An improved RRT algorithm for robot path planning based on path expansion heuristic sampling

Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment whic...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 67; p. 101937
Main Authors Ding, Jun, Zhou, Yinxuan, Huang, Xia, Song, Kun, Lu, Shiqing, Wang, Lusheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment which consists of long corridors, due to a large number of iterations are required in sampling critical nodes. To overcome this problem, the paper proposes the Expanding Path RRT* (EP-RRT*) based on heuristic sampling in path expansion area. By combining the greedy heuristic of Rapidly exploring Random Tree (RRT)-Connect, EP-RRT* quickly explores the environment in order to find a feasible path, and then expands it to obtain the heuristic sampling area. It iteratively searches in the heuristic sampling area which also changes with the continuous optimization of the path, and finally obtains an optimal or suboptimal path connecting starting point and target point. Comparisons of EP-RRT* with RRT* and Informed RRT* in four simulation environments verify that EP-RRT* improves the node utilization, accelerates the convergence rate, and obtains a better path for the same number of iterations. •Propose a sampling-based asymptotically optimal path planning algorithm.•A greedy heuristic search strategy is introduced into the RRT* algorithm.•A path-expanding method for reducing the sampling area is presented.•Rapid convergence to path solution in narrow and maze environments.
AbstractList Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for many path planning problems. However, many RRT* based variants have low sampling efficiency and slow convergence rate in the environment which consists of long corridors, due to a large number of iterations are required in sampling critical nodes. To overcome this problem, the paper proposes the Expanding Path RRT* (EP-RRT*) based on heuristic sampling in path expansion area. By combining the greedy heuristic of Rapidly exploring Random Tree (RRT)-Connect, EP-RRT* quickly explores the environment in order to find a feasible path, and then expands it to obtain the heuristic sampling area. It iteratively searches in the heuristic sampling area which also changes with the continuous optimization of the path, and finally obtains an optimal or suboptimal path connecting starting point and target point. Comparisons of EP-RRT* with RRT* and Informed RRT* in four simulation environments verify that EP-RRT* improves the node utilization, accelerates the convergence rate, and obtains a better path for the same number of iterations. •Propose a sampling-based asymptotically optimal path planning algorithm.•A greedy heuristic search strategy is introduced into the RRT* algorithm.•A path-expanding method for reducing the sampling area is presented.•Rapid convergence to path solution in narrow and maze environments.
ArticleNumber 101937
Author Lu, Shiqing
Huang, Xia
Ding, Jun
Zhou, Yinxuan
Song, Kun
Wang, Lusheng
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-7762-889X
  surname: Ding
  fullname: Ding, Jun
  email: dingjun@cqut.edu.cn
– sequence: 2
  givenname: Yinxuan
  surname: Zhou
  fullname: Zhou, Yinxuan
– sequence: 3
  givenname: Xia
  surname: Huang
  fullname: Huang, Xia
– sequence: 4
  givenname: Kun
  surname: Song
  fullname: Song, Kun
– sequence: 5
  givenname: Shiqing
  surname: Lu
  fullname: Lu, Shiqing
– sequence: 6
  givenname: Lusheng
  surname: Wang
  fullname: Wang, Lusheng
BookMark eNp9kE1Lw0AQhhepYK39A572D6TuR5tswEspaoWCUOpNWPYr7YZkN-yuRf-9CREPHjqXmXmZZ5h5b8HEeWcAuMdogRHOH-pF7VVcEETIIJS0uAJTzIoiK1YYT_5qRG_APMYa9UEZKzGdgo-1g7btgj8bDff7AxTN0QebTi2sfIDBS59gJ9IJdo1wzrojlCL2s96NsvnqhIu2b0_mM9iYrIJRtF3Tj96B60o00cx_8wy8Pz8dNtts9_byulnvMkURShkuKqSlpsUSCUpKtSKMSlIipjHLicKyqqTOFVtJhvQyZ1RTQ4QsiKSKUkroDLBxrwo-xmAqrmwSqT8qBWEbjhEfjOI1H4zig1F8NKpHyT-0C7YV4fsy9DhCpn_qbE3gUVnjlNE2GJW49vYS_gMP-ISV
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3514320
crossref_primary_10_1109_ACCESS_2025_3541645
crossref_primary_10_3389_fnbot_2023_1269447
crossref_primary_10_1051_ijmqe_2024017
crossref_primary_10_1007_s40684_025_00706_3
crossref_primary_10_3390_drones8010009
crossref_primary_10_3390_electronics13204047
crossref_primary_10_1016_j_oceaneng_2024_117841
crossref_primary_10_1038_s41598_024_81234_z
crossref_primary_10_2478_cait_2024_0011
crossref_primary_10_59782_sidr_v1i1_43
crossref_primary_10_1038_s41598_025_87113_5
crossref_primary_10_3390_electronics12214455
crossref_primary_10_58254_viti_6_2024_02_24
crossref_primary_10_3390_electronics13122340
crossref_primary_10_3934_math_2024587
crossref_primary_10_1177_09544062241305524
crossref_primary_10_3390_electronics13214266
crossref_primary_10_1002_eng2_13035
crossref_primary_10_1088_1402_4896_ad9cd3
crossref_primary_10_1088_1742_6596_2926_1_012003
crossref_primary_10_3233_JIFS_238695
crossref_primary_10_3390_drones8100540
crossref_primary_10_1515_jisys_2023_0219
crossref_primary_10_3390_electronics13101969
crossref_primary_10_3390_drones8100539
crossref_primary_10_3390_s25051490
crossref_primary_10_1016_j_eswa_2024_123388
crossref_primary_10_3390_jmse11081556
crossref_primary_10_3390_s23177547
crossref_primary_10_1177_01423312231199807
crossref_primary_10_1016_j_birob_2024_100207
crossref_primary_10_3390_app14146389
crossref_primary_10_1177_01423312241243177
crossref_primary_10_1016_j_engappai_2024_108518
crossref_primary_10_1007_s11370_024_00541_6
crossref_primary_10_1109_ACCESS_2024_3451616
crossref_primary_10_3390_electronics13214233
crossref_primary_10_1109_JSEN_2024_3498104
crossref_primary_10_2478_cait_2024_0026
crossref_primary_10_1007_s40430_024_05301_2
crossref_primary_10_26599_JICV_2023_9210011
crossref_primary_10_1109_JIOT_2024_3379361
crossref_primary_10_1017_S0263574724001930
crossref_primary_10_3390_drones8120760
Cites_doi 10.1016/j.eswa.2019.01.032
10.1007/s11370-017-0236-7
10.1109/ACCESS.2018.2871222
10.1109/ACCESS.2020.2969316
10.1016/j.eswa.2021.115445
10.1016/j.eswa.2020.113425
10.1016/j.compag.2019.01.016
10.1007/s10514-015-9518-0
10.1109/ROBIO49542.2019.8961498
10.1109/ROBOT.2000.844730
10.1109/ROBIO.2015.7419012
10.1016/j.robot.2022.104121
10.1016/j.oceaneng.2021.108709
10.1016/j.cie.2021.107397
10.1007/s00521-019-04172-2
10.1177/0278364911406761
10.1016/j.eswa.2020.114541
10.1109/CCDC.2017.7979125
10.1109/ACCESS.2020.3011211
10.1109/ITOEC.2018.8740620
10.3390/s21020333
10.1109/ICMA.2013.6617944
10.1016/j.cie.2021.107230
10.5772/56718
10.1007/978-1-4613-8997-2_29
10.1016/j.proeng.2014.12.098
10.1109/IROS.2014.6942976
10.3844/jcssp.2008.341.344
10.1016/j.jocs.2017.08.004
10.1109/TIE.2020.2998740
10.1109/ACCESS.2014.2302442
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2022.101937
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2022_101937
S1877750322002964
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-17f0dbd3740a329c5283b2908d1862c1bffbd6c85b80d4683d3e2ab72b3c33323
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Thu Apr 24 22:52:41 EDT 2025
Tue Jul 01 03:46:12 EDT 2025
Fri Feb 23 02:37:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Path planning
Narrow corridor
Heuristic sampling
RRT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-17f0dbd3740a329c5283b2908d1862c1bffbd6c85b80d4683d3e2ab72b3c33323
ORCID 0000-0001-7762-889X
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2022_101937
crossref_primary_10_1016_j_jocs_2022_101937
elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014) 2997–3004, https://doi.org/10.1109/IROS.2014.6942976.
L. Ou, W. Liu, X. Yan, Y. Chen, J. Liang, A Review of Representation, Model, Algorithm and Constraints for Mobile Robot Path Planning, 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), (2018) 563–569, https://doi.org/10.1109/ITOEC.2018.8740620.
Mashayekhi, Idris, Anisi, Ahmedy, Ali (bib21) 2020; 8
Li, Wei, Gao, Wang, Fan (bib27) 2020; 152
O. Adiyatov, H.A. Varol, Rapidly-exploring random tree based memory efficient motion planning, 2013 IEEE International Conference on Mechatronics and Automation, (2013) 354–359, https://doi.org/10.1109/ICMA.2013.6617944.
Elhoseny, Tharwat, Hassanien (bib11) 2018; 25
Jeong, Lee, Kim (bib26) 2019; 123
Luo, Wang, Zheng, He (bib10) 2020; 32
Deng, Li, Zhao, Wang, Gui (bib15) 2021; 183
J. Li, S.X. Yang, Z. Xu, A survey on robot path planning using bio-inspired algorithms, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2019) 2111–2116, https://doi.org/10.1109/ROBIO49542.2019.8961498.
J.J. Kuffner, S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2 (2000) 995–1001, https://doi.org/10.1109/ROBOT.2000.844730.
Elbanhawi, Simic (bib18) 2014; 2
AL-Taharwa, Sheta, Al-Weshah (bib9) 2008; 4
Sang, You, Sun, Zhou, Liu (bib7) 2021; 223
Miao, Chen, Yan, Wu (bib12) 2021; 156
Kang, Lim, Choi, Jang, Jung (bib20) 2021; 21
Wang, Li, Meng (bib16) 2021; 170
Zhang, Wang, Zheng, Yu (bib28) 2018; 6
M. Lin, K. Yuan, C. Shi, Y. Wang, Path planning of mobile robot based on improved A algorithm, 29th Chinese Control And Decision Conference (CCDC), (2017) 3570–3576, https://doi.org/10.1109/CCDC.2017.7979125.
Yao, Zheng, Qi, Yuan, Guo, Zhao, Liu, Yang (bib6) 2020; 8
Karaman, Frazzoli (bib22) 2011; 30
K. Sebastian, O. Jan, H. Andreas, R. Arne, S. Thomas, Z.J. Marius, D. Rüdiger, RRT-Connect: Faster, asymptotically optimal motion planning, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) 1670–1677, https://doi.org/10.1109/ROBIO.2015.7419012.
Gao, Zhou, Yang, Dong, He (bib1) 2022
Mahmud, Abidin, Mohamed, Rahman, Iida (bib3) 2019; 157
Duchoň, Babinec, Kajan, Beňo, Florek, Fico, Jurišica (bib13) 2014; 96
Khatib (bib5) 1986
Qi, Yang, Sun (bib17) 2021; 68
Nasir, Islam, Malik, Ayaz, Hasan, Khan, Muhammad (bib23) 2013; 10
Noreen, Khan, Ryu, Doh, Habib (bib31) 2018; 11
Qureshi, Ayaz (bib30) 2016; 40
Zhang, Wu, Zhang, Peng, Zheng (bib2) 2021; 158
10.1016/j.jocs.2022.101937_bib19
10.1016/j.jocs.2022.101937_bib4
10.1016/j.jocs.2022.101937_bib14
Luo (10.1016/j.jocs.2022.101937_bib10) 2020; 32
Wang (10.1016/j.jocs.2022.101937_bib16) 2021; 170
Karaman (10.1016/j.jocs.2022.101937_bib22) 2011; 30
10.1016/j.jocs.2022.101937_bib8
Mashayekhi (10.1016/j.jocs.2022.101937_bib21) 2020; 8
Mahmud (10.1016/j.jocs.2022.101937_bib3) 2019; 157
Khatib (10.1016/j.jocs.2022.101937_bib5) 1986
Miao (10.1016/j.jocs.2022.101937_bib12) 2021; 156
AL-Taharwa (10.1016/j.jocs.2022.101937_bib9) 2008; 4
Elbanhawi (10.1016/j.jocs.2022.101937_bib18) 2014; 2
Elhoseny (10.1016/j.jocs.2022.101937_bib11) 2018; 25
Gao (10.1016/j.jocs.2022.101937_bib1) 2022
Qureshi (10.1016/j.jocs.2022.101937_bib30) 2016; 40
10.1016/j.jocs.2022.101937_bib29
Zhang (10.1016/j.jocs.2022.101937_bib28) 2018; 6
Deng (10.1016/j.jocs.2022.101937_bib15) 2021; 183
10.1016/j.jocs.2022.101937_bib24
10.1016/j.jocs.2022.101937_bib25
Jeong (10.1016/j.jocs.2022.101937_bib26) 2019; 123
Kang (10.1016/j.jocs.2022.101937_bib20) 2021; 21
Yao (10.1016/j.jocs.2022.101937_bib6) 2020; 8
Sang (10.1016/j.jocs.2022.101937_bib7) 2021; 223
Duchoň (10.1016/j.jocs.2022.101937_bib13) 2014; 96
Nasir (10.1016/j.jocs.2022.101937_bib23) 2013; 10
Noreen (10.1016/j.jocs.2022.101937_bib31) 2018; 11
Zhang (10.1016/j.jocs.2022.101937_bib2) 2021; 158
Qi (10.1016/j.jocs.2022.101937_bib17) 2021; 68
Li (10.1016/j.jocs.2022.101937_bib27) 2020; 152
References_xml – reference: L. Ou, W. Liu, X. Yan, Y. Chen, J. Liang, A Review of Representation, Model, Algorithm and Constraints for Mobile Robot Path Planning, 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), (2018) 563–569, https://doi.org/10.1109/ITOEC.2018.8740620.
– volume: 32
  start-page: 1555
  year: 2020
  end-page: 1566
  ident: bib10
  article-title: Research on path planning of mobile robot based on improved ant colony algorithm
  publication-title: Neural Comput. Appl.
– volume: 223
  year: 2021
  ident: bib7
  article-title: The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations
  publication-title: Ocean Eng.
– reference: J.J. Kuffner, S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2 (2000) 995–1001, https://doi.org/10.1109/ROBOT.2000.844730.
– volume: 10
  start-page: 299
  year: 2013
  ident: bib23
  article-title: RRT*-SMART: a rapid convergence implementation of RRT*
  publication-title: Int. J. Adv. Robot. Syst.
– start-page: 396
  year: 1986
  end-page: 404
  ident: bib5
  article-title: Real-Time obstacle avoidance for manipulators and mobile robots
  publication-title: Auton. Robot Veh.
– volume: 30
  start-page: 846
  year: 2011
  end-page: 894
  ident: bib22
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
– volume: 8
  start-page: 19842
  year: 2020
  end-page: 19852
  ident: bib21
  article-title: Informed RRT*-Connect: an asymptotically optimal single-query path planning method
  publication-title: IEEE Access
– volume: 96
  start-page: 59
  year: 2014
  end-page: 69
  ident: bib13
  article-title: Path planning with modified a star algorithm for a mobile robot
  publication-title: Procedia Eng.
– reference: M. Lin, K. Yuan, C. Shi, Y. Wang, Path planning of mobile robot based on improved A algorithm, 29th Chinese Control And Decision Conference (CCDC), (2017) 3570–3576, https://doi.org/10.1109/CCDC.2017.7979125.
– volume: 6
  start-page: 53296
  year: 2018
  end-page: 53306
  ident: bib28
  article-title: Path planning of industrial robot based on improved RRT algorithm in complex environments
  publication-title: IEEE Access
– year: 2022
  ident: bib1
  article-title: An intelligent master–slave collaborative robot system for cafeteria service
  publication-title: Robot. Auton. Syst.
– volume: 123
  start-page: 82
  year: 2019
  end-page: 90
  ident: bib26
  article-title: Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 135513
  year: 2020
  end-page: 135523
  ident: bib6
  article-title: Path planning method with improved artificial potential field—a reinforcement learning perspective
  publication-title: IEEE Access
– reference: J. Li, S.X. Yang, Z. Xu, A survey on robot path planning using bio-inspired algorithms, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2019) 2111–2116, https://doi.org/10.1109/ROBIO49542.2019.8961498.
– volume: 68
  start-page: 7244
  year: 2021
  end-page: 7251
  ident: bib17
  article-title: MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment
  publication-title: IEEE Trans. Ind. Electron.
– reference: K. Sebastian, O. Jan, H. Andreas, R. Arne, S. Thomas, Z.J. Marius, D. Rüdiger, RRT-Connect: Faster, asymptotically optimal motion planning, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) 1670–1677, https://doi.org/10.1109/ROBIO.2015.7419012.
– volume: 157
  start-page: 488
  year: 2019
  end-page: 499
  ident: bib3
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Comput. Electron. Agric.
– volume: 183
  year: 2021
  ident: bib15
  article-title: Multi-obstacle path planning and optimization for mobile robot
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 333
  year: 2021
  ident: bib20
  article-title: Improved RRT-Connect algorithm based on triangular inequality for robot path planning
  publication-title: Sensors
– volume: 152
  year: 2020
  ident: bib27
  article-title: PQ-RRT*: an improved path planning algorithm for mobile robots
  publication-title: Expert Syst. Appl.
– volume: 156
  year: 2021
  ident: bib12
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Comput. Ind. Eng.
– volume: 170
  year: 2021
  ident: bib16
  article-title: Kinematic constrained bi-directional rrt with efficient branch pruning for robot path planning
  publication-title: Expert Syst. Appl.
– volume: 158
  year: 2021
  ident: bib2
  article-title: Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop
  publication-title: Comput. Ind. Eng.
– reference: O. Adiyatov, H.A. Varol, Rapidly-exploring random tree based memory efficient motion planning, 2013 IEEE International Conference on Mechatronics and Automation, (2013) 354–359, https://doi.org/10.1109/ICMA.2013.6617944.
– volume: 40
  start-page: 1079
  year: 2016
  end-page: 1093
  ident: bib30
  article-title: Potential functions based sampling heuristic for optimal path planning
  publication-title: Auton. Robots
– volume: 25
  start-page: 339
  year: 2018
  end-page: 350
  ident: bib11
  article-title: Bezier curve based path planning in a dynamic field using modified genetic algorithm
  publication-title: J. Comput. Sci.
– volume: 11
  start-page: 41
  year: 2018
  end-page: 52
  ident: bib31
  article-title: Optimal path planning in cluttered environment using RRT*-AB
  publication-title: Intell. Serv. Robot.
– volume: 4
  start-page: 341
  year: 2008
  end-page: 344
  ident: bib9
  article-title: A mobile robot path planning using genetic algorithm in static environment
  publication-title: J. Comput. Sci.
– volume: 2
  start-page: 56
  year: 2014
  end-page: 77
  ident: bib18
  article-title: Sampling-based robot motion planning: a review
  publication-title: IEEE Access
– reference: J.D. Gammell, S.S. Srinivasa, T.D. Barfoot, Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014) 2997–3004, https://doi.org/10.1109/IROS.2014.6942976.
– volume: 123
  start-page: 82
  year: 2019
  ident: 10.1016/j.jocs.2022.101937_bib26
  article-title: Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.032
– volume: 11
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.jocs.2022.101937_bib31
  article-title: Optimal path planning in cluttered environment using RRT*-AB
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-017-0236-7
– volume: 6
  start-page: 53296
  year: 2018
  ident: 10.1016/j.jocs.2022.101937_bib28
  article-title: Path planning of industrial robot based on improved RRT algorithm in complex environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871222
– volume: 8
  start-page: 19842
  year: 2020
  ident: 10.1016/j.jocs.2022.101937_bib21
  article-title: Informed RRT*-Connect: an asymptotically optimal single-query path planning method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969316
– volume: 183
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib15
  article-title: Multi-obstacle path planning and optimization for mobile robot
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115445
– volume: 152
  year: 2020
  ident: 10.1016/j.jocs.2022.101937_bib27
  article-title: PQ-RRT*: an improved path planning algorithm for mobile robots
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113425
– volume: 157
  start-page: 488
  year: 2019
  ident: 10.1016/j.jocs.2022.101937_bib3
  article-title: Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.016
– volume: 40
  start-page: 1079
  issue: 6
  year: 2016
  ident: 10.1016/j.jocs.2022.101937_bib30
  article-title: Potential functions based sampling heuristic for optimal path planning
  publication-title: Auton. Robots
  doi: 10.1007/s10514-015-9518-0
– ident: 10.1016/j.jocs.2022.101937_bib8
  doi: 10.1109/ROBIO49542.2019.8961498
– ident: 10.1016/j.jocs.2022.101937_bib19
  doi: 10.1109/ROBOT.2000.844730
– ident: 10.1016/j.jocs.2022.101937_bib29
  doi: 10.1109/ROBIO.2015.7419012
– year: 2022
  ident: 10.1016/j.jocs.2022.101937_bib1
  article-title: An intelligent master–slave collaborative robot system for cafeteria service
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2022.104121
– volume: 223
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib7
  article-title: The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108709
– volume: 158
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib2
  article-title: Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107397
– volume: 32
  start-page: 1555
  issue: 6
  year: 2020
  ident: 10.1016/j.jocs.2022.101937_bib10
  article-title: Research on path planning of mobile robot based on improved ant colony algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04172-2
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 10.1016/j.jocs.2022.101937_bib22
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– volume: 170
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib16
  article-title: Kinematic constrained bi-directional rrt with efficient branch pruning for robot path planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114541
– ident: 10.1016/j.jocs.2022.101937_bib14
  doi: 10.1109/CCDC.2017.7979125
– volume: 8
  start-page: 135513
  year: 2020
  ident: 10.1016/j.jocs.2022.101937_bib6
  article-title: Path planning method with improved artificial potential field—a reinforcement learning perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011211
– ident: 10.1016/j.jocs.2022.101937_bib4
  doi: 10.1109/ITOEC.2018.8740620
– volume: 21
  start-page: 333
  issue: 2
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib20
  article-title: Improved RRT-Connect algorithm based on triangular inequality for robot path planning
  publication-title: Sensors
  doi: 10.3390/s21020333
– ident: 10.1016/j.jocs.2022.101937_bib24
  doi: 10.1109/ICMA.2013.6617944
– volume: 156
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib12
  article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107230
– volume: 10
  start-page: 299
  issue: 7
  year: 2013
  ident: 10.1016/j.jocs.2022.101937_bib23
  article-title: RRT*-SMART: a rapid convergence implementation of RRT*
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/56718
– start-page: 396
  year: 1986
  ident: 10.1016/j.jocs.2022.101937_bib5
  article-title: Real-Time obstacle avoidance for manipulators and mobile robots
  publication-title: Auton. Robot Veh.
  doi: 10.1007/978-1-4613-8997-2_29
– volume: 96
  start-page: 59
  year: 2014
  ident: 10.1016/j.jocs.2022.101937_bib13
  article-title: Path planning with modified a star algorithm for a mobile robot
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.12.098
– ident: 10.1016/j.jocs.2022.101937_bib25
  doi: 10.1109/IROS.2014.6942976
– volume: 4
  start-page: 341
  issue: 4
  year: 2008
  ident: 10.1016/j.jocs.2022.101937_bib9
  article-title: A mobile robot path planning using genetic algorithm in static environment
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2008.341.344
– volume: 25
  start-page: 339
  year: 2018
  ident: 10.1016/j.jocs.2022.101937_bib11
  article-title: Bezier curve based path planning in a dynamic field using modified genetic algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.08.004
– volume: 68
  start-page: 7244
  issue: 8
  year: 2021
  ident: 10.1016/j.jocs.2022.101937_bib17
  article-title: MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2998740
– volume: 2
  start-page: 56
  year: 2014
  ident: 10.1016/j.jocs.2022.101937_bib18
  article-title: Sampling-based robot motion planning: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2302442
SSID ssj0000388913
Score 2.5031738
Snippet Rapidly-exploring Random Tree Star (RRT*) algorithm and its variants based on random sampling can provide a collision-free and asymptotic optimal solution for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101937
SubjectTerms Heuristic sampling
Narrow corridor
Path planning
RRT
Title An improved RRT algorithm for robot path planning based on path expansion heuristic sampling
URI https://dx.doi.org/10.1016/j.jocs.2022.101937
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KgngRn_hmDx4Uic0-kk2ORZSq2ENtoQch7COrLTUpbQqe_O1mmk1RkB68LjsQJrMzk8m334fQhY2kSK2wHhdWejxgylNMMM9SGRqriDAS5h3PnbDd54-DYNBAt_VdGIBVutxf5fRFtnYrTefN5mQ4bL4QoLIL_DIi4ddSCJygnAuI8psvspyzANtJvFBJhv0eGLi7MxXMa5RrYO2mFBZikEP_qz79qDn322jLNYu4VT3PDmqk2S7aqLHqu2jHncwZvnT00Vd76LWV4eFiVJAa3O32sBy_5dNh8f6BywYVT3OVFxiEiPHECRZhKGUG51m1nH6WGQKGaPg9nVdEzngmAXmeve2j_v1d77btOQ0FTzPfLzwirG-UYYL7ktFYA5eLorEfGVJ-y2iirFUm1FGgIt_wMGKGpVQqQRXTjDHKDtBalmfpIcKWRLGWtOzYFOfWAINhYLUxNgwMJ1IfIVJ7LtGOYBx0LsZJjSQbJeDtBLydVN4-QtdLm0lFr7Fyd1C_kORXkCRl_l9hd_xPuxO0CeryFeTsFK0V03l6VvYghTpfBNk5Wm89PLU738XN2y8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC6WCNGLmKiYaEwfFBQZd_oxr4OHYBI2JruHuIEchLGfyYY4s-xO0Fz8U_5Bu3Z6lgghByHXYhp6vi6qamqqvw_gjctlZl3mIpE5GYmEq0jxjEeOydQ4RTMjsd8xHKWDE_HlNDntwZ_uLgyOVYbY38b0RbQOln5Asz-dTPpfKVLZJbH3SPy1lIowWXlor3_677b5p4Ndf8hvGdvfG38eREFaINI8jpuIZi42yvBMxJKzQiPFiWJFnBvqS3xNlXPKpDpPVB4bkebccMukypjimnOObAc-7j_w75ajbMLH33TZ2EF6lWIhy4wbjHCH4bJOO1d2UWukCWcMDQXqr9-WEG8kuf0n8DhUp2SnBWANerZah9VuOH4d1kIomJN3ga_6_VP4tlORyaI3YQ05Ph4TeXlWzybN-Q_iK2Iyq1XdEFQ-JtOgkEQwdxpSV63Z_vIhCbt25NxetczRZC5x1L06ewYn94Lsc1ip6sq-AOJoXmjJfImohHAGKRMTp41xaWIElXoDaIdcqQOjOQprXJbd6NpFiWiXiHbZor0BH5Zrpi2fx51PJ92BlP94ZekTzh3rNv9z3TY8HIyHR-XRwejwJTxCaft23u0VrDSzK7vlC6BGvV44HIHv9-3hfwEIUxYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+RRT+algorithm+for+robot+path+planning+based+on+path+expansion+heuristic+sampling&rft.jtitle=Journal+of+computational+science&rft.au=Ding%2C+Jun&rft.au=Zhou%2C+Yinxuan&rft.au=Huang%2C+Xia&rft.au=Song%2C+Kun&rft.date=2023-03-01&rft.issn=1877-7503&rft.volume=67&rft.spage=101937&rft_id=info:doi/10.1016%2Fj.jocs.2022.101937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2022_101937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon