Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries

The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and stead...

Full description

Saved in:
Bibliographic Details
Published inJournal of solid state chemistry Vol. 314; p. 123430
Main Authors Chen, Xiudong, Zhang, Hang, Yan, Ping, Cao, Xiaohua, Zhan, Changchao, Liu, Jin-Hang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and steady cycling, a significant amount of time and effort has been paid to investigate in the search for new hosts. Because of their capability to prevent the shuttle effect and control the deposition of lithium sulfides, metal oxide materials have been the subject of substantial research and development in relation to their application as sulfur hosts in Li–S batteries. In this study, an advanced type of lithium-sulfur battery called a NiO–ZnO composite was used as a suitable sulfur host (NiO–ZnO/S). A high initial reversible capacity of 1326 mAh g−1 was achieved in NiO–ZnO/S at 0.1C, and the sulfur loading was 73.8 ​wt%. In addition, a great improvement in cycling stability in NiO–ZnO/S (77.6% capacity retention was maintained after 400 cycles at 0.2C) and rate performance (662 mAh g−1 at 5C) were achieved, benefiting from the strategy of anchor function from metal oxide composite (strong adsorption via physical and chemical interactions) and the unique flower-like structure of NiO–ZnO (relief of the volume change). Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized by simple hydrothermal method and high temperature annealing and exhibits good electrochemical performances as a sulfur host for lithium-sulfur batteries. [Display omitted] •Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized.•The synergistic effect improves the cycling performance of the electrode.•The NiO–ZnO/S composite as a cathode for lithium-sulfur batteries delivers high and ultra-stable cycling performance.
AbstractList The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric conductivity for lithium-sulfur (Li–S) batteries. To improve the electrochemical performance of Li–S batteries in terms of specific capacity and steady cycling, a significant amount of time and effort has been paid to investigate in the search for new hosts. Because of their capability to prevent the shuttle effect and control the deposition of lithium sulfides, metal oxide materials have been the subject of substantial research and development in relation to their application as sulfur hosts in Li–S batteries. In this study, an advanced type of lithium-sulfur battery called a NiO–ZnO composite was used as a suitable sulfur host (NiO–ZnO/S). A high initial reversible capacity of 1326 mAh g−1 was achieved in NiO–ZnO/S at 0.1C, and the sulfur loading was 73.8 ​wt%. In addition, a great improvement in cycling stability in NiO–ZnO/S (77.6% capacity retention was maintained after 400 cycles at 0.2C) and rate performance (662 mAh g−1 at 5C) were achieved, benefiting from the strategy of anchor function from metal oxide composite (strong adsorption via physical and chemical interactions) and the unique flower-like structure of NiO–ZnO (relief of the volume change). Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized by simple hydrothermal method and high temperature annealing and exhibits good electrochemical performances as a sulfur host for lithium-sulfur batteries. [Display omitted] •Flower-like metal oxide composite (NiO–ZnO) is successfully synthesized.•The synergistic effect improves the cycling performance of the electrode.•The NiO–ZnO/S composite as a cathode for lithium-sulfur batteries delivers high and ultra-stable cycling performance.
ArticleNumber 123430
Author Liu, Jin-Hang
Cao, Xiaohua
Zhang, Hang
Zhan, Changchao
Yan, Ping
Chen, Xiudong
Author_xml – sequence: 1
  givenname: Xiudong
  orcidid: 0000-0001-8454-642X
  surname: Chen
  fullname: Chen, Xiudong
  email: chenxiudong_@126.com
  organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China
– sequence: 2
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  organization: Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
– sequence: 3
  givenname: Ping
  surname: Yan
  fullname: Yan, Ping
  organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China
– sequence: 4
  givenname: Xiaohua
  surname: Cao
  fullname: Cao, Xiaohua
  organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China
– sequence: 5
  givenname: Changchao
  surname: Zhan
  fullname: Zhan, Changchao
  organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China
– sequence: 6
  givenname: Jin-Hang
  surname: Liu
  fullname: Liu, Jin-Hang
  email: ljh2016HUST@126.com
  organization: School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, Jiangxi, 332005, China
BookMark eNp9kLFOwzAURS1UJNrCDzD5B1Ke7ThpJRZUUUCqxAISm-U4z8QljSvbBfr3JGonhk53ePc86Z4JGXW-Q0JuGcwYsOJuM9vEaGYcOJ8xLnIBF2TMYCGzkhcfIzKG_pLlclFckUmMGwDG5Dwfk7hq_Q-GrHVfSLeYdEv9r6uRGr_d-egSUh2p7iha64zDLtG4b-0-0MbHRK0PNCZdtX2tq2njPpvM6J02Lh1o61Lj9tvsBFQ6JQwO4zW5tLqNeHPKKXlfPb4tn7P169PL8mGdGQGQMgZomLDFQoiSQylLUUPBq0paDRVI4FYC5DpHVkrQYl7kEoyuecks5NzUYkr48a8JPsaAVu2C2-pwUAzUoE1t1KBNDdrUUVsPzf9B_RadnO9S0K49j94fUexHfTsMKg7GDNYuoEmq9u4c_gfuw4wR
CitedBy_id crossref_primary_10_20517_microstructures_2023_89
crossref_primary_10_1002_adfm_202421697
crossref_primary_10_1039_D3NA00785E
crossref_primary_10_1007_s10008_023_05611_w
crossref_primary_10_1002_smll_202412186
Cites_doi 10.1039/C9TA01598A
10.1002/smll.201600809
10.1039/C8TA01089G
10.1021/acsnano.1c01999
10.1016/j.jechem.2020.02.003
10.1016/j.jechem.2021.08.040
10.1021/acsaem.2c00033
10.1186/s11671-018-2724-x
10.1039/C8NR04661A
10.1016/j.electacta.2017.07.164
10.1039/C9TA01722D
10.1016/j.cej.2020.125967
10.1016/j.jechem.2020.01.022
10.1039/D1NJ00610J
10.1038/s41467-017-00575-8
10.1016/j.ensm.2017.06.012
10.1021/acsenergylett.7b01202
10.1038/nmat2460
10.1021/acsami.8b03255
10.1039/D1CC07087H
10.1039/C8CC06924G
10.1039/C8TA03012J
10.1149/1945-7111/ac4cd7
10.1002/adma.201700449
10.1039/D1TA02741G
10.1038/ncomms6002
10.1016/j.electacta.2016.03.018
10.1039/D1TA06499A
10.1021/acsnano.9b07360
10.1007/s12274-017-1655-7
10.3762/bjnano.9.159
10.1039/C7TA10272K
10.1016/j.carbon.2018.09.060
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jssc.2022.123430
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1095-726X
ExternalDocumentID 10_1016_j_jssc_2022_123430
S0022459622005552
GroupedDBID --K
--M
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMH
HMV
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LZ6
M24
M37
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SIC
SMS
SPC
SPCBC
SPG
SSK
SSM
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
ZU3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-10ec13f69337207573d062bb5fa0b0502f5004a4e1750a386450cad271f042cd3
IEDL.DBID .~1
ISSN 0022-4596
IngestDate Tue Jul 01 01:56:07 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Fri Feb 23 02:38:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal oxide
Lithium-sulfur batteries
Stable cycling
Synergistic effect
Flower-like structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-10ec13f69337207573d062bb5fa0b0502f5004a4e1750a386450cad271f042cd3
ORCID 0000-0001-8454-642X
ParticipantIDs crossref_primary_10_1016_j_jssc_2022_123430
crossref_citationtrail_10_1016_j_jssc_2022_123430
elsevier_sciencedirect_doi_10_1016_j_jssc_2022_123430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of solid state chemistry
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tao, Wang, Liu, Wang, Yao, Zheng, Seh, Cai, Li, Zhou, Zu, Cui (bib25) 2016; 7
Wang, Yin, Qin, Zhao, Xia, Hu, Guo, Cao, Zhang (bib47) 2019; 7
Zhao, Kang, Liu, Wen, Fang, Tang, He, Ma, Liu, Yan (bib3) 2021; 9
Kang, Tian, Yan, Wei, Gao, Ju, Zhao, Deng, Cheng, Kang (bib18) 2022; 18
Han, Li, Wu, Yu, Cheng, Xie (bib7) 2021; 9
Liu, Thoi (bib5) 2022; 58
Hu, Sun, Shi, Fang, Chen, Hou, Liu, Cheng, Li (bib17) 2017; 29
Kaiser, Chou, Liu, Dou, Wang, Wang (bib30) 2017; 29
Gu, Tong, Wen, Liu, Lai, Zhang (bib32) 2016; 196
Dong, Wang, Li, Yao, Zhao, Wang, Wang, Li, Chen, Qian, Su (bib46) 2020; 48
Cao, Liu, Li, Wang, Jiao (bib23) 2017; 9
Pei, Lin, Ou, Zheng, Mo, Fang, Zheng (bib29) 2017; 8
Meng, Yao, Liu, Wang, Qian, Zheng, Su, Wang (bib45) 2020; 47
Ji, Lee, Nazar (bib11) 2009; 8
Wang, Liu, Bao, Qing, Zhu, Wang (bib49) 2022; 5
Yang, Du, Lin, Yang, Zhu, Zhang, Tang, Gui (bib35) 2019; 141
Liu, Wei, Zhai, Wang, Ren, Xiong, Akiyoshi, Pan, Ren, Wei (bib14) 2021; 211
Chen, Peng, Hou, Zhai, Li, Tang, Zhu, Huang, Zhang (bib8) 2017; 29
Li, Guo, Qin, Deng, Lu, Shen, Zhao, Li, Su, Wang (bib43) 2018; 10
He, Luo, Chen, Manthiram (bib22) 2017; 29
Luo, Chung, Manthiram (bib20) 2018; 6
Guo, Xu, Lv, Chen, Sun, Wang (bib40) 2021; 45
Hu, Dai, Liu, Li, Shen, Chen, Bao, Xu (bib10) 2018; 8
Lu, Zhang, Gao, Ma, Chen, Cheng (bib42) 2019; 29
Zhang, Zhao, Zou, Wang, Chen, Xu, Wu, Cao (bib19) 2018; 8
Xu, Zhang, Chen, Fan, Su, Wang (bib12) 2018; 6
Lang, Feng, Seok, Yang, Krumov, Molina Villarino, Lowe, Yu, Abruña (bib6) 2021; 25
Sun, Xu, Chen, Xu, Wu, Wang (bib38) 2020; 383
Wang, Dong, Li, Zhao, Wu, Hao, Liu, Qiu, Lou (bib13) 2014; 5
Wang, Li, Qin, Zhao, Cheng, Cao, Zhang (bib48) 2019; 7
Gao, Zhi, Cui, Zhang, Lv, Wang (bib50) 2020; 400
Zhou, Li, Xu, Mai (bib1) 2021; 8
Gao, Xie, Zhu, Sun, Xie, Liu, Yu, Ding (bib28) 2018; 14
Chadha, Bhardwaj, Padmanaban, Suneel, Milton, Subair, Pandey, Khanna, Srivastava, Mathew, Selvaraj, Banavoth, Sonar, Badoni, Rao, Kumar, Ray, Kumar (bib4) 2022; 169
Li, Lu, Amine (bib2) 2021; 15
Wang, Yin, Zhao, Qin, Li, Deng, Zheng, Su, Lu (bib44) 2018; 54
Huang, Wang, Von Lim, Wang, Li, Zhang, Yang (bib16) 2021; 11
Hou, Chen, Peng, Huang, Li, Zhang, Li (bib9) 2016; 12
Yao, Dong, Zhang, Hu, Zhang (bib27) 2018; 6
Hu, Lv, Dai, Fan, Xiong, Li (bib26) 2018; 10
Lv, Guo, Sun, Wang (bib41) 2019; 15
Yin, Ren, Zhang, Tan, Chen (bib31) 2018; 13
Zhang, Sun, Chen, Wang (bib39) 2019; 13
Zhang, Huang, Hao, Deng, He, Lin, Yang (bib15) 2022; 9
Li, Dong, Guo, Zhang, Wang, Yin (bib33) 2017; 251
Liu, Wang, Yang, Cao, Ye (bib21) 2022; 66
Chen, Xu, Du, Wang (bib37) 2019; 3
Patil, Kim, Lim, Oh, Kim, Shin, Kim, Choi, Hwang (bib24) 2018; 3
Zhao, Liu, Sun, Zhang, Feng, Wang, Kurmanbayeva, Bakenov (bib34) 2018; 9
Kong, Luo, Jin, Yuan, Sheng, Zhang, Fang, Zhang, Huang, Xia, Liang, Zhang, Gan, Tao (bib36) 2017; 11
Liu (10.1016/j.jssc.2022.123430_bib14) 2021; 211
Li (10.1016/j.jssc.2022.123430_bib33) 2017; 251
Cao (10.1016/j.jssc.2022.123430_bib23) 2017; 9
Hu (10.1016/j.jssc.2022.123430_bib26) 2018; 10
Wang (10.1016/j.jssc.2022.123430_bib44) 2018; 54
Chen (10.1016/j.jssc.2022.123430_bib8) 2017; 29
Wang (10.1016/j.jssc.2022.123430_bib13) 2014; 5
Lv (10.1016/j.jssc.2022.123430_bib41) 2019; 15
Hu (10.1016/j.jssc.2022.123430_bib10) 2018; 8
Yang (10.1016/j.jssc.2022.123430_bib35) 2019; 141
Han (10.1016/j.jssc.2022.123430_bib7) 2021; 9
Huang (10.1016/j.jssc.2022.123430_bib16) 2021; 11
Ji (10.1016/j.jssc.2022.123430_bib11) 2009; 8
Kang (10.1016/j.jssc.2022.123430_bib18) 2022; 18
Zhang (10.1016/j.jssc.2022.123430_bib19) 2018; 8
Xu (10.1016/j.jssc.2022.123430_bib12) 2018; 6
Yin (10.1016/j.jssc.2022.123430_bib31) 2018; 13
Gao (10.1016/j.jssc.2022.123430_bib50) 2020; 400
Zhao (10.1016/j.jssc.2022.123430_bib34) 2018; 9
Kong (10.1016/j.jssc.2022.123430_bib36) 2017; 11
Yao (10.1016/j.jssc.2022.123430_bib27) 2018; 6
Liu (10.1016/j.jssc.2022.123430_bib21) 2022; 66
Tao (10.1016/j.jssc.2022.123430_bib25) 2016; 7
Zhou (10.1016/j.jssc.2022.123430_bib1) 2021; 8
Dong (10.1016/j.jssc.2022.123430_bib46) 2020; 48
Chen (10.1016/j.jssc.2022.123430_bib37) 2019; 3
Liu (10.1016/j.jssc.2022.123430_bib5) 2022; 58
Kaiser (10.1016/j.jssc.2022.123430_bib30) 2017; 29
Li (10.1016/j.jssc.2022.123430_bib43) 2018; 10
He (10.1016/j.jssc.2022.123430_bib22) 2017; 29
Wang (10.1016/j.jssc.2022.123430_bib47) 2019; 7
Zhang (10.1016/j.jssc.2022.123430_bib15) 2022; 9
Lang (10.1016/j.jssc.2022.123430_bib6) 2021; 25
Wang (10.1016/j.jssc.2022.123430_bib49) 2022; 5
Pei (10.1016/j.jssc.2022.123430_bib29) 2017; 8
Li (10.1016/j.jssc.2022.123430_bib2) 2021; 15
Hu (10.1016/j.jssc.2022.123430_bib17) 2017; 29
Hou (10.1016/j.jssc.2022.123430_bib9) 2016; 12
Zhao (10.1016/j.jssc.2022.123430_bib3) 2021; 9
Sun (10.1016/j.jssc.2022.123430_bib38) 2020; 383
Luo (10.1016/j.jssc.2022.123430_bib20) 2018; 6
Patil (10.1016/j.jssc.2022.123430_bib24) 2018; 3
Gu (10.1016/j.jssc.2022.123430_bib32) 2016; 196
Guo (10.1016/j.jssc.2022.123430_bib40) 2021; 45
Gao (10.1016/j.jssc.2022.123430_bib28) 2018; 14
Chadha (10.1016/j.jssc.2022.123430_bib4) 2022; 169
Zhang (10.1016/j.jssc.2022.123430_bib39) 2019; 13
Meng (10.1016/j.jssc.2022.123430_bib45) 2020; 47
Lu (10.1016/j.jssc.2022.123430_bib42) 2019; 29
Wang (10.1016/j.jssc.2022.123430_bib48) 2019; 7
References_xml – volume: 29
  year: 2017
  ident: bib8
  publication-title: Adv. Mater.
– volume: 58
  start-page: 4005
  year: 2022
  end-page: 4015
  ident: bib5
  publication-title: Chem. Commun.
– volume: 29
  year: 2019
  ident: bib42
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7659
  year: 2018
  end-page: 7667
  ident: bib20
  publication-title: J. Mater. Chem.
– volume: 45
  start-page: 8683
  year: 2021
  end-page: 8692
  ident: bib40
  publication-title: New J. Chem.
– volume: 6
  start-page: 11260
  year: 2018
  end-page: 11269
  ident: bib27
  publication-title: J. Mater. Chem.
– volume: 18
  year: 2022
  ident: bib18
  publication-title: Small
– volume: 8
  year: 2018
  ident: bib10
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 12068
  year: 2019
  end-page: 12074
  ident: bib48
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 2797
  year: 2018
  end-page: 2807
  ident: bib12
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 5002
  year: 2014
  ident: bib13
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  ident: bib17
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  ident: bib19
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 412
  year: 2018
  end-page: 419
  ident: bib24
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 18927
  year: 2021
  end-page: 18946
  ident: bib3
  publication-title: J. Mater. Chem.
– volume: 29
  year: 2017
  ident: bib22
  publication-title: Adv. Mater.
– volume: 383
  year: 2020
  ident: bib38
  publication-title: Chem. Eng. J.
– volume: 169
  year: 2022
  ident: bib4
  publication-title: J. Electrochem. Soc.
– volume: 66
  start-page: 429
  year: 2022
  end-page: 439
  ident: bib21
  publication-title: J. Energy Chem.
– volume: 400
  year: 2020
  ident: bib50
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  ident: bib11
  publication-title: Nat. Mater.
– volume: 9
  start-page: 24215
  year: 2021
  end-page: 24240
  ident: bib7
  publication-title: J. Mater. Chem.
– volume: 141
  start-page: 258
  year: 2019
  end-page: 265
  ident: bib35
  publication-title: Carbon
– volume: 47
  start-page: 241
  year: 2020
  end-page: 247
  ident: bib45
  publication-title: J. Energy Chem.
– volume: 14
  year: 2018
  ident: bib28
  publication-title: Small
– volume: 10
  start-page: 18665
  year: 2018
  end-page: 18674
  ident: bib26
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 477
  year: 2017
  end-page: 489
  ident: bib36
  publication-title: Nano Res.
– volume: 48
  start-page: 259
  year: 2020
  end-page: 266
  ident: bib46
  publication-title: J. Energy Chem.
– volume: 7
  year: 2016
  ident: bib25
  publication-title: Nat. Commun.
– volume: 9
  start-page: 78
  year: 2017
  end-page: 84
  ident: bib23
  publication-title: Energy Storage Mater.
– volume: 8
  year: 2021
  ident: bib1
  publication-title: Natl. Sci. Rev.
– volume: 25
  year: 2021
  ident: bib6
  publication-title: Curr. Opin. Electrochem.
– volume: 10
  start-page: 15505
  year: 2018
  end-page: 15512
  ident: bib43
  publication-title: Nanoscale
– volume: 54
  start-page: 12250
  year: 2018
  end-page: 12253
  ident: bib44
  publication-title: Chem. Commun.
– volume: 12
  start-page: 3283
  year: 2016
  end-page: 3291
  ident: bib9
  publication-title: Small
– volume: 211
  year: 2021
  ident: bib14
  publication-title: Mater. Des.
– volume: 251
  start-page: 43
  year: 2017
  end-page: 50
  ident: bib33
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 10346
  year: 2019
  end-page: 10353
  ident: bib47
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 2573
  year: 2022
  end-page: 2579
  ident: bib49
  publication-title: ACS Appl. Energy Mater.
– volume: 13
  start-page: 307
  year: 2018
  ident: bib31
  publication-title: Nanoscale Res. Lett.
– volume: 11
  year: 2021
  ident: bib16
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: bib30
  publication-title: Adv. Mater.
– volume: 3
  year: 2019
  ident: bib37
  publication-title: Small Methods
– volume: 9
  year: 2022
  ident: bib15
  publication-title: Adv. Sci.
– volume: 13
  start-page: 14252
  year: 2019
  end-page: 14261
  ident: bib39
  publication-title: ACS Nano
– volume: 15
  start-page: 8087
  year: 2021
  end-page: 8094
  ident: bib2
  publication-title: ACS Nano
– volume: 8
  start-page: 482
  year: 2017
  ident: bib29
  publication-title: Nat. Commun.
– volume: 196
  start-page: 369
  year: 2016
  end-page: 376
  ident: bib32
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 1677
  year: 2018
  end-page: 1685
  ident: bib34
  publication-title: Beilstein J. Nanotechnol.
– volume: 15
  year: 2019
  ident: bib41
  publication-title: Small
– volume: 7
  start-page: 10346
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib47
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA01598A
– volume: 12
  start-page: 3283
  year: 2016
  ident: 10.1016/j.jssc.2022.123430_bib9
  publication-title: Small
  doi: 10.1002/smll.201600809
– volume: 6
  start-page: 7659
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib20
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA01089G
– volume: 15
  start-page: 8087
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01999
– volume: 8
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib19
  publication-title: Adv. Energy Mater.
– volume: 15
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib41
  publication-title: Small
– volume: 9
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib15
  publication-title: Adv. Sci.
– volume: 29
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib17
  publication-title: Adv. Mater.
– volume: 47
  start-page: 241
  year: 2020
  ident: 10.1016/j.jssc.2022.123430_bib45
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.02.003
– volume: 66
  start-page: 429
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib21
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.08.040
– volume: 5
  start-page: 2573
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib49
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c00033
– volume: 7
  year: 2016
  ident: 10.1016/j.jssc.2022.123430_bib25
  publication-title: Nat. Commun.
– volume: 13
  start-page: 307
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib31
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2724-x
– volume: 8
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib10
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib37
  publication-title: Small Methods
– volume: 18
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib18
  publication-title: Small
– volume: 11
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib16
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 15505
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib43
  publication-title: Nanoscale
  doi: 10.1039/C8NR04661A
– volume: 251
  start-page: 43
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib33
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.164
– volume: 7
  start-page: 12068
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib48
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA01722D
– volume: 400
  year: 2020
  ident: 10.1016/j.jssc.2022.123430_bib50
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125967
– volume: 48
  start-page: 259
  year: 2020
  ident: 10.1016/j.jssc.2022.123430_bib46
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.01.022
– volume: 45
  start-page: 8683
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib40
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ00610J
– volume: 8
  start-page: 482
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00575-8
– volume: 9
  start-page: 78
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib23
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.012
– volume: 3
  start-page: 412
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib24
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01202
– volume: 29
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib22
  publication-title: Adv. Mater.
– volume: 8
  start-page: 500
  year: 2009
  ident: 10.1016/j.jssc.2022.123430_bib11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2460
– volume: 10
  start-page: 18665
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03255
– volume: 58
  start-page: 4005
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib5
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC07087H
– volume: 54
  start-page: 12250
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib44
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06924G
– volume: 6
  start-page: 11260
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib27
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA03012J
– volume: 169
  year: 2022
  ident: 10.1016/j.jssc.2022.123430_bib4
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4cd7
– volume: 29
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700449
– volume: 29
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib42
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 18927
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib3
  publication-title: J. Mater. Chem.
  doi: 10.1039/D1TA02741G
– volume: 29
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib8
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5002
  year: 2014
  ident: 10.1016/j.jssc.2022.123430_bib13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6002
– volume: 196
  start-page: 369
  year: 2016
  ident: 10.1016/j.jssc.2022.123430_bib32
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.018
– volume: 8
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib1
  publication-title: Natl. Sci. Rev.
– volume: 9
  start-page: 24215
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib7
  publication-title: J. Mater. Chem.
  doi: 10.1039/D1TA06499A
– volume: 211
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib14
  publication-title: Mater. Des.
– volume: 383
  year: 2020
  ident: 10.1016/j.jssc.2022.123430_bib38
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 14252
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib39
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07360
– volume: 25
  year: 2021
  ident: 10.1016/j.jssc.2022.123430_bib6
  publication-title: Curr. Opin. Electrochem.
– volume: 11
  start-page: 477
  year: 2017
  ident: 10.1016/j.jssc.2022.123430_bib36
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1655-7
– volume: 9
  start-page: 1677
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib34
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.9.159
– volume: 14
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib28
  publication-title: Small
– volume: 6
  start-page: 2797
  year: 2018
  ident: 10.1016/j.jssc.2022.123430_bib12
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA10272K
– volume: 141
  start-page: 258
  year: 2019
  ident: 10.1016/j.jssc.2022.123430_bib35
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.060
SSID ssj0011584
Score 2.4281406
Snippet The major factors of the sulfur host are the high sulfur loading, ability to relieve the volume change, inhibition of the shuttle effect and electric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123430
SubjectTerms Flower-like structure
Lithium-sulfur batteries
Metal oxide
Stable cycling
Synergistic effect
Title Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries
URI https://dx.doi.org/10.1016/j.jssc.2022.123430
Volume 314
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kIupBtCrWR9mDN0m7zT6SHkuxVAVPCt5CstlgakxL04Inf7szeUgF8eAxYQeWnd2Zb5NvvgG4xiwQekqjB4yHF5REUjdAXzsJH4Y-QgRpk5Ll-6inz_L-Rb1swbiphSFaZR37q5heRuv6Tb9ezf4iTanGF9MPNY-hDyNKURyW0qNd3vv8pnkg4PFloxhOo-vCmYrjNSsKkjF03R4GcElM6N-S00bCmRzCQY0U2aiazBFs2bwNu-OmQVsb9je0BNuwU3I5TXEMxSSj1mdOlr5Z9m4RXbP5RxpbRvRx4mhZFhYszJkt5SMw67BinSXrJaOKD4YoliFkjDIclseM9IwdgynVIF5nCNpf0_W7UxtEpTonXrZP4Hly-zSeOnVvBccIzlcYfa0ZiEQPBbWp8ZQnYq7dKFJJyCOuuJsoPD6htAgveCh8LRU3Yex6gwSPuYnFKbTyeW7PgPmaD4VUMvbLv6yxPxCWR8NYWG21cd0ODJpFDUwtPE79L7KgYZjNAnJEQI4IKkd04ObbZlHJbvw5WjW-Cn5sngDzwh925_-0u4A9eqo4fZfQWi3X9gqxySrqlpuvC9uju4fp4xfBHuEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1EkepBtCp-uwdvkrrNfiQ9SrFUrT0p9BaSzQajMZamBU_-dmfyIQrSg9dkB0Jmd-Zt8vY9gAvsAqGnNGbAeLhBSSS5AfraSXgv9BEiSJuULN-xHj7Ju4marEC_OQtDtMq69lc1vazW9ZWr-m1eTdOUzvhi-yHzGPowohTW4TWJy5dsDDqf3zwPRDy-bCTDaXh9cqYieb0UBekYum4HK7gkKvRf3elHxxlsw1YNFdl19TQ7sGLzNrT6jUNbGzZ_iAm2Yb0kc5piF4pBRt5nTpa-WvZmEV6z9480toz440TSsiwsWJgzW-pHYNthxSJLFjNGRz4YwliGmDHKcFgeMxI0dgz2VIOAnSFqf04Xb04dEJXynLjb3oOnwc1jf-jU5gqOEZzPsfxa0xWJ7gnyqfGUJ2Ku3ShSScgjrribKFw_obSIL3gofC0VN2Hset0E17mJxT6s5u-5PQDma94TUsnYL3-zxn5XWB71YmG11cZ1D6HbvNTA1MrjZICRBQ3F7CWgRASUiKBKxCFcfsdMK92NpaNVk6vg1-wJsDEsiTv6Z9w5tIaPD6NgdDu-P4YNulMR_E5gdT5b2FMEKvPorJyIX_7P4q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flower-like+metal+oxide+composite+as+an+efficient+sulfur+host+for+stable+and+high-capacity+lithium-sulfur+batteries&rft.jtitle=Journal+of+solid+state+chemistry&rft.au=Chen%2C+Xiudong&rft.au=Zhang%2C+Hang&rft.au=Yan%2C+Ping&rft.au=Cao%2C+Xiaohua&rft.date=2022-10-01&rft.issn=0022-4596&rft.volume=314&rft.spage=123430&rft_id=info:doi/10.1016%2Fj.jssc.2022.123430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jssc_2022_123430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4596&client=summon