Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai

Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effe...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 13; no. 6; p. 959
Main Authors Liu, Xiliang, Zhao, Junjie, Lin, Shaofu, Li, Jianqiang, Wang, Shaohua, Zhang, Yumin, Gao, Yuyao, Chai, Jinchuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effectively integrate spatial-temporal and meteorological factors and manage the dynamic edge relationship among scattered monitoring stations. In this paper, a ST-CCN-IAQI model is proposed based on spatial-temporal causal convolution networks. Both the spatial effects of multi-source air pollutants and meteorological factors were considered via spatial attention mechanism. Time-dependent features in the causal convolution network were extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-IAQI were tuned by Bayesian optimization. Shanghai air monitoring station data were employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results showed that: (1) For a single station, the RMSE and MAE values of ST-CCN-IAQI were 9.873 and 7.469, decreasing by 24.95% and 16.87% on average, respectively. R2 was 0.917, with an average 5.69% improvement; (2) For all nine stations, the mean RMSE and MAE of ST-CCN-IAQI were 9.849 and 7.527, respectively, and the R2 value was 0.906. (3) Shapley analysis showed PM10, humidity and NO2 were the most influencing factors in ST-CCN-IAQI. The Friedman test, under different resampling, further confirmed the advantage of ST-CCN-IAQI. The ST-CCN-IAQI provides a promising direction for fine-grained IAQI prediction.
AbstractList Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effectively integrate spatial-temporal and meteorological factors and manage the dynamic edge relationship among scattered monitoring stations. In this paper, a ST-CCN-IAQI model is proposed based on spatial-temporal causal convolution networks. Both the spatial effects of multi-source air pollutants and meteorological factors were considered via spatial attention mechanism. Time-dependent features in the causal convolution network were extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-IAQI were tuned by Bayesian optimization. Shanghai air monitoring station data were employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results showed that: (1) For a single station, the RMSE and MAE values of ST-CCN-IAQI were 9.873 and 7.469, decreasing by 24.95% and 16.87% on average, respectively. R2 was 0.917, with an average 5.69% improvement; (2) For all nine stations, the mean RMSE and MAE of ST-CCN-IAQI were 9.849 and 7.527, respectively, and the R2 value was 0.906. (3) Shapley analysis showed PM10, humidity and NO2 were the most influencing factors in ST-CCN-IAQI. The Friedman test, under different resampling, further confirmed the advantage of ST-CCN-IAQI. The ST-CCN-IAQI provides a promising direction for fine-grained IAQI prediction.
Author Chai, Jinchuan
Zhao, Junjie
Wang, Shaohua
Lin, Shaofu
Liu, Xiliang
Li, Jianqiang
Gao, Yuyao
Zhang, Yumin
Author_xml – sequence: 1
  givenname: Xiliang
  orcidid: 0000-0001-5882-9389
  surname: Liu
  fullname: Liu, Xiliang
– sequence: 2
  givenname: Junjie
  surname: Zhao
  fullname: Zhao, Junjie
– sequence: 3
  givenname: Shaofu
  orcidid: 0000-0002-3653-6531
  surname: Lin
  fullname: Lin, Shaofu
– sequence: 4
  givenname: Jianqiang
  surname: Li
  fullname: Li, Jianqiang
– sequence: 5
  givenname: Shaohua
  orcidid: 0000-0001-8651-9505
  surname: Wang
  fullname: Wang, Shaohua
– sequence: 6
  givenname: Yumin
  surname: Zhang
  fullname: Zhang, Yumin
– sequence: 7
  givenname: Yuyao
  surname: Gao
  fullname: Gao, Yuyao
– sequence: 8
  givenname: Jinchuan
  orcidid: 0000-0003-0714-0172
  surname: Chai
  fullname: Chai, Jinchuan
BookMark eNpVUU1v1DAQtVCRKG2P3C1xgUOKHduJzW1Z9SNSVai2nK2J7bResvFiO4X9C_xqvF2EYC7vaebNm5Hea3Q0hckh9IaSc8YU-QB5ExJlpCFKqBfouCYtqzhn7Ogf_gqdpbQmpbhiNePH6Neln1x1FaGAxd1k_ZO3M4x44SO-K8Tn3b7tfuJ33eKue4-_RGe9yT5M-BOkslTIagvZw1jdu802xLK9hDntIUxPYZyfxbcu_wjx20e8KNPk8CrPdofDgFePMD08gj9FLwcYkzv7gyfo6-XF_fK6uvl81S0XN5VhhOSKSmkGToXsLR1qJ4TqgbROsoYL1hsjbC2kkzBwNvBWUkoaAQaoJbJoWs5OUHfwtQHWehv9BuJOB_D6uRHig4aYvRmdVrXse2drBVZyqUxvpeOWKtJIztQgitfbg9c2hu-zS1mvwxyn8r6um1Y1QpRwiqo6qEwMKUU3_L1Kid6np_9Lj_0GG4WOTw
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107080
crossref_primary_10_1007_s44230_023_00039_x
crossref_primary_10_3390_w15244227
Cites_doi 10.1007/s11277-020-07862-6
10.1073/pnas.1812881116
10.1016/j.chemosphere.2021.133124
10.3390/atmos12050607
10.1016/j.atmosenv.2015.02.030
10.1016/j.neucom.2021.09.051
10.1109/ITAIC.2019.8785602
10.1371/journal.pone.0179763
10.1016/j.scitotenv.2019.07.367
10.3390/atmos12091172
10.24963/ijcai.2019/264
10.1016/j.jclepro.2020.123767
10.3390/atmos12091211
10.3390/atmos13040548
10.1109/TITS.2019.2935152
10.24963/ijcai.2018/505
10.1016/j.inffus.2016.11.015
10.1016/j.apr.2022.101352
10.3390/atmos11121303
10.1016/j.neucom.2021.01.138
10.1007/s00704-017-2245-z
10.1016/j.neucom.2021.02.046
10.1007/978-3-030-04167-0_33
10.1073/pnas.1816102116
10.1016/j.eswa.2020.114513
10.3390/atmos9060203
10.1016/j.jeconom.2005.07.020
10.1016/j.scs.2021.103045
10.1504/IJAHUC.2021.119098
10.3390/atmos12121626
10.1016/j.envpol.2017.08.114
10.1016/j.envc.2021.100155
10.1109/ICDE48307.2020.00126
10.20944/preprints202109.0130.v1
10.1016/j.scitotenv.2019.133956
10.1145/2487575.2488188
10.1016/j.jclepro.2020.121528
10.3390/atmos13020262
10.3390/atmos11040348
10.1016/j.scs.2021.102923
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7ST
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
SOI
DOA
DOI 10.3390/atmos13060959
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2073-4433
ExternalDocumentID oai_doaj_org_article_928bbed29ad8489cbd8e4d19068439f5
10_3390_atmos13060959
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAHBH
AAYXX
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
KQ8
MODMG
M~E
OK1
PCBAR
PIMPY
PROAC
7QH
7ST
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c300t-188cf4158bd1f2e559ba07e836453bcc5d258e8af43f47811065aca1d08836743
IEDL.DBID BENPR
ISSN 2073-4433
IngestDate Tue Oct 22 15:12:01 EDT 2024
Fri Nov 08 21:00:53 EST 2024
Wed Aug 07 14:07:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-188cf4158bd1f2e559ba07e836453bcc5d258e8af43f47811065aca1d08836743
ORCID 0000-0002-3653-6531
0000-0001-8651-9505
0000-0001-5882-9389
0000-0003-0714-0172
OpenAccessLink https://www.proquest.com/docview/2679655339?pq-origsite=%requestingapplication%
PQID 2679655339
PQPubID 2032431
ParticipantIDs doaj_primary_oai_doaj_org_article_928bbed29ad8489cbd8e4d19068439f5
proquest_journals_2679655339
crossref_primary_10_3390_atmos13060959
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Atmosphere
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_2) 2020; 275
Bielza (ref_41) 2021; 456
ref_14
ref_36
ref_34
Ai (ref_3) 2019; 696
ref_11
Zhang (ref_40) 2018; 134
ref_30
Samal (ref_6) 2021; 70
Yang (ref_1) 2021; 72
ref_18
ref_16
ref_15
Li (ref_13) 2017; 231
Hong (ref_4) 2019; 116
Shi (ref_17) 2022; 291
Barthwal (ref_25) 2021; 116
Motesaddi (ref_31) 2015; 2
Wood (ref_28) 2022; 13
Gu (ref_26) 2022; 468
Weerakody (ref_12) 2021; 441
ref_24
ref_23
ref_22
Lento (ref_43) 2008; 7
ref_21
Feng (ref_37) 2015; 107
ref_20
Zhou (ref_33) 2020; 263
Marcellino (ref_42) 2006; 135
Chen (ref_39) 2017; 36
Bera (ref_32) 2021; 4
ref_29
Yan (ref_35) 2021; 169
Wang (ref_10) 2021; 38
ref_27
ref_9
ref_8
Zhao (ref_19) 2019; 21
Pak (ref_38) 2020; 699
Goodkind (ref_5) 2019; 116
ref_7
References_xml – volume: 116
  start-page: 3503
  year: 2021
  ident: ref_25
  article-title: An IoT based Sensing System for Modeling and Forecasting Urban Air Quality
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07862-6
  contributor:
    fullname: Barthwal
– volume: 116
  start-page: 17193
  year: 2019
  ident: ref_4
  article-title: Impacts of climate change on future air quality and human health in China
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1812881116
  contributor:
    fullname: Hong
– volume: 291
  start-page: 133124
  year: 2022
  ident: ref_17
  article-title: A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.133124
  contributor:
    fullname: Shi
– ident: ref_27
  doi: 10.3390/atmos12050607
– ident: ref_24
– volume: 107
  start-page: 118
  year: 2015
  ident: ref_37
  article-title: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.030
  contributor:
    fullname: Feng
– volume: 2
  start-page: 173
  year: 2015
  ident: ref_31
  article-title: Sulfur dioxide AQI modeling by artificial neural network in Tehran between 2007 and 2013
  publication-title: Environ. Health Eng. Manag. J.
  contributor:
    fullname: Motesaddi
– volume: 468
  start-page: 123
  year: 2022
  ident: ref_26
  article-title: Hybrid interpretable predictive machine learning model for air pollution prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.09.051
  contributor:
    fullname: Gu
– ident: ref_36
  doi: 10.1109/ITAIC.2019.8785602
– ident: ref_34
  doi: 10.1371/journal.pone.0179763
– volume: 699
  start-page: 133561
  year: 2020
  ident: ref_38
  article-title: Deep learning based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.367
  contributor:
    fullname: Pak
– ident: ref_9
  doi: 10.3390/atmos12091172
– volume: 7
  start-page: 11
  year: 2008
  ident: ref_43
  article-title: Forecasting Security Returns with Simple Moving Averages
  publication-title: Int. Bus. Econ. Res. J. IBER
  contributor:
    fullname: Lento
– ident: ref_20
  doi: 10.24963/ijcai.2019/264
– volume: 275
  start-page: 123767
  year: 2020
  ident: ref_2
  article-title: Optimizing local climate zones to mitigate urban heat island effect in human settlements
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123767
  contributor:
    fullname: Yang
– ident: ref_14
  doi: 10.3390/atmos12091211
– ident: ref_22
  doi: 10.3390/atmos13040548
– volume: 21
  start-page: 3848
  year: 2019
  ident: ref_19
  article-title: T-GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2935152
  contributor:
    fullname: Zhao
– ident: ref_21
  doi: 10.24963/ijcai.2018/505
– volume: 36
  start-page: 225
  year: 2017
  ident: ref_39
  article-title: Air quality data clustering using EPLS method
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.11.015
  contributor:
    fullname: Chen
– volume: 13
  start-page: 101352
  year: 2022
  ident: ref_28
  article-title: Trend decomposition aids forecasts of air particulate matter (PM2.5) assisted by machine and deep learning without recourse to exogenous data
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2022.101352
  contributor:
    fullname: Wood
– ident: ref_29
  doi: 10.3390/atmos11121303
– volume: 456
  start-page: 648
  year: 2021
  ident: ref_41
  article-title: Bayesian networks for interpretable machine learning and optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.138
  contributor:
    fullname: Bielza
– volume: 134
  start-page: 25
  year: 2018
  ident: ref_40
  article-title: Important meteorological variables for statistical long-term air quality prediction in eastern China
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2245-z
  contributor:
    fullname: Zhang
– volume: 441
  start-page: 161
  year: 2021
  ident: ref_12
  article-title: A review of irregular time series data handling with gated recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.046
  contributor:
    fullname: Weerakody
– ident: ref_18
  doi: 10.1007/978-3-030-04167-0_33
– volume: 116
  start-page: 8775
  year: 2019
  ident: ref_5
  article-title: Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1816102116
  contributor:
    fullname: Goodkind
– volume: 169
  start-page: 114513
  year: 2021
  ident: ref_35
  article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114513
  contributor:
    fullname: Yan
– ident: ref_30
  doi: 10.3390/atmos9060203
– volume: 135
  start-page: 499
  year: 2006
  ident: ref_42
  article-title: A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2005.07.020
  contributor:
    fullname: Marcellino
– volume: 72
  start-page: 103045
  year: 2021
  ident: ref_1
  article-title: Influence of urban morphological characteristics on thermal environment
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.103045
  contributor:
    fullname: Yang
– volume: 38
  start-page: 184
  year: 2021
  ident: ref_10
  article-title: A CA-GRU-based model for air quality prediction
  publication-title: Int. J. Ad. Hoc. Ubiquitous Comput.
  doi: 10.1504/IJAHUC.2021.119098
  contributor:
    fullname: Wang
– ident: ref_15
  doi: 10.3390/atmos12121626
– volume: 231
  start-page: 997
  year: 2017
  ident: ref_13
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.114
  contributor:
    fullname: Li
– volume: 4
  start-page: 100155
  year: 2021
  ident: ref_32
  article-title: PM2.5 concentration prediction during COVID-19 lockdown over Kolkata metropolitan city, India using MLR and ANN models
  publication-title: Environ. Chall.
  doi: 10.1016/j.envc.2021.100155
  contributor:
    fullname: Bera
– ident: ref_8
  doi: 10.1109/ICDE48307.2020.00126
– ident: ref_16
  doi: 10.20944/preprints202109.0130.v1
– volume: 696
  start-page: 133956
  year: 2019
  ident: ref_3
  article-title: Hourly associations between ambient air pollution and emergency ambulance calls in one central Chinese city: Implications for hourly air quality standards
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133956
  contributor:
    fullname: Ai
– ident: ref_7
  doi: 10.1145/2487575.2488188
– volume: 263
  start-page: 121528
  year: 2020
  ident: ref_33
  article-title: Exploring Copula-based Bayesian Model Averaging with multiple ANNs for PM2.5 ensemble forecasts
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121528
  contributor:
    fullname: Zhou
– ident: ref_23
  doi: 10.3390/atmos13020262
– ident: ref_11
  doi: 10.3390/atmos11040348
– volume: 70
  start-page: 102923
  year: 2021
  ident: ref_6
  article-title: An improved pollution forecasting model with meteorological impact using multiple imputation and finetuning approach
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102923
  contributor:
    fullname: Samal
SSID ssj0000493234
Score 2.2934482
Snippet Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 959
SubjectTerms Accuracy
Air
Air monitoring
Air pollution
Air quality
Air quality control
Bayesian analysis
Bayesian optimization
causal convolution network
Convolution
Deep learning
Feature extraction
Impact factors
individual air quality index prediction
Monitoring systems
multi-source factors
Neural networks
Nitrogen dioxide
Optimization
Outdoor air quality
Particulate matter
Pollutants
Predictions
Probability theory
Propagation
Quality control
Recurrent neural networks
Resampling
Shapley analysis
Time dependence
Time series
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UQFuxQNEcEGoPEYntZB1uy6oLWwlUBEjcIn-KRcum2l0Q_AV-dWfsgEA9cOkpiRMpkWfieTOeecPYbu0KXVlL1JfcZ7LyPNNWhqzOhbQBVcrFOOTJaXV8KX9dlVevWn1RTliiB04Tt19zZYx3vNZOSVVb45SXDs1YpdCWhsRemtevnKmbhHsFFzKRagr06_f18rZd4IJNBGv1GyMUufr_WYqjfRmtsk8dMIRB-qA19sHP1lnvBDFtO4-hb9iD4XSCADNefWZPIwSI2RG1ePAOxi-FVTCYzCFRYzzSsH-A7-PB2fgH_J7TrgxJAg7ReDnAE2pJjCqYXSSKqikM9d2CDu3svtNKOE2p4gcwwLsLD5R7-AhtgHOKNl_ryRd2Ofp5MTzOus4KmRV5vswKpWxA062MKwL36FUYnfe9oj1JYawtHS-VVzpIEWItKgIVbXXhcE0SVLbwla3M2pnfYFChxyOE6wcfjLSlNKFfycoWznuJ6Ef22N7zVDd_EoFGg44HyaR5I5MeOyRBvDxEvNdxALWh6bSheU8bemz7WYxN9zMuGk6xshJxbb35P96xxT5yqoGIoZhttrKc3_lviEyWZicq4V-I6-IX
  priority: 102
  providerName: Directory of Open Access Journals
Title Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai
URI https://www.proquest.com/docview/2679655339
https://doaj.org/article/928bbed29ad8489cbd8e4d19068439f5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCyksslMoHVMHBamI7WYcL2l116SJ1VaCVeov8LCuVTZtsEf0L_GpmHO-iColTEju5ZMYz33z2zBDytnK5Lq3F0pfcM1l6zrSVgVWZkDaASrnIQ54syuNz-fmiuEiEW5eOVW5sYjTUrrHIkR9yJDwKACfVx-sbhl2jcHc1tdB4SHY4RArZgOxMjhanX7csC-BfwYXsi2vCt9mhXv9oOjDcWGituueMYs3-f0xy9DOzXfI4AUQ67iX6hDzwq6dkeALYtmkjBU4P6PRqCUAzPj0jv2cAFNknbPXgHZ1vE6zoeNnSvkTGHQ77X_TdfPxl_p6etrg7gxKhE3BijsINtiYGVWRnfamqKzrVtx1emtXPpJ100R8Z_0DHMNt5imcQ72gT6Ddknb_r5XNyPjs6mx6z1GGBWZFla5YrZQO4cGVcHriH6MLobOQV7k0KY23heKG80kGKEHNSAbBoq3MHtklg-sILMlg1K_-S0BIiHyHcKPhgpC2kCaNSljZ33ktAQXJIDja_ur7uC2nUEICgTOp7MhmSCQpi-xLWv44DTXtZp-VUV1wZ4x2vtFNSVdY45aUDcFMqQFihGJK9jRjrtCi7-q8Kvfr_9GvyiGOWQyRb9shg3d76N4A91mY_Kdh-jN3_AGDR264
link.rule.ids 315,783,787,867,2109,21400,27936,27937,33756,43817,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4AXxKcoG-AHNMGDtcR2UocX1FYrLazVgE7aW-T4Y1QazZZ0iP0L_NXcOW7RhMRTEjt5yZ3vfnf2_Y6QN4VNdW4MUl9yx2TuONNGelYkQhoPKmVDHnI2zyen8tNZdhYTbm08VrmxicFQ29pgjvyQY8IjA3BSfLi8Ytg1CndXYwuNu2QXqaog-NodHs1Pvm6zLIB_BReyI9eEb5NDvf5Rt2C4kWituOWMAmf_PyY5-JnxQ_IgAkQ66CT6iNxxq8ekNwNsWzchBU4P6OhiCUAzPD0hv8cAFNlHbPXgLJ1uC6zoYNnQjiLjBofdL_p2OvgyfUdPGtydQYnQITgxS-EGWxODKrJFR1V1QUf6usVLvfoZtZPOuyPj7-kAZltH8QziDa09_YZZ5-96-ZScjo8WowmLHRaYEUmyZqlSxoMLV5VNPXcQXVQ66TuFe5OiMiazPFNOaS-FDzWpAFi00akF2ySwfOEZ2VnVK_ec0BwiHyFs3ztfSZPJyvdzmZvUOicBBckeOdj86vKyI9IoIQBBmZS3ZNIjQxTE9iXkvw4DdXNexuVUFlxVlbO80FZJVZjKKictgJtcAcLyWY_sb8RYxkXZln9V6MX_p1-Te5PF7Lg8ns4_75H7HCseQuJln-ysm2v3EnDIunoVle0Pxezdsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegkxAviE9RNsAPaIKHqIntpA4vqC0rK7CqwCbtLfLnqDSaLekQ-xf4q7lz3KIJiackdpSH3Pnu5_Pd7wh5VdpMFcYg9SVziSgcS5QRPilTLowHlbIhDnk0Lw5PxMfT_DTmP7UxrXJjE4OhtrXBGPmAYcAjB3BSDnxMi1i8n767uEywgxSetMZ2GrfJzlAUPO2RnfHBfPF1G3EBLMwZFx3RJnwnHaj1j7oFI46ka-UNxxT4-_8xz8HnTO-TexEs0lEn3Qfklls9JP0jwLl1E8LhdJ9OzpcAOsPTI_J7CqAx-YBtH5yls22xFR0tG9rRZVzjsPtFX89GX2Zv6KLBkxqUDh2DQ7MUbrBNMahlctzRVp3Tibpq8VKvfkZNpfMuffwtHcFs6yjmI17T2tNvGIH-rpaPycn04HhymMRuC4nhabpOMimNB3cutc08c7DT0CodOonnlFwbk1uWSyeVF9yH-lQAL8qozIKd4ljK8IT0VvXKPSW0gF0Q53bondfC5EL7YSEKk1nnQDKl6JP9za-uLjpSjQo2IyiT6oZM-mSMgti-hFzYYaBuzqq4tKqSSa2dZaWyUsjSaCudsAB0Cgloy-d9srcRYxUXaFv9Vadn_59-Se6AnlWfZ_NPu-Quw-KHEIPZI711c-WeAyRZ6xdR1_4A6anh4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Grained+Individual+Air+Quality+Index+%28IAQI%29+Prediction+Based+on+Spatial-Temporal+Causal+Convolution+Network%3A+A+Case+Study+of+Shanghai&rft.jtitle=Atmosphere&rft.au=Liu%2C+Xiliang&rft.au=Zhao%2C+Junjie&rft.au=Lin%2C+Shaofu&rft.au=Li%2C+Jianqiang&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=13&rft.issue=6&rft.spage=959&rft_id=info:doi/10.3390%2Fatmos13060959&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon