Short-term wind power prediction based on EEMD–LASSO–QRNN model
With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction...
Saved in:
Published in | Applied soft computing Vol. 105; p. 107288 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.107288 |
Cover
Loading…
Abstract | With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction in majority of scenarios. Motivated by recent advancements of ensemble methods based on decomposition technologies, a novel ensemble method based on ensemble empirical mode decomposition (EEMD) and least absolute shrinkage and selection operator–quantile regression neural network (LASSO–QRNN) model for forecasting wind power is proposed in this paper. The model is an ingenious integration of data preprocessing technology, feature selection method, prediction model and data post-processing technology. Thereinto, EEMD is exploited to convert intricate and irregular wind power time series into a collection of subseries relatively easy to analyze; LASSO regression is combined with QRNN model to realize the filtering of important variables and provide more comprehensive and robust prediction results; the KDE method reprocesses the prediction results, greatly improves the prediction accuracy and effectively quantifies the uncertainty of the forecasting process. The suggested model and several benchmark models have been implemented on six wind power datasets, two are gathered from a wind farm in Spain and four from a competition to demonstrate the superiorities of the model proposed in this paper. The compared results reveal that the proposed method has adequate capacity to enhance the performance of wind power forecasting, measure and reduce the uncertainty of prediction process.
•The EEMD–LASSO–QRNN model is an ingenious integration of several single methods.•EEMD is used to decompose intricate original data into several sample subseries.•Each subseries with the optimal parameters promises a more superior performance.•KDE is used to realize wind power deterministic and probabilistic forecasts.•Two case studies including six datasets verify the performance of the proposed model. |
---|---|
AbstractList | With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to the stochastic and intermittent nature of wind power, the conventional methods no longer ensure sufficient accuracy of wind power prediction in majority of scenarios. Motivated by recent advancements of ensemble methods based on decomposition technologies, a novel ensemble method based on ensemble empirical mode decomposition (EEMD) and least absolute shrinkage and selection operator–quantile regression neural network (LASSO–QRNN) model for forecasting wind power is proposed in this paper. The model is an ingenious integration of data preprocessing technology, feature selection method, prediction model and data post-processing technology. Thereinto, EEMD is exploited to convert intricate and irregular wind power time series into a collection of subseries relatively easy to analyze; LASSO regression is combined with QRNN model to realize the filtering of important variables and provide more comprehensive and robust prediction results; the KDE method reprocesses the prediction results, greatly improves the prediction accuracy and effectively quantifies the uncertainty of the forecasting process. The suggested model and several benchmark models have been implemented on six wind power datasets, two are gathered from a wind farm in Spain and four from a competition to demonstrate the superiorities of the model proposed in this paper. The compared results reveal that the proposed method has adequate capacity to enhance the performance of wind power forecasting, measure and reduce the uncertainty of prediction process.
•The EEMD–LASSO–QRNN model is an ingenious integration of several single methods.•EEMD is used to decompose intricate original data into several sample subseries.•Each subseries with the optimal parameters promises a more superior performance.•KDE is used to realize wind power deterministic and probabilistic forecasts.•Two case studies including six datasets verify the performance of the proposed model. |
ArticleNumber | 107288 |
Author | He, Yaoyao Wang, Yun |
Author_xml | – sequence: 1 givenname: Yaoyao orcidid: 0000-0001-5059-5151 surname: He fullname: He, Yaoyao email: hy-342501y@163.com – sequence: 2 givenname: Yun surname: Wang fullname: Wang, Yun email: wendywangy1220@163.com |
BookMark | eNp9kM1KAzEURoNUsK2-gKt5gan5mWYy4KbUWoXaotV1yCR3MKWdlCRY3PkOvqFPYoa6ctHV93HhXO49A9RrXQsIXRM8Ipjwm81IBadHFFOSBiUV4gz1iShpXnFBeqmPuciLquAXaBDCBieooqKPput352Mewe-yg21NtncH8Nneg7E6WtdmtQpgslRms6e7n6_vxWS9XqV8flkus50zsL1E543aBrj6yyF6u5-9Th_yxWr-OJ0scs0wjjmhpqk4CM5MUxtdUsbZmGlFGKaYMSzGxlBtRMGZLuqyqGqd_qkaJgowFBM2ROK4V3sXgodGahtVd2T0ym4lwbKTITeykyE7GfIoI6H0H7r3dqf852no9ghBeurDgpdBW2h1UuNBR2mcPYX_AsmseqY |
CitedBy_id | crossref_primary_10_23919_JSC_2022_0012 crossref_primary_10_1016_j_esd_2023_101374 crossref_primary_10_1016_j_energy_2024_131142 crossref_primary_10_3390_s21134544 crossref_primary_10_1016_j_asoc_2021_107941 crossref_primary_10_1016_j_energy_2024_131383 crossref_primary_10_1016_j_epsr_2021_107551 crossref_primary_10_1016_j_scitotenv_2021_149110 crossref_primary_10_1016_j_engappai_2024_109878 crossref_primary_10_3390_su152115270 crossref_primary_10_1007_s10489_022_03644_8 crossref_primary_10_1109_TEM_2023_3274544 crossref_primary_10_1016_j_renene_2022_08_079 crossref_primary_10_1007_s10489_021_02864_8 crossref_primary_10_1016_j_asoc_2023_110310 crossref_primary_10_1016_j_apenergy_2023_122266 crossref_primary_10_3233_JIFS_231588 crossref_primary_10_1016_j_eswa_2022_117979 crossref_primary_10_1016_j_apenergy_2024_124601 crossref_primary_10_3390_en16041841 crossref_primary_10_1016_j_asoc_2023_110559 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1016_j_eswa_2025_126734 crossref_primary_10_1016_j_irfa_2023_102625 crossref_primary_10_1016_j_eswa_2024_123965 crossref_primary_10_1016_j_energy_2023_128762 crossref_primary_10_1016_j_renene_2025_122775 crossref_primary_10_1016_j_renene_2025_122653 crossref_primary_10_1016_j_ymssp_2022_108910 crossref_primary_10_3390_en17051215 crossref_primary_10_1016_j_renene_2025_122529 crossref_primary_10_1016_j_enconman_2022_115433 crossref_primary_10_1016_j_energy_2023_127942 crossref_primary_10_1016_j_compeleceng_2023_108830 crossref_primary_10_1016_j_eswa_2023_123104 crossref_primary_10_1016_j_egyr_2023_06_005 crossref_primary_10_1109_TII_2023_3331076 crossref_primary_10_1016_j_energy_2024_132192 crossref_primary_10_3390_app14166889 crossref_primary_10_3390_en18051136 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_1016_j_scs_2022_104034 crossref_primary_10_1016_j_asoc_2022_108814 crossref_primary_10_1016_j_rser_2024_114349 crossref_primary_10_3390_en16104249 crossref_primary_10_3390_atmos14091427 crossref_primary_10_1016_j_energy_2025_135210 crossref_primary_10_3233_JIFS_224222 crossref_primary_10_1016_j_enconman_2022_116221 crossref_primary_10_1002_for_3134 crossref_primary_10_1016_j_egyr_2022_11_202 crossref_primary_10_1016_j_renene_2022_11_111 crossref_primary_10_3390_electronics13224513 crossref_primary_10_1016_j_asoc_2024_111853 crossref_primary_10_1016_j_apenergy_2024_122759 crossref_primary_10_1016_j_applthermaleng_2023_120024 crossref_primary_10_3390_en15228417 crossref_primary_10_1016_j_chaos_2022_112416 crossref_primary_10_3389_fenrg_2023_1204343 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1016_j_energy_2024_130492 crossref_primary_10_1016_j_renene_2024_120200 crossref_primary_10_1016_j_techfore_2022_121967 crossref_primary_10_3389_fenrg_2023_1345004 crossref_primary_10_3389_fenrg_2024_1346000 crossref_primary_10_1021_acsomega_3c06263 crossref_primary_10_3390_su15042941 crossref_primary_10_1016_j_compind_2024_104150 crossref_primary_10_1016_j_jclepro_2023_138676 crossref_primary_10_1109_TSTE_2024_3389023 crossref_primary_10_1002_ente_202101061 crossref_primary_10_1016_j_renene_2024_122191 crossref_primary_10_1109_TII_2022_3165642 crossref_primary_10_1016_j_energy_2024_131458 crossref_primary_10_1016_j_apenergy_2021_117815 crossref_primary_10_1016_j_energy_2024_133515 crossref_primary_10_1016_j_energy_2022_124378 crossref_primary_10_1002_2050_7038_13072 crossref_primary_10_1016_j_energy_2023_127864 crossref_primary_10_1016_j_istruc_2023_105286 crossref_primary_10_1016_j_ijepes_2022_108243 crossref_primary_10_1016_j_asoc_2022_109247 crossref_primary_10_1016_j_epsr_2023_109890 crossref_primary_10_1016_j_eswa_2023_121401 crossref_primary_10_1007_s00202_024_02821_x crossref_primary_10_1016_j_apenergy_2022_119507 crossref_primary_10_1016_j_eswa_2024_124766 crossref_primary_10_1016_j_energy_2024_131963 crossref_primary_10_1016_j_apenergy_2022_118938 crossref_primary_10_1016_j_enconman_2023_117818 crossref_primary_10_1371_journal_pone_0311194 crossref_primary_10_1016_j_jclepro_2023_139508 crossref_primary_10_1016_j_renene_2023_119357 crossref_primary_10_1016_j_energy_2022_123857 crossref_primary_10_1016_j_egyr_2022_03_092 crossref_primary_10_1016_j_enconman_2024_119219 crossref_primary_10_3389_fenrg_2022_937240 crossref_primary_10_1016_j_enconman_2024_118767 crossref_primary_10_1007_s42835_023_01378_2 crossref_primary_10_1016_j_jhydrol_2022_129044 crossref_primary_10_1016_j_egyr_2022_07_007 crossref_primary_10_1016_j_egyr_2022_08_271 crossref_primary_10_1007_s00202_024_02638_8 crossref_primary_10_1016_j_asoc_2022_109149 crossref_primary_10_2174_0118722121251451230925033743 |
Cites_doi | 10.1111/j.1467-9868.2011.00771.x 10.1016/j.renene.2019.07.166 10.1080/00401706.1995.10484371 10.1016/j.rser.2014.01.033 10.1016/j.knosys.2018.01.015 10.1016/j.ijforecast.2014.12.004 10.1142/S1793536909000047 10.1016/j.enconman.2020.112779 10.1002/we.2497 10.1016/j.renene.2018.02.006 10.1007/s40565-018-0471-8 10.1214/009053604000000067 10.1016/j.asoc.2020.106151 10.1016/j.renene.2018.06.022 10.1016/j.asoc.2018.07.041 10.1016/j.enconman.2018.07.052 10.1016/j.apenergy.2020.115600 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V 10.1016/j.asoc.2016.08.026 10.1016/j.renene.2019.01.031 10.1257/jep.15.4.143 10.1109/TPWRS.2016.2625101 10.1109/TSTE.2018.2831238 10.1016/j.apenergy.2019.01.063 10.1016/j.rser.2015.07.197 10.1016/j.oceaneng.2020.107927 10.1016/j.apenergy.2018.10.061 10.3390/en10111903 10.1109/JIOT.2017.2677578 10.1016/j.rser.2015.04.081 10.1098/rspa.1998.0193 10.1016/j.physa.2019.122177 10.1016/j.asoc.2017.12.010 10.1016/j.ijhydene.2020.06.209 10.3390/en12020254 10.1016/j.renene.2019.06.047 10.1016/j.renene.2019.11.145 10.1016/j.bspc.2015.09.002 10.1016/j.energy.2016.08.023 10.1016/j.rser.2014.03.033 10.1016/j.enconman.2019.05.020 10.1016/j.asoc.2019.03.035 10.1007/s00362-016-0867-3 10.1002/tee.22862 10.1016/j.asoc.2018.02.037 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107288 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107288 S1568494621002118 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-12df96e863dfbdc7236353ca1302033085dd2cd8463c4b749bc2029f384ed2013 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 01:50:09 EDT 2025 Fri Feb 23 02:41:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quantile regression neural network Decomposition Wind power prediction Ensemble methods LASSO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-12df96e863dfbdc7236353ca1302033085dd2cd8463c4b749bc2029f384ed2013 |
ORCID | 0000-0001-5059-5151 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107288 crossref_primary_10_1016_j_asoc_2021_107288 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (b52) 2018 Lin, Yang, Wan, Wang, Song (b37) 2018; 10 Wang, Tu (b13) 2019; 14 Berrezzek, Khelil, Bouadjila (b17) 2019; 33 Messner, Pinson, Browell, Bjerregaard, Schicker (b50) 2020; 23 Ouyang, Huang, He, Tang (b16) 2020; 145 Hassan, Bhuiyan (b32) 2016; 24 He, Qin, Wang, Wang, Wang (b20) 2019; 233–234 Deng, Wang, Lu (b26) 2020; 212 Zhang, Wang, Zhang, Wang, Zhang (b28) 2020; 277 Tibshirani (b44) 2011; 73 Yang, Fu, Zhang, Kang, Gao (b33) 2017; 10 Huang, Shen, Long, Wu, Shih, Zheng (b39) 1998; 454 Taylor (b48) 2000; 19 (b2) 2019 Liu, Chen, Lv, Wu, Liu (b6) 2019; 195 Nie, Shen, Xu, Li (b40) 2020; 217 Yan, Liu, Han, Wang, Feng (b35) 2015; 52 Zhang, Wang, Wang (b29) 2014; 32 Hu, Heng, Tang, Guo (b14) 2018; 173 Maciejowska, Nowotarski, Weron (b19) 2016; 32 Cevik, Cunkas, Polat (b3) 2019; 534 Wan, Lin, Wang, Song, Dong (b36) 2016; 32 Wang, Jia, Liu, Zhang (b15) 2020; 145 Efron, Hastie, Johnstone, Tibshirani (b46) 2004; 32 (b53) 2011 Wu, Huang (b43) 2009; 1 Tascikaraoglu, Uzunoglu (b4) 2014; 34 He, Xu, Wan, Yang (b24) 2016; 114 Naik, Satapathy, Dash (b41) 2018; 70 Qiu, Suganthan, Amaratunga (b8) 2018; 145 Singh, Mohapatra (b25) 2019; 136 Breiman (b45) 1995; 37 Du, Wang, Yang, Niu (b5) 2019; 80 Eseye, Zhang, Zheng, Ma, Jingfu (b23) 2017 Kang, Bae, Yeung, Chung (b22) 2018; 66 Deng, Shao, Hu, Jiang, Jiang (b7) 2020; 122 Wu, Peng (b10) 2017; 4 Pedro, Coimbra, David, Lauret (b51) 2018; 123 Sun, Feng, Zhang (b31) 2020; 148 Guan, Lin, Guan, Mokaramian (b38) 2020; 45 Shahid, Khan, Zameer, Arshad, Safdar (b1) 2020; 90 Bokde, Feijóo A. Villanueva, Kulat (b42) 2019; 12 Bokde, Feijoo, Kulat (b49) 2018; 71 Ren, Suganthan, Srikanth (b9) 2015; 50 Xu, Chen, Wang, Fan (b21) 2019; 60 Fatemi, Kuh, Fripp (b30) 2018; 129 Ren, Qiu, Suganthan (b12) 2014 Zhang, Liu, Zhang, Yan, Zhang, Wu (b18) 2019; 7 Zhang, Li, Pan (b11) 2016; 49 Liu, Li, Xu, Tang, Xie (b34) 2020 Koenker, Hallock (b47) 2001; 15 Hao, Tian (b27) 2019; 238 Wu (10.1016/j.asoc.2021.107288_b43) 2009; 1 Liu (10.1016/j.asoc.2021.107288_b34) 2020 He (10.1016/j.asoc.2021.107288_b20) 2019; 233–234 Ouyang (10.1016/j.asoc.2021.107288_b16) 2020; 145 Maciejowska (10.1016/j.asoc.2021.107288_b19) 2016; 32 Qiu (10.1016/j.asoc.2021.107288_b8) 2018; 145 Taylor (10.1016/j.asoc.2021.107288_b48) 2000; 19 Eseye (10.1016/j.asoc.2021.107288_b23) 2017 Guan (10.1016/j.asoc.2021.107288_b38) 2020; 45 (10.1016/j.asoc.2021.107288_b52) 2018 (10.1016/j.asoc.2021.107288_b2) 2019 Lin (10.1016/j.asoc.2021.107288_b37) 2018; 10 Cevik (10.1016/j.asoc.2021.107288_b3) 2019; 534 Singh (10.1016/j.asoc.2021.107288_b25) 2019; 136 Berrezzek (10.1016/j.asoc.2021.107288_b17) 2019; 33 Bokde (10.1016/j.asoc.2021.107288_b49) 2018; 71 Deng (10.1016/j.asoc.2021.107288_b7) 2020; 122 Hao (10.1016/j.asoc.2021.107288_b27) 2019; 238 Sun (10.1016/j.asoc.2021.107288_b31) 2020; 148 Kang (10.1016/j.asoc.2021.107288_b22) 2018; 66 Zhang (10.1016/j.asoc.2021.107288_b28) 2020; 277 Wan (10.1016/j.asoc.2021.107288_b36) 2016; 32 Shahid (10.1016/j.asoc.2021.107288_b1) 2020; 90 Deng (10.1016/j.asoc.2021.107288_b26) 2020; 212 Liu (10.1016/j.asoc.2021.107288_b6) 2019; 195 Pedro (10.1016/j.asoc.2021.107288_b51) 2018; 123 Bokde (10.1016/j.asoc.2021.107288_b42) 2019; 12 Efron (10.1016/j.asoc.2021.107288_b46) 2004; 32 Ren (10.1016/j.asoc.2021.107288_b12) 2014 Naik (10.1016/j.asoc.2021.107288_b41) 2018; 70 Zhang (10.1016/j.asoc.2021.107288_b18) 2019; 7 Huang (10.1016/j.asoc.2021.107288_b39) 1998; 454 Hu (10.1016/j.asoc.2021.107288_b14) 2018; 173 Wang (10.1016/j.asoc.2021.107288_b15) 2020; 145 Du (10.1016/j.asoc.2021.107288_b5) 2019; 80 Wang (10.1016/j.asoc.2021.107288_b13) 2019; 14 Breiman (10.1016/j.asoc.2021.107288_b45) 1995; 37 Koenker (10.1016/j.asoc.2021.107288_b47) 2001; 15 Wu (10.1016/j.asoc.2021.107288_b10) 2017; 4 Tibshirani (10.1016/j.asoc.2021.107288_b44) 2011; 73 Messner (10.1016/j.asoc.2021.107288_b50) 2020; 23 Tascikaraoglu (10.1016/j.asoc.2021.107288_b4) 2014; 34 Xu (10.1016/j.asoc.2021.107288_b21) 2019; 60 Yan (10.1016/j.asoc.2021.107288_b35) 2015; 52 Ren (10.1016/j.asoc.2021.107288_b9) 2015; 50 Nie (10.1016/j.asoc.2021.107288_b40) 2020; 217 Zhang (10.1016/j.asoc.2021.107288_b11) 2016; 49 Hassan (10.1016/j.asoc.2021.107288_b32) 2016; 24 Fatemi (10.1016/j.asoc.2021.107288_b30) 2018; 129 Zhang (10.1016/j.asoc.2021.107288_b29) 2014; 32 (10.1016/j.asoc.2021.107288_b53) 2011 Yang (10.1016/j.asoc.2021.107288_b33) 2017; 10 He (10.1016/j.asoc.2021.107288_b24) 2016; 114 |
References_xml | – volume: 23 start-page: 1461 year: 2020 end-page: 1481 ident: b50 article-title: Evaluation of wind power forecasts– an up-to-date view publication-title: Wind Energy – year: 2020 ident: b34 article-title: A new lower and upper bound estimation model using gradient descend training method for wind speed interval prediction publication-title: Wind Energy – volume: 217 year: 2020 ident: b40 article-title: An emd-svr model for short-term prediction of ship motion using mirror symmetry and svr algorithms to eliminate emd boundary effect publication-title: Ocean Eng. – year: 2019 ident: b2 article-title: Global wind report 2019 – volume: 33 year: 2019 ident: b17 article-title: Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks publication-title: Rev. Intell. Artif. – start-page: 552 year: 2017 end-page: 556 ident: b23 article-title: Short-term wind power forecasting using a double-stage hierarchical hybrid ga-ann approach publication-title: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) – volume: 277 year: 2020 ident: b28 article-title: Load probability density forecasting by transforming and combining quantile forecasts publication-title: Appl. Energy – volume: 233–234 start-page: 565 year: 2019 end-page: 575 ident: b20 article-title: Electricity consumption probability density forecasting method based on lasso-quantile regression neural network publication-title: Appl. Energy – year: 2018 ident: b52 article-title: Sotavento – volume: 45 start-page: 23791 year: 2020 end-page: 23808 ident: b38 article-title: A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 243 year: 2014 end-page: 254 ident: b4 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew. Sustain. Energy Rev. – volume: 4 start-page: 979 year: 2017 end-page: 986 ident: b10 article-title: A data mining approach combining publication-title: IEEE Internet Things J. – volume: 148 start-page: 135 year: 2020 end-page: 149 ident: b31 article-title: Multi-distribution ensemble probabilistic wind power forecasting publication-title: Renew. Energy – volume: 66 start-page: 319 year: 2018 end-page: 329 ident: b22 article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization publication-title: Appl. Soft Comput. – volume: 49 start-page: 385 year: 2016 end-page: 398 ident: b11 article-title: Stock trend prediction based on a new status box method and adaboost probabilistic support vector machine publication-title: Appl. Soft Comput. – year: 2011 ident: b53 article-title: Emcm – volume: 12 start-page: 254 year: 2019 ident: b42 article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction publication-title: Energies – volume: 15 start-page: 143 year: 2001 end-page: 156 ident: b47 article-title: Quantile regression publication-title: J. Econ. Perspect. – volume: 52 start-page: 1322 year: 2015 end-page: 1330 ident: b35 article-title: Reviews on uncertainty analysis of wind power forecasting publication-title: Renew. Sustain. Energy Rev. – volume: 123 start-page: 191 year: 2018 end-page: 203 ident: b51 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy – volume: 50 start-page: 82 year: 2015 end-page: 91 ident: b9 article-title: Ensemble methods for wind and solar power forecasting– a state-of-the-art review publication-title: Renew. Sustain. Energy Rev. – volume: 145 start-page: 182 year: 2018 end-page: 196 ident: b8 article-title: Ensemble incremental learning random vector functional link network for short-term electric load forecasting publication-title: Knowl.-Based Syst. – volume: 14 start-page: 760 year: 2019 end-page: 767 ident: b13 article-title: Multiple kernel learning using nonlinear lasso publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 37 start-page: 373 year: 1995 end-page: 384 ident: b45 article-title: Better subset regression using the nonnegative garrote publication-title: Technometrics – volume: 212 year: 2020 ident: b26 article-title: A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting publication-title: Energy Convers. Manage. – volume: 10 start-page: 1903 year: 2017 ident: b33 article-title: A naive Bayesian wind power interval prediction approach based on rough set attribute reduction and weight optimization publication-title: Energies – volume: 129 start-page: 666 year: 2018 end-page: 676 ident: b30 article-title: Parametric methods for probabilistic forecasting of solar irradiance publication-title: Renew. Energy – volume: 145 start-page: 270 year: 2020 end-page: 281 ident: b16 article-title: Chaotic wind power time series prediction via switching data-driven modes publication-title: Renew. Energy – volume: 70 start-page: 1167 year: 2018 end-page: 1188 ident: b41 article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression publication-title: Appl. Soft Comput. – volume: 145 start-page: 2426 year: 2020 end-page: 2434 ident: b15 article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning publication-title: Renew. Energy – volume: 60 start-page: 1137 year: 2019 end-page: 1160 ident: b21 article-title: Quantile regression and variable selection for partially linear model with randomly truncated data publication-title: Statist. Papers – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: b32 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control – volume: 19 start-page: 299 year: 2000 end-page: 311 ident: b48 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: J. Forecast. – volume: 136 start-page: 758 year: 2019 end-page: 768 ident: b25 article-title: Repeated wavelet transform based arima model for very short-term wind speed forecasting publication-title: Renew. Energy – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b39 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 32 start-page: 2767 year: 2016 end-page: 2778 ident: b36 article-title: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation publication-title: IEEE Trans. Power Syst. – volume: 238 start-page: 368 year: 2019 end-page: 383 ident: b27 article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting publication-title: Appl. Energy – volume: 195 start-page: 328 year: 2019 end-page: 345 ident: b6 article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods publication-title: Energy Convers. Manage. – volume: 114 start-page: 498 year: 2016 end-page: 512 ident: b24 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy – volume: 32 start-page: 957 year: 2016 end-page: 965 ident: b19 article-title: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging publication-title: Int. J. Forecast. – volume: 90 year: 2020 ident: b1 article-title: Wind power prediction using a three stage genetic ensemble and auxiliary predictor publication-title: Appl. Soft Comput. – start-page: 1 year: 2014 end-page: 6 ident: b12 article-title: Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting publication-title: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL) – volume: 534 year: 2019 ident: b3 article-title: A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods publication-title: Physica A – volume: 7 start-page: 281 year: 2019 end-page: 288 ident: b18 article-title: Wind power prediction based on variational mode decomposition multi-frequency combinations publication-title: J. Mod. Power Syst. Clean Energy – volume: 10 start-page: 226 year: 2018 end-page: 237 ident: b37 article-title: A multi-model combination approach for probabilistic wind power forecasting publication-title: IEEE Trans. Sustain. Energy – volume: 71 start-page: 926 year: 2018 end-page: 938 ident: b49 article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction publication-title: Appl. Soft Comput. – volume: 32 start-page: 255 year: 2014 end-page: 270 ident: b29 article-title: Review on probabilistic forecasting of wind power generation publication-title: Renew. Sustain. Energy Rev. – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: b46 article-title: Least angle regression publication-title: Ann. Statist. – volume: 122 start-page: 273 year: 2020 end-page: 302 ident: b7 article-title: Wind power forecasting methods based on deep learning: A survey publication-title: CMES Comput. Model. Eng. Sci. – volume: 80 start-page: 93 year: 2019 end-page: 106 ident: b5 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. – volume: 173 start-page: 197 year: 2018 end-page: 209 ident: b14 article-title: Research and application of a hybrid model based on meta learning strategy for wind power deterministic and probabilistic forecasting publication-title: Energy Convers. Manage. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b43 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 73 start-page: 273 year: 2011 end-page: 282 ident: b44 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2021.107288_b12 article-title: Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting – start-page: 552 year: 2017 ident: 10.1016/j.asoc.2021.107288_b23 article-title: Short-term wind power forecasting using a double-stage hierarchical hybrid ga-ann approach – volume: 73 start-page: 273 issue: 3 year: 2011 ident: 10.1016/j.asoc.2021.107288_b44 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2011.00771.x – volume: 145 start-page: 2426 year: 2020 ident: 10.1016/j.asoc.2021.107288_b15 article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.166 – volume: 37 start-page: 373 issue: 4 year: 1995 ident: 10.1016/j.asoc.2021.107288_b45 article-title: Better subset regression using the nonnegative garrote publication-title: Technometrics doi: 10.1080/00401706.1995.10484371 – volume: 32 start-page: 255 year: 2014 ident: 10.1016/j.asoc.2021.107288_b29 article-title: Review on probabilistic forecasting of wind power generation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.01.033 – year: 2019 ident: 10.1016/j.asoc.2021.107288_b2 – volume: 145 start-page: 182 year: 2018 ident: 10.1016/j.asoc.2021.107288_b8 article-title: Ensemble incremental learning random vector functional link network for short-term electric load forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.015 – volume: 33 issue: 6 year: 2019 ident: 10.1016/j.asoc.2021.107288_b17 article-title: Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks publication-title: Rev. Intell. Artif. – year: 2011 ident: 10.1016/j.asoc.2021.107288_b53 – volume: 32 start-page: 957 issue: 3 year: 2016 ident: 10.1016/j.asoc.2021.107288_b19 article-title: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2014.12.004 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.asoc.2021.107288_b43 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 212 year: 2020 ident: 10.1016/j.asoc.2021.107288_b26 article-title: A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112779 – volume: 23 start-page: 1461 issue: 6 year: 2020 ident: 10.1016/j.asoc.2021.107288_b50 article-title: Evaluation of wind power forecasts– an up-to-date view publication-title: Wind Energy doi: 10.1002/we.2497 – volume: 123 start-page: 191 year: 2018 ident: 10.1016/j.asoc.2021.107288_b51 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.006 – volume: 7 start-page: 281 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107288_b18 article-title: Wind power prediction based on variational mode decomposition multi-frequency combinations publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-018-0471-8 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 10.1016/j.asoc.2021.107288_b46 article-title: Least angle regression publication-title: Ann. Statist. doi: 10.1214/009053604000000067 – volume: 90 year: 2020 ident: 10.1016/j.asoc.2021.107288_b1 article-title: Wind power prediction using a three stage genetic ensemble and auxiliary predictor publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106151 – volume: 129 start-page: 666 year: 2018 ident: 10.1016/j.asoc.2021.107288_b30 article-title: Parametric methods for probabilistic forecasting of solar irradiance publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.022 – year: 2020 ident: 10.1016/j.asoc.2021.107288_b34 article-title: A new lower and upper bound estimation model using gradient descend training method for wind speed interval prediction publication-title: Wind Energy – volume: 71 start-page: 926 year: 2018 ident: 10.1016/j.asoc.2021.107288_b49 article-title: Analysis of differencing and decomposition preprocessing methods for wind speed prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.041 – volume: 173 start-page: 197 year: 2018 ident: 10.1016/j.asoc.2021.107288_b14 article-title: Research and application of a hybrid model based on meta learning strategy for wind power deterministic and probabilistic forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.052 – volume: 277 year: 2020 ident: 10.1016/j.asoc.2021.107288_b28 article-title: Load probability density forecasting by transforming and combining quantile forecasts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115600 – volume: 19 start-page: 299 issue: 4 year: 2000 ident: 10.1016/j.asoc.2021.107288_b48 article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns publication-title: J. Forecast. doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V – volume: 49 start-page: 385 year: 2016 ident: 10.1016/j.asoc.2021.107288_b11 article-title: Stock trend prediction based on a new status box method and adaboost probabilistic support vector machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.026 – year: 2018 ident: 10.1016/j.asoc.2021.107288_b52 – volume: 136 start-page: 758 year: 2019 ident: 10.1016/j.asoc.2021.107288_b25 article-title: Repeated wavelet transform based arima model for very short-term wind speed forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.031 – volume: 15 start-page: 143 issue: 4 year: 2001 ident: 10.1016/j.asoc.2021.107288_b47 article-title: Quantile regression publication-title: J. Econ. Perspect. doi: 10.1257/jep.15.4.143 – volume: 32 start-page: 2767 issue: 4 year: 2016 ident: 10.1016/j.asoc.2021.107288_b36 article-title: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2625101 – volume: 10 start-page: 226 issue: 1 year: 2018 ident: 10.1016/j.asoc.2021.107288_b37 article-title: A multi-model combination approach for probabilistic wind power forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2831238 – volume: 238 start-page: 368 year: 2019 ident: 10.1016/j.asoc.2021.107288_b27 article-title: A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.063 – volume: 52 start-page: 1322 year: 2015 ident: 10.1016/j.asoc.2021.107288_b35 article-title: Reviews on uncertainty analysis of wind power forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.197 – volume: 217 year: 2020 ident: 10.1016/j.asoc.2021.107288_b40 article-title: An emd-svr model for short-term prediction of ship motion using mirror symmetry and svr algorithms to eliminate emd boundary effect publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107927 – volume: 233–234 start-page: 565 year: 2019 ident: 10.1016/j.asoc.2021.107288_b20 article-title: Electricity consumption probability density forecasting method based on lasso-quantile regression neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.061 – volume: 10 start-page: 1903 issue: 11 year: 2017 ident: 10.1016/j.asoc.2021.107288_b33 article-title: A naive Bayesian wind power interval prediction approach based on rough set attribute reduction and weight optimization publication-title: Energies doi: 10.3390/en10111903 – volume: 122 start-page: 273 issue: 1 year: 2020 ident: 10.1016/j.asoc.2021.107288_b7 article-title: Wind power forecasting methods based on deep learning: A survey publication-title: CMES Comput. Model. Eng. Sci. – volume: 4 start-page: 979 issue: 4 year: 2017 ident: 10.1016/j.asoc.2021.107288_b10 article-title: A data mining approach combining k-means clustering with bagging neural network for short-term wind power forecasting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2677578 – volume: 50 start-page: 82 year: 2015 ident: 10.1016/j.asoc.2021.107288_b9 article-title: Ensemble methods for wind and solar power forecasting– a state-of-the-art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.081 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.asoc.2021.107288_b39 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 534 year: 2019 ident: 10.1016/j.asoc.2021.107288_b3 article-title: A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods publication-title: Physica A doi: 10.1016/j.physa.2019.122177 – volume: 70 start-page: 1167 year: 2018 ident: 10.1016/j.asoc.2021.107288_b41 article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.010 – volume: 45 start-page: 23791 issue: 43 year: 2020 ident: 10.1016/j.asoc.2021.107288_b38 article-title: A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.209 – volume: 12 start-page: 254 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107288_b42 article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction publication-title: Energies doi: 10.3390/en12020254 – volume: 145 start-page: 270 year: 2020 ident: 10.1016/j.asoc.2021.107288_b16 article-title: Chaotic wind power time series prediction via switching data-driven modes publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.047 – volume: 148 start-page: 135 year: 2020 ident: 10.1016/j.asoc.2021.107288_b31 article-title: Multi-distribution ensemble probabilistic wind power forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.145 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2021.107288_b32 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.09.002 – volume: 114 start-page: 498 year: 2016 ident: 10.1016/j.asoc.2021.107288_b24 article-title: Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function publication-title: Energy doi: 10.1016/j.energy.2016.08.023 – volume: 34 start-page: 243 year: 2014 ident: 10.1016/j.asoc.2021.107288_b4 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.03.033 – volume: 195 start-page: 328 year: 2019 ident: 10.1016/j.asoc.2021.107288_b6 article-title: Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.05.020 – volume: 80 start-page: 93 year: 2019 ident: 10.1016/j.asoc.2021.107288_b5 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.035 – volume: 60 start-page: 1137 issue: 4 year: 2019 ident: 10.1016/j.asoc.2021.107288_b21 article-title: Quantile regression and variable selection for partially linear model with randomly truncated data publication-title: Statist. Papers doi: 10.1007/s00362-016-0867-3 – volume: 14 start-page: 760 issue: 5 year: 2019 ident: 10.1016/j.asoc.2021.107288_b13 article-title: Multiple kernel learning using nonlinear lasso publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.22862 – volume: 66 start-page: 319 year: 2018 ident: 10.1016/j.asoc.2021.107288_b22 article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.037 |
SSID | ssj0016928 |
Score | 2.6279511 |
Snippet | With the increasing utilization of wind generation in power system, the improvement of wind power forecasting precision is attached vital importance. Owing to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107288 |
SubjectTerms | Decomposition Ensemble methods LASSO Quantile regression neural network Wind power prediction |
Title | Short-term wind power prediction based on EEMD–LASSO–QRNN model |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107288 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WZtkN9nkWGJL1TZoa6G30N1NsCI1lIo38T_4D_0lzuRRFKQHL9lk2YXkSzLzLTszHyHnlq9tLVPFXK2mTCgtmHKUy6Rl-9MgkUpoTBQeRF5vLG4m7qRGwioXBsMqS9tf2PTcWpc9rRLNVjabtUaw8vBFIDwHq4gCT8YMdiExrO_yfRXmYXtBrq-KgxmOLhNnihivKSAAa0THhg7p5OorfzinHw6nu0O2SqZI28XN7JJaMt8j25UKAy1_yn0Sjh6BQjM0sfQNVtg0Q-Ezmi1wCwZhp-ipDIWTTmdw9fXx2cdajtDeD6OI5lI4B2Tc7TyEPVZKIzDNLWvJbMekgZf4HjepMlo6HIgD11PchrQ4Bx5ljKMNkAuuhZIiUBoeM0i5LxIDPp8fkvr8ZZ4cEerI1BJcu0Iq8OYm8V3XTQQX2sDR8qwGsStMYl3WDUf5iue4ChB7ihHHGHGMCxwb5GI1JyuqZqwd7VZQx7_efQxmfc2843_OOyGbeFUE3Z6S-nLxmpwBtViqZv7tNMlGOxz277C9vu1F32Apzhs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-9-BNlibZzetYaku1bUBtwVvo7iZYkVpKxav_wX_oL3Gm2RQF8eAlCZsd2HxJZr5lZ-cDuHAi7eowV9zXasyl0pIrT_k8dNxoHGehkpo2Cg-SoDuSNw_-QwVa5V4YSqu0vr_w6UtvbVsaFs3GbDJp3OPMI5KxDDyqIoo8eQ1qVJ1KVqHWvO51k9ViQhAvJVapPycDu3emSPMaIwg4TfRcbAi9pQDLL_HpW8zpbMOmJYusWYxnByrZdBe2SiEGZv_LPWjdPyKL5uRl2RtOstmMtM_YbE6rMIQ8o2BlGF6024Orz_ePPpVzxPPtXZKwpRrOPow67WGry606AtfCcRbc9UweB1kUCJMro0NPIHcQekwrkY4QSKWM8bRBfiG0VKGMlcbHjHMRycxg2BcHUJ2-TLNDYF6YO1JoBE9hQDdZ5Pt-JoXUBo9O4NTBLTFJtS0dTgoWz2mZI_aUEo4p4ZgWONbhcmUzKwpn_NnbL6FOf7z-FD37H3ZH_7Q7h_XucNBP-9dJ7xg26E6Rg3sC1cX8NTtFprFQZ_ZL-gIQJc83 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+wind+power+prediction+based+on+EEMD%E2%80%93LASSO%E2%80%93QRNN+model&rft.jtitle=Applied+soft+computing&rft.au=He%2C+Yaoyao&rft.au=Wang%2C+Yun&rft.date=2021-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=105&rft_id=info:doi/10.1016%2Fj.asoc.2021.107288&rft.externalDocID=S1568494621002118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |