Closed-loop high precision human tissue temperature measurements using a joint forward and inverse method

•A high precision multi-frequency band inversion algorithm (Opt-XGBoost), based on an objective function correction and hyperparameter optimization, is proposed to improve the accuracy of multi-layer tissue temperature inversion.•The incoherent four-layer tissue forward model combines the Pennes hea...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 93; p. 106196
Main Authors Liu, Jie, Cai, Xinyi, Liu, Yixuan, Sun, Zhenlin, Sun, Guangmin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A high precision multi-frequency band inversion algorithm (Opt-XGBoost), based on an objective function correction and hyperparameter optimization, is proposed to improve the accuracy of multi-layer tissue temperature inversion.•The incoherent four-layer tissue forward model combines the Pennes heat transfer equation and the modeling method of fluid–solid coupling boundaries, and introduces random errors in this incoherent forward model.•To address the limitations of non-contact microwave precise measurements of internal tissue temperatures in the human body, we propose a closed-loop forward and backward joint multi-layer temperature prediction model. A closed-loop forward-inverse joint multi-layer temperature prediction method is introduced to overcome the limitations of non-contact microwave-based precise temperature measurements within human tissues. This approach merges an incoherent four-layer tissue forward model with a multi-frequency high-precision inversion algorithm. Random errors were incorporated into the forward model to construct a multi-layer human tissue dataset for performance validation and optimization of the inversion algorithm. The lack of precise temperature measurements in internal human tissues was addressed using an incoherent four-layer forward model that integrates the Pennes heat transfer equation with a fluid–solid coupling boundary modeling technique. Parameter differentiation analysis was conducted in the forward modeling step using incoherent electromagnetic transport equations. The proposed high-precision multi-frequency inversion process, added to the objective function, refines the XGBoost algorithm by assigning a penalty factor and adjusting for neighboring tissue temperature distributions. The Optuna framework was then utilized to optimize XGBoost hyper-parameter sets, resulting in the Opt-XGBoost inversion algorithm. This approach achieved a root mean square error of 0.033 °C and an average absolute error of 0.0256 °C in simulations involving forward modeling-generated data.
AbstractList •A high precision multi-frequency band inversion algorithm (Opt-XGBoost), based on an objective function correction and hyperparameter optimization, is proposed to improve the accuracy of multi-layer tissue temperature inversion.•The incoherent four-layer tissue forward model combines the Pennes heat transfer equation and the modeling method of fluid–solid coupling boundaries, and introduces random errors in this incoherent forward model.•To address the limitations of non-contact microwave precise measurements of internal tissue temperatures in the human body, we propose a closed-loop forward and backward joint multi-layer temperature prediction model. A closed-loop forward-inverse joint multi-layer temperature prediction method is introduced to overcome the limitations of non-contact microwave-based precise temperature measurements within human tissues. This approach merges an incoherent four-layer tissue forward model with a multi-frequency high-precision inversion algorithm. Random errors were incorporated into the forward model to construct a multi-layer human tissue dataset for performance validation and optimization of the inversion algorithm. The lack of precise temperature measurements in internal human tissues was addressed using an incoherent four-layer forward model that integrates the Pennes heat transfer equation with a fluid–solid coupling boundary modeling technique. Parameter differentiation analysis was conducted in the forward modeling step using incoherent electromagnetic transport equations. The proposed high-precision multi-frequency inversion process, added to the objective function, refines the XGBoost algorithm by assigning a penalty factor and adjusting for neighboring tissue temperature distributions. The Optuna framework was then utilized to optimize XGBoost hyper-parameter sets, resulting in the Opt-XGBoost inversion algorithm. This approach achieved a root mean square error of 0.033 °C and an average absolute error of 0.0256 °C in simulations involving forward modeling-generated data.
ArticleNumber 106196
Author Liu, Jie
Sun, Guangmin
Liu, Yixuan
Sun, Zhenlin
Cai, Xinyi
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-1155-4450
  surname: Liu
  fullname: Liu, Jie
  email: liujie217@bjut.edu.cn
– sequence: 2
  givenname: Xinyi
  surname: Cai
  fullname: Cai, Xinyi
– sequence: 3
  givenname: Yixuan
  surname: Liu
  fullname: Liu, Yixuan
– sequence: 4
  givenname: Zhenlin
  surname: Sun
  fullname: Sun, Zhenlin
– sequence: 5
  givenname: Guangmin
  surname: Sun
  fullname: Sun, Guangmin
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BUslVbhm5K6AsC3bRrIVujWCaWjEZO6d_XIe22qztc5gzDWZGFDx4IueVswxkv7_pNg2O7yVku5qLkdXlBlrwSZSY5k4u_mdXiiqwQe8aErLhYErc9BASTHUIYaef2HR0jtA5d8LSbBu1pcogT0ATDCFGnKQIdQOOcA_iEdELn91TTPjifqA3xS0dDtTfU-SNEPK2nLphrcmn1AeHmN9fk8_npY_ua7d5f3raPu6wtGEsZlxXY0gIUlufSWNtYYypueN1IKep7U2tmGJQcmtbOrWxkUTQCBOSWC5kXa5Kf77YxIEawaoxu0PFbcaZOslSvTrLUSZY6y5qhhzME82dHB1Fh68C3YNysIykT3H_4DzPqeDQ
CitedBy_id crossref_primary_10_3390_bios14050221
Cites_doi 10.1088/0031-9155/46/7/311
10.1109/JSEN.2022.3150871
10.1109/LAWP.2021.3051679
10.1007/s00421-003-1034-9
10.1109/JERM.2021.3120320
10.1109/TMTT.2017.2776952
10.1016/j.physa.2008.12.071
10.1109/TBME.2008.2002156
10.1109/JERM.2021.3137962
10.1109/LAWP.2021.3088449
10.1109/TGRS.2020.2987896
10.1109/JSEN.2020.3023482
10.1109/MCOM.2014.6917412
10.1016/j.jmbbm.2007.09.001
10.1109/JERM.2022.3171092
10.1109/TBME.2019.2909994
10.1023/A:1015284304784
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106196
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2024_106196
S1746809424002544
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c300t-187ef6fee3f128dffbfdd71d19b88495d9a0d0e61ebcfd198b833b4e4e2f14823
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Thu Sep 26 18:05:59 EDT 2024
Sat Mar 23 16:41:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords R2
SSE
Four-layer tissue
KNN
RMSE
Multi-frequency bands
PCA
FEM
MAE
High-precision
Opt-XGBoost
RF
XGBoost
MSE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-187ef6fee3f128dffbfdd71d19b88495d9a0d0e61ebcfd198b833b4e4e2f14823
ORCID 0000-0002-1155-4450
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106196
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106196
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Islam, Volakis (b0065) 2021; 21
Streeter, Botello, Hall (b0030) 2022; 6
Momenroodaki, Haines, Fromandi (b0035) 2018; 66
Tang, Qiu, Liu (b0130) 2022; 34
Zhou (b0080) 2017; 33
Xu, Wen, Lu (b0005) 2008; 1
Haines, Momenroodaki, Berry (b0115) 2017
Kanehisa, Miyatani, Azuma (b0125) 2004; 91
Hand, Van, Mizushina (b0020) 2001; 46
Sugiura, Kouno, Hashizume (b0095) 2005
Vaks, Gaikovich, Reznik (b0085) 2002; 45
He (b0010) 2015
Jacobsen, Klemetsen (b0100) 2008; 55
Momenroodaki, Popovic, Scheeler (b0110) 2015
Yan, Liang, Jiang (b0015) 2020; 58
Gong, Chen, Lin (b0055) 2021; 20
Zhang, Zhang, Yu (b0075) 2021; 40
Lin, Ding, Gong (b0060) 2021; 20
Popovic, Momenroodaki, Scheeler (b0105) 2014; 52
Groumpas, Koutsoupidou, Karanasiou (b0045) 2020; 67
Scheeler (b0090) 2013
Tisdale, Bringer, Kiourti (b0040) 2022; 6
Issac, Sugumar, Arunachalam (b0050) 2022; 22
Tisdale, Bringer, Kiourti (b0025) 2022; 6
Ghaemi, Zabihinpour, Asgari (b0070) 2009; 388
Momenroodaki, Haines, Popovic (b0120) 2017
Gong (10.1016/j.bspc.2024.106196_b0055) 2021; 20
Tisdale (10.1016/j.bspc.2024.106196_b0040) 2022; 6
Popovic (10.1016/j.bspc.2024.106196_b0105) 2014; 52
Streeter (10.1016/j.bspc.2024.106196_b0030) 2022; 6
Sugiura (10.1016/j.bspc.2024.106196_b0095) 2005
Hand (10.1016/j.bspc.2024.106196_b0020) 2001; 46
Haines (10.1016/j.bspc.2024.106196_b0115) 2017
Xu (10.1016/j.bspc.2024.106196_b0005) 2008; 1
Lin (10.1016/j.bspc.2024.106196_b0060) 2021; 20
Vaks (10.1016/j.bspc.2024.106196_b0085) 2002; 45
Jacobsen (10.1016/j.bspc.2024.106196_b0100) 2008; 55
Groumpas (10.1016/j.bspc.2024.106196_b0045) 2020; 67
Kanehisa (10.1016/j.bspc.2024.106196_b0125) 2004; 91
Scheeler (10.1016/j.bspc.2024.106196_b0090) 2013
Momenroodaki (10.1016/j.bspc.2024.106196_b0035) 2018; 66
Islam (10.1016/j.bspc.2024.106196_b0065) 2021; 21
Zhang (10.1016/j.bspc.2024.106196_b0075) 2021; 40
Tang (10.1016/j.bspc.2024.106196_b0130) 2022; 34
Yan (10.1016/j.bspc.2024.106196_b0015) 2020; 58
Issac (10.1016/j.bspc.2024.106196_b0050) 2022; 22
Ghaemi (10.1016/j.bspc.2024.106196_b0070) 2009; 388
Momenroodaki (10.1016/j.bspc.2024.106196_b0110) 2015
He (10.1016/j.bspc.2024.106196_b0010) 2015
Tisdale (10.1016/j.bspc.2024.106196_b0025) 2022; 6
Momenroodaki (10.1016/j.bspc.2024.106196_b0120) 2017
Zhou (10.1016/j.bspc.2024.106196_b0080) 2017; 33
References_xml – year: 2013
  ident: b0090
  article-title: A microwave radiometer for internal body temperature Measurement[D]
  contributor:
    fullname: Scheeler
– volume: 66
  start-page: 2535
  year: 2018
  end-page: 2545
  ident: b0035
  article-title: Noninvasive internal body temperature tracking with near-field microwave Radiometry[J]
  publication-title: IEEE Trans. Microw. Theory Tech.
  contributor:
    fullname: Fromandi
– volume: 55
  start-page: 2778
  year: 2008
  end-page: 2785
  ident: b0100
  article-title: Improved detectability in medical microwave radio-thermometers as obtained by active Antennas[J]
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Klemetsen
– start-page: 1387
  year: 2017
  end-page: 1390
  ident: b0120
  article-title: Non-invasive Microwave Thermometry of Multilayer Human Tissues[C]
  publication-title: 2017 IEEE/MTT-S International Microwave Symposium (IMS). Honololu, HI, United States
  contributor:
    fullname: Popovic
– volume: 6
  start-page: 230
  year: 2022
  end-page: 237
  ident: b0030
  article-title: Correlation radiometry for subcutaneous temperature Measurements[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  contributor:
    fullname: Hall
– volume: 6
  start-page: 355
  year: 2022
  end-page: 363
  ident: b0025
  article-title: Development of a coherent model for radiometric core body temperature sensing[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  contributor:
    fullname: Kiourti
– volume: 58
  start-page: 8427
  year: 2020
  end-page: 8437
  ident: b0015
  article-title: A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer[J]
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Jiang
– start-page: 694
  year: 2015
  end-page: 697
  ident: b0110
  article-title: 1.4-GHz Radiometer for Internal Body Temperature Measurements[C]
  publication-title: 2015 European Microwave Conference (EuMC). Paris, France
  contributor:
    fullname: Scheeler
– volume: 1
  start-page: 172
  year: 2008
  end-page: 187
  ident: b0005
  article-title: Skin biothermomechanics for medical treatments[J]
  publication-title: J. Mech. Behav. Biomed. Mater.
  contributor:
    fullname: Lu
– volume: 21
  start-page: 3324
  year: 2021
  end-page: 3334
  ident: b0065
  article-title: Wearable microwave imaging sensor for deep tissue real-time monitoring using a new loss-compensated backpropagation Technique[J]
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Volakis
– volume: 6
  start-page: 470
  year: 2022
  end-page: 476
  ident: b0040
  article-title: A Core body temperature retrieval method for microwave radiometry when tissue permittivity is Unknown[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  contributor:
    fullname: Kiourti
– volume: 52
  start-page: 118
  year: 2014
  end-page: 125
  ident: b0105
  article-title: Toward wearable wireless thermometers for internal body temperature Measurements[J]
  publication-title: IEEE Commun. Mag.
  contributor:
    fullname: Scheeler
– volume: 45
  start-page: 7
  year: 2002
  end-page: 22
  ident: b0085
  article-title: Thermal near field and the possibilities of its use for in-depth temperature diagnostics of media[J]
  publication-title: Radiophys. Quantum Electron.
  contributor:
    fullname: Reznik
– year: 2015
  ident: b0010
  article-title: Study of nondestructive retrieval method for the measurement of human internal temperature by microwave[D]
  contributor:
    fullname: He
– volume: 388
  start-page: 1509
  year: 2009
  end-page: 1514
  ident: b0070
  article-title: Computer simulation study of the levy flight process[J]
  publication-title: Physica A
  contributor:
    fullname: Asgari
– volume: 46
  start-page: 1885
  year: 2001
  end-page: 1903
  ident: b0020
  article-title: Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling[J]
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Mizushina
– volume: 22
  start-page: 6544
  year: 2022
  end-page: 6552
  ident: b0050
  article-title: Self-balanced near-field microwave radiometer for passive tissue Thermometry[J]
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Arunachalam
– volume: 20
  start-page: 1488
  year: 2021
  end-page: 1492
  ident: b0055
  article-title: Generic wideband phantom design methodology for microwave medical Applications[J]
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  contributor:
    fullname: Lin
– volume: 40
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0075
  article-title: Overview of the development of activation function and its nature analysis[J]
  publication-title: J. Xihua University
  contributor:
    fullname: Yu
– start-page: 541
  year: 2017
  end-page: 543
  ident: b0115
  article-title: Wireless System for Continuous Monitoring of Core Body Temperature[C]
  publication-title: 2017 IEEE MTT-S International Microwave Symposium (IMS). Honololu, HI, United States
  contributor:
    fullname: Berry
– volume: 34
  year: 2022
  ident: b0130
  article-title: Ultrasonic examination of proximal muscle thicknesses and their influencing factors in healthy adults[J]
  publication-title: Medical J. West China
  contributor:
    fullname: Liu
– start-page: 2292
  year: 2005
  end-page: 2295
  ident: b0095
  article-title: Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: system calibration and its Feasibility[C]
  publication-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS), San Francisco, CA, United States
  contributor:
    fullname: Hashizume
– volume: 20
  start-page: 438
  year: 2021
  end-page: 442
  ident: b0060
  article-title: Hybrid microwave medical imaging approach combining quantitative and qualitative Algorithms[J]
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  contributor:
    fullname: Gong
– volume: 67
  start-page: 158
  year: 2020
  end-page: 165
  ident: b0045
  article-title: Real-time passive brain monitoring system using near-field microwave Radiometry[J]
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Karanasiou
– volume: 91
  start-page: 534
  year: 2004
  end-page: 537
  ident: b0125
  article-title: Influences of age and sex on abdominal muscle and subcutaneous fat thickness[J]
  publication-title: Eur. J. Appl. Physiol.
  contributor:
    fullname: Azuma
– volume: 33
  year: 2017
  ident: b0080
  article-title: Research on simulation and verification of high frequency signal transfer line model[J]
  publication-title: J. Qiqihar University
  contributor:
    fullname: Zhou
– volume: 33
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2024.106196_b0080
  article-title: Research on simulation and verification of high frequency signal transfer line model[J]
  publication-title: J. Qiqihar University
  contributor:
    fullname: Zhou
– volume: 46
  start-page: 1885
  issue: 7
  year: 2001
  ident: 10.1016/j.bspc.2024.106196_b0020
  article-title: Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling[J]
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/7/311
  contributor:
    fullname: Hand
– volume: 22
  start-page: 6544
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2024.106196_b0050
  article-title: Self-balanced near-field microwave radiometer for passive tissue Thermometry[J]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3150871
  contributor:
    fullname: Issac
– volume: 20
  start-page: 438
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.106196_b0060
  article-title: Hybrid microwave medical imaging approach combining quantitative and qualitative Algorithms[J]
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2021.3051679
  contributor:
    fullname: Lin
– volume: 91
  start-page: 534
  issue: 5–6
  year: 2004
  ident: 10.1016/j.bspc.2024.106196_b0125
  article-title: Influences of age and sex on abdominal muscle and subcutaneous fat thickness[J]
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-003-1034-9
  contributor:
    fullname: Kanehisa
– volume: 6
  start-page: 230
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106196_b0030
  article-title: Correlation radiometry for subcutaneous temperature Measurements[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  doi: 10.1109/JERM.2021.3120320
  contributor:
    fullname: Streeter
– start-page: 2292
  year: 2005
  ident: 10.1016/j.bspc.2024.106196_b0095
  article-title: Five-band microwave radiometer system for non-invasive measurement of brain temperature in new-born infants: system calibration and its Feasibility[C]
  contributor:
    fullname: Sugiura
– volume: 66
  start-page: 2535
  issue: 5
  year: 2018
  ident: 10.1016/j.bspc.2024.106196_b0035
  article-title: Noninvasive internal body temperature tracking with near-field microwave Radiometry[J]
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2017.2776952
  contributor:
    fullname: Momenroodaki
– volume: 388
  start-page: 1509
  issue: 8
  year: 2009
  ident: 10.1016/j.bspc.2024.106196_b0070
  article-title: Computer simulation study of the levy flight process[J]
  publication-title: Physica A
  doi: 10.1016/j.physa.2008.12.071
  contributor:
    fullname: Ghaemi
– volume: 55
  start-page: 2778
  issue: 12
  year: 2008
  ident: 10.1016/j.bspc.2024.106196_b0100
  article-title: Improved detectability in medical microwave radio-thermometers as obtained by active Antennas[J]
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2002156
  contributor:
    fullname: Jacobsen
– start-page: 541
  year: 2017
  ident: 10.1016/j.bspc.2024.106196_b0115
  article-title: Wireless System for Continuous Monitoring of Core Body Temperature[C]
  contributor:
    fullname: Haines
– start-page: 694
  year: 2015
  ident: 10.1016/j.bspc.2024.106196_b0110
  article-title: 1.4-GHz Radiometer for Internal Body Temperature Measurements[C]
  contributor:
    fullname: Momenroodaki
– volume: 6
  start-page: 355
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2024.106196_b0025
  article-title: Development of a coherent model for radiometric core body temperature sensing[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  doi: 10.1109/JERM.2021.3137962
  contributor:
    fullname: Tisdale
– volume: 20
  start-page: 1488
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2024.106196_b0055
  article-title: Generic wideband phantom design methodology for microwave medical Applications[J]
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2021.3088449
  contributor:
    fullname: Gong
– year: 2013
  ident: 10.1016/j.bspc.2024.106196_b0090
  contributor:
    fullname: Scheeler
– volume: 58
  start-page: 8427
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2024.106196_b0015
  article-title: A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer[J]
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2987896
  contributor:
    fullname: Yan
– volume: 21
  start-page: 3324
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2024.106196_b0065
  article-title: Wearable microwave imaging sensor for deep tissue real-time monitoring using a new loss-compensated backpropagation Technique[J]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3023482
  contributor:
    fullname: Islam
– volume: 52
  start-page: 118
  issue: 10
  year: 2014
  ident: 10.1016/j.bspc.2024.106196_b0105
  article-title: Toward wearable wireless thermometers for internal body temperature Measurements[J]
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6917412
  contributor:
    fullname: Popovic
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2024.106196_b0130
  article-title: Ultrasonic examination of proximal muscle thicknesses and their influencing factors in healthy adults[J]
  publication-title: Medical J. West China
  contributor:
    fullname: Tang
– start-page: 1387
  year: 2017
  ident: 10.1016/j.bspc.2024.106196_b0120
  article-title: Non-invasive Microwave Thermometry of Multilayer Human Tissues[C]
  contributor:
    fullname: Momenroodaki
– year: 2015
  ident: 10.1016/j.bspc.2024.106196_b0010
  contributor:
    fullname: He
– volume: 1
  start-page: 172
  issue: 2
  year: 2008
  ident: 10.1016/j.bspc.2024.106196_b0005
  article-title: Skin biothermomechanics for medical treatments[J]
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2007.09.001
  contributor:
    fullname: Xu
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.106196_b0075
  article-title: Overview of the development of activation function and its nature analysis[J]
  publication-title: J. Xihua University
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 470
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2024.106196_b0040
  article-title: A Core body temperature retrieval method for microwave radiometry when tissue permittivity is Unknown[J]
  publication-title: IEEE J. Electromagnetics, RF Microwaves Med. Biol.
  doi: 10.1109/JERM.2022.3171092
  contributor:
    fullname: Tisdale
– volume: 67
  start-page: 158
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106196_b0045
  article-title: Real-time passive brain monitoring system using near-field microwave Radiometry[J]
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2909994
  contributor:
    fullname: Groumpas
– volume: 45
  start-page: 7
  issue: 1
  year: 2002
  ident: 10.1016/j.bspc.2024.106196_b0085
  article-title: Thermal near field and the possibilities of its use for in-depth temperature diagnostics of media[J]
  publication-title: Radiophys. Quantum Electron.
  doi: 10.1023/A:1015284304784
  contributor:
    fullname: Vaks
SSID ssj0048714
Score 2.3850691
Snippet •A high precision multi-frequency band inversion algorithm (Opt-XGBoost), based on an objective function correction and hyperparameter optimization, is...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106196
SubjectTerms Four-layer tissue
High-precision
Multi-frequency bands
Opt-XGBoost
Title Closed-loop high precision human tissue temperature measurements using a joint forward and inverse method
URI https://dx.doi.org/10.1016/j.bspc.2024.106196
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB36cdGD-In1o-zBm6TNNttkcyxFqYq9aKG3kM3uSkpNQhuv_nZ3kg1WEA8es-xAeElm3oY3bwBuAiZMGfdwoEnAHBYm5pMac9cJlfJoLAQXGhuFn-f-bMEel-NlC6ZNLwzKKm3ur3N6la3tytCiOSzSdPhiuLTPzekEVZBotNWGrilHjHWgO3l4ms2bhGwoeWXxjfsdDLC9M7XMS2wLdDIcsQEejtC7_7f6tFNz7g_hwJJFMqnv5whaKjuG_R0LwRNIp-t8q6SzzvOCoPcwKTZ2bA6p5u-RsoKWoAeVNVAm798_BrcEle9vJCarPM1KYjgs6mhJnEmSZqjZwO04ZfoUFvd3r9OZY8cnOInnuqVDeaC0rw3o2hQhqbXQUgZU0lBwbs5FMoxd6SqfKpFos8oF9zzBFFMjje6g3hl0sjxT50C4KxIfGwsZp4Z_xcIVkoqRHnOpdMBlD24b0KKidsmIGvnYKkKII4Q4qiHuwbjBNfrxrCOTxv-Iu_hn3CXs4VUtsr2CTrn5UNeGSpSiD-3BJ-3bF-YLJSbKbQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ3U9qAejJ-xfu7Bm8FCWWB7bBoNtR8X26Q3wrK7hqYCafH_u1OWWBPjweuyk5AHzLwlb94APASU6zLu4kCTgFq0l-hPymO21ZPSdWLOGVfYKDyZ-uGcvi68RQMGdS8MyipN7q9y-jZbm5WOQbNTpGnnTXNpn-nTCaog0WhrD1rUCxzahFZ_OAqndULWlHxr8Y37LQwwvTOVzItvCnQy7NInPByhd_9v9Wmn5rwcw5Ehi6Rf3c8JNGR2Coc7FoJnkA5W-UYKa5XnBUHvYVKszdgcsp2_R8ottAQ9qIyBMvn4_jG4Iah8fycxWeZpVhLNYVFHS-JMkDRDzQZuxynT5zB_eZ4NQsuMT7AS17ZLy2GBVL7SoCtdhIRSXAkROMLpccb0uUj0YlvY0nckT5ReZZy5LqeSyq5Cd1D3AppZnslLIMzmiY-NhZQ5mn_F3ObC4V3lMSFVwEQbHmvQoqJyyYhq-dgyQogjhDiqIG6DV-Ma_XjWkU7jf8Rd_TPuHvbD2WQcjYfT0TUc4JVKcHsDzXL9KW81rSj5nXltvgAKZsxf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed-loop+high+precision+human+tissue+temperature+measurements+using+a+joint+forward+and+inverse+method&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Liu%2C+Jie&rft.au=Cai%2C+Xinyi&rft.au=Liu%2C+Yixuan&rft.au=Sun%2C+Zhenlin&rft.date=2024-07-01&rft.issn=1746-8094&rft.volume=93&rft.spage=106196&rft_id=info:doi/10.1016%2Fj.bspc.2024.106196&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon