An improved RRT algorithm for robot path planning based on path expansion heuristic sampling
Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment whic...
Saved in:
Published in | Journal of computational science Vol. 67; p. 101937 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment which consists of long corridors, due to a large number of iterations are required in sampling critical nodes. To overcome this problem, the paper proposes the Expanding Path RRT* (EP-RRT*) based on heuristic sampling in path expansion area. By combining the greedy heuristic of Rapidly exploring Random Tree (RRT)-Connect, EP-RRT* quickly explores the environment in order to find a feasible path, and then expands it to obtain the heuristic sampling area. It iteratively searches in the heuristic sampling area which also changes with the continuous optimization of the path, and finally obtains an optimal or suboptimal path connecting starting point and target point. Comparisons of EP-RRT* with RRT* and Informed RRT* in four simulation environments verify that EP-RRT* improves the node utilization, accelerates the convergence rate, and obtains a better path for the same number of iterations.
•Propose a sampling-based asymptotically optimal path planning algorithm.•A greedy heuristic search strategy is introduced into the RRT* algorithm.•A path-expanding method for reducing the sampling area is presented.•Rapid convergence to path solution in narrow and maze environments. |
---|---|
AbstractList | Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment which consists of long corridors, due to a large number of iterations are required in sampling critical nodes. To overcome this problem, the paper proposes the Expanding Path RRT* (EP-RRT*) based on heuristic sampling in path expansion area. By combining the greedy heuristic of Rapidly exploring Random Tree (RRT)-Connect, EP-RRT* quickly explores the environment in order to find a feasible path, and then expands it to obtain the heuristic sampling area. It iteratively searches in the heuristic sampling area which also changes with the continuous optimization of the path, and finally obtains an optimal or suboptimal path connecting starting point and target point. Comparisons of EP-RRT* with RRT* and Informed RRT* in four simulation environments verify that EP-RRT* improves the node utilization, accelerates the convergence rate, and obtains a better path for the same number of iterations.
•Propose a sampling-based asymptotically optimal path planning algorithm.•A greedy heuristic search strategy is introduced into the RRT* algorithm.•A path-expanding method for reducing the sampling area is presented.•Rapid convergence to path solution in narrow and maze environments. |
ArticleNumber | 101937 |
Author | Lu, Shiqing Huang, Xia Ding, Jun Zhou, Yinxuan Song, Kun Wang, Lusheng |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0001-7762-889X surname: Ding fullname: Ding, Jun email: dingjun@cqut.edu.cn – sequence: 2 givenname: Yinxuan surname: Zhou fullname: Zhou, Yinxuan – sequence: 3 givenname: Xia surname: Huang fullname: Huang, Xia – sequence: 4 givenname: Kun surname: Song fullname: Song, Kun – sequence: 5 givenname: Shiqing surname: Lu fullname: Lu, Shiqing – sequence: 6 givenname: Lusheng surname: Wang fullname: Wang, Lusheng |
BookMark | eNp9kE1Lw0AQhhepYK39A572D6TuR5tswEspaoWCUOpNWPYr7YZkN-yuRf-9CREPHjqXmXmZZ5h5b8HEeWcAuMdogRHOH-pF7VVcEETIIJS0uAJTzIoiK1YYT_5qRG_APMYa9UEZKzGdgo-1g7btgj8bDff7AxTN0QebTi2sfIDBS59gJ9IJdo1wzrojlCL2s96NsvnqhIu2b0_mM9iYrIJRtF3Tj96B60o00cx_8wy8Pz8dNtts9_byulnvMkURShkuKqSlpsUSCUpKtSKMSlIipjHLicKyqqTOFVtJhvQyZ1RTQ4QsiKSKUkroDLBxrwo-xmAqrmwSqT8qBWEbjhEfjOI1H4zig1F8NKpHyT-0C7YV4fsy9DhCpn_qbE3gUVnjlNE2GJW49vYS_gMP-ISV |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3514320 crossref_primary_10_1109_ACCESS_2025_3541645 crossref_primary_10_3389_fnbot_2023_1269447 crossref_primary_10_1051_ijmqe_2024017 crossref_primary_10_1007_s40684_025_00706_3 crossref_primary_10_3390_drones8010009 crossref_primary_10_3390_electronics13204047 crossref_primary_10_1016_j_oceaneng_2024_117841 crossref_primary_10_1038_s41598_024_81234_z crossref_primary_10_2478_cait_2024_0011 crossref_primary_10_59782_sidr_v1i1_43 crossref_primary_10_1038_s41598_025_87113_5 crossref_primary_10_3390_electronics12214455 crossref_primary_10_58254_viti_6_2024_02_24 crossref_primary_10_3390_electronics13122340 crossref_primary_10_3934_math_2024587 crossref_primary_10_1177_09544062241305524 crossref_primary_10_3390_electronics13214266 crossref_primary_10_1002_eng2_13035 crossref_primary_10_1088_1402_4896_ad9cd3 crossref_primary_10_1088_1742_6596_2926_1_012003 crossref_primary_10_3233_JIFS_238695 crossref_primary_10_3390_drones8100540 crossref_primary_10_1515_jisys_2023_0219 crossref_primary_10_3390_electronics13101969 crossref_primary_10_3390_drones8100539 crossref_primary_10_3390_s25051490 crossref_primary_10_1016_j_eswa_2024_123388 crossref_primary_10_3390_jmse11081556 crossref_primary_10_3390_s23177547 crossref_primary_10_1177_01423312231199807 crossref_primary_10_1016_j_birob_2024_100207 crossref_primary_10_3390_app14146389 crossref_primary_10_1177_01423312241243177 crossref_primary_10_1016_j_engappai_2024_108518 crossref_primary_10_1007_s11370_024_00541_6 crossref_primary_10_1109_ACCESS_2024_3451616 crossref_primary_10_3390_electronics13214233 crossref_primary_10_1109_JSEN_2024_3498104 crossref_primary_10_2478_cait_2024_0026 crossref_primary_10_1007_s40430_024_05301_2 crossref_primary_10_26599_JICV_2023_9210011 crossref_primary_10_1109_JIOT_2024_3379361 crossref_primary_10_1017_S0263574724001930 crossref_primary_10_3390_drones8120760 |
Cites_doi | 10.1016/j.eswa.2019.01.032 10.1007/s11370-017-0236-7 10.1109/ACCESS.2018.2871222 10.1109/ACCESS.2020.2969316 10.1016/j.eswa.2021.115445 10.1016/j.eswa.2020.113425 10.1016/j.compag.2019.01.016 10.1007/s10514-015-9518-0 10.1109/ROBIO49542.2019.8961498 10.1109/ROBOT.2000.844730 10.1109/ROBIO.2015.7419012 10.1016/j.robot.2022.104121 10.1016/j.oceaneng.2021.108709 10.1016/j.cie.2021.107397 10.1007/s00521-019-04172-2 10.1177/0278364911406761 10.1016/j.eswa.2020.114541 10.1109/CCDC.2017.7979125 10.1109/ACCESS.2020.3011211 10.1109/ITOEC.2018.8740620 10.3390/s21020333 10.1109/ICMA.2013.6617944 10.1016/j.cie.2021.107230 10.5772/56718 10.1007/978-1-4613-8997-2_29 10.1016/j.proeng.2014.12.098 10.1109/IROS.2014.6942976 10.3844/jcssp.2008.341.344 10.1016/j.jocs.2017.08.004 10.1109/TIE.2020.2998740 10.1109/ACCESS.2014.2302442 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2022.101937 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2022_101937 S1877750322002964 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-17f0dbd3740a329c5283b2908d1862c1bffbd6c85b80d4683d3e2ab72b3c33323 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Thu Apr 24 22:52:41 EDT 2025 Tue Jul 01 03:46:12 EDT 2025 Fri Feb 23 02:37:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Path planning Narrow corridor Heuristic sampling RRT |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-17f0dbd3740a329c5283b2908d1862c1bffbd6c85b80d4683d3e2ab72b3c33323 |
ORCID | 0000-0001-7762-889X |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2022_101937 crossref_primary_10_1016_j_jocs_2022_101937 elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014) 2997–3004, https://doi.org/10.1109/IROS.2014.6942976. L. Ou, W. Liu, X. Yan, Y. Chen, J. Liang, A Review of Representation, Model, Algorithm and Constraints for Mobile Robot Path Planning, 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), (2018) 563–569, https://doi.org/10.1109/ITOEC.2018.8740620. Mashayekhi, Idris, Anisi, Ahmedy, Ali (bib21) 2020; 8 Li, Wei, Gao, Wang, Fan (bib27) 2020; 152 O. Adiyatov, H.A. Varol, Rapidly-exploring random tree based memory efficient motion planning, 2013 IEEE International Conference on Mechatronics and Automation, (2013) 354–359, https://doi.org/10.1109/ICMA.2013.6617944. Elhoseny, Tharwat, Hassanien (bib11) 2018; 25 Jeong, Lee, Kim (bib26) 2019; 123 Luo, Wang, Zheng, He (bib10) 2020; 32 Deng, Li, Zhao, Wang, Gui (bib15) 2021; 183 J. Li, S.X. Yang, Z. Xu, A survey on robot path planning using bio-inspired algorithms, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2019) 2111–2116, https://doi.org/10.1109/ROBIO49542.2019.8961498. J.J. Kuffner, S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2 (2000) 995–1001, https://doi.org/10.1109/ROBOT.2000.844730. Elbanhawi, Simic (bib18) 2014; 2 AL-Taharwa, Sheta, Al-Weshah (bib9) 2008; 4 Sang, You, Sun, Zhou, Liu (bib7) 2021; 223 Miao, Chen, Yan, Wu (bib12) 2021; 156 Kang, Lim, Choi, Jang, Jung (bib20) 2021; 21 Wang, Li, Meng (bib16) 2021; 170 Zhang, Wang, Zheng, Yu (bib28) 2018; 6 M. Lin, K. Yuan, C. Shi, Y. Wang, Path planning of mobile robot based on improved A algorithm, 29th Chinese Control And Decision Conference (CCDC), (2017) 3570–3576, https://doi.org/10.1109/CCDC.2017.7979125. Yao, Zheng, Qi, Yuan, Guo, Zhao, Liu, Yang (bib6) 2020; 8 Karaman, Frazzoli (bib22) 2011; 30 K. Sebastian, O. Jan, H. Andreas, R. Arne, S. Thomas, Z.J. Marius, D. Rüdiger, RRT-Connect: Faster, asymptotically optimal motion planning, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) 1670–1677, https://doi.org/10.1109/ROBIO.2015.7419012. Gao, Zhou, Yang, Dong, He (bib1) 2022 Mahmud, Abidin, Mohamed, Rahman, Iida (bib3) 2019; 157 Duchoň, Babinec, Kajan, Beňo, Florek, Fico, Jurišica (bib13) 2014; 96 Khatib (bib5) 1986 Qi, Yang, Sun (bib17) 2021; 68 Nasir, Islam, Malik, Ayaz, Hasan, Khan, Muhammad (bib23) 2013; 10 Noreen, Khan, Ryu, Doh, Habib (bib31) 2018; 11 Qureshi, Ayaz (bib30) 2016; 40 Zhang, Wu, Zhang, Peng, Zheng (bib2) 2021; 158 10.1016/j.jocs.2022.101937_bib19 10.1016/j.jocs.2022.101937_bib4 10.1016/j.jocs.2022.101937_bib14 Luo (10.1016/j.jocs.2022.101937_bib10) 2020; 32 Wang (10.1016/j.jocs.2022.101937_bib16) 2021; 170 Karaman (10.1016/j.jocs.2022.101937_bib22) 2011; 30 10.1016/j.jocs.2022.101937_bib8 Mashayekhi (10.1016/j.jocs.2022.101937_bib21) 2020; 8 Mahmud (10.1016/j.jocs.2022.101937_bib3) 2019; 157 Khatib (10.1016/j.jocs.2022.101937_bib5) 1986 Miao (10.1016/j.jocs.2022.101937_bib12) 2021; 156 AL-Taharwa (10.1016/j.jocs.2022.101937_bib9) 2008; 4 Elbanhawi (10.1016/j.jocs.2022.101937_bib18) 2014; 2 Elhoseny (10.1016/j.jocs.2022.101937_bib11) 2018; 25 Gao (10.1016/j.jocs.2022.101937_bib1) 2022 Qureshi (10.1016/j.jocs.2022.101937_bib30) 2016; 40 10.1016/j.jocs.2022.101937_bib29 Zhang (10.1016/j.jocs.2022.101937_bib28) 2018; 6 Deng (10.1016/j.jocs.2022.101937_bib15) 2021; 183 10.1016/j.jocs.2022.101937_bib24 10.1016/j.jocs.2022.101937_bib25 Jeong (10.1016/j.jocs.2022.101937_bib26) 2019; 123 Kang (10.1016/j.jocs.2022.101937_bib20) 2021; 21 Yao (10.1016/j.jocs.2022.101937_bib6) 2020; 8 Sang (10.1016/j.jocs.2022.101937_bib7) 2021; 223 Duchoň (10.1016/j.jocs.2022.101937_bib13) 2014; 96 Nasir (10.1016/j.jocs.2022.101937_bib23) 2013; 10 Noreen (10.1016/j.jocs.2022.101937_bib31) 2018; 11 Zhang (10.1016/j.jocs.2022.101937_bib2) 2021; 158 Qi (10.1016/j.jocs.2022.101937_bib17) 2021; 68 Li (10.1016/j.jocs.2022.101937_bib27) 2020; 152 |
References_xml | – reference: L. Ou, W. Liu, X. Yan, Y. Chen, J. Liang, A Review of Representation, Model, Algorithm and Constraints for Mobile Robot Path Planning, 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), (2018) 563–569, https://doi.org/10.1109/ITOEC.2018.8740620. – volume: 32 start-page: 1555 year: 2020 end-page: 1566 ident: bib10 article-title: Research on path planning of mobile robot based on improved ant colony algorithm publication-title: Neural Comput. Appl. – volume: 223 year: 2021 ident: bib7 article-title: The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations publication-title: Ocean Eng. – reference: J.J. Kuffner, S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2 (2000) 995–1001, https://doi.org/10.1109/ROBOT.2000.844730. – volume: 10 start-page: 299 year: 2013 ident: bib23 article-title: RRT*-SMART: a rapid convergence implementation of RRT* publication-title: Int. J. Adv. Robot. Syst. – start-page: 396 year: 1986 end-page: 404 ident: bib5 article-title: Real-Time obstacle avoidance for manipulators and mobile robots publication-title: Auton. Robot Veh. – volume: 30 start-page: 846 year: 2011 end-page: 894 ident: bib22 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. – volume: 8 start-page: 19842 year: 2020 end-page: 19852 ident: bib21 article-title: Informed RRT*-Connect: an asymptotically optimal single-query path planning method publication-title: IEEE Access – volume: 96 start-page: 59 year: 2014 end-page: 69 ident: bib13 article-title: Path planning with modified a star algorithm for a mobile robot publication-title: Procedia Eng. – reference: M. Lin, K. Yuan, C. Shi, Y. Wang, Path planning of mobile robot based on improved A algorithm, 29th Chinese Control And Decision Conference (CCDC), (2017) 3570–3576, https://doi.org/10.1109/CCDC.2017.7979125. – volume: 6 start-page: 53296 year: 2018 end-page: 53306 ident: bib28 article-title: Path planning of industrial robot based on improved RRT algorithm in complex environments publication-title: IEEE Access – year: 2022 ident: bib1 article-title: An intelligent master–slave collaborative robot system for cafeteria service publication-title: Robot. Auton. Syst. – volume: 123 start-page: 82 year: 2019 end-page: 90 ident: bib26 article-title: Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate publication-title: Expert Syst. Appl. – volume: 8 start-page: 135513 year: 2020 end-page: 135523 ident: bib6 article-title: Path planning method with improved artificial potential field—a reinforcement learning perspective publication-title: IEEE Access – reference: J. Li, S.X. Yang, Z. Xu, A survey on robot path planning using bio-inspired algorithms, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2019) 2111–2116, https://doi.org/10.1109/ROBIO49542.2019.8961498. – volume: 68 start-page: 7244 year: 2021 end-page: 7251 ident: bib17 article-title: MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment publication-title: IEEE Trans. Ind. Electron. – reference: K. Sebastian, O. Jan, H. Andreas, R. Arne, S. Thomas, Z.J. Marius, D. Rüdiger, RRT-Connect: Faster, asymptotically optimal motion planning, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) 1670–1677, https://doi.org/10.1109/ROBIO.2015.7419012. – volume: 157 start-page: 488 year: 2019 end-page: 499 ident: bib3 article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment publication-title: Comput. Electron. Agric. – volume: 183 year: 2021 ident: bib15 article-title: Multi-obstacle path planning and optimization for mobile robot publication-title: Expert Syst. Appl. – volume: 21 start-page: 333 year: 2021 ident: bib20 article-title: Improved RRT-Connect algorithm based on triangular inequality for robot path planning publication-title: Sensors – volume: 152 year: 2020 ident: bib27 article-title: PQ-RRT*: an improved path planning algorithm for mobile robots publication-title: Expert Syst. Appl. – volume: 156 year: 2021 ident: bib12 article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm publication-title: Comput. Ind. Eng. – volume: 170 year: 2021 ident: bib16 article-title: Kinematic constrained bi-directional rrt with efficient branch pruning for robot path planning publication-title: Expert Syst. Appl. – volume: 158 year: 2021 ident: bib2 article-title: Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop publication-title: Comput. Ind. Eng. – reference: O. Adiyatov, H.A. Varol, Rapidly-exploring random tree based memory efficient motion planning, 2013 IEEE International Conference on Mechatronics and Automation, (2013) 354–359, https://doi.org/10.1109/ICMA.2013.6617944. – volume: 40 start-page: 1079 year: 2016 end-page: 1093 ident: bib30 article-title: Potential functions based sampling heuristic for optimal path planning publication-title: Auton. Robots – volume: 25 start-page: 339 year: 2018 end-page: 350 ident: bib11 article-title: Bezier curve based path planning in a dynamic field using modified genetic algorithm publication-title: J. Comput. Sci. – volume: 11 start-page: 41 year: 2018 end-page: 52 ident: bib31 article-title: Optimal path planning in cluttered environment using RRT*-AB publication-title: Intell. Serv. Robot. – volume: 4 start-page: 341 year: 2008 end-page: 344 ident: bib9 article-title: A mobile robot path planning using genetic algorithm in static environment publication-title: J. Comput. Sci. – volume: 2 start-page: 56 year: 2014 end-page: 77 ident: bib18 article-title: Sampling-based robot motion planning: a review publication-title: IEEE Access – reference: J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014) 2997–3004, https://doi.org/10.1109/IROS.2014.6942976. – volume: 123 start-page: 82 year: 2019 ident: 10.1016/j.jocs.2022.101937_bib26 article-title: Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.032 – volume: 11 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.jocs.2022.101937_bib31 article-title: Optimal path planning in cluttered environment using RRT*-AB publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-017-0236-7 – volume: 6 start-page: 53296 year: 2018 ident: 10.1016/j.jocs.2022.101937_bib28 article-title: Path planning of industrial robot based on improved RRT algorithm in complex environments publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2871222 – volume: 8 start-page: 19842 year: 2020 ident: 10.1016/j.jocs.2022.101937_bib21 article-title: Informed RRT*-Connect: an asymptotically optimal single-query path planning method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969316 – volume: 183 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib15 article-title: Multi-obstacle path planning and optimization for mobile robot publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115445 – volume: 152 year: 2020 ident: 10.1016/j.jocs.2022.101937_bib27 article-title: PQ-RRT*: an improved path planning algorithm for mobile robots publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113425 – volume: 157 start-page: 488 year: 2019 ident: 10.1016/j.jocs.2022.101937_bib3 article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.016 – volume: 40 start-page: 1079 issue: 6 year: 2016 ident: 10.1016/j.jocs.2022.101937_bib30 article-title: Potential functions based sampling heuristic for optimal path planning publication-title: Auton. Robots doi: 10.1007/s10514-015-9518-0 – ident: 10.1016/j.jocs.2022.101937_bib8 doi: 10.1109/ROBIO49542.2019.8961498 – ident: 10.1016/j.jocs.2022.101937_bib19 doi: 10.1109/ROBOT.2000.844730 – ident: 10.1016/j.jocs.2022.101937_bib29 doi: 10.1109/ROBIO.2015.7419012 – year: 2022 ident: 10.1016/j.jocs.2022.101937_bib1 article-title: An intelligent master–slave collaborative robot system for cafeteria service publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2022.104121 – volume: 223 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib7 article-title: The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108709 – volume: 158 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib2 article-title: Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107397 – volume: 32 start-page: 1555 issue: 6 year: 2020 ident: 10.1016/j.jocs.2022.101937_bib10 article-title: Research on path planning of mobile robot based on improved ant colony algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04172-2 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 10.1016/j.jocs.2022.101937_bib22 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – volume: 170 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib16 article-title: Kinematic constrained bi-directional rrt with efficient branch pruning for robot path planning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114541 – ident: 10.1016/j.jocs.2022.101937_bib14 doi: 10.1109/CCDC.2017.7979125 – volume: 8 start-page: 135513 year: 2020 ident: 10.1016/j.jocs.2022.101937_bib6 article-title: Path planning method with improved artificial potential field—a reinforcement learning perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011211 – ident: 10.1016/j.jocs.2022.101937_bib4 doi: 10.1109/ITOEC.2018.8740620 – volume: 21 start-page: 333 issue: 2 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib20 article-title: Improved RRT-Connect algorithm based on triangular inequality for robot path planning publication-title: Sensors doi: 10.3390/s21020333 – ident: 10.1016/j.jocs.2022.101937_bib24 doi: 10.1109/ICMA.2013.6617944 – volume: 156 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib12 article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107230 – volume: 10 start-page: 299 issue: 7 year: 2013 ident: 10.1016/j.jocs.2022.101937_bib23 article-title: RRT*-SMART: a rapid convergence implementation of RRT* publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/56718 – start-page: 396 year: 1986 ident: 10.1016/j.jocs.2022.101937_bib5 article-title: Real-Time obstacle avoidance for manipulators and mobile robots publication-title: Auton. Robot Veh. doi: 10.1007/978-1-4613-8997-2_29 – volume: 96 start-page: 59 year: 2014 ident: 10.1016/j.jocs.2022.101937_bib13 article-title: Path planning with modified a star algorithm for a mobile robot publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.12.098 – ident: 10.1016/j.jocs.2022.101937_bib25 doi: 10.1109/IROS.2014.6942976 – volume: 4 start-page: 341 issue: 4 year: 2008 ident: 10.1016/j.jocs.2022.101937_bib9 article-title: A mobile robot path planning using genetic algorithm in static environment publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2008.341.344 – volume: 25 start-page: 339 year: 2018 ident: 10.1016/j.jocs.2022.101937_bib11 article-title: Bezier curve based path planning in a dynamic field using modified genetic algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.08.004 – volume: 68 start-page: 7244 issue: 8 year: 2021 ident: 10.1016/j.jocs.2022.101937_bib17 article-title: MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2998740 – volume: 2 start-page: 56 year: 2014 ident: 10.1016/j.jocs.2022.101937_bib18 article-title: Sampling-based robot motion planning: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 |
SSID | ssj0000388913 |
Score | 2.5031738 |
Snippet | Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101937 |
SubjectTerms | Heuristic sampling Narrow corridor Path planning RRT |
Title | An improved RRT algorithm for robot path planning based on path expansion heuristic sampling |
URI | https://dx.doi.org/10.1016/j.jocs.2022.101937 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KgngRn_hmDx4Uic0-kk2ORZSq2ENtoQch7COrLTUpbQqe_O1mmk1RkB68LjsQJrMzk8m334fQhY2kSK2wHhdWejxgylNMMM9SGRqriDAS5h3PnbDd54-DYNBAt_VdGIBVutxf5fRFtnYrTefN5mQ4bL4QoLIL_DIi4ddSCJygnAuI8psvspyzANtJvFBJhv0eGLi7MxXMa5RrYO2mFBZikEP_qz79qDn322jLNYu4VT3PDmqk2S7aqLHqu2jHncwZvnT00Vd76LWV4eFiVJAa3O32sBy_5dNh8f6BywYVT3OVFxiEiPHECRZhKGUG51m1nH6WGQKGaPg9nVdEzngmAXmeve2j_v1d77btOQ0FTzPfLzwirG-UYYL7ktFYA5eLorEfGVJ-y2iirFUm1FGgIt_wMGKGpVQqQRXTjDHKDtBalmfpIcKWRLGWtOzYFOfWAINhYLUxNgwMJ1IfIVJ7LtGOYBx0LsZJjSQbJeDtBLydVN4-QtdLm0lFr7Fyd1C_kORXkCRl_l9hd_xPuxO0CeryFeTsFK0V03l6VvYghTpfBNk5Wm89PLU738XN2y8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC6WCNGLmKiYaEwfFBQZd_oxr4OHYBI2JruHuIEchLGfyYY4s-xO0Fz8U_5Bu3Z6lgghByHXYhp6vi6qamqqvw_gjctlZl3mIpE5GYmEq0jxjEeOydQ4RTMjsd8xHKWDE_HlNDntwZ_uLgyOVYbY38b0RbQOln5Asz-dTPpfKVLZJbH3SPy1lIowWXlor3_677b5p4Ndf8hvGdvfG38eREFaINI8jpuIZi42yvBMxJKzQiPFiWJFnBvqS3xNlXPKpDpPVB4bkebccMukypjimnOObAc-7j_w75ajbMLH33TZ2EF6lWIhy4wbjHCH4bJOO1d2UWukCWcMDQXqr9-WEG8kuf0n8DhUp2SnBWANerZah9VuOH4d1kIomJN3ga_6_VP4tlORyaI3YQ05Ph4TeXlWzybN-Q_iK2Iyq1XdEFQ-JtOgkEQwdxpSV63Z_vIhCbt25NxetczRZC5x1L06ewYn94Lsc1ip6sq-AOJoXmjJfImohHAGKRMTp41xaWIElXoDaIdcqQOjOQprXJbd6NpFiWiXiHbZor0BH5Zrpi2fx51PJ92BlP94ZekTzh3rNv9z3TY8HIyHR-XRwejwJTxCaft23u0VrDSzK7vlC6BGvV44HIHv9-3hfwEIUxYM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+RRT+algorithm+for+robot+path+planning+based+on+path+expansion+heuristic+sampling&rft.jtitle=Journal+of+computational+science&rft.au=Ding%2C+Jun&rft.au=Zhou%2C+Yinxuan&rft.au=Huang%2C+Xia&rft.au=Song%2C+Kun&rft.date=2023-03-01&rft.issn=1877-7503&rft.volume=67&rft.spage=101937&rft_id=info:doi/10.1016%2Fj.jocs.2022.101937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2022_101937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |