The cell-free layer in simulated microvascular networks
In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have consi...
Saved in:
Published in | Journal of fluid mechanics Vol. 864; pp. 768 - 806 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2019.45 |
Cover
Loading…
Abstract | In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo-like microvascular networks, including the hydrodynamic origins of the observed behaviour. |
---|---|
AbstractList | In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL
in vivo
is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with
in vivo
-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex
in vivo
-like microvascular networks, including the hydrodynamic origins of the observed behaviour. In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo-like microvascular networks, including the hydrodynamic origins of the observed behaviour. |
Author | Balogh, Peter Bagchi, Prosenjit |
Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0002-1503-4305 surname: Balogh fullname: Balogh, Peter organization: Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA – sequence: 2 givenname: Prosenjit orcidid: 0000-0003-4573-7455 surname: Bagchi fullname: Bagchi, Prosenjit email: pbagchi@jove.rutgers.edu organization: Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA |
BookMark | eNp1kMtKAzEUhoNUsK2ufIEBl5Ka2yQzSyneoOCmrkMmOdHUudRkRunbO6UFQXR1OPD95_x8MzRpuxYQuqRkQQlVNxvfLBih5ULkJ2hKhSyxkiKfoCkhjGFKGTlDs5Q2hFBOSjVFav0GmYW6xj4CZLXZQcxCm6XQDLXpwWVNsLH7NMmOe8xa6L-6-J7O0ak3dYKL45yjl_u79fIRr54fnpa3K2xZWfbYF8wABwdAna84KGOJKaSXXAhmibVKGMdylytW5eDLwihfgDSMOCsrwvgcXR3ubmP3MUDq9aYbYju-1IxRKSXnshgpeqDGqilF8NqG3vSha_toQq0p0Xs_evSj9360yMfM9a_MNobGxN0_ND7SpqlicK_wU-Qv_htnzHhn |
CitedBy_id | crossref_primary_10_1103_PhysRevFluids_9_L091101 crossref_primary_10_1016_j_bpj_2020_03_019 crossref_primary_10_1063_1_5127879 crossref_primary_10_1103_PhysRevFluids_8_013604 crossref_primary_10_1371_journal_pcbi_1009728 crossref_primary_10_1039_D3SM00517H crossref_primary_10_1063_5_0139641 crossref_primary_10_1016_j_cobme_2021_100316 crossref_primary_10_1111_micc_12875 crossref_primary_10_1016_j_ijengsci_2023_103901 crossref_primary_10_1103_PhysRevFluids_9_053601 crossref_primary_10_1063_5_0203220 crossref_primary_10_1063_5_0239357 crossref_primary_10_1103_PhysRevFluids_8_074202 crossref_primary_10_1073_pnas_2007770117 crossref_primary_10_1063_5_0227716 crossref_primary_10_1016_j_bpj_2024_04_015 crossref_primary_10_1109_TNB_2021_3064194 crossref_primary_10_1017_jfm_2024_877 crossref_primary_10_1140_epje_s10189_023_00369_5 crossref_primary_10_1039_D0SM01845G crossref_primary_10_1364_BOE_547734 crossref_primary_10_1093_function_zqad046 crossref_primary_10_1073_pnas_2025236118 crossref_primary_10_1017_jfm_2020_831 crossref_primary_10_1098_rsif_2021_0113 crossref_primary_10_1088_1612_202X_acb1ac crossref_primary_10_1007_s12551_023_01106_0 crossref_primary_10_1167_iovs_65_13_37 crossref_primary_10_3390_sym14081732 crossref_primary_10_1038_s41598_022_08357_z |
Cites_doi | 10.3233/BIR-1962-1102 10.1007/s10439-010-0130-3 10.1039/C3SM52860J 10.1016/S0006-3495(73)85983-1 10.1063/1.5024783 10.1111/j.1549-8719.2010.00069.x 10.1007/s00397-015-0891-6 10.1103/PhysRevLett.88.068103 10.1115/1.2895708 10.1161/01.RES.43.5.738 10.1016/j.bpj.2017.10.020 10.1017/S0022112076001596 10.1007/978-1-4757-2257-4 10.1115/1.1634992 10.1017/S0022112091002914 10.1103/PhysRevLett.109.108102 10.1002/aja.1001100204 10.1007/s10237-014-0636-y 10.1201/9780203503959 10.1038/srep04348 10.1103/PhysRevLett.83.880 10.1161/01.RES.72.2.239 10.1016/j.mvr.2014.01.007 10.1016/j.mvr.2013.05.002 10.1073/pnas.96.15.8757 10.1016/j.mvr.2015.02.006 10.1063/1.3023159 10.1080/10739680500383407 10.1016/j.crhy.2013.04.002 10.1016/j.jcp.2017.01.007 10.1152/nips.01395.2001 10.1111/j.1549-8719.2010.00056.x 10.1016/j.mvr.2011.11.003 10.3233/BIR-1970-7202 10.3233/BIR-2009-0530 10.1103/PhysRevA.39.5280 10.1063/1.3677935 10.1073/pnas.86.9.3375 10.1152/ajpheart.01182.2009 10.1090/qam/814230 10.1016/S0092-8240(83)80040-8 10.1016/0026-2862(89)90018-6 10.1002/cnm.1274 10.1146/annurev-fluid-010816-060302 10.1063/1.2472479 10.1152/ajpheart.00223.2016 10.1016/0026-2862(85)90010-X 10.1016/j.mvr.2016.03.003 10.1114/1.1467678 10.1063/1.3072796 10.1017/jfm.2013.624 10.1088/0967-3334/32/3/N01 10.1152/ajpheart.01090.2006 10.1103/PhysRevLett.110.108101 10.3233/BIR-2012-0608 10.1016/0021-9290(94)90052-3 10.1017/S0022112087000880 10.1080/10739680600556878 10.1016/S0008-6363(96)00065-X |
ContentType | Journal Article |
Copyright | 2019 Cambridge University Press |
Copyright_xml | – notice: 2019 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2019.45 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | The cell-free layer in simulated microvascular networks P. Balogh and P. Bagchi |
EISSN | 1469-7645 |
EndPage | 806 |
ExternalDocumentID | 10_1017_jfm_2019_45 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABVZP ABXAU ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEMTW AENEX AENGE AEUYN AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX ABXHF ADMLS AEHGV AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c299t-f82ae3edee1dfb3e7ac0a86f63442c0cc74ad25d572b5ef98a7f8e6a20dc6b023 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 23 14:35:31 EDT 2025 Tue Jul 01 03:01:15 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Tue Jan 21 06:26:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | blood flow capsule/cell dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c299t-f82ae3edee1dfb3e7ac0a86f63442c0cc74ad25d572b5ef98a7f8e6a20dc6b023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4573-7455 0000-0002-1503-4305 |
PQID | 2216663368 |
PQPubID | 34769 |
PageCount | 39 |
ParticipantIDs | proquest_journals_2216663368 crossref_citationtrail_10_1017_jfm_2019_45 crossref_primary_10_1017_jfm_2019_45 cambridge_journals_10_1017_jfm_2019_45 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-10 |
PublicationDateYYYYMMDD | 2019-04-10 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2019 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2017a; 334 1993; 8 2002; 17 1970; 7 1985; 29 1989; 83 2014; 739 1989; 86 2009b; 46 2009a; 6 1973; 13 2010; 17 2017; 49 1994; 27 2016; 106 1999; 83 2011; 18 1996; 32 1976; 73 2014; 4 2010; 26 2013; 14 2007; 293 1993; 72 1962; 110 2002; 88 2016; 311 2018; 30 1999; 96 2017b; 113 2013; 110 2008; 20 2003; 125 2012; 24 2014; 10 1989; 39 1991; 229 2012; 83 2007; 19 2015; 14 1994; 116 2014; 92 2009; 21 2002; 30 2006; 13 2013; 89 1962; 1 2015; 99 2011; 32 2011; 39 1985; 43 2012; 109 2016; 55 1987; 253 1987; 177 2006; 43 1978; 43 1996; 271 2010; 298 1995; 268 2001; 38 2012; 49 2007; 44 1983; 45 S0022112019000454_r2 S0022112019000454_r1 S0022112019000454_r4 S0022112019000454_r3 S0022112019000454_r6 S0022112019000454_r5 S0022112019000454_r34 S0022112019000454_r8 S0022112019000454_r35 S0022112019000454_r7 S0022112019000454_r36 S0022112019000454_r9 S0022112019000454_r38 S0022112019000454_r39 Reinke (S0022112019000454_r51) 1987; 253 S0022112019000454_r30 S0022112019000454_r32 S0022112019000454_r33 Soutani (S0022112019000454_r58) 1995; 268 Kim (S0022112019000454_r29) 2009a; 6 S0022112019000454_r45 S0022112019000454_r46 S0022112019000454_r47 S0022112019000454_r48 S0022112019000454_r49 Maeda (S0022112019000454_r37) 1996; 271 S0022112019000454_r40 S0022112019000454_r41 S0022112019000454_r42 S0022112019000454_r43 S0022112019000454_r44 Smiesko (S0022112019000454_r57) 1993; 8 S0022112019000454_r56 S0022112019000454_r12 S0022112019000454_r13 S0022112019000454_r14 S0022112019000454_r15 S0022112019000454_r59 S0022112019000454_r16 S0022112019000454_r17 S0022112019000454_r19 S0022112019000454_r50 S0022112019000454_r52 S0022112019000454_r53 S0022112019000454_r10 S0022112019000454_r11 S0022112019000454_r55 Sharan (S0022112019000454_r54) 2001; 38 S0022112019000454_r23 S0022112019000454_r67 S0022112019000454_r68 S0022112019000454_r25 S0022112019000454_r26 S0022112019000454_r27 S0022112019000454_r28 Faivre (S0022112019000454_r18) 2006; 43 Koutsiaris (S0022112019000454_r31) 2007; 44 S0022112019000454_r60 S0022112019000454_r61 S0022112019000454_r62 S0022112019000454_r63 S0022112019000454_r64 S0022112019000454_r20 S0022112019000454_r21 S0022112019000454_r65 S0022112019000454_r66 S0022112019000454_r22 Fung (S0022112019000454_r24) 1996 |
References_xml | – volume: 83 start-page: 880 year: 1999 end-page: 883 article-title: Lift force and dynamical unbinding of adhering vesicles under shear flow publication-title: Phys. Rev. Lett. – volume: 44 start-page: 375 year: 2007 end-page: 386 article-title: Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo publication-title: Biorheology – volume: 32 start-page: 654 year: 1996 end-page: 667 article-title: Biophysical aspects of blood flow in the microvasculature publication-title: Cardiovasc. Res. – volume: 253 start-page: H540 year: 1987 end-page: H547 article-title: Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation publication-title: Am. J. Phys. – volume: 38 start-page: 415 year: 2001 end-page: 428 article-title: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall publication-title: Biorheology – volume: 46 start-page: 181 year: 2009b end-page: 189 article-title: The cell-free layer in microvascular blood flow publication-title: Biorheology – volume: 49 start-page: 261 year: 2012 end-page: 270 article-title: Cell-free layer and wall shear stress variation in microvessels publication-title: Biorheol. – volume: 1 start-page: 3 year: 1962 end-page: 14 article-title: Haemorheological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters publication-title: Biorheology – volume: 14 start-page: 470 year: 2013 end-page: 478 article-title: Blood viscosity in microvessels: experiment and theory publication-title: C. R. Phys. – volume: 45 start-page: 41 year: 1983 end-page: 50 article-title: Hematocrit reducing in bifurcations due to plasma skimming publication-title: Bull. Math. Biol. – volume: 43 start-page: 147 year: 2006 end-page: 159 article-title: Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma publication-title: Biorheology – volume: 20 year: 2008 article-title: Noninertial lateral migration of vesicles in bounded Poiseuille flow publication-title: Phys. Fluids – volume: 29 start-page: 103 year: 1985 end-page: 126 article-title: Nonuniform red cell distribution in 20 to 100 μm bifurcations publication-title: Microvasc. Res. – volume: 19 year: 2007 article-title: Leukocyte margination in a model microvessel publication-title: Phys. Fluids – volume: 83 start-page: 81 year: 1989 end-page: 101 article-title: Red cell distribution at microvascular bifurcations publication-title: Microvasc. Res. – volume: 110 year: 2013 article-title: Lift and down-gradient shear-induced diffusion in red blood cell suspensions publication-title: Phys. Rev. Lett. – volume: 24 year: 2012 article-title: Shear-induced particle migration and margination in a cellular suspension publication-title: Phys. Fluids – volume: 113 start-page: 2815 year: 2017b end-page: 2826 article-title: Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks publication-title: Biophys. J. – volume: 6 start-page: 83 issue: 2 year: 2009a end-page: 91 article-title: Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates publication-title: Mol. Cell. Biomech. – volume: 83 start-page: 118 year: 2012 end-page: 125 article-title: Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles publication-title: Microvasc. Res. – volume: 73 start-page: 735 year: 1976 end-page: 752 article-title: Laminar flow in a curved pipe with varying curvature publication-title: J. Fluid Mech. – volume: 14 start-page: 783 year: 2015 end-page: 794 article-title: Cell-free layer development process in the entrance region of microvessels publication-title: Biomech. Model. Mechanobiol. – volume: 268 start-page: H1959 year: 1995 end-page: H1965 article-title: Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation publication-title: Am. J. Phys. – volume: 229 start-page: 1 year: 1991 end-page: 27 article-title: Fluid skimming and particle entrainment into a small circular side pore publication-title: J. Fluid. Mech. – volume: 18 start-page: 63 year: 2011 end-page: 73 article-title: Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes publication-title: Microcirculation – volume: 739 start-page: 421 year: 2014 end-page: 443 article-title: Lateral migration of a capsule in plane shear near a wall publication-title: J. Fluid Mech. – volume: 88 year: 2002 article-title: Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force publication-title: Phys. Rev. Lett. – volume: 271 start-page: H2454 year: 1996 end-page: H2461 article-title: Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance publication-title: Am. J. Phys. – volume: 298 start-page: H1870 year: 2010 end-page: H1878 article-title: Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 99 start-page: 57 year: 2015 end-page: 66 article-title: Microvascular blood flow resistance: role of red blood cell migration and dispersion publication-title: Microvasc. Res. – volume: 13 start-page: 1 year: 2006 end-page: 18 article-title: A novel three dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex publication-title: Microcirculation – volume: 109 year: 2012 article-title: Mechanism of margination in confined flows of blood and other multicomponent suspensions publication-title: Phys. Rev. Lett. – volume: 177 start-page: 109 year: 1987 end-page: 131 article-title: Measurement of shear-induced self-diffusions in concentrated suspensions of spheres publication-title: J. Fluid Mech. – volume: 43 start-page: 317 year: 1985 end-page: 323 article-title: Slow viscous flow inside a torus – the resistance of small tortuous blood vessels publication-title: Q. Appl. Maths – volume: 30 year: 2018 article-title: Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks publication-title: Phys. Fluids – volume: 72 start-page: 239 year: 1993 end-page: 245 article-title: Mechanical stress mechanisms and the cell: an endothelial paradigm publication-title: Circulat. Res. – volume: 92 start-page: 19 year: 2014 end-page: 24 article-title: Effect of uneven red cell influx on formation of cell-free layer in small venules publication-title: Microvasc. Res. – volume: 13 start-page: 245 year: 1973 end-page: 264 article-title: Strain energy function of red blood cell membranes publication-title: Biophys. J. – volume: 125 start-page: 910 year: 2003 end-page: 913 article-title: Blood flow in small curved tubes publication-title: Trans. ASME J. Biomech. Engng – volume: 49 start-page: 443 year: 2017 end-page: 461 article-title: Blood flow in the microcirculation publication-title: Annu. Rev. Fluid Mech. – volume: 32 start-page: N1 year: 2011 end-page: N12 article-title: An automated method for cell-free layer width determination in small arterioles publication-title: Physiol. Meas. – volume: 106 start-page: 14 year: 2016 end-page: 23 article-title: Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation publication-title: Microvasc. Res. – volume: 334 start-page: 280 year: 2017a end-page: 307 article-title: A computational approach to modeling cellular-scale blood flow in complex geometry publication-title: J. Comput. Phys. – volume: 96 start-page: 8757 year: 1999 end-page: 8761 article-title: Intravascular flow decreases erythrocyte consumption of nitric oxide publication-title: Proc. Natl Acad. Sci. USA – volume: 110 start-page: 125 year: 1962 end-page: 154 article-title: A quantitative study of the hemodynamics in the living microvascular system publication-title: Am. J. Anat. – volume: 10 start-page: 2961 year: 2014 end-page: 2970 article-title: White blood cell margination in microcirculation publication-title: Soft Matt. – volume: 89 start-page: 47 year: 2013 end-page: 56 article-title: Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation publication-title: Microvasc. Res. – volume: 7 start-page: 85 year: 1970 end-page: 701 article-title: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes publication-title: Biorheology – volume: 39 start-page: 5280 year: 1989 end-page: 5288 article-title: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders publication-title: Phys. Rev. A – volume: 13 start-page: 199 year: 2006 end-page: 207 article-title: A computer-based method for determination of the cell-free layer width in microcirculation publication-title: Microcirculation – volume: 17 start-page: 197 year: 2002 end-page: 201 article-title: Angioadaptation: keeping the vascular system in shape publication-title: Physiology – volume: 21 year: 2009 article-title: Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles publication-title: Phys. Fluids – volume: 4 start-page: 4348 year: 2014 article-title: The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows publication-title: Sci. Rep. – volume: 86 start-page: 3375 year: 1989 end-page: 3378 article-title: Role of endothelium-derived nitric oxide in the regulation of blood pressure publication-title: Proc. Natl Acad. Sci. USA – volume: 27 start-page: 1119 year: 1994 end-page: 1125 article-title: Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance publication-title: J. Biomech. – volume: 293 start-page: H1526 year: 2007 end-page: H1535 article-title: Temporal and spatial variations of cell-free layer width in arterioles publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 116 start-page: 79 year: 1994 end-page: 88 article-title: A numerical study of plasma skimming in small vascular bifurcations publication-title: Trans. ASME J. Biomech. Engng – volume: 311 start-page: H487 year: 2016 end-page: H497 article-title: Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 26 start-page: 471 year: 2010 end-page: 487 article-title: Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells publication-title: Intl J. Numer. Meth. Biomed. Engng – volume: 8 start-page: 34 year: 1993 end-page: 38 article-title: The arterial lumen is controlled by flow-related shear stress publication-title: News Physiol. Sci. – volume: 43 start-page: 738 year: 1978 end-page: 749 article-title: The distribution of blood rheological parameters in the microvasculature of cat mesentery publication-title: Circulat. Res. – volume: 30 start-page: 472 year: 2002 end-page: 482 article-title: Role of subcellular shear-stress distributions in endothelial cell mechanotransduction publication-title: Ann. Biomed. Engng – volume: 39 start-page: 359 year: 2011 end-page: 366 article-title: Effect of cell-free layer variation on arteriolar wall shear stress publication-title: Ann. Biomed. Engng – volume: 55 start-page: 511 year: 2016 end-page: 521 article-title: Effect of tube diameter and capillary number on platelet margination and near-wall dynamics publication-title: Rheol. Acta. – volume: 17 start-page: 615 year: 2010 end-page: 628 article-title: Blood flow and cell-free layer in microvessels publication-title: Microcirculation – ident: S0022112019000454_r13 doi: 10.3233/BIR-1962-1102 – ident: S0022112019000454_r40 doi: 10.1007/s10439-010-0130-3 – ident: S0022112019000454_r20 doi: 10.1039/C3SM52860J – ident: S0022112019000454_r56 doi: 10.1016/S0006-3495(73)85983-1 – ident: S0022112019000454_r4 doi: 10.1063/1.5024783 – volume: 6 start-page: 83 year: 2009a ident: S0022112019000454_r29 article-title: Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates publication-title: Mol. Cell. Biomech. – ident: S0022112019000454_r6 doi: 10.1111/j.1549-8719.2010.00069.x – ident: S0022112019000454_r33 doi: 10.1007/s00397-015-0891-6 – ident: S0022112019000454_r1 doi: 10.1103/PhysRevLett.88.068103 – ident: S0022112019000454_r17 doi: 10.1115/1.2895708 – ident: S0022112019000454_r36 doi: 10.1161/01.RES.43.5.738 – ident: S0022112019000454_r3 doi: 10.1016/j.bpj.2017.10.020 – ident: S0022112019000454_r38 doi: 10.1017/S0022112076001596 – volume: 268 start-page: H1959 year: 1995 ident: S0022112019000454_r58 article-title: Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation publication-title: Am. J. Phys. – ident: S0022112019000454_r23 doi: 10.1007/978-1-4757-2257-4 – ident: S0022112019000454_r61 doi: 10.1115/1.1634992 – ident: S0022112019000454_r62 doi: 10.1017/S0022112091002914 – ident: S0022112019000454_r32 doi: 10.1103/PhysRevLett.109.108102 – ident: S0022112019000454_r7 doi: 10.1002/aja.1001100204 – ident: S0022112019000454_r45 doi: 10.1007/s10237-014-0636-y – ident: S0022112019000454_r49 doi: 10.1201/9780203503959 – ident: S0022112019000454_r8 doi: 10.1038/srep04348 – volume: 43 start-page: 147 year: 2006 ident: S0022112019000454_r18 article-title: Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma publication-title: Biorheology – ident: S0022112019000454_r10 doi: 10.1103/PhysRevLett.83.880 – ident: S0022112019000454_r16 doi: 10.1161/01.RES.72.2.239 – ident: S0022112019000454_r39 doi: 10.1016/j.mvr.2014.01.007 – ident: S0022112019000454_r65 doi: 10.1016/j.mvr.2013.05.002 – ident: S0022112019000454_r35 doi: 10.1073/pnas.96.15.8757 – ident: S0022112019000454_r26 doi: 10.1016/j.mvr.2015.02.006 – volume: 271 start-page: H2454 year: 1996 ident: S0022112019000454_r37 article-title: Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance publication-title: Am. J. Phys. – ident: S0022112019000454_r15 doi: 10.1063/1.3023159 – ident: S0022112019000454_r11 doi: 10.1080/10739680500383407 – ident: S0022112019000454_r52 doi: 10.1016/j.crhy.2013.04.002 – ident: S0022112019000454_r2 doi: 10.1016/j.jcp.2017.01.007 – volume: 253 start-page: H540 year: 1987 ident: S0022112019000454_r51 article-title: Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation publication-title: Am. J. Phys. – ident: S0022112019000454_r66 doi: 10.1152/nips.01395.2001 – ident: S0022112019000454_r19 doi: 10.1111/j.1549-8719.2010.00056.x – ident: S0022112019000454_r42 doi: 10.1016/j.mvr.2011.11.003 – volume-title: Biomechanics: Circulation year: 1996 ident: S0022112019000454_r24 – ident: S0022112019000454_r9 doi: 10.3233/BIR-1970-7202 – ident: S0022112019000454_r30 doi: 10.3233/BIR-2009-0530 – ident: S0022112019000454_r68 doi: 10.1103/PhysRevA.39.5280 – ident: S0022112019000454_r67 doi: 10.1063/1.3677935 – ident: S0022112019000454_r50 doi: 10.1073/pnas.86.9.3375 – ident: S0022112019000454_r44 doi: 10.1152/ajpheart.01182.2009 – ident: S0022112019000454_r12 doi: 10.1090/qam/814230 – ident: S0022112019000454_r46 doi: 10.1016/S0092-8240(83)80040-8 – volume: 8 start-page: 34 year: 1993 ident: S0022112019000454_r57 article-title: The arterial lumen is controlled by flow-related shear stress publication-title: News Physiol. Sci. – ident: S0022112019000454_r47 doi: 10.1016/0026-2862(89)90018-6 – ident: S0022112019000454_r14 doi: 10.1002/cnm.1274 – ident: S0022112019000454_r53 doi: 10.1146/annurev-fluid-010816-060302 – ident: S0022112019000454_r22 doi: 10.1063/1.2472479 – ident: S0022112019000454_r41 doi: 10.1152/ajpheart.00223.2016 – volume: 44 start-page: 375 year: 2007 ident: S0022112019000454_r31 article-title: Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo publication-title: Biorheology – ident: S0022112019000454_r21 doi: 10.1016/0026-2862(85)90010-X – ident: S0022112019000454_r63 doi: 10.1016/j.mvr.2016.03.003 – ident: S0022112019000454_r5 doi: 10.1114/1.1467678 – ident: S0022112019000454_r60 doi: 10.1063/1.3072796 – ident: S0022112019000454_r55 doi: 10.1017/jfm.2013.624 – volume: 38 start-page: 415 year: 2001 ident: S0022112019000454_r54 article-title: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall publication-title: Biorheology – ident: S0022112019000454_r43 doi: 10.1088/0967-3334/32/3/N01 – ident: S0022112019000454_r28 doi: 10.1152/ajpheart.01090.2006 – ident: S0022112019000454_r25 doi: 10.1103/PhysRevLett.110.108101 – ident: S0022112019000454_r64 doi: 10.3233/BIR-2012-0608 – ident: S0022112019000454_r59 doi: 10.1016/0021-9290(94)90052-3 – ident: S0022112019000454_r34 doi: 10.1017/S0022112087000880 – ident: S0022112019000454_r27 doi: 10.1080/10739680600556878 – ident: S0022112019000454_r48 doi: 10.1016/S0008-6363(96)00065-X |
SSID | ssj0013097 |
Score | 2.4421642 |
Snippet | In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 768 |
SubjectTerms | Asymmetry Bifurcations Blood cells Blood flow Blood vessels Cellular communication Complexity Computer simulation Curvature Downstream Erythrocytes Flow velocity Fluid mechanics Hydrodynamics JFM Papers Mesentery Microvasculature Physiology Profiles Simulation Streams Studies Topology Tortuosity Tubes Velocity |
Title | The cell-free layer in simulated microvascular networks |
URI | https://www.cambridge.org/core/product/identifier/S0022112019000454/type/journal_article https://www.proquest.com/docview/2216663368 |
Volume | 864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q9AHP6bidI4-DB-EaJumTfokKptDcIg42FtJ8wGTrZvr_P9NtnRzMHzukcIvl8vl7nd3AC1KmWZYE-RnCUYkCSTiJPFRIIztE1xqvQhdvPXibp-8DqKBC7gVjlZZ2sSFoZYTYWPk9xjbBFcYxuxh-o3s1CibXXUjNHahakwwM4-v6lO79_6xziP4CS37hRvPwncVerZp9Je2hehBcmcrmdZ9FTbvp03zvLhzOsdw6JxF73G5uyewo_IaHDnH0XPHsqjBwZ-ugjXYW7A6RXEK1CiBZ0PzSM-U8kbc-NfeMPeK4dhO7TJrjC0fr2SjevmSE16cQb_T_nzuIjcpAVlI58jAzVWopFKB1FmoKBc-Z7GOQ0Kw8IWghEscyYjiLFI6YZxqpmKOfSnizFzb51DJJ7m6AE-GIY6UfQcqTCLNOTNWIMoIZzgTjJE63KywSp2-F-mSK0ZTA2pqQU1JVIfbEshUuH7jduzFaLtwayU8XbbZ2C7WKHdk_e-1Zlz-__kK9u06NhcU-A2ozGc_6tq4FPOsCbus89J02vMLEHbLLg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlQ4FFhALKWtD9BDJUNiO7FzQAi1XZbnCSRuwfFDAkFYyFYVf4rfWE8ebJEQN86x7Gj8eWbsmfkGYENK5RXzgkZFxqjIYku1yCIam6D7jLbe108XJ6fp8FwcXiQXU_DU1cJgWmWnE2tFbe8MvpFvM4YBLs5TtTu6p9g1CqOrXQuNBhZH7vFvuLJVOwe_wv5uMjb4ffZzSNuuAhSXH9Pwa9pxZ52LrS-4k9pEWqU-5UIwExkjhbYssYlkReJ8prT0yqWaRdakRU10EFT-B8F5hidKDfYnUYsokx07efBjorYeECmqrz2WvcfZFtZNTVgcXlrDl8agtnCDBfjUuqZkr8HSIky5sgfzrZtKWiVQ9WDuPw7DHszUOaSmWgIZIEcwEED9g3PkRgdvnlyVpLq6xR5hYY5bzP7rcl9J2WSgV8tw_i4SXIHp8q50q0As5yxxeOt0TCReaxV0TlIIrVhhlBJ9-P4sq7w9XVXeZKbJPAg1R6HmIunDj06QuWnZzbHJxs3rgzeeB48aUo_Xh613OzJZe4LDtbc_f4OPw7OT4_z44PToM8zinBiFiqN1mB4__HFfgjMzLr7WCCJw-d6Q_QdocAg_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cell-free+layer+in+simulated+microvascular+networks&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Balogh%2C+Peter&rft.au=Bagchi%2C+Prosenjit&rft.date=2019-04-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=864&rft.spage=768&rft.epage=806&rft_id=info:doi/10.1017%2Fjfm.2019.45 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |