Short-term wind power prediction based on EEMD–LASSO–QRNN model

With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 105; p. 107288
Main Authors He, Yaoyao, Wang, Yun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107288

Cover

Loading…
Abstract With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction in majority of scenarios. Motivated by recent advancements of ensemble methods based on decomposition technologies, a novel ensemble method based on ensemble empirical mode decomposition (EEMD) and least absolute shrinkage and selection operator–quantile regression neural network (LASSO–QRNN) model for forecasting wind power is proposed in this paper. The model is an ingenious integration of data preprocessing technology, feature selection method, prediction model and data post-processing technology. Thereinto, EEMD is exploited to convert intricate and irregular wind power time series into a collection of subseries relatively easy to analyze; LASSO regression is combined with QRNN model to realize the filtering of important variables and provide more comprehensive and robust prediction results; the KDE method reprocesses the prediction results, greatly improves the prediction accuracy and effectively quantifies the uncertainty of the forecasting process. The suggested model and several benchmark models have been implemented on six wind power datasets, two are gathered from a wind farm in Spain and four from a competition to demonstrate the superiorities of the model proposed in this paper. The compared results reveal that the proposed method has adequate capacity to enhance the performance of wind power forecasting, measure and reduce the uncertainty of prediction process. •The EEMD–LASSO–QRNN model is an ingenious integration of several single methods.•EEMD is used to decompose intricate original data into several sample subseries.•Each subseries with the optimal parameters promises a more superior performance.•KDE is used to realize wind power deterministic and probabilistic forecasts.•Two case studies including six datasets verify the performance of the proposed model.
AbstractList With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction in majority of scenarios. Motivated by recent advancements of ensemble methods based on decomposition technologies, a novel ensemble method based on ensemble empirical mode decomposition (EEMD) and least absolute shrinkage and selection operator–quantile regression neural network (LASSO–QRNN) model for forecasting wind power is proposed in this paper. The model is an ingenious integration of data preprocessing technology, feature selection method, prediction model and data post-processing technology. Thereinto, EEMD is exploited to convert intricate and irregular wind power time series into a collection of subseries relatively easy to analyze; LASSO regression is combined with QRNN model to realize the filtering of important variables and provide more comprehensive and robust prediction results; the KDE method reprocesses the prediction results, greatly improves the prediction accuracy and effectively quantifies the uncertainty of the forecasting process. The suggested model and several benchmark models have been implemented on six wind power datasets, two are gathered from a wind farm in Spain and four from a competition to demonstrate the superiorities of the model proposed in this paper. The compared results reveal that the proposed method has adequate capacity to enhance the performance of wind power forecasting, measure and reduce the uncertainty of prediction process. •The EEMD–LASSO–QRNN model is an ingenious integration of several single methods.•EEMD is used to decompose intricate original data into several sample subseries.•Each subseries with the optimal parameters promises a more superior performance.•KDE is used to realize wind power deterministic and probabilistic forecasts.•Two case studies including six datasets verify the performance of the proposed model.
ArticleNumber 107288
Author He, Yaoyao
Wang, Yun
Author_xml – sequence: 1
  givenname: Yaoyao
  orcidid: 0000-0001-5059-5151
  surname: He
  fullname: He, Yaoyao
  email: hy-342501y@163.com
– sequence: 2
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  email: wendywangy1220@163.com
BookMark eNp9kM1KAzEURoNUsK2-gKt5gan5mWYy4KbUWoXaotV1yCR3MKWdlCRY3PkOvqFPYoa6ctHV93HhXO49A9RrXQsIXRM8Ipjwm81IBadHFFOSBiUV4gz1iShpXnFBeqmPuciLquAXaBDCBieooqKPput352Mewe-yg21NtncH8Nneg7E6WtdmtQpgslRms6e7n6_vxWS9XqV8flkus50zsL1E543aBrj6yyF6u5-9Th_yxWr-OJ0scs0wjjmhpqk4CM5MUxtdUsbZmGlFGKaYMSzGxlBtRMGZLuqyqGqd_qkaJgowFBM2ROK4V3sXgodGahtVd2T0ym4lwbKTITeykyE7GfIoI6H0H7r3dqf852no9ghBeurDgpdBW2h1UuNBR2mcPYX_AsmseqY
CitedBy_id crossref_primary_10_23919_JSC_2022_0012
crossref_primary_10_1016_j_esd_2023_101374
crossref_primary_10_1016_j_energy_2024_131142
crossref_primary_10_3390_s21134544
crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_1016_j_energy_2024_131383
crossref_primary_10_1016_j_epsr_2021_107551
crossref_primary_10_1016_j_scitotenv_2021_149110
crossref_primary_10_1016_j_engappai_2024_109878
crossref_primary_10_3390_su152115270
crossref_primary_10_1007_s10489_022_03644_8
crossref_primary_10_1109_TEM_2023_3274544
crossref_primary_10_1016_j_renene_2022_08_079
crossref_primary_10_1007_s10489_021_02864_8
crossref_primary_10_1016_j_asoc_2023_110310
crossref_primary_10_1016_j_apenergy_2023_122266
crossref_primary_10_3233_JIFS_231588
crossref_primary_10_1016_j_eswa_2022_117979
crossref_primary_10_1016_j_apenergy_2024_124601
crossref_primary_10_3390_en16041841
crossref_primary_10_1016_j_asoc_2023_110559
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_eswa_2025_126734
crossref_primary_10_1016_j_irfa_2023_102625
crossref_primary_10_1016_j_eswa_2024_123965
crossref_primary_10_1016_j_energy_2023_128762
crossref_primary_10_1016_j_renene_2025_122775
crossref_primary_10_1016_j_renene_2025_122653
crossref_primary_10_1016_j_ymssp_2022_108910
crossref_primary_10_3390_en17051215
crossref_primary_10_1016_j_renene_2025_122529
crossref_primary_10_1016_j_enconman_2022_115433
crossref_primary_10_1016_j_energy_2023_127942
crossref_primary_10_1016_j_compeleceng_2023_108830
crossref_primary_10_1016_j_eswa_2023_123104
crossref_primary_10_1016_j_egyr_2023_06_005
crossref_primary_10_1109_TII_2023_3331076
crossref_primary_10_1016_j_energy_2024_132192
crossref_primary_10_3390_app14166889
crossref_primary_10_3390_en18051136
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_1016_j_scs_2022_104034
crossref_primary_10_1016_j_asoc_2022_108814
crossref_primary_10_1016_j_rser_2024_114349
crossref_primary_10_3390_en16104249
crossref_primary_10_3390_atmos14091427
crossref_primary_10_1016_j_energy_2025_135210
crossref_primary_10_3233_JIFS_224222
crossref_primary_10_1016_j_enconman_2022_116221
crossref_primary_10_1002_for_3134
crossref_primary_10_1016_j_egyr_2022_11_202
crossref_primary_10_1016_j_renene_2022_11_111
crossref_primary_10_3390_electronics13224513
crossref_primary_10_1016_j_asoc_2024_111853
crossref_primary_10_1016_j_apenergy_2024_122759
crossref_primary_10_1016_j_applthermaleng_2023_120024
crossref_primary_10_3390_en15228417
crossref_primary_10_1016_j_chaos_2022_112416
crossref_primary_10_3389_fenrg_2023_1204343
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1016_j_energy_2024_130492
crossref_primary_10_1016_j_renene_2024_120200
crossref_primary_10_1016_j_techfore_2022_121967
crossref_primary_10_3389_fenrg_2023_1345004
crossref_primary_10_3389_fenrg_2024_1346000
crossref_primary_10_1021_acsomega_3c06263
crossref_primary_10_3390_su15042941
crossref_primary_10_1016_j_compind_2024_104150
crossref_primary_10_1016_j_jclepro_2023_138676
crossref_primary_10_1109_TSTE_2024_3389023
crossref_primary_10_1002_ente_202101061
crossref_primary_10_1016_j_renene_2024_122191
crossref_primary_10_1109_TII_2022_3165642
crossref_primary_10_1016_j_energy_2024_131458
crossref_primary_10_1016_j_apenergy_2021_117815
crossref_primary_10_1016_j_energy_2024_133515
crossref_primary_10_1016_j_energy_2022_124378
crossref_primary_10_1002_2050_7038_13072
crossref_primary_10_1016_j_energy_2023_127864
crossref_primary_10_1016_j_istruc_2023_105286
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1016_j_asoc_2022_109247
crossref_primary_10_1016_j_epsr_2023_109890
crossref_primary_10_1016_j_eswa_2023_121401
crossref_primary_10_1007_s00202_024_02821_x
crossref_primary_10_1016_j_apenergy_2022_119507
crossref_primary_10_1016_j_eswa_2024_124766
crossref_primary_10_1016_j_energy_2024_131963
crossref_primary_10_1016_j_apenergy_2022_118938
crossref_primary_10_1016_j_enconman_2023_117818
crossref_primary_10_1371_journal_pone_0311194
crossref_primary_10_1016_j_jclepro_2023_139508
crossref_primary_10_1016_j_renene_2023_119357
crossref_primary_10_1016_j_energy_2022_123857
crossref_primary_10_1016_j_egyr_2022_03_092
crossref_primary_10_1016_j_enconman_2024_119219
crossref_primary_10_3389_fenrg_2022_937240
crossref_primary_10_1016_j_enconman_2024_118767
crossref_primary_10_1007_s42835_023_01378_2
crossref_primary_10_1016_j_jhydrol_2022_129044
crossref_primary_10_1016_j_egyr_2022_07_007
crossref_primary_10_1016_j_egyr_2022_08_271
crossref_primary_10_1007_s00202_024_02638_8
crossref_primary_10_1016_j_asoc_2022_109149
crossref_primary_10_2174_0118722121251451230925033743
Cites_doi 10.1111/j.1467-9868.2011.00771.x
10.1016/j.renene.2019.07.166
10.1080/00401706.1995.10484371
10.1016/j.rser.2014.01.033
10.1016/j.knosys.2018.01.015
10.1016/j.ijforecast.2014.12.004
10.1142/S1793536909000047
10.1016/j.enconman.2020.112779
10.1002/we.2497
10.1016/j.renene.2018.02.006
10.1007/s40565-018-0471-8
10.1214/009053604000000067
10.1016/j.asoc.2020.106151
10.1016/j.renene.2018.06.022
10.1016/j.asoc.2018.07.041
10.1016/j.enconman.2018.07.052
10.1016/j.apenergy.2020.115600
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1016/j.asoc.2016.08.026
10.1016/j.renene.2019.01.031
10.1257/jep.15.4.143
10.1109/TPWRS.2016.2625101
10.1109/TSTE.2018.2831238
10.1016/j.apenergy.2019.01.063
10.1016/j.rser.2015.07.197
10.1016/j.oceaneng.2020.107927
10.1016/j.apenergy.2018.10.061
10.3390/en10111903
10.1109/JIOT.2017.2677578
10.1016/j.rser.2015.04.081
10.1098/rspa.1998.0193
10.1016/j.physa.2019.122177
10.1016/j.asoc.2017.12.010
10.1016/j.ijhydene.2020.06.209
10.3390/en12020254
10.1016/j.renene.2019.06.047
10.1016/j.renene.2019.11.145
10.1016/j.bspc.2015.09.002
10.1016/j.energy.2016.08.023
10.1016/j.rser.2014.03.033
10.1016/j.enconman.2019.05.020
10.1016/j.asoc.2019.03.035
10.1007/s00362-016-0867-3
10.1002/tee.22862
10.1016/j.asoc.2018.02.037
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107288
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107288
S1568494621002118
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-12df96e863dfbdc7236353ca1302033085dd2cd8463c4b749bc2029f384ed2013
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 01:50:09 EDT 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantile regression neural network
Decomposition
Wind power prediction
Ensemble methods
LASSO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-12df96e863dfbdc7236353ca1302033085dd2cd8463c4b749bc2029f384ed2013
ORCID 0000-0001-5059-5151
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107288
crossref_primary_10_1016_j_asoc_2021_107288
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (b52) 2018
Lin, Yang, Wan, Wang, Song (b37) 2018; 10
Wang, Tu (b13) 2019; 14
Berrezzek, Khelil, Bouadjila (b17) 2019; 33
Messner, Pinson, Browell, Bjerregaard, Schicker (b50) 2020; 23
Ouyang, Huang, He, Tang (b16) 2020; 145
Hassan, Bhuiyan (b32) 2016; 24
He, Qin, Wang, Wang, Wang (b20) 2019; 233–234
Deng, Wang, Lu (b26) 2020; 212
Zhang, Wang, Zhang, Wang, Zhang (b28) 2020; 277
Tibshirani (b44) 2011; 73
Yang, Fu, Zhang, Kang, Gao (b33) 2017; 10
Huang, Shen, Long, Wu, Shih, Zheng (b39) 1998; 454
Taylor (b48) 2000; 19
(b2) 2019
Liu, Chen, Lv, Wu, Liu (b6) 2019; 195
Nie, Shen, Xu, Li (b40) 2020; 217
Yan, Liu, Han, Wang, Feng (b35) 2015; 52
Zhang, Wang, Wang (b29) 2014; 32
Hu, Heng, Tang, Guo (b14) 2018; 173
Maciejowska, Nowotarski, Weron (b19) 2016; 32
Cevik, Cunkas, Polat (b3) 2019; 534
Wan, Lin, Wang, Song, Dong (b36) 2016; 32
Wang, Jia, Liu, Zhang (b15) 2020; 145
Efron, Hastie, Johnstone, Tibshirani (b46) 2004; 32
(b53) 2011
Wu, Huang (b43) 2009; 1
Tascikaraoglu, Uzunoglu (b4) 2014; 34
He, Xu, Wan, Yang (b24) 2016; 114
Naik, Satapathy, Dash (b41) 2018; 70
Qiu, Suganthan, Amaratunga (b8) 2018; 145
Singh, Mohapatra (b25) 2019; 136
Breiman (b45) 1995; 37
Du, Wang, Yang, Niu (b5) 2019; 80
Eseye, Zhang, Zheng, Ma, Jingfu (b23) 2017
Kang, Bae, Yeung, Chung (b22) 2018; 66
Deng, Shao, Hu, Jiang, Jiang (b7) 2020; 122
Wu, Peng (b10) 2017; 4
Pedro, Coimbra, David, Lauret (b51) 2018; 123
Sun, Feng, Zhang (b31) 2020; 148
Guan, Lin, Guan, Mokaramian (b38) 2020; 45
Shahid, Khan, Zameer, Arshad, Safdar (b1) 2020; 90
Bokde, Feijóo A. Villanueva, Kulat (b42) 2019; 12
Bokde, Feijoo, Kulat (b49) 2018; 71
Ren, Suganthan, Srikanth (b9) 2015; 50
Xu, Chen, Wang, Fan (b21) 2019; 60
Fatemi, Kuh, Fripp (b30) 2018; 129
Ren, Qiu, Suganthan (b12) 2014
Zhang, Liu, Zhang, Yan, Zhang, Wu (b18) 2019; 7
Zhang, Li, Pan (b11) 2016; 49
Liu, Li, Xu, Tang, Xie (b34) 2020
Koenker, Hallock (b47) 2001; 15
Hao, Tian (b27) 2019; 238
Wu (10.1016/j.asoc.2021.107288_b43) 2009; 1
Liu (10.1016/j.asoc.2021.107288_b34) 2020
He (10.1016/j.asoc.2021.107288_b20) 2019; 233–234
Ouyang (10.1016/j.asoc.2021.107288_b16) 2020; 145
Maciejowska (10.1016/j.asoc.2021.107288_b19) 2016; 32
Qiu (10.1016/j.asoc.2021.107288_b8) 2018; 145
Taylor (10.1016/j.asoc.2021.107288_b48) 2000; 19
Eseye (10.1016/j.asoc.2021.107288_b23) 2017
Guan (10.1016/j.asoc.2021.107288_b38) 2020; 45
(10.1016/j.asoc.2021.107288_b52) 2018
(10.1016/j.asoc.2021.107288_b2) 2019
Lin (10.1016/j.asoc.2021.107288_b37) 2018; 10
Cevik (10.1016/j.asoc.2021.107288_b3) 2019; 534
Singh (10.1016/j.asoc.2021.107288_b25) 2019; 136
Berrezzek (10.1016/j.asoc.2021.107288_b17) 2019; 33
Bokde (10.1016/j.asoc.2021.107288_b49) 2018; 71
Deng (10.1016/j.asoc.2021.107288_b7) 2020; 122
Hao (10.1016/j.asoc.2021.107288_b27) 2019; 238
Sun (10.1016/j.asoc.2021.107288_b31) 2020; 148
Kang (10.1016/j.asoc.2021.107288_b22) 2018; 66
Zhang (10.1016/j.asoc.2021.107288_b28) 2020; 277
Wan (10.1016/j.asoc.2021.107288_b36) 2016; 32
Shahid (10.1016/j.asoc.2021.107288_b1) 2020; 90
Deng (10.1016/j.asoc.2021.107288_b26) 2020; 212
Liu (10.1016/j.asoc.2021.107288_b6) 2019; 195
Pedro (10.1016/j.asoc.2021.107288_b51) 2018; 123
Bokde (10.1016/j.asoc.2021.107288_b42) 2019; 12
Efron (10.1016/j.asoc.2021.107288_b46) 2004; 32
Ren (10.1016/j.asoc.2021.107288_b12) 2014
Naik (10.1016/j.asoc.2021.107288_b41) 2018; 70
Zhang (10.1016/j.asoc.2021.107288_b18) 2019; 7
Huang (10.1016/j.asoc.2021.107288_b39) 1998; 454
Hu (10.1016/j.asoc.2021.107288_b14) 2018; 173
Wang (10.1016/j.asoc.2021.107288_b15) 2020; 145
Du (10.1016/j.asoc.2021.107288_b5) 2019; 80
Wang (10.1016/j.asoc.2021.107288_b13) 2019; 14
Breiman (10.1016/j.asoc.2021.107288_b45) 1995; 37
Koenker (10.1016/j.asoc.2021.107288_b47) 2001; 15
Wu (10.1016/j.asoc.2021.107288_b10) 2017; 4
Tibshirani (10.1016/j.asoc.2021.107288_b44) 2011; 73
Messner (10.1016/j.asoc.2021.107288_b50) 2020; 23
Tascikaraoglu (10.1016/j.asoc.2021.107288_b4) 2014; 34
Xu (10.1016/j.asoc.2021.107288_b21) 2019; 60
Yan (10.1016/j.asoc.2021.107288_b35) 2015; 52
Ren (10.1016/j.asoc.2021.107288_b9) 2015; 50
Nie (10.1016/j.asoc.2021.107288_b40) 2020; 217
Zhang (10.1016/j.asoc.2021.107288_b11) 2016; 49
Hassan (10.1016/j.asoc.2021.107288_b32) 2016; 24
Fatemi (10.1016/j.asoc.2021.107288_b30) 2018; 129
Zhang (10.1016/j.asoc.2021.107288_b29) 2014; 32
(10.1016/j.asoc.2021.107288_b53) 2011
Yang (10.1016/j.asoc.2021.107288_b33) 2017; 10
He (10.1016/j.asoc.2021.107288_b24) 2016; 114
References_xml – volume: 23
  start-page: 1461
  year: 2020
  end-page: 1481
  ident: b50
  article-title: Evaluation of wind power forecasts– an up-to-date view
  publication-title: Wind Energy
– year: 2020
  ident: b34
  article-title: A new lower and upper bound estimation model using gradient descend training method for wind speed interval prediction
  publication-title: Wind Energy
– volume: 217
  year: 2020
  ident: b40
  article-title: An emd-svr model for short-term prediction of ship motion using mirror symmetry and svr algorithms to eliminate emd boundary effect
  publication-title: Ocean Eng.
– year: 2019
  ident: b2
  article-title: Global wind report 2019
– volume: 33
  year: 2019
  ident: b17
  article-title: Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks
  publication-title: Rev. Intell. Artif.
– start-page: 552
  year: 2017
  end-page: 556
  ident: b23
  article-title: Short-term wind power forecasting using a double-stage hierarchical hybrid ga-ann approach
  publication-title: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)
– volume: 277
  year: 2020
  ident: b28
  article-title: Load probability density forecasting by transforming and combining quantile forecasts
  publication-title: Appl. Energy
– volume: 233–234
  start-page: 565
  year: 2019
  end-page: 575
  ident: b20
  article-title: Electricity consumption probability density forecasting method based on lasso-quantile regression neural network
  publication-title: Appl. Energy
– year: 2018
  ident: b52
  article-title: Sotavento
– volume: 45
  start-page: 23791
  year: 2020
  end-page: 23808
  ident: b38
  article-title: A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b4
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 979
  year: 2017
  end-page: 986
  ident: b10
  article-title: A data mining approach combining
  publication-title: IEEE Internet Things J.
– volume: 148
  start-page: 135
  year: 2020
  end-page: 149
  ident: b31
  article-title: Multi-distribution ensemble probabilistic wind power forecasting
  publication-title: Renew. Energy
– volume: 66
  start-page: 319
  year: 2018
  end-page: 329
  ident: b22
  article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 385
  year: 2016
  end-page: 398
  ident: b11
  article-title: Stock trend prediction based on a new status box method and adaboost probabilistic support vector machine
  publication-title: Appl. Soft Comput.
– year: 2011
  ident: b53
  article-title: Emcm
– volume: 12
  start-page: 254
  year: 2019
  ident: b42
  article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction
  publication-title: Energies
– volume: 15
  start-page: 143
  year: 2001
  end-page: 156
  ident: b47
  article-title: Quantile regression
  publication-title: J. Econ. Perspect.
– volume: 52
  start-page: 1322
  year: 2015
  end-page: 1330
  ident: b35
  article-title: Reviews on uncertainty analysis of wind power forecasting
  publication-title: Renew. Sustain. Energy Rev.
– volume: 123
  start-page: 191
  year: 2018
  end-page: 203
  ident: b51
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: b9
  article-title: Ensemble methods for wind and solar power forecasting– a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 145
  start-page: 182
  year: 2018
  end-page: 196
  ident: b8
  article-title: Ensemble incremental learning random vector functional link network for short-term electric load forecasting
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 760
  year: 2019
  end-page: 767
  ident: b13
  article-title: Multiple kernel learning using nonlinear lasso
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 37
  start-page: 373
  year: 1995
  end-page: 384
  ident: b45
  article-title: Better subset regression using the nonnegative garrote
  publication-title: Technometrics
– volume: 212
  year: 2020
  ident: b26
  article-title: A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 10
  start-page: 1903
  year: 2017
  ident: b33
  article-title: A naive Bayesian wind power interval prediction approach based on rough set attribute reduction and weight optimization
  publication-title: Energies
– volume: 129
  start-page: 666
  year: 2018
  end-page: 676
  ident: b30
  article-title: Parametric methods for probabilistic forecasting of solar irradiance
  publication-title: Renew. Energy
– volume: 145
  start-page: 270
  year: 2020
  end-page: 281
  ident: b16
  article-title: Chaotic wind power time series prediction via switching data-driven modes
  publication-title: Renew. Energy
– volume: 70
  start-page: 1167
  year: 2018
  end-page: 1188
  ident: b41
  article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression
  publication-title: Appl. Soft Comput.
– volume: 145
  start-page: 2426
  year: 2020
  end-page: 2434
  ident: b15
  article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning
  publication-title: Renew. Energy
– volume: 60
  start-page: 1137
  year: 2019
  end-page: 1160
  ident: b21
  article-title: Quantile regression and variable selection for partially linear model with randomly truncated data
  publication-title: Statist. Papers
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: b32
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
– volume: 19
  start-page: 299
  year: 2000
  end-page: 311
  ident: b48
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
– volume: 136
  start-page: 758
  year: 2019
  end-page: 768
  ident: b25
  article-title: Repeated wavelet transform based arima model for very short-term wind speed forecasting
  publication-title: Renew. Energy
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b39
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 32
  start-page: 2767
  year: 2016
  end-page: 2778
  ident: b36
  article-title: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation
  publication-title: IEEE Trans. Power Syst.
– volume: 238
  start-page: 368
  year: 2019
  end-page: 383
  ident: b27
  article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting
  publication-title: Appl. Energy
– volume: 195
  start-page: 328
  year: 2019
  end-page: 345
  ident: b6
  article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods
  publication-title: Energy Convers. Manage.
– volume: 114
  start-page: 498
  year: 2016
  end-page: 512
  ident: b24
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
– volume: 32
  start-page: 957
  year: 2016
  end-page: 965
  ident: b19
  article-title: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging
  publication-title: Int. J. Forecast.
– volume: 90
  year: 2020
  ident: b1
  article-title: Wind power prediction using a three stage genetic ensemble and auxiliary predictor
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b12
  article-title: Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
  publication-title: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)
– volume: 534
  year: 2019
  ident: b3
  article-title: A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods
  publication-title: Physica A
– volume: 7
  start-page: 281
  year: 2019
  end-page: 288
  ident: b18
  article-title: Wind power prediction based on variational mode decomposition multi-frequency combinations
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 10
  start-page: 226
  year: 2018
  end-page: 237
  ident: b37
  article-title: A multi-model combination approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
– volume: 71
  start-page: 926
  year: 2018
  end-page: 938
  ident: b49
  article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction
  publication-title: Appl. Soft Comput.
– volume: 32
  start-page: 255
  year: 2014
  end-page: 270
  ident: b29
  article-title: Review on probabilistic forecasting of wind power generation
  publication-title: Renew. Sustain. Energy Rev.
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: b46
  article-title: Least angle regression
  publication-title: Ann. Statist.
– volume: 122
  start-page: 273
  year: 2020
  end-page: 302
  ident: b7
  article-title: Wind power forecasting methods based on deep learning: A survey
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 80
  start-page: 93
  year: 2019
  end-page: 106
  ident: b5
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput.
– volume: 173
  start-page: 197
  year: 2018
  end-page: 209
  ident: b14
  article-title: Research and application of a hybrid model based on meta learning strategy for wind power deterministic and probabilistic forecasting
  publication-title: Energy Convers. Manage.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b43
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  ident: b44
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2021.107288_b12
  article-title: Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
– start-page: 552
  year: 2017
  ident: 10.1016/j.asoc.2021.107288_b23
  article-title: Short-term wind power forecasting using a double-stage hierarchical hybrid ga-ann approach
– volume: 73
  start-page: 273
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2021.107288_b44
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 145
  start-page: 2426
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b15
  article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.166
– volume: 37
  start-page: 373
  issue: 4
  year: 1995
  ident: 10.1016/j.asoc.2021.107288_b45
  article-title: Better subset regression using the nonnegative garrote
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10484371
– volume: 32
  start-page: 255
  year: 2014
  ident: 10.1016/j.asoc.2021.107288_b29
  article-title: Review on probabilistic forecasting of wind power generation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.033
– year: 2019
  ident: 10.1016/j.asoc.2021.107288_b2
– volume: 145
  start-page: 182
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b8
  article-title: Ensemble incremental learning random vector functional link network for short-term electric load forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.015
– volume: 33
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b17
  article-title: Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks
  publication-title: Rev. Intell. Artif.
– year: 2011
  ident: 10.1016/j.asoc.2021.107288_b53
– volume: 32
  start-page: 957
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2021.107288_b19
  article-title: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2014.12.004
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.asoc.2021.107288_b43
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 212
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b26
  article-title: A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112779
– volume: 23
  start-page: 1461
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b50
  article-title: Evaluation of wind power forecasts– an up-to-date view
  publication-title: Wind Energy
  doi: 10.1002/we.2497
– volume: 123
  start-page: 191
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b51
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.006
– volume: 7
  start-page: 281
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b18
  article-title: Wind power prediction based on variational mode decomposition multi-frequency combinations
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-018-0471-8
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 10.1016/j.asoc.2021.107288_b46
  article-title: Least angle regression
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000067
– volume: 90
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b1
  article-title: Wind power prediction using a three stage genetic ensemble and auxiliary predictor
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106151
– volume: 129
  start-page: 666
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b30
  article-title: Parametric methods for probabilistic forecasting of solar irradiance
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.022
– year: 2020
  ident: 10.1016/j.asoc.2021.107288_b34
  article-title: A new lower and upper bound estimation model using gradient descend training method for wind speed interval prediction
  publication-title: Wind Energy
– volume: 71
  start-page: 926
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b49
  article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.041
– volume: 173
  start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b14
  article-title: Research and application of a hybrid model based on meta learning strategy for wind power deterministic and probabilistic forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.052
– volume: 277
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b28
  article-title: Load probability density forecasting by transforming and combining quantile forecasts
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115600
– volume: 19
  start-page: 299
  issue: 4
  year: 2000
  ident: 10.1016/j.asoc.2021.107288_b48
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
– volume: 49
  start-page: 385
  year: 2016
  ident: 10.1016/j.asoc.2021.107288_b11
  article-title: Stock trend prediction based on a new status box method and adaboost probabilistic support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.026
– year: 2018
  ident: 10.1016/j.asoc.2021.107288_b52
– volume: 136
  start-page: 758
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b25
  article-title: Repeated wavelet transform based arima model for very short-term wind speed forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: 15
  start-page: 143
  issue: 4
  year: 2001
  ident: 10.1016/j.asoc.2021.107288_b47
  article-title: Quantile regression
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.15.4.143
– volume: 32
  start-page: 2767
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2021.107288_b36
  article-title: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2625101
– volume: 10
  start-page: 226
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b37
  article-title: A multi-model combination approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2831238
– volume: 238
  start-page: 368
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b27
  article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.063
– volume: 52
  start-page: 1322
  year: 2015
  ident: 10.1016/j.asoc.2021.107288_b35
  article-title: Reviews on uncertainty analysis of wind power forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.197
– volume: 217
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b40
  article-title: An emd-svr model for short-term prediction of ship motion using mirror symmetry and svr algorithms to eliminate emd boundary effect
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107927
– volume: 233–234
  start-page: 565
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b20
  article-title: Electricity consumption probability density forecasting method based on lasso-quantile regression neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.061
– volume: 10
  start-page: 1903
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2021.107288_b33
  article-title: A naive Bayesian wind power interval prediction approach based on rough set attribute reduction and weight optimization
  publication-title: Energies
  doi: 10.3390/en10111903
– volume: 122
  start-page: 273
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b7
  article-title: Wind power forecasting methods based on deep learning: A survey
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 4
  start-page: 979
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2021.107288_b10
  article-title: A data mining approach combining k-means clustering with bagging neural network for short-term wind power forecasting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2677578
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.asoc.2021.107288_b9
  article-title: Ensemble methods for wind and solar power forecasting– a state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.081
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.asoc.2021.107288_b39
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 534
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b3
  article-title: A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122177
– volume: 70
  start-page: 1167
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b41
  article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.010
– volume: 45
  start-page: 23791
  issue: 43
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b38
  article-title: A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.209
– volume: 12
  start-page: 254
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b42
  article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction
  publication-title: Energies
  doi: 10.3390/en12020254
– volume: 145
  start-page: 270
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b16
  article-title: Chaotic wind power time series prediction via switching data-driven modes
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.047
– volume: 148
  start-page: 135
  year: 2020
  ident: 10.1016/j.asoc.2021.107288_b31
  article-title: Multi-distribution ensemble probabilistic wind power forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.145
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2021.107288_b32
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 114
  start-page: 498
  year: 2016
  ident: 10.1016/j.asoc.2021.107288_b24
  article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.023
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.asoc.2021.107288_b4
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.03.033
– volume: 195
  start-page: 328
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b6
  article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.05.020
– volume: 80
  start-page: 93
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b5
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.035
– volume: 60
  start-page: 1137
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b21
  article-title: Quantile regression and variable selection for partially linear model with randomly truncated data
  publication-title: Statist. Papers
  doi: 10.1007/s00362-016-0867-3
– volume: 14
  start-page: 760
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2021.107288_b13
  article-title: Multiple kernel learning using nonlinear lasso
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22862
– volume: 66
  start-page: 319
  year: 2018
  ident: 10.1016/j.asoc.2021.107288_b22
  article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.037
SSID ssj0016928
Score 2.6279511
Snippet With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107288
SubjectTerms Decomposition
Ensemble methods
LASSO
Quantile regression neural network
Wind power prediction
Title Short-term wind power prediction based on EEMD–LASSO–QRNN model
URI https://dx.doi.org/10.1016/j.asoc.2021.107288
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WZtkN9nkWGJL1TZoa6G30N1NsCI1lIo38T_4D_0lzuRRFKQHL9lk2YXkSzLzLTszHyHnlq9tLVPFXK2mTCgtmHKUy6Rl-9MgkUpoTBQeRF5vLG4m7qRGwioXBsMqS9tf2PTcWpc9rRLNVjabtUaw8vBFIDwHq4gCT8YMdiExrO_yfRXmYXtBrq-KgxmOLhNnihivKSAAa0THhg7p5OorfzinHw6nu0O2SqZI28XN7JJaMt8j25UKAy1_yn0Sjh6BQjM0sfQNVtg0Q-Ezmi1wCwZhp-ipDIWTTmdw9fXx2cdajtDeD6OI5lI4B2Tc7TyEPVZKIzDNLWvJbMekgZf4HjepMlo6HIgD11PchrQ4Bx5ljKMNkAuuhZIiUBoeM0i5LxIDPp8fkvr8ZZ4cEerI1BJcu0Iq8OYm8V3XTQQX2sDR8qwGsStMYl3WDUf5iue4ChB7ihHHGHGMCxwb5GI1JyuqZqwd7VZQx7_efQxmfc2843_OOyGbeFUE3Z6S-nLxmpwBtViqZv7tNMlGOxz277C9vu1F32Apzhs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-9-BNlibZzetYaku1bUBtwVvo7iZYkVpKxav_wX_oL3Gm2RQF8eAlCZsd2HxJZr5lZ-cDuHAi7eowV9zXasyl0pIrT_k8dNxoHGehkpo2Cg-SoDuSNw_-QwVa5V4YSqu0vr_w6UtvbVsaFs3GbDJp3OPMI5KxDDyqIoo8eQ1qVJ1KVqHWvO51k9ViQhAvJVapPycDu3emSPMaIwg4TfRcbAi9pQDLL_HpW8zpbMOmJYusWYxnByrZdBe2SiEGZv_LPWjdPyKL5uRl2RtOstmMtM_YbE6rMIQ8o2BlGF6024Orz_ePPpVzxPPtXZKwpRrOPow67WGry606AtfCcRbc9UweB1kUCJMro0NPIHcQekwrkY4QSKWM8bRBfiG0VKGMlcbHjHMRycxg2BcHUJ2-TLNDYF6YO1JoBE9hQDdZ5Pt-JoXUBo9O4NTBLTFJtS0dTgoWz2mZI_aUEo4p4ZgWONbhcmUzKwpn_NnbL6FOf7z-FD37H3ZH_7Q7h_XucNBP-9dJ7xg26E6Rg3sC1cX8NTtFprFQZ_ZL-gIQJc83
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+wind+power+prediction+based+on+EEMD%E2%80%93LASSO%E2%80%93QRNN+model&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Yaoyao&rft.au=Wang%2C+Yun&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=105&rft_id=info:doi/10.1016%2Fj.asoc.2021.107288&rft.externalDocID=S1568494621002118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon