WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition
In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in a...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 27; no. 1; pp. 339 - 350 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2022.3219364 |
Cover
Loading…
Abstract | In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area. |
---|---|
AbstractList | In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area. In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area. |
Author | Gong, Jing Tang, Chenyu Chen, Xuhang Occhipinti, Luigi G. Gao, Shuo |
Author_xml | – sequence: 1 givenname: Chenyu orcidid: 0000-0002-6368-5639 surname: Tang fullname: Tang, Chenyu email: ct631@cam.ac.uk organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Xuhang surname: Chen fullname: Chen, Xuhang email: xuhang.chen22@imperial.ac.uk organization: the School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Jing surname: Gong fullname: Gong, Jing email: 19376459@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Luigi G. orcidid: 0000-0002-9067-2534 surname: Occhipinti fullname: Occhipinti, Luigi G. email: lgo23@cam.ac.uk organization: Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge, U.K – sequence: 5 givenname: Shuo orcidid: 0000-0003-3096-4700 surname: Gao fullname: Gao, Shuo email: shuo_gao@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36327173$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9L9DAQxoMo6qt-ABGk4MVL1_xp09SbLr6uoquI4jEk6VSibaNJ64vf_k3ZXQ8enMsMw-8ZZub5g9Y71wFC-wRPCMHlyfX57GpCMaUTRknJeLaGtinhIqUUi_VVTcpsC-2F8IpjiNgq-SbaYpzRghRsG90_387np8kzKK90AyE9VwGq5HZoeptOXTO0XTKHwasmpv6f829J7XwyG1rVJWemt5-2_0oewLiXzvbWdbtoo1ZNgL1l3kFPfy8ep7P05u7yanp2kxqGMU-1MaAKlTNcZVhozXEtCNY1IyQHLoyoi8zklahywaiglVAVaKNrTpQuKsrZDjpezH337mOA0MvWBgNNozpwQ5C0YCSeSFkZ0aMf6KsbfBe3ixTHPGekHKnDJTXoFir57m2r_Jdc_SoCxQIw3oXgoZbG9mq8uffKNpJgORojR2PkaIxcGhOV5IdyNfw3zcFCYwHgm497Fjjj7D-cHJZq |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3390_s23031678 crossref_primary_10_1109_JIOT_2023_3274831 crossref_primary_10_1109_JBHI_2024_3414291 crossref_primary_10_1177_17543371241273827 crossref_primary_10_1109_JSEN_2024_3354307 crossref_primary_10_3390_bioengineering10040459 crossref_primary_10_1016_j_nanoen_2023_108712 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1016_j_knosys_2025_113232 |
Cites_doi | 10.1109/JBHI.2013.2252911 10.1109/ICC.2015.7248370 10.4249/scholarpedia.1883 10.1109/TNSRE.2019.2950096 10.1109/LSP.2016.2636320 10.1109/JIOT.2019.2915095 10.1109/MASS50613.2020.00070 10.1109/JBHI.2015.2430524 10.1109/ROBIO.2015.7418906 10.3758/brm.41.1.113 10.1007/978-3-642-33932-5_26 10.4108/eai.22-7-2015.2260064 10.1109/TSMC.1976.5408784 10.2174/1874444301406010108 10.1145/3065386 10.1016/j.jelekin.2012.04.009 10.1109/I2MTC43012.2020.9128722 10.1145/279943.279960 10.1109/TAI.2021.3096175 10.1109/JBHI.2020.3013403 10.1021/acsmaterialslett.0c00085 10.1109/JBHI.2020.3012698 10.1109/JSEN.2021.3122128 10.1016/j.eswa.2017.03.020 10.1109/JSEN.2021.3058429 10.1016/j.eswa.2010.06.065 10.1109/JBHI.2015.2432454 10.1109/TMC.2017.2691705 10.1109/JSEN.2017.2682322 10.1109/JBHI.2021.3092396 10.1007/BF00994018 10.1609/aaai.v31i1.11231 10.18653/v1/P19-1656 10.1016/j.neucom.2004.11.022 10.2307/2288403 10.1038/s41928-020-00510-8 10.1016/j.inffus.2016.09.005 10.1109/JBHI.2015.2472560 10.1109/TMM.2019.2904880 10.1109/JSEN.2018.2830743 10.1109/LGRS.2008.915597 10.1109/SENSORS47125.2020.9278848 10.1109/JBHI.2013.2287400 10.1109/JBHI.2018.2819182 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2022.3219364 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 350 |
ExternalDocumentID | 36327173 10_1109_JBHI_2022_3219364 9937046 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Beihang University grantid: KG12090401; ZG216S19C8 funderid: 10.13039/501100002358 – fundername: National Natural Science Foundation of China; National Natural Science Foundation grantid: 61827802; 61803017 funderid: 10.13039/501100001809 – fundername: Beihang University funderid: 10.13039/501100002358 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c3006-bccea7a530d408bb60f810bf3115e68c8f74c5d8d583282d8adebcbf61ab7d263 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Thu Jul 10 23:21:17 EDT 2025 Sun Jun 29 15:17:14 EDT 2025 Thu Jan 02 22:52:45 EST 2025 Thu Apr 24 22:59:30 EDT 2025 Thu Aug 21 00:31:20 EDT 2025 Wed Aug 20 06:20:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3006-bccea7a530d408bb60f810bf3115e68c8f74c5d8d583282d8adebcbf61ab7d263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3096-4700 0000-0002-9067-2534 0000-0002-6368-5639 |
PMID | 36327173 |
PQID | 2760653199 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2022_3219364 pubmed_primary_36327173 ieee_primary_9937046 proquest_journals_2760653199 crossref_primary_10_1109_JBHI_2022_3219364 proquest_miscellaneous_2731717239 |
PublicationCentury | 2000 |
PublicationDate | 2023-Jan. 2023-1-00 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Hassanat (ref39) 2014 ref46 ref45 ref48 ref47 ref44 ref43 ref49 Kingma (ref41) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Simonyan (ref42) 2014 Ioffe (ref29) 2015 ref24 ref23 ref26 ref25 Wang (ref28) 2015 ref20 ref22 ref21 ref27 |
References_xml | – ident: ref7 doi: 10.1109/JBHI.2013.2252911 – ident: ref12 doi: 10.1109/ICC.2015.7248370 – ident: ref38 doi: 10.4249/scholarpedia.1883 – ident: ref23 doi: 10.1109/TNSRE.2019.2950096 – ident: ref18 doi: 10.1109/LSP.2016.2636320 – year: 2014 ident: ref42 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref13 doi: 10.1109/JIOT.2019.2915095 – ident: ref25 doi: 10.1109/MASS50613.2020.00070 – ident: ref2 doi: 10.1109/JBHI.2015.2430524 – ident: ref24 doi: 10.1109/ROBIO.2015.7418906 – ident: ref49 doi: 10.3758/brm.41.1.113 – ident: ref20 doi: 10.1007/978-3-642-33932-5_26 – ident: ref14 doi: 10.4108/eai.22-7-2015.2260064 – ident: ref40 doi: 10.1109/TSMC.1976.5408784 – ident: ref37 doi: 10.2174/1874444301406010108 – ident: ref27 doi: 10.1145/3065386 – ident: ref46 doi: 10.1016/j.jelekin.2012.04.009 – ident: ref16 doi: 10.1109/I2MTC43012.2020.9128722 – ident: ref30 doi: 10.1145/279943.279960 – year: 2014 ident: ref41 article-title: Adam: A method for stochastic optimization – ident: ref17 doi: 10.1109/TAI.2021.3096175 – ident: ref6 doi: 10.1109/JBHI.2020.3013403 – ident: ref47 doi: 10.1021/acsmaterialslett.0c00085 – ident: ref19 doi: 10.1109/JBHI.2020.3012698 – ident: ref11 doi: 10.1109/JSEN.2021.3122128 – ident: ref35 doi: 10.1016/j.eswa.2017.03.020 – ident: ref26 doi: 10.1109/JSEN.2021.3058429 – ident: ref36 doi: 10.1016/j.eswa.2010.06.065 – ident: ref4 doi: 10.1109/JBHI.2015.2432454 – ident: ref15 doi: 10.1109/TMC.2017.2691705 – ident: ref21 doi: 10.1109/JSEN.2017.2682322 – ident: ref5 doi: 10.1109/JBHI.2021.3092396 – ident: ref31 doi: 10.1007/BF00994018 – ident: ref43 doi: 10.1609/aaai.v31i1.11231 – ident: ref44 doi: 10.18653/v1/P19-1656 – ident: ref32 doi: 10.1016/j.neucom.2004.11.022 – ident: ref34 doi: 10.2307/2288403 – year: 2014 ident: ref39 article-title: Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach – ident: ref48 doi: 10.1038/s41928-020-00510-8 – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. year: 2015 ident: ref29 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 80 volume-title: Proc. Workshops 29th AAAI Conf. Artif. Intell. year: 2015 ident: ref28 article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks – ident: ref45 doi: 10.1016/j.inffus.2016.09.005 – ident: ref8 doi: 10.1109/JBHI.2015.2472560 – ident: ref10 doi: 10.1109/TMM.2019.2904880 – ident: ref9 doi: 10.1109/JSEN.2018.2830743 – ident: ref33 doi: 10.1109/LGRS.2008.915597 – ident: ref22 doi: 10.1109/SENSORS47125.2020.9278848 – ident: ref3 doi: 10.1109/JBHI.2013.2287400 – ident: ref1 doi: 10.1109/JBHI.2018.2819182 |
SSID | ssj0000816896 |
Score | 2.4325697 |
Snippet | In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 339 |
SubjectTerms | Bioinformatics Deep learning HAR Human Activities Human activity recognition Humans Machine learning Man-machine interfaces Motion Movement multi-column neural network multi-sensor fusion Multisensor fusion Muscle strength Muscles Neural networks Neural Networks, Computer Sensors Spatial data Sports Support vector machines Training Wearable computers Wearable Electronic Devices wearables |
Title | WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition |
URI | https://ieeexplore.ieee.org/document/9937046 https://www.ncbi.nlm.nih.gov/pubmed/36327173 https://www.proquest.com/docview/2760653199 https://www.proquest.com/docview/2731717239 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcLRwQL20vFq2PORKPaFmceys4_QGiNWCtCuEiuAWxa8LKFuV3Uu_vjPOQyoCxM2SHSfxzHjeMwDfVUgdXgEuKXTgSZajzqqRbSG5Kye8Fd7FRNrZXE1vs6v78f0AfvS5MN77GHzmRzSMvny3sCsylZ0QL0V9bg3WUHFrcrV6e0psIBHbcQkcJEiIWevETHlxcnU2vURlUIiRxBmpqB2PVFKQD_o_jhRbrLwubUauM_kEs-57m2CTh9FqaUb277NSju_9oU342Iqf7LTBly0Y-HobNmatg30Hru9m8_lPdof4TzlVT8kZcjnHYppuck43Wc2ongfuMW8CyBlKvSy6AtipbVpRsJsuKmlR78Lt5OLX-TRpmy4kVpJ1wVjrq7waS-4yro1RPOiUm0BVebzSVoc8s2On3RjvAi2crhDW1gSVViZ3QsnPsF4var8HDGWvlAfvXAioBBpuLN4QHgWuVDiZWTcE3h18aduK5NQY47GMmgkvSgJbSWArW7AN4bh_5HdTjuOtxTt05P3C9rSHcNBBt2wJ9qkUuaIqvWlRDOFbP42kRv6TqvaLFa1BYQsFPolrvjRY0e_dIdPXl9-5Dx-oT31juzmA9eWflT9EaWZpjiIa_wOLcOv6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFSKBL2UR6EsFDASJ0S2jp04Dre2otqWJkKoVXuL4teFKlvR3Uu_nhnnIYEAcbNkx0k8M573DMB7FVKHV4BLSh14khWos2pkW0juyglvhXcxkbaq1eIiO73Krzbg45QL472PwWd-TsPoy3dLuyZT2T7xUtTn7sF95Pt52mdrTRaV2EIiNuQSOEiQFLPBjZnycv_0cHGC6qAQc4kzUlFDHqmkIC_0LzwpNln5u7wZ-c7xI6jGL-7DTb7P1yszt3e_FXP83196DNuDAMoOeox5Ahu-ewoPqsHFvgNfL6u6_sQukQIoq-o2OUQ-51hM1E2O6C7rGFX0wD3qPoScodzLojOAHdi-GQX7NsYlLbtncHH8-fxokQxtFxIryb5grPVt0eaSu4xrYxQPOuUmUF0er7TVochs7rTL8TbQwukWoW1NUGlrCieUfA6b3bLzL4Ch9JXy4J0LAdVAw43FO8KjyJUKJzPrZsDHg2_sUJOcWmNcN1E34WVDYGsIbM0Athl8mB656Qty_GvxDh35tHA47RnsjdBtBpK9bUShqE5vWpYzeDdNI7GRB6Xt_HJNa1DcQpFP4prdHiumvUdkevnnd76Fh4vz6qw5O6m_vIIt6lrfW3L2YHP1Y-1fo2yzMm8iSv8EBQTvQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WMNN%3A+Wearables-Based+Multi-Column+Neural+Network+for+Human+Activity+Recognition&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Tang%2C+Chenyu&rft.au=Chen%2C+Xuhang&rft.au=Gong%2C+Jing&rft.au=Occhipinti%2C+Luigi+G.&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=1&rft.spage=339&rft.epage=350&rft_id=info:doi/10.1109%2FJBHI.2022.3219364&rft_id=info%3Apmid%2F36327173&rft.externalDocID=9937046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |