Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries
The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and stead...
Saved in:
Published in | Journal of solid state chemistry Vol. 314; p. 123430 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and steady cycling, a significant amount of time and effort has been paid to investigate in the search for new hosts. Because of their capability to prevent the shuttle effect and control the deposition of lithium sulfides, metal oxide materials have been the subject of substantial research and development in relation to their application as sulfur hosts in Li–S batteries. In this study, an advanced type of lithium-sulfur battery called a NiO–ZnO composite was used as a suitable sulfur host (NiO–ZnO/S). A high initial reversible capacity of 1326 mAh g−1 was achieved in NiO–ZnO/S at 0.1C, and the sulfur loading was 73.8 wt%. In addition, a great improvement in cycling stability in NiO–ZnO/S (77.6% capacity retention was maintained after 400 cycles at 0.2C) and rate performance (662 mAh g−1 at 5C) were achieved, benefiting from the strategy of anchor function from metal oxide composite (strong adsorption via physical and chemical interactions) and the unique flower-like structure of NiO–ZnO (relief of the volume change).
Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized by simple hydrothermal method and high temperature annealing and exhibits good electrochemical performances as a sulfur host for lithium-sulfur batteries. [Display omitted]
•Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized.•The synergistic effect improves the cycling performance of the electrode.•The NiO–ZnO/S composite as a cathode for lithium-sulfur batteries delivers high and ultra-stable cycling performance. |
---|---|
AbstractList | The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and steady cycling, a significant amount of time and effort has been paid to investigate in the search for new hosts. Because of their capability to prevent the shuttle effect and control the deposition of lithium sulfides, metal oxide materials have been the subject of substantial research and development in relation to their application as sulfur hosts in Li–S batteries. In this study, an advanced type of lithium-sulfur battery called a NiO–ZnO composite was used as a suitable sulfur host (NiO–ZnO/S). A high initial reversible capacity of 1326 mAh g−1 was achieved in NiO–ZnO/S at 0.1C, and the sulfur loading was 73.8 wt%. In addition, a great improvement in cycling stability in NiO–ZnO/S (77.6% capacity retention was maintained after 400 cycles at 0.2C) and rate performance (662 mAh g−1 at 5C) were achieved, benefiting from the strategy of anchor function from metal oxide composite (strong adsorption via physical and chemical interactions) and the unique flower-like structure of NiO–ZnO (relief of the volume change).
Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized by simple hydrothermal method and high temperature annealing and exhibits good electrochemical performances as a sulfur host for lithium-sulfur batteries. [Display omitted]
•Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized.•The synergistic effect improves the cycling performance of the electrode.•The NiO–ZnO/S composite as a cathode for lithium-sulfur batteries delivers high and ultra-stable cycling performance. |
ArticleNumber | 123430 |
Author | Liu, Jin-Hang Cao, Xiaohua Zhang, Hang Zhan, Changchao Yan, Ping Chen, Xiudong |
Author_xml | – sequence: 1 givenname: Xiudong orcidid: 0000-0001-8454-642X surname: Chen fullname: Chen, Xiudong email: chenxiudong_@126.com organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China – sequence: 2 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia – sequence: 3 givenname: Ping surname: Yan fullname: Yan, Ping organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China – sequence: 4 givenname: Xiaohua surname: Cao fullname: Cao, Xiaohua organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China – sequence: 5 givenname: Changchao surname: Zhan fullname: Zhan, Changchao organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China – sequence: 6 givenname: Jin-Hang surname: Liu fullname: Liu, Jin-Hang email: ljh2016HUST@126.com organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China |
BookMark | eNp9kLFOwzAURS1UJNrCDzD5B1Ke7ThpJRZUUUCqxAISm-U4z8QljSvbBfr3JGonhk53ePc86Z4JGXW-Q0JuGcwYsOJuM9vEaGYcOJ8xLnIBF2TMYCGzkhcfIzKG_pLlclFckUmMGwDG5Dwfk7hq_Q-GrHVfSLeYdEv9r6uRGr_d-egSUh2p7iha64zDLtG4b-0-0MbHRK0PNCZdtX2tq2njPpvM6J02Lh1o61Lj9tvsBFQ6JQwO4zW5tLqNeHPKKXlfPb4tn7P169PL8mGdGQGQMgZomLDFQoiSQylLUUPBq0paDRVI4FYC5DpHVkrQYl7kEoyuecks5NzUYkr48a8JPsaAVu2C2-pwUAzUoE1t1KBNDdrUUVsPzf9B_RadnO9S0K49j94fUexHfTsMKg7GDNYuoEmq9u4c_gfuw4wR |
CitedBy_id | crossref_primary_10_20517_microstructures_2023_89 crossref_primary_10_1002_adfm_202421697 crossref_primary_10_1039_D3NA00785E crossref_primary_10_1007_s10008_023_05611_w crossref_primary_10_1002_smll_202412186 |
Cites_doi | 10.1039/C9TA01598A 10.1002/smll.201600809 10.1039/C8TA01089G 10.1021/acsnano.1c01999 10.1016/j.jechem.2020.02.003 10.1016/j.jechem.2021.08.040 10.1021/acsaem.2c00033 10.1186/s11671-018-2724-x 10.1039/C8NR04661A 10.1016/j.electacta.2017.07.164 10.1039/C9TA01722D 10.1016/j.cej.2020.125967 10.1016/j.jechem.2020.01.022 10.1039/D1NJ00610J 10.1038/s41467-017-00575-8 10.1016/j.ensm.2017.06.012 10.1021/acsenergylett.7b01202 10.1038/nmat2460 10.1021/acsami.8b03255 10.1039/D1CC07087H 10.1039/C8CC06924G 10.1039/C8TA03012J 10.1149/1945-7111/ac4cd7 10.1002/adma.201700449 10.1039/D1TA02741G 10.1038/ncomms6002 10.1016/j.electacta.2016.03.018 10.1039/D1TA06499A 10.1021/acsnano.9b07360 10.1007/s12274-017-1655-7 10.3762/bjnano.9.159 10.1039/C7TA10272K 10.1016/j.carbon.2018.09.060 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jssc.2022.123430 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1095-726X |
ExternalDocumentID | 10_1016_j_jssc_2022_123430 S0022459622005552 |
GroupedDBID | --K --M -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HMH HMV HVGLF HZ~ H~9 IHE J1W KOM LG5 LZ6 M24 M37 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SIC SMS SPC SPCBC SPG SSK SSM SSZ T5K TN5 WUQ XPP YQT ZMT ZU3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-10ec13f69337207573d062bb5fa0b0502f5004a4e1750a386450cad271f042cd3 |
IEDL.DBID | .~1 |
ISSN | 0022-4596 |
IngestDate | Tue Jul 01 01:56:07 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Fri Feb 23 02:38:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal oxide Lithium-sulfur batteries Stable cycling Synergistic effect Flower-like structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-10ec13f69337207573d062bb5fa0b0502f5004a4e1750a386450cad271f042cd3 |
ORCID | 0000-0001-8454-642X |
ParticipantIDs | crossref_primary_10_1016_j_jssc_2022_123430 crossref_citationtrail_10_1016_j_jssc_2022_123430 elsevier_sciencedirect_doi_10_1016_j_jssc_2022_123430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of solid state chemistry |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tao, Wang, Liu, Wang, Yao, Zheng, Seh, Cai, Li, Zhou, Zu, Cui (bib25) 2016; 7 Wang, Yin, Qin, Zhao, Xia, Hu, Guo, Cao, Zhang (bib47) 2019; 7 Zhao, Kang, Liu, Wen, Fang, Tang, He, Ma, Liu, Yan (bib3) 2021; 9 Kang, Tian, Yan, Wei, Gao, Ju, Zhao, Deng, Cheng, Kang (bib18) 2022; 18 Han, Li, Wu, Yu, Cheng, Xie (bib7) 2021; 9 Liu, Thoi (bib5) 2022; 58 Hu, Sun, Shi, Fang, Chen, Hou, Liu, Cheng, Li (bib17) 2017; 29 Kaiser, Chou, Liu, Dou, Wang, Wang (bib30) 2017; 29 Gu, Tong, Wen, Liu, Lai, Zhang (bib32) 2016; 196 Dong, Wang, Li, Yao, Zhao, Wang, Wang, Li, Chen, Qian, Su (bib46) 2020; 48 Cao, Liu, Li, Wang, Jiao (bib23) 2017; 9 Pei, Lin, Ou, Zheng, Mo, Fang, Zheng (bib29) 2017; 8 Meng, Yao, Liu, Wang, Qian, Zheng, Su, Wang (bib45) 2020; 47 Ji, Lee, Nazar (bib11) 2009; 8 Wang, Liu, Bao, Qing, Zhu, Wang (bib49) 2022; 5 Yang, Du, Lin, Yang, Zhu, Zhang, Tang, Gui (bib35) 2019; 141 Liu, Wei, Zhai, Wang, Ren, Xiong, Akiyoshi, Pan, Ren, Wei (bib14) 2021; 211 Chen, Peng, Hou, Zhai, Li, Tang, Zhu, Huang, Zhang (bib8) 2017; 29 Li, Guo, Qin, Deng, Lu, Shen, Zhao, Li, Su, Wang (bib43) 2018; 10 He, Luo, Chen, Manthiram (bib22) 2017; 29 Luo, Chung, Manthiram (bib20) 2018; 6 Guo, Xu, Lv, Chen, Sun, Wang (bib40) 2021; 45 Hu, Dai, Liu, Li, Shen, Chen, Bao, Xu (bib10) 2018; 8 Lu, Zhang, Gao, Ma, Chen, Cheng (bib42) 2019; 29 Zhang, Zhao, Zou, Wang, Chen, Xu, Wu, Cao (bib19) 2018; 8 Xu, Zhang, Chen, Fan, Su, Wang (bib12) 2018; 6 Lang, Feng, Seok, Yang, Krumov, Molina Villarino, Lowe, Yu, Abruña (bib6) 2021; 25 Sun, Xu, Chen, Xu, Wu, Wang (bib38) 2020; 383 Wang, Dong, Li, Zhao, Wu, Hao, Liu, Qiu, Lou (bib13) 2014; 5 Wang, Li, Qin, Zhao, Cheng, Cao, Zhang (bib48) 2019; 7 Gao, Zhi, Cui, Zhang, Lv, Wang (bib50) 2020; 400 Zhou, Li, Xu, Mai (bib1) 2021; 8 Gao, Xie, Zhu, Sun, Xie, Liu, Yu, Ding (bib28) 2018; 14 Chadha, Bhardwaj, Padmanaban, Suneel, Milton, Subair, Pandey, Khanna, Srivastava, Mathew, Selvaraj, Banavoth, Sonar, Badoni, Rao, Kumar, Ray, Kumar (bib4) 2022; 169 Li, Lu, Amine (bib2) 2021; 15 Wang, Yin, Zhao, Qin, Li, Deng, Zheng, Su, Lu (bib44) 2018; 54 Huang, Wang, Von Lim, Wang, Li, Zhang, Yang (bib16) 2021; 11 Hou, Chen, Peng, Huang, Li, Zhang, Li (bib9) 2016; 12 Yao, Dong, Zhang, Hu, Zhang (bib27) 2018; 6 Hu, Lv, Dai, Fan, Xiong, Li (bib26) 2018; 10 Lv, Guo, Sun, Wang (bib41) 2019; 15 Yin, Ren, Zhang, Tan, Chen (bib31) 2018; 13 Zhang, Sun, Chen, Wang (bib39) 2019; 13 Zhang, Huang, Hao, Deng, He, Lin, Yang (bib15) 2022; 9 Li, Dong, Guo, Zhang, Wang, Yin (bib33) 2017; 251 Liu, Wang, Yang, Cao, Ye (bib21) 2022; 66 Chen, Xu, Du, Wang (bib37) 2019; 3 Patil, Kim, Lim, Oh, Kim, Shin, Kim, Choi, Hwang (bib24) 2018; 3 Zhao, Liu, Sun, Zhang, Feng, Wang, Kurmanbayeva, Bakenov (bib34) 2018; 9 Kong, Luo, Jin, Yuan, Sheng, Zhang, Fang, Zhang, Huang, Xia, Liang, Zhang, Gan, Tao (bib36) 2017; 11 Liu (10.1016/j.jssc.2022.123430_bib14) 2021; 211 Li (10.1016/j.jssc.2022.123430_bib33) 2017; 251 Cao (10.1016/j.jssc.2022.123430_bib23) 2017; 9 Hu (10.1016/j.jssc.2022.123430_bib26) 2018; 10 Wang (10.1016/j.jssc.2022.123430_bib44) 2018; 54 Chen (10.1016/j.jssc.2022.123430_bib8) 2017; 29 Wang (10.1016/j.jssc.2022.123430_bib13) 2014; 5 Lv (10.1016/j.jssc.2022.123430_bib41) 2019; 15 Hu (10.1016/j.jssc.2022.123430_bib10) 2018; 8 Yang (10.1016/j.jssc.2022.123430_bib35) 2019; 141 Han (10.1016/j.jssc.2022.123430_bib7) 2021; 9 Huang (10.1016/j.jssc.2022.123430_bib16) 2021; 11 Ji (10.1016/j.jssc.2022.123430_bib11) 2009; 8 Kang (10.1016/j.jssc.2022.123430_bib18) 2022; 18 Zhang (10.1016/j.jssc.2022.123430_bib19) 2018; 8 Xu (10.1016/j.jssc.2022.123430_bib12) 2018; 6 Yin (10.1016/j.jssc.2022.123430_bib31) 2018; 13 Gao (10.1016/j.jssc.2022.123430_bib50) 2020; 400 Zhao (10.1016/j.jssc.2022.123430_bib34) 2018; 9 Kong (10.1016/j.jssc.2022.123430_bib36) 2017; 11 Yao (10.1016/j.jssc.2022.123430_bib27) 2018; 6 Liu (10.1016/j.jssc.2022.123430_bib21) 2022; 66 Tao (10.1016/j.jssc.2022.123430_bib25) 2016; 7 Zhou (10.1016/j.jssc.2022.123430_bib1) 2021; 8 Dong (10.1016/j.jssc.2022.123430_bib46) 2020; 48 Chen (10.1016/j.jssc.2022.123430_bib37) 2019; 3 Liu (10.1016/j.jssc.2022.123430_bib5) 2022; 58 Kaiser (10.1016/j.jssc.2022.123430_bib30) 2017; 29 Li (10.1016/j.jssc.2022.123430_bib43) 2018; 10 He (10.1016/j.jssc.2022.123430_bib22) 2017; 29 Wang (10.1016/j.jssc.2022.123430_bib47) 2019; 7 Zhang (10.1016/j.jssc.2022.123430_bib15) 2022; 9 Lang (10.1016/j.jssc.2022.123430_bib6) 2021; 25 Wang (10.1016/j.jssc.2022.123430_bib49) 2022; 5 Pei (10.1016/j.jssc.2022.123430_bib29) 2017; 8 Li (10.1016/j.jssc.2022.123430_bib2) 2021; 15 Hu (10.1016/j.jssc.2022.123430_bib17) 2017; 29 Hou (10.1016/j.jssc.2022.123430_bib9) 2016; 12 Zhao (10.1016/j.jssc.2022.123430_bib3) 2021; 9 Sun (10.1016/j.jssc.2022.123430_bib38) 2020; 383 Luo (10.1016/j.jssc.2022.123430_bib20) 2018; 6 Patil (10.1016/j.jssc.2022.123430_bib24) 2018; 3 Gu (10.1016/j.jssc.2022.123430_bib32) 2016; 196 Guo (10.1016/j.jssc.2022.123430_bib40) 2021; 45 Gao (10.1016/j.jssc.2022.123430_bib28) 2018; 14 Chadha (10.1016/j.jssc.2022.123430_bib4) 2022; 169 Zhang (10.1016/j.jssc.2022.123430_bib39) 2019; 13 Meng (10.1016/j.jssc.2022.123430_bib45) 2020; 47 Lu (10.1016/j.jssc.2022.123430_bib42) 2019; 29 Wang (10.1016/j.jssc.2022.123430_bib48) 2019; 7 |
References_xml | – volume: 29 year: 2017 ident: bib8 publication-title: Adv. Mater. – volume: 58 start-page: 4005 year: 2022 end-page: 4015 ident: bib5 publication-title: Chem. Commun. – volume: 29 year: 2019 ident: bib42 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 7659 year: 2018 end-page: 7667 ident: bib20 publication-title: J. Mater. Chem. – volume: 45 start-page: 8683 year: 2021 end-page: 8692 ident: bib40 publication-title: New J. Chem. – volume: 6 start-page: 11260 year: 2018 end-page: 11269 ident: bib27 publication-title: J. Mater. Chem. – volume: 18 year: 2022 ident: bib18 publication-title: Small – volume: 8 year: 2018 ident: bib10 publication-title: Adv. Energy Mater. – volume: 7 start-page: 12068 year: 2019 end-page: 12074 ident: bib48 publication-title: J. Mater. Chem. – volume: 6 start-page: 2797 year: 2018 end-page: 2807 ident: bib12 publication-title: J. Mater. Chem. – volume: 5 start-page: 5002 year: 2014 ident: bib13 publication-title: Nat. Commun. – volume: 29 year: 2017 ident: bib17 publication-title: Adv. Mater. – volume: 8 year: 2018 ident: bib19 publication-title: Adv. Energy Mater. – volume: 3 start-page: 412 year: 2018 end-page: 419 ident: bib24 publication-title: ACS Energy Lett. – volume: 9 start-page: 18927 year: 2021 end-page: 18946 ident: bib3 publication-title: J. Mater. Chem. – volume: 29 year: 2017 ident: bib22 publication-title: Adv. Mater. – volume: 383 year: 2020 ident: bib38 publication-title: Chem. Eng. J. – volume: 169 year: 2022 ident: bib4 publication-title: J. Electrochem. Soc. – volume: 66 start-page: 429 year: 2022 end-page: 439 ident: bib21 publication-title: J. Energy Chem. – volume: 400 year: 2020 ident: bib50 publication-title: Chem. Eng. J. – volume: 8 start-page: 500 year: 2009 end-page: 506 ident: bib11 publication-title: Nat. Mater. – volume: 9 start-page: 24215 year: 2021 end-page: 24240 ident: bib7 publication-title: J. Mater. Chem. – volume: 141 start-page: 258 year: 2019 end-page: 265 ident: bib35 publication-title: Carbon – volume: 47 start-page: 241 year: 2020 end-page: 247 ident: bib45 publication-title: J. Energy Chem. – volume: 14 year: 2018 ident: bib28 publication-title: Small – volume: 10 start-page: 18665 year: 2018 end-page: 18674 ident: bib26 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 477 year: 2017 end-page: 489 ident: bib36 publication-title: Nano Res. – volume: 48 start-page: 259 year: 2020 end-page: 266 ident: bib46 publication-title: J. Energy Chem. – volume: 7 year: 2016 ident: bib25 publication-title: Nat. Commun. – volume: 9 start-page: 78 year: 2017 end-page: 84 ident: bib23 publication-title: Energy Storage Mater. – volume: 8 year: 2021 ident: bib1 publication-title: Natl. Sci. Rev. – volume: 25 year: 2021 ident: bib6 publication-title: Curr. Opin. Electrochem. – volume: 10 start-page: 15505 year: 2018 end-page: 15512 ident: bib43 publication-title: Nanoscale – volume: 54 start-page: 12250 year: 2018 end-page: 12253 ident: bib44 publication-title: Chem. Commun. – volume: 12 start-page: 3283 year: 2016 end-page: 3291 ident: bib9 publication-title: Small – volume: 211 year: 2021 ident: bib14 publication-title: Mater. Des. – volume: 251 start-page: 43 year: 2017 end-page: 50 ident: bib33 publication-title: Electrochim. Acta – volume: 7 start-page: 10346 year: 2019 end-page: 10353 ident: bib47 publication-title: J. Mater. Chem. – volume: 5 start-page: 2573 year: 2022 end-page: 2579 ident: bib49 publication-title: ACS Appl. Energy Mater. – volume: 13 start-page: 307 year: 2018 ident: bib31 publication-title: Nanoscale Res. Lett. – volume: 11 year: 2021 ident: bib16 publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: bib30 publication-title: Adv. Mater. – volume: 3 year: 2019 ident: bib37 publication-title: Small Methods – volume: 9 year: 2022 ident: bib15 publication-title: Adv. Sci. – volume: 13 start-page: 14252 year: 2019 end-page: 14261 ident: bib39 publication-title: ACS Nano – volume: 15 start-page: 8087 year: 2021 end-page: 8094 ident: bib2 publication-title: ACS Nano – volume: 8 start-page: 482 year: 2017 ident: bib29 publication-title: Nat. Commun. – volume: 196 start-page: 369 year: 2016 end-page: 376 ident: bib32 publication-title: Electrochim. Acta – volume: 9 start-page: 1677 year: 2018 end-page: 1685 ident: bib34 publication-title: Beilstein J. Nanotechnol. – volume: 15 year: 2019 ident: bib41 publication-title: Small – volume: 7 start-page: 10346 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib47 publication-title: J. Mater. Chem. doi: 10.1039/C9TA01598A – volume: 12 start-page: 3283 year: 2016 ident: 10.1016/j.jssc.2022.123430_bib9 publication-title: Small doi: 10.1002/smll.201600809 – volume: 6 start-page: 7659 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib20 publication-title: J. Mater. Chem. doi: 10.1039/C8TA01089G – volume: 15 start-page: 8087 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib2 publication-title: ACS Nano doi: 10.1021/acsnano.1c01999 – volume: 8 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib19 publication-title: Adv. Energy Mater. – volume: 15 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib41 publication-title: Small – volume: 9 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib15 publication-title: Adv. Sci. – volume: 29 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib17 publication-title: Adv. Mater. – volume: 47 start-page: 241 year: 2020 ident: 10.1016/j.jssc.2022.123430_bib45 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.02.003 – volume: 66 start-page: 429 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib21 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.08.040 – volume: 5 start-page: 2573 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib49 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c00033 – volume: 7 year: 2016 ident: 10.1016/j.jssc.2022.123430_bib25 publication-title: Nat. Commun. – volume: 13 start-page: 307 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib31 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2724-x – volume: 8 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib10 publication-title: Adv. Energy Mater. – volume: 3 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib37 publication-title: Small Methods – volume: 18 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib18 publication-title: Small – volume: 11 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib16 publication-title: Adv. Energy Mater. – volume: 10 start-page: 15505 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib43 publication-title: Nanoscale doi: 10.1039/C8NR04661A – volume: 251 start-page: 43 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib33 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.164 – volume: 7 start-page: 12068 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib48 publication-title: J. Mater. Chem. doi: 10.1039/C9TA01722D – volume: 400 year: 2020 ident: 10.1016/j.jssc.2022.123430_bib50 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125967 – volume: 48 start-page: 259 year: 2020 ident: 10.1016/j.jssc.2022.123430_bib46 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.022 – volume: 45 start-page: 8683 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib40 publication-title: New J. Chem. doi: 10.1039/D1NJ00610J – volume: 8 start-page: 482 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib29 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00575-8 – volume: 9 start-page: 78 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib23 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.012 – volume: 3 start-page: 412 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib24 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01202 – volume: 29 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib22 publication-title: Adv. Mater. – volume: 8 start-page: 500 year: 2009 ident: 10.1016/j.jssc.2022.123430_bib11 publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 10 start-page: 18665 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03255 – volume: 58 start-page: 4005 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib5 publication-title: Chem. Commun. doi: 10.1039/D1CC07087H – volume: 54 start-page: 12250 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib44 publication-title: Chem. Commun. doi: 10.1039/C8CC06924G – volume: 6 start-page: 11260 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib27 publication-title: J. Mater. Chem. doi: 10.1039/C8TA03012J – volume: 169 year: 2022 ident: 10.1016/j.jssc.2022.123430_bib4 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4cd7 – volume: 29 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib30 publication-title: Adv. Mater. doi: 10.1002/adma.201700449 – volume: 29 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib42 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 18927 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib3 publication-title: J. Mater. Chem. doi: 10.1039/D1TA02741G – volume: 29 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib8 publication-title: Adv. Mater. – volume: 5 start-page: 5002 year: 2014 ident: 10.1016/j.jssc.2022.123430_bib13 publication-title: Nat. Commun. doi: 10.1038/ncomms6002 – volume: 196 start-page: 369 year: 2016 ident: 10.1016/j.jssc.2022.123430_bib32 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.018 – volume: 8 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib1 publication-title: Natl. Sci. Rev. – volume: 9 start-page: 24215 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib7 publication-title: J. Mater. Chem. doi: 10.1039/D1TA06499A – volume: 211 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib14 publication-title: Mater. Des. – volume: 383 year: 2020 ident: 10.1016/j.jssc.2022.123430_bib38 publication-title: Chem. Eng. J. – volume: 13 start-page: 14252 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib39 publication-title: ACS Nano doi: 10.1021/acsnano.9b07360 – volume: 25 year: 2021 ident: 10.1016/j.jssc.2022.123430_bib6 publication-title: Curr. Opin. Electrochem. – volume: 11 start-page: 477 year: 2017 ident: 10.1016/j.jssc.2022.123430_bib36 publication-title: Nano Res. doi: 10.1007/s12274-017-1655-7 – volume: 9 start-page: 1677 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib34 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.9.159 – volume: 14 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib28 publication-title: Small – volume: 6 start-page: 2797 year: 2018 ident: 10.1016/j.jssc.2022.123430_bib12 publication-title: J. Mater. Chem. doi: 10.1039/C7TA10272K – volume: 141 start-page: 258 year: 2019 ident: 10.1016/j.jssc.2022.123430_bib35 publication-title: Carbon doi: 10.1016/j.carbon.2018.09.060 |
SSID | ssj0011584 |
Score | 2.4281406 |
Snippet | The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123430 |
SubjectTerms | Flower-like structure Lithium-sulfur batteries Metal oxide Stable cycling Synergistic effect |
Title | Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries |
URI | https://dx.doi.org/10.1016/j.jssc.2022.123430 |
Volume | 314 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kIupBtCrWR9mDN0m7zT6SHkuxVAVPCt5CstlgakxL04Inf7szeUgF8eAxYQeWnd2Zb5NvvgG4xiwQekqjB4yHF5REUjdAXzsJH4Y-QgRpk5Ll-6inz_L-Rb1swbiphSFaZR37q5heRuv6Tb9ezf4iTanGF9MPNY-hDyNKURyW0qNd3vv8pnkg4PFloxhOo-vCmYrjNSsKkjF03R4GcElM6N-S00bCmRzCQY0U2aiazBFs2bwNu-OmQVsb9je0BNuwU3I5TXEMxSSj1mdOlr5Z9m4RXbP5RxpbRvRx4mhZFhYszJkt5SMw67BinSXrJaOKD4YoliFkjDIclseM9IwdgynVIF5nCNpf0_W7UxtEpTonXrZP4Hly-zSeOnVvBccIzlcYfa0ZiEQPBbWp8ZQnYq7dKFJJyCOuuJsoPD6htAgveCh8LRU3Yex6gwSPuYnFKbTyeW7PgPmaD4VUMvbLv6yxPxCWR8NYWG21cd0ODJpFDUwtPE79L7KgYZjNAnJEQI4IKkd04ObbZlHJbvw5WjW-Cn5sngDzwh925_-0u4A9eqo4fZfQWi3X9gqxySrqlpuvC9uju4fp4xfBHuEg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1EkepBtCp-uwdvkrrNfiQ9SrFUrT0p9BaSzQajMZamBU_-dmfyIQrSg9dkB0Jmd-Zt8vY9gAvsAqGnNGbAeLhBSSS5AfraSXgv9BEiSJuULN-xHj7Ju4marEC_OQtDtMq69lc1vazW9ZWr-m1eTdOUzvhi-yHzGPowohTW4TWJy5dsDDqf3zwPRDy-bCTDaXh9cqYieb0UBekYum4HK7gkKvRf3elHxxlsw1YNFdl19TQ7sGLzNrT6jUNbGzZ_iAm2Yb0kc5piF4pBRt5nTpa-WvZmEV6z9480toz440TSsiwsWJgzW-pHYNthxSJLFjNGRz4YwliGmDHKcFgeMxI0dgz2VIOAnSFqf04Xb04dEJXynLjb3oOnwc1jf-jU5gqOEZzPsfxa0xWJ7gnyqfGUJ2Ku3ShSScgjrribKFw_obSIL3gofC0VN2Hset0E17mJxT6s5u-5PQDma94TUsnYL3-zxn5XWB71YmG11cZ1D6HbvNTA1MrjZICRBQ3F7CWgRASUiKBKxCFcfsdMK92NpaNVk6vg1-wJsDEsiTv6Z9w5tIaPD6NgdDu-P4YNulMR_E5gdT5b2FMEKvPorJyIX_7P4q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flower-like+metal+oxide+composite+as+an+efficient+sulfur+host+for+stable+and+high-capacity+lithium-sulfur+batteries&rft.jtitle=Journal+of+solid+state+chemistry&rft.au=Chen%2C+Xiudong&rft.au=Zhang%2C+Hang&rft.au=Yan%2C+Ping&rft.au=Cao%2C+Xiaohua&rft.date=2022-10-01&rft.issn=0022-4596&rft.volume=314&rft.spage=123430&rft_id=info:doi/10.1016%2Fj.jssc.2022.123430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jssc_2022_123430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4596&client=summon |