WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition

In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in a...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 27; no. 1; pp. 339 - 350
Main Authors Tang, Chenyu, Chen, Xuhang, Gong, Jing, Occhipinti, Luigi G., Gao, Shuo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3219364

Cover

Loading…
Abstract In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.
AbstractList In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.
In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.
Author Gong, Jing
Tang, Chenyu
Chen, Xuhang
Occhipinti, Luigi G.
Gao, Shuo
Author_xml – sequence: 1
  givenname: Chenyu
  orcidid: 0000-0002-6368-5639
  surname: Tang
  fullname: Tang, Chenyu
  email: ct631@cam.ac.uk
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Xuhang
  surname: Chen
  fullname: Chen, Xuhang
  email: xuhang.chen22@imperial.ac.uk
  organization: the School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Jing
  surname: Gong
  fullname: Gong, Jing
  email: 19376459@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Luigi G.
  orcidid: 0000-0002-9067-2534
  surname: Occhipinti
  fullname: Occhipinti, Luigi G.
  email: lgo23@cam.ac.uk
  organization: Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge, U.K
– sequence: 5
  givenname: Shuo
  orcidid: 0000-0003-3096-4700
  surname: Gao
  fullname: Gao, Shuo
  email: shuo_gao@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36327173$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9L9DAQxoMo6qt-ABGk4MVL1_xp09SbLr6uoquI4jEk6VSibaNJ64vf_k3ZXQ8enMsMw-8ZZub5g9Y71wFC-wRPCMHlyfX57GpCMaUTRknJeLaGtinhIqUUi_VVTcpsC-2F8IpjiNgq-SbaYpzRghRsG90_387np8kzKK90AyE9VwGq5HZoeptOXTO0XTKHwasmpv6f829J7XwyG1rVJWemt5-2_0oewLiXzvbWdbtoo1ZNgL1l3kFPfy8ep7P05u7yanp2kxqGMU-1MaAKlTNcZVhozXEtCNY1IyQHLoyoi8zklahywaiglVAVaKNrTpQuKsrZDjpezH337mOA0MvWBgNNozpwQ5C0YCSeSFkZ0aMf6KsbfBe3ixTHPGekHKnDJTXoFir57m2r_Jdc_SoCxQIw3oXgoZbG9mq8uffKNpJgORojR2PkaIxcGhOV5IdyNfw3zcFCYwHgm497Fjjj7D-cHJZq
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_s23031678
crossref_primary_10_1109_JIOT_2023_3274831
crossref_primary_10_1109_JBHI_2024_3414291
crossref_primary_10_1177_17543371241273827
crossref_primary_10_1109_JSEN_2024_3354307
crossref_primary_10_3390_bioengineering10040459
crossref_primary_10_1016_j_nanoen_2023_108712
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1016_j_knosys_2025_113232
Cites_doi 10.1109/JBHI.2013.2252911
10.1109/ICC.2015.7248370
10.4249/scholarpedia.1883
10.1109/TNSRE.2019.2950096
10.1109/LSP.2016.2636320
10.1109/JIOT.2019.2915095
10.1109/MASS50613.2020.00070
10.1109/JBHI.2015.2430524
10.1109/ROBIO.2015.7418906
10.3758/brm.41.1.113
10.1007/978-3-642-33932-5_26
10.4108/eai.22-7-2015.2260064
10.1109/TSMC.1976.5408784
10.2174/1874444301406010108
10.1145/3065386
10.1016/j.jelekin.2012.04.009
10.1109/I2MTC43012.2020.9128722
10.1145/279943.279960
10.1109/TAI.2021.3096175
10.1109/JBHI.2020.3013403
10.1021/acsmaterialslett.0c00085
10.1109/JBHI.2020.3012698
10.1109/JSEN.2021.3122128
10.1016/j.eswa.2017.03.020
10.1109/JSEN.2021.3058429
10.1016/j.eswa.2010.06.065
10.1109/JBHI.2015.2432454
10.1109/TMC.2017.2691705
10.1109/JSEN.2017.2682322
10.1109/JBHI.2021.3092396
10.1007/BF00994018
10.1609/aaai.v31i1.11231
10.18653/v1/P19-1656
10.1016/j.neucom.2004.11.022
10.2307/2288403
10.1038/s41928-020-00510-8
10.1016/j.inffus.2016.09.005
10.1109/JBHI.2015.2472560
10.1109/TMM.2019.2904880
10.1109/JSEN.2018.2830743
10.1109/LGRS.2008.915597
10.1109/SENSORS47125.2020.9278848
10.1109/JBHI.2013.2287400
10.1109/JBHI.2018.2819182
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3219364
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 350
ExternalDocumentID 36327173
10_1109_JBHI_2022_3219364
9937046
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Beihang University
  grantid: KG12090401; ZG216S19C8
  funderid: 10.13039/501100002358
– fundername: National Natural Science Foundation of China; National Natural Science Foundation
  grantid: 61827802; 61803017
  funderid: 10.13039/501100001809
– fundername: Beihang University
  funderid: 10.13039/501100002358
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c3006-bccea7a530d408bb60f810bf3115e68c8f74c5d8d583282d8adebcbf61ab7d263
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Jul 10 23:21:17 EDT 2025
Sun Jun 29 15:17:14 EDT 2025
Thu Jan 02 22:52:45 EST 2025
Thu Apr 24 22:59:30 EDT 2025
Thu Aug 21 00:31:20 EDT 2025
Wed Aug 20 06:20:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3006-bccea7a530d408bb60f810bf3115e68c8f74c5d8d583282d8adebcbf61ab7d263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3096-4700
0000-0002-9067-2534
0000-0002-6368-5639
PMID 36327173
PQID 2760653199
PQPubID 85417
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2022_3219364
pubmed_primary_36327173
ieee_primary_9937046
proquest_journals_2760653199
crossref_primary_10_1109_JBHI_2022_3219364
proquest_miscellaneous_2731717239
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Hassanat (ref39) 2014
ref46
ref45
ref48
ref47
ref44
ref43
ref49
Kingma (ref41) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Simonyan (ref42) 2014
Ioffe (ref29) 2015
ref24
ref23
ref26
ref25
Wang (ref28) 2015
ref20
ref22
ref21
ref27
References_xml – ident: ref7
  doi: 10.1109/JBHI.2013.2252911
– ident: ref12
  doi: 10.1109/ICC.2015.7248370
– ident: ref38
  doi: 10.4249/scholarpedia.1883
– ident: ref23
  doi: 10.1109/TNSRE.2019.2950096
– ident: ref18
  doi: 10.1109/LSP.2016.2636320
– year: 2014
  ident: ref42
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref13
  doi: 10.1109/JIOT.2019.2915095
– ident: ref25
  doi: 10.1109/MASS50613.2020.00070
– ident: ref2
  doi: 10.1109/JBHI.2015.2430524
– ident: ref24
  doi: 10.1109/ROBIO.2015.7418906
– ident: ref49
  doi: 10.3758/brm.41.1.113
– ident: ref20
  doi: 10.1007/978-3-642-33932-5_26
– ident: ref14
  doi: 10.4108/eai.22-7-2015.2260064
– ident: ref40
  doi: 10.1109/TSMC.1976.5408784
– ident: ref37
  doi: 10.2174/1874444301406010108
– ident: ref27
  doi: 10.1145/3065386
– ident: ref46
  doi: 10.1016/j.jelekin.2012.04.009
– ident: ref16
  doi: 10.1109/I2MTC43012.2020.9128722
– ident: ref30
  doi: 10.1145/279943.279960
– year: 2014
  ident: ref41
  article-title: Adam: A method for stochastic optimization
– ident: ref17
  doi: 10.1109/TAI.2021.3096175
– ident: ref6
  doi: 10.1109/JBHI.2020.3013403
– ident: ref47
  doi: 10.1021/acsmaterialslett.0c00085
– ident: ref19
  doi: 10.1109/JBHI.2020.3012698
– ident: ref11
  doi: 10.1109/JSEN.2021.3122128
– ident: ref35
  doi: 10.1016/j.eswa.2017.03.020
– ident: ref26
  doi: 10.1109/JSEN.2021.3058429
– ident: ref36
  doi: 10.1016/j.eswa.2010.06.065
– ident: ref4
  doi: 10.1109/JBHI.2015.2432454
– ident: ref15
  doi: 10.1109/TMC.2017.2691705
– ident: ref21
  doi: 10.1109/JSEN.2017.2682322
– ident: ref5
  doi: 10.1109/JBHI.2021.3092396
– ident: ref31
  doi: 10.1007/BF00994018
– ident: ref43
  doi: 10.1609/aaai.v31i1.11231
– ident: ref44
  doi: 10.18653/v1/P19-1656
– ident: ref32
  doi: 10.1016/j.neucom.2004.11.022
– ident: ref34
  doi: 10.2307/2288403
– year: 2014
  ident: ref39
  article-title: Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach
– ident: ref48
  doi: 10.1038/s41928-020-00510-8
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2015
  ident: ref29
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 80
  volume-title: Proc. Workshops 29th AAAI Conf. Artif. Intell.
  year: 2015
  ident: ref28
  article-title: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
– ident: ref45
  doi: 10.1016/j.inffus.2016.09.005
– ident: ref8
  doi: 10.1109/JBHI.2015.2472560
– ident: ref10
  doi: 10.1109/TMM.2019.2904880
– ident: ref9
  doi: 10.1109/JSEN.2018.2830743
– ident: ref33
  doi: 10.1109/LGRS.2008.915597
– ident: ref22
  doi: 10.1109/SENSORS47125.2020.9278848
– ident: ref3
  doi: 10.1109/JBHI.2013.2287400
– ident: ref1
  doi: 10.1109/JBHI.2018.2819182
SSID ssj0000816896
Score 2.4325697
Snippet In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 339
SubjectTerms Bioinformatics
Deep learning
HAR
Human Activities
Human activity recognition
Humans
Machine learning
Man-machine interfaces
Motion
Movement
multi-column neural network
multi-sensor fusion
Multisensor fusion
Muscle strength
Muscles
Neural networks
Neural Networks, Computer
Sensors
Spatial data
Sports
Support vector machines
Training
Wearable computers
Wearable Electronic Devices
wearables
Title WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition
URI https://ieeexplore.ieee.org/document/9937046
https://www.ncbi.nlm.nih.gov/pubmed/36327173
https://www.proquest.com/docview/2760653199
https://www.proquest.com/docview/2731717239
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcLRwQL20vFq2PORKPaFmceys4_QGiNWCtCuEiuAWxa8LKFuV3Uu_vjPOQyoCxM2SHSfxzHjeMwDfVUgdXgEuKXTgSZajzqqRbSG5Kye8Fd7FRNrZXE1vs6v78f0AfvS5MN77GHzmRzSMvny3sCsylZ0QL0V9bg3WUHFrcrV6e0psIBHbcQkcJEiIWevETHlxcnU2vURlUIiRxBmpqB2PVFKQD_o_jhRbrLwubUauM_kEs-57m2CTh9FqaUb277NSju_9oU342Iqf7LTBly0Y-HobNmatg30Hru9m8_lPdof4TzlVT8kZcjnHYppuck43Wc2ongfuMW8CyBlKvSy6AtipbVpRsJsuKmlR78Lt5OLX-TRpmy4kVpJ1wVjrq7waS-4yro1RPOiUm0BVebzSVoc8s2On3RjvAi2crhDW1gSVViZ3QsnPsF4var8HDGWvlAfvXAioBBpuLN4QHgWuVDiZWTcE3h18aduK5NQY47GMmgkvSgJbSWArW7AN4bh_5HdTjuOtxTt05P3C9rSHcNBBt2wJ9qkUuaIqvWlRDOFbP42kRv6TqvaLFa1BYQsFPolrvjRY0e_dIdPXl9-5Dx-oT31juzmA9eWflT9EaWZpjiIa_wOLcOv6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFSKBL2UR6EsFDASJ0S2jp04Dre2otqWJkKoVXuL4teFKlvR3Uu_nhnnIYEAcbNkx0k8M573DMB7FVKHV4BLSh14khWos2pkW0juyglvhXcxkbaq1eIiO73Krzbg45QL472PwWd-TsPoy3dLuyZT2T7xUtTn7sF95Pt52mdrTRaV2EIiNuQSOEiQFLPBjZnycv_0cHGC6qAQc4kzUlFDHqmkIC_0LzwpNln5u7wZ-c7xI6jGL-7DTb7P1yszt3e_FXP83196DNuDAMoOeox5Ahu-ewoPqsHFvgNfL6u6_sQukQIoq-o2OUQ-51hM1E2O6C7rGFX0wD3qPoScodzLojOAHdi-GQX7NsYlLbtncHH8-fxokQxtFxIryb5grPVt0eaSu4xrYxQPOuUmUF0er7TVochs7rTL8TbQwukWoW1NUGlrCieUfA6b3bLzL4Ch9JXy4J0LAdVAw43FO8KjyJUKJzPrZsDHg2_sUJOcWmNcN1E34WVDYGsIbM0Athl8mB656Qty_GvxDh35tHA47RnsjdBtBpK9bUShqE5vWpYzeDdNI7GRB6Xt_HJNa1DcQpFP4prdHiumvUdkevnnd76Fh4vz6qw5O6m_vIIt6lrfW3L2YHP1Y-1fo2yzMm8iSv8EBQTvQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WMNN%3A+Wearables-Based+Multi-Column+Neural+Network+for+Human+Activity+Recognition&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Tang%2C+Chenyu&rft.au=Chen%2C+Xuhang&rft.au=Gong%2C+Jing&rft.au=Occhipinti%2C+Luigi+G.&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=27&rft.issue=1&rft.spage=339&rft.epage=350&rft_id=info:doi/10.1109%2FJBHI.2022.3219364&rft_id=info%3Apmid%2F36327173&rft.externalDocID=9937046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon