning and optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.138 contributor: fullname: Bielza – volume: 134 start-page: 25 year: 2018 ident: ref_40 article-title: Important meteorological variables for statistical long-term air quality prediction in eastern China publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2245-z contributor: fullname: Zhang – volume: 441 start-page: 161 year: 2021 ident: ref_12 article-title: A review of irregular time series data handling with gated recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.046 contributor: fullname: Weerakody – ident: ref_18 doi: 10.1007/978-3-030-04167-0_33 – volume: 116 start-page: 8775 year: 2019 ident: ref_5 article-title: Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1816102116 contributor: fullname: Goodkind – volume: 169 start-page: 114513 year: 2021 ident: ref_35 article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114513 contributor: fullname: Yan – ident: ref_30 doi: 10.3390/atmos9060203 – volume: 135 start-page: 499 year: 2006 ident: ref_42 article-title: A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series publication-title: J. Econom. doi: 10.1016/j.jeconom.2005.07.020 contributor: fullname: Marcellino – volume: 72 start-page: 103045 year: 2021 ident: ref_1 article-title: Influence of urban morphological characteristics on thermal environment publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.103045 contributor: fullname: Yang – volume: 38 start-page: 184 year: 2021 ident: ref_10 article-title: A CA-GRU-based model for air quality prediction publication-title: Int. J. Ad. Hoc. Ubiquitous Comput. doi: 10.1504/IJAHUC.2021.119098 contributor: fullname: Wang – ident: ref_15 doi: 10.3390/atmos12121626 – volume: 231 start-page: 997 year: 2017 ident: ref_13 article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.114 contributor: fullname: Li – volume: 4 start-page: 100155 year: 2021 ident: ref_32 article-title: PM2.5 concentration prediction during COVID-19 lockdown over Kolkata metropolitan city, India using MLR and ANN models publication-title: Environ. Chall. doi: 10.1016/j.envc.2021.100155 contributor: fullname: Bera – ident: ref_8 doi: 10.1109/ICDE48307.2020.00126 – ident: ref_16 doi: 10.20944/preprints202109.0130.v1 – volume: 696 start-page: 133956 year: 2019 ident: ref_3 article-title: Hourly associations between ambient air pollution and emergency ambulance calls in one central Chinese city: Implications for hourly air quality standards publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133956 contributor: fullname: Ai – ident: ref_7 doi: 10.1145/2487575.2488188 – volume: 263 start-page: 121528 year: 2020 ident: ref_33 article-title: Exploring Copula-based Bayesian Model Averaging with multiple ANNs for PM2.5 ensemble forecasts publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121528 contributor: fullname: Zhou – ident: ref_23 doi: 10.3390/atmos13020262 – ident: ref_11 doi: 10.3390/atmos11040348 – volume: 70 start-page: 102923 year: 2021 ident: ref_6 article-title: An improved pollution forecasting model with meteorological impact using multiple imputation and finetuning approach publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102923 contributor: fullname: Samal |
SSID | ssj0000493234 |
Score | 2.2934482 |
Snippet | Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 959 |
SubjectTerms | Accuracy Air Air monitoring Air pollution Air quality Air quality control Bayesian analysis Bayesian optimization causal convolution network Convolution Deep learning Feature extraction Impact factors individual air quality index prediction Monitoring systems multi-source factors Neural networks Nitrogen dioxide Optimization Outdoor air quality Particulate matter Pollutants Predictions Probability theory Propagation Quality control Recurrent neural networks Resampling Shapley analysis Time dependence Time series |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UQFuxQNEcEGoPEYntZB1uy6oLWwlUBEjcIn-KRcum2l0Q_AV-dWfsgEA9cOkpiRMpkWfieTOeecPYbu0KXVlL1JfcZ7LyPNNWhqzOhbQBVcrFOOTJaXV8KX9dlVevWn1RTliiB04Tt19zZYx3vNZOSVVb45SXDs1YpdCWhsRemtevnKmbhHsFFzKRagr06_f18rZd4IJNBGv1GyMUufr_WYqjfRmtsk8dMIRB-qA19sHP1lnvBDFtO4-hb9iD4XSCADNefWZPIwSI2RG1ePAOxi-FVTCYzCFRYzzSsH-A7-PB2fgH_J7TrgxJAg7ReDnAE2pJjCqYXSSKqikM9d2CDu3svtNKOE2p4gcwwLsLD5R7-AhtgHOKNl_ryRd2Ofp5MTzOus4KmRV5vswKpWxA062MKwL36FUYnfe9oj1JYawtHS-VVzpIEWItKgIVbXXhcE0SVLbwla3M2pnfYFChxyOE6wcfjLSlNKFfycoWznuJ6Ef22N7zVDd_EoFGg44HyaR5I5MeOyRBvDxEvNdxALWh6bSheU8bemz7WYxN9zMuGk6xshJxbb35P96xxT5yqoGIoZhttrKc3_lviEyWZicq4V-I6-IX priority: 102 providerName: Directory of Open Access Journals |
Title | Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai |
URI | https://www.proquest.com/docview/2679655339 https://doaj.org/article/928bbed29ad8489cbd8e4d19068439f5 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCyksslMoHVMHBamI7WYcL2l116SJ1VaCVeov8LCuVTZtsEf0L_GpmHO-iColTEju5ZMYz33z2zBDytnK5Lq3F0pfcM1l6zrSVgVWZkDaASrnIQ54syuNz-fmiuEiEW5eOVW5sYjTUrrHIkR9yJDwKACfVx-sbhl2jcHc1tdB4SHY4RArZgOxMjhanX7csC-BfwYXsi2vCt9mhXv9oOjDcWGituueMYs3-f0xy9DOzXfI4AUQ67iX6hDzwq6dkeALYtmkjBU4P6PRqCUAzPj0jv2cAFNknbPXgHZ1vE6zoeNnSvkTGHQ77X_TdfPxl_p6etrg7gxKhE3BijsINtiYGVWRnfamqKzrVtx1emtXPpJ100R8Z_0DHMNt5imcQ72gT6Ddknb_r5XNyPjs6mx6z1GGBWZFla5YrZQO4cGVcHriH6MLobOQV7k0KY23heKG80kGKEHNSAbBoq3MHtklg-sILMlg1K_-S0BIiHyHcKPhgpC2kCaNSljZ33ktAQXJIDja_ur7uC2nUEICgTOp7MhmSCQpi-xLWv44DTXtZp-VUV1wZ4x2vtFNSVdY45aUDcFMqQFihGJK9jRjrtCi7-q8Kvfr_9GvyiGOWQyRb9shg3d76N4A91mY_Kdh-jN3_AGDR264 |
link.rule.ids | 315,783,787,867,2109,21400,27936,27937,33756,43817,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4AXxKcoG-AHNMGDtcR2UocX1FYrLazVgE7aW-T4Y1QazZZ0iP0L_NXcOW7RhMRTEjt5yZ3vfnf2_Y6QN4VNdW4MUl9yx2TuONNGelYkQhoPKmVDHnI2zyen8tNZdhYTbm08VrmxicFQ29pgjvyQY8IjA3BSfLi8Ytg1CndXYwuNu2QXqaog-NodHs1Pvm6zLIB_BReyI9eEb5NDvf5Rt2C4kWituOWMAmf_PyY5-JnxQ_IgAkQ66CT6iNxxq8ekNwNsWzchBU4P6OhiCUAzPD0hv8cAFNlHbPXgLJ1uC6zoYNnQjiLjBofdL_p2OvgyfUdPGtydQYnQITgxS-EGWxODKrJFR1V1QUf6usVLvfoZtZPOuyPj7-kAZltH8QziDa09_YZZ5-96-ZScjo8WowmLHRaYEUmyZqlSxoMLV5VNPXcQXVQ66TuFe5OiMiazPFNOaS-FDzWpAFi00akF2ySwfOEZ2VnVK_ec0BwiHyFs3ztfSZPJyvdzmZvUOicBBckeOdj86vKyI9IoIQBBmZS3ZNIjQxTE9iXkvw4DdXNexuVUFlxVlbO80FZJVZjKKictgJtcAcLyWY_sb8RYxkXZln9V6MX_p1-Te5PF7Lg8ns4_75H7HCseQuJln-ysm2v3EnDIunoVle0Pxezdsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxAviE9RNsAPaIKHqIntpA4vqC0rK7CqwCbtLfLnqDSaLekQ-xf4q7lz3KIJiackdpSH3Pnu5_Pd7wh5VdpMFcYg9SVziSgcS5QRPilTLowHlbIhDnk0Lw5PxMfT_DTmP7UxrXJjE4OhtrXBGPmAYcAjB3BSDnxMi1i8n767uEywgxSetMZ2GrfJzlAUPO2RnfHBfPF1G3EBLMwZFx3RJnwnHaj1j7oFI46ka-UNxxT4-_8xz8HnTO-TexEs0lEn3Qfklls9JP0jwLl1E8LhdJ9OzpcAOsPTI_J7CqAx-YBtH5yls22xFR0tG9rRZVzjsPtFX89GX2Zv6KLBkxqUDh2DQ7MUbrBNMahlctzRVp3Tibpq8VKvfkZNpfMuffwtHcFs6yjmI17T2tNvGIH-rpaPycn04HhymMRuC4nhabpOMimNB3cutc08c7DT0CodOonnlFwbk1uWSyeVF9yH-lQAL8qozIKd4ljK8IT0VvXKPSW0gF0Q53bondfC5EL7YSEKk1nnQDKl6JP9za-uLjpSjQo2IyiT6oZM-mSMgti-hFzYYaBuzqq4tKqSSa2dZaWyUsjSaCudsAB0Cgloy-d9srcRYxUXaFv9Vadn_59-Se6AnlWfZ_NPu-Quw-KHEIPZI711c-WeAyRZ6xdR1_4A6anh4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Grained+Individual+Air+Quality+Index+%28IAQI%29+Prediction+Based+on+Spatial-Temporal+Causal+Convolution+Network%3A+A+Case+Study+of+Shanghai&rft.jtitle=Atmosphere&rft.au=Liu%2C+Xiliang&rft.au=Zhao%2C+Junjie&rft.au=Lin%2C+Shaofu&rft.au=Li%2C+Jianqiang&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=13&rft.issue=6&rft.spage=959&rft_id=info:doi/10.3390%2Fatmos13060959&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |