The cell-free layer in simulated microvascular networks

In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have consi...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 864; pp. 768 - 806
Main Authors Balogh, Peter, Bagchi, Prosenjit
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.04.2019
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2019.45

Cover

Loading…
Abstract In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo-like microvascular networks, including the hydrodynamic origins of the observed behaviour.
AbstractList In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo -like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo -like microvascular networks, including the hydrodynamic origins of the observed behaviour.
In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo-like microvascular networks, including the hydrodynamic origins of the observed behaviour.
Author Balogh, Peter
Bagchi, Prosenjit
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-1503-4305
  surname: Balogh
  fullname: Balogh, Peter
  organization: Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
– sequence: 2
  givenname: Prosenjit
  orcidid: 0000-0003-4573-7455
  surname: Bagchi
  fullname: Bagchi, Prosenjit
  email: pbagchi@jove.rutgers.edu
  organization: Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
BookMark eNp1kMtKAzEUhoNUsK2ufIEBl5Ka2yQzSyneoOCmrkMmOdHUudRkRunbO6UFQXR1OPD95_x8MzRpuxYQuqRkQQlVNxvfLBih5ULkJ2hKhSyxkiKfoCkhjGFKGTlDs5Q2hFBOSjVFav0GmYW6xj4CZLXZQcxCm6XQDLXpwWVNsLH7NMmOe8xa6L-6-J7O0ak3dYKL45yjl_u79fIRr54fnpa3K2xZWfbYF8wABwdAna84KGOJKaSXXAhmibVKGMdylytW5eDLwihfgDSMOCsrwvgcXR3ubmP3MUDq9aYbYju-1IxRKSXnshgpeqDGqilF8NqG3vSha_toQq0p0Xs_evSj9360yMfM9a_MNobGxN0_ND7SpqlicK_wU-Qv_htnzHhn
CitedBy_id crossref_primary_10_1103_PhysRevFluids_9_L091101
crossref_primary_10_1016_j_bpj_2020_03_019
crossref_primary_10_1063_1_5127879
crossref_primary_10_1103_PhysRevFluids_8_013604
crossref_primary_10_1371_journal_pcbi_1009728
crossref_primary_10_1039_D3SM00517H
crossref_primary_10_1063_5_0139641
crossref_primary_10_1016_j_cobme_2021_100316
crossref_primary_10_1111_micc_12875
crossref_primary_10_1016_j_ijengsci_2023_103901
crossref_primary_10_1103_PhysRevFluids_9_053601
crossref_primary_10_1063_5_0203220
crossref_primary_10_1063_5_0239357
crossref_primary_10_1103_PhysRevFluids_8_074202
crossref_primary_10_1073_pnas_2007770117
crossref_primary_10_1063_5_0227716
crossref_primary_10_1016_j_bpj_2024_04_015
crossref_primary_10_1109_TNB_2021_3064194
crossref_primary_10_1017_jfm_2024_877
crossref_primary_10_1140_epje_s10189_023_00369_5
crossref_primary_10_1039_D0SM01845G
crossref_primary_10_1364_BOE_547734
crossref_primary_10_1093_function_zqad046
crossref_primary_10_1073_pnas_2025236118
crossref_primary_10_1017_jfm_2020_831
crossref_primary_10_1098_rsif_2021_0113
crossref_primary_10_1088_1612_202X_acb1ac
crossref_primary_10_1007_s12551_023_01106_0
crossref_primary_10_1167_iovs_65_13_37
crossref_primary_10_3390_sym14081732
crossref_primary_10_1038_s41598_022_08357_z
Cites_doi 10.3233/BIR-1962-1102
10.1007/s10439-010-0130-3
10.1039/C3SM52860J
10.1016/S0006-3495(73)85983-1
10.1063/1.5024783
10.1111/j.1549-8719.2010.00069.x
10.1007/s00397-015-0891-6
10.1103/PhysRevLett.88.068103
10.1115/1.2895708
10.1161/01.RES.43.5.738
10.1016/j.bpj.2017.10.020
10.1017/S0022112076001596
10.1007/978-1-4757-2257-4
10.1115/1.1634992
10.1017/S0022112091002914
10.1103/PhysRevLett.109.108102
10.1002/aja.1001100204
10.1007/s10237-014-0636-y
10.1201/9780203503959
10.1038/srep04348
10.1103/PhysRevLett.83.880
10.1161/01.RES.72.2.239
10.1016/j.mvr.2014.01.007
10.1016/j.mvr.2013.05.002
10.1073/pnas.96.15.8757
10.1016/j.mvr.2015.02.006
10.1063/1.3023159
10.1080/10739680500383407
10.1016/j.crhy.2013.04.002
10.1016/j.jcp.2017.01.007
10.1152/nips.01395.2001
10.1111/j.1549-8719.2010.00056.x
10.1016/j.mvr.2011.11.003
10.3233/BIR-1970-7202
10.3233/BIR-2009-0530
10.1103/PhysRevA.39.5280
10.1063/1.3677935
10.1073/pnas.86.9.3375
10.1152/ajpheart.01182.2009
10.1090/qam/814230
10.1016/S0092-8240(83)80040-8
10.1016/0026-2862(89)90018-6
10.1002/cnm.1274
10.1146/annurev-fluid-010816-060302
10.1063/1.2472479
10.1152/ajpheart.00223.2016
10.1016/0026-2862(85)90010-X
10.1016/j.mvr.2016.03.003
10.1114/1.1467678
10.1063/1.3072796
10.1017/jfm.2013.624
10.1088/0967-3334/32/3/N01
10.1152/ajpheart.01090.2006
10.1103/PhysRevLett.110.108101
10.3233/BIR-2012-0608
10.1016/0021-9290(94)90052-3
10.1017/S0022112087000880
10.1080/10739680600556878
10.1016/S0008-6363(96)00065-X
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.45
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate The cell-free layer in simulated microvascular networks
P. Balogh and P. Bagchi
EISSN 1469-7645
EndPage 806
ExternalDocumentID 10_1017_jfm_2019_45
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABXHF
ADMLS
AEHGV
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c299t-f82ae3edee1dfb3e7ac0a86f63442c0cc74ad25d572b5ef98a7f8e6a20dc6b023
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 23 14:35:31 EDT 2025
Tue Jul 01 03:01:15 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Tue Jan 21 06:26:54 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords blood flow
capsule/cell dynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c299t-f82ae3edee1dfb3e7ac0a86f63442c0cc74ad25d572b5ef98a7f8e6a20dc6b023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4573-7455
0000-0002-1503-4305
PQID 2216663368
PQPubID 34769
PageCount 39
ParticipantIDs proquest_journals_2216663368
crossref_citationtrail_10_1017_jfm_2019_45
crossref_primary_10_1017_jfm_2019_45
cambridge_journals_10_1017_jfm_2019_45
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-10
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017a; 334
1993; 8
2002; 17
1970; 7
1985; 29
1989; 83
2014; 739
1989; 86
2009b; 46
2009a; 6
1973; 13
2010; 17
2017; 49
1994; 27
2016; 106
1999; 83
2011; 18
1996; 32
1976; 73
2014; 4
2010; 26
2013; 14
2007; 293
1993; 72
1962; 110
2002; 88
2016; 311
2018; 30
1999; 96
2017b; 113
2013; 110
2008; 20
2003; 125
2012; 24
2014; 10
1989; 39
1991; 229
2012; 83
2007; 19
2015; 14
1994; 116
2014; 92
2009; 21
2002; 30
2006; 13
2013; 89
1962; 1
2015; 99
2011; 32
2011; 39
1985; 43
2012; 109
2016; 55
1987; 253
1987; 177
2006; 43
1978; 43
1996; 271
2010; 298
1995; 268
2001; 38
2012; 49
2007; 44
1983; 45
S0022112019000454_r2
S0022112019000454_r1
S0022112019000454_r4
S0022112019000454_r3
S0022112019000454_r6
S0022112019000454_r5
S0022112019000454_r34
S0022112019000454_r8
S0022112019000454_r35
S0022112019000454_r7
S0022112019000454_r36
S0022112019000454_r9
S0022112019000454_r38
S0022112019000454_r39
Reinke (S0022112019000454_r51) 1987; 253
S0022112019000454_r30
S0022112019000454_r32
S0022112019000454_r33
Soutani (S0022112019000454_r58) 1995; 268
Kim (S0022112019000454_r29) 2009a; 6
S0022112019000454_r45
S0022112019000454_r46
S0022112019000454_r47
S0022112019000454_r48
S0022112019000454_r49
Maeda (S0022112019000454_r37) 1996; 271
S0022112019000454_r40
S0022112019000454_r41
S0022112019000454_r42
S0022112019000454_r43
S0022112019000454_r44
Smiesko (S0022112019000454_r57) 1993; 8
S0022112019000454_r56
S0022112019000454_r12
S0022112019000454_r13
S0022112019000454_r14
S0022112019000454_r15
S0022112019000454_r59
S0022112019000454_r16
S0022112019000454_r17
S0022112019000454_r19
S0022112019000454_r50
S0022112019000454_r52
S0022112019000454_r53
S0022112019000454_r10
S0022112019000454_r11
S0022112019000454_r55
Sharan (S0022112019000454_r54) 2001; 38
S0022112019000454_r23
S0022112019000454_r67
S0022112019000454_r68
S0022112019000454_r25
S0022112019000454_r26
S0022112019000454_r27
S0022112019000454_r28
Faivre (S0022112019000454_r18) 2006; 43
Koutsiaris (S0022112019000454_r31) 2007; 44
S0022112019000454_r60
S0022112019000454_r61
S0022112019000454_r62
S0022112019000454_r63
S0022112019000454_r64
S0022112019000454_r20
S0022112019000454_r21
S0022112019000454_r65
S0022112019000454_r66
S0022112019000454_r22
Fung (S0022112019000454_r24) 1996
References_xml – volume: 83
  start-page: 880
  year: 1999
  end-page: 883
  article-title: Lift force and dynamical unbinding of adhering vesicles under shear flow
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 375
  year: 2007
  end-page: 386
  article-title: Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo
  publication-title: Biorheology
– volume: 32
  start-page: 654
  year: 1996
  end-page: 667
  article-title: Biophysical aspects of blood flow in the microvasculature
  publication-title: Cardiovasc. Res.
– volume: 253
  start-page: H540
  year: 1987
  end-page: H547
  article-title: Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation
  publication-title: Am. J. Phys.
– volume: 38
  start-page: 415
  year: 2001
  end-page: 428
  article-title: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall
  publication-title: Biorheology
– volume: 46
  start-page: 181
  year: 2009b
  end-page: 189
  article-title: The cell-free layer in microvascular blood flow
  publication-title: Biorheology
– volume: 49
  start-page: 261
  year: 2012
  end-page: 270
  article-title: Cell-free layer and wall shear stress variation in microvessels
  publication-title: Biorheol.
– volume: 1
  start-page: 3
  year: 1962
  end-page: 14
  article-title: Haemorheological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters
  publication-title: Biorheology
– volume: 14
  start-page: 470
  year: 2013
  end-page: 478
  article-title: Blood viscosity in microvessels: experiment and theory
  publication-title: C. R. Phys.
– volume: 45
  start-page: 41
  year: 1983
  end-page: 50
  article-title: Hematocrit reducing in bifurcations due to plasma skimming
  publication-title: Bull. Math. Biol.
– volume: 43
  start-page: 147
  year: 2006
  end-page: 159
  article-title: Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma
  publication-title: Biorheology
– volume: 20
  year: 2008
  article-title: Noninertial lateral migration of vesicles in bounded Poiseuille flow
  publication-title: Phys. Fluids
– volume: 29
  start-page: 103
  year: 1985
  end-page: 126
  article-title: Nonuniform red cell distribution in 20 to 100 μm bifurcations
  publication-title: Microvasc. Res.
– volume: 19
  year: 2007
  article-title: Leukocyte margination in a model microvessel
  publication-title: Phys. Fluids
– volume: 83
  start-page: 81
  year: 1989
  end-page: 101
  article-title: Red cell distribution at microvascular bifurcations
  publication-title: Microvasc. Res.
– volume: 110
  year: 2013
  article-title: Lift and down-gradient shear-induced diffusion in red blood cell suspensions
  publication-title: Phys. Rev. Lett.
– volume: 24
  year: 2012
  article-title: Shear-induced particle migration and margination in a cellular suspension
  publication-title: Phys. Fluids
– volume: 113
  start-page: 2815
  year: 2017b
  end-page: 2826
  article-title: Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks
  publication-title: Biophys. J.
– volume: 6
  start-page: 83
  issue: 2
  year: 2009a
  end-page: 91
  article-title: Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates
  publication-title: Mol. Cell. Biomech.
– volume: 83
  start-page: 118
  year: 2012
  end-page: 125
  article-title: Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles
  publication-title: Microvasc. Res.
– volume: 73
  start-page: 735
  year: 1976
  end-page: 752
  article-title: Laminar flow in a curved pipe with varying curvature
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 783
  year: 2015
  end-page: 794
  article-title: Cell-free layer development process in the entrance region of microvessels
  publication-title: Biomech. Model. Mechanobiol.
– volume: 268
  start-page: H1959
  year: 1995
  end-page: H1965
  article-title: Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation
  publication-title: Am. J. Phys.
– volume: 229
  start-page: 1
  year: 1991
  end-page: 27
  article-title: Fluid skimming and particle entrainment into a small circular side pore
  publication-title: J. Fluid. Mech.
– volume: 18
  start-page: 63
  year: 2011
  end-page: 73
  article-title: Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes
  publication-title: Microcirculation
– volume: 739
  start-page: 421
  year: 2014
  end-page: 443
  article-title: Lateral migration of a capsule in plane shear near a wall
  publication-title: J. Fluid Mech.
– volume: 88
  year: 2002
  article-title: Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force
  publication-title: Phys. Rev. Lett.
– volume: 271
  start-page: H2454
  year: 1996
  end-page: H2461
  article-title: Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance
  publication-title: Am. J. Phys.
– volume: 298
  start-page: H1870
  year: 2010
  end-page: H1878
  article-title: Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 99
  start-page: 57
  year: 2015
  end-page: 66
  article-title: Microvascular blood flow resistance: role of red blood cell migration and dispersion
  publication-title: Microvasc. Res.
– volume: 13
  start-page: 1
  year: 2006
  end-page: 18
  article-title: A novel three dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex
  publication-title: Microcirculation
– volume: 109
  year: 2012
  article-title: Mechanism of margination in confined flows of blood and other multicomponent suspensions
  publication-title: Phys. Rev. Lett.
– volume: 177
  start-page: 109
  year: 1987
  end-page: 131
  article-title: Measurement of shear-induced self-diffusions in concentrated suspensions of spheres
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 317
  year: 1985
  end-page: 323
  article-title: Slow viscous flow inside a torus – the resistance of small tortuous blood vessels
  publication-title: Q. Appl. Maths
– volume: 30
  year: 2018
  article-title: Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks
  publication-title: Phys. Fluids
– volume: 72
  start-page: 239
  year: 1993
  end-page: 245
  article-title: Mechanical stress mechanisms and the cell: an endothelial paradigm
  publication-title: Circulat. Res.
– volume: 92
  start-page: 19
  year: 2014
  end-page: 24
  article-title: Effect of uneven red cell influx on formation of cell-free layer in small venules
  publication-title: Microvasc. Res.
– volume: 13
  start-page: 245
  year: 1973
  end-page: 264
  article-title: Strain energy function of red blood cell membranes
  publication-title: Biophys. J.
– volume: 125
  start-page: 910
  year: 2003
  end-page: 913
  article-title: Blood flow in small curved tubes
  publication-title: Trans. ASME J. Biomech. Engng
– volume: 49
  start-page: 443
  year: 2017
  end-page: 461
  article-title: Blood flow in the microcirculation
  publication-title: Annu. Rev. Fluid Mech.
– volume: 32
  start-page: N1
  year: 2011
  end-page: N12
  article-title: An automated method for cell-free layer width determination in small arterioles
  publication-title: Physiol. Meas.
– volume: 106
  start-page: 14
  year: 2016
  end-page: 23
  article-title: Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation
  publication-title: Microvasc. Res.
– volume: 334
  start-page: 280
  year: 2017a
  end-page: 307
  article-title: A computational approach to modeling cellular-scale blood flow in complex geometry
  publication-title: J. Comput. Phys.
– volume: 96
  start-page: 8757
  year: 1999
  end-page: 8761
  article-title: Intravascular flow decreases erythrocyte consumption of nitric oxide
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 110
  start-page: 125
  year: 1962
  end-page: 154
  article-title: A quantitative study of the hemodynamics in the living microvascular system
  publication-title: Am. J. Anat.
– volume: 10
  start-page: 2961
  year: 2014
  end-page: 2970
  article-title: White blood cell margination in microcirculation
  publication-title: Soft Matt.
– volume: 89
  start-page: 47
  year: 2013
  end-page: 56
  article-title: Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation
  publication-title: Microvasc. Res.
– volume: 7
  start-page: 85
  year: 1970
  end-page: 701
  article-title: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes
  publication-title: Biorheology
– volume: 39
  start-page: 5280
  year: 1989
  end-page: 5288
  article-title: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
  publication-title: Phys. Rev. A
– volume: 13
  start-page: 199
  year: 2006
  end-page: 207
  article-title: A computer-based method for determination of the cell-free layer width in microcirculation
  publication-title: Microcirculation
– volume: 17
  start-page: 197
  year: 2002
  end-page: 201
  article-title: Angioadaptation: keeping the vascular system in shape
  publication-title: Physiology
– volume: 21
  year: 2009
  article-title: Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles
  publication-title: Phys. Fluids
– volume: 4
  start-page: 4348
  year: 2014
  article-title: The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows
  publication-title: Sci. Rep.
– volume: 86
  start-page: 3375
  year: 1989
  end-page: 3378
  article-title: Role of endothelium-derived nitric oxide in the regulation of blood pressure
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 27
  start-page: 1119
  year: 1994
  end-page: 1125
  article-title: Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance
  publication-title: J. Biomech.
– volume: 293
  start-page: H1526
  year: 2007
  end-page: H1535
  article-title: Temporal and spatial variations of cell-free layer width in arterioles
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 116
  start-page: 79
  year: 1994
  end-page: 88
  article-title: A numerical study of plasma skimming in small vascular bifurcations
  publication-title: Trans. ASME J. Biomech. Engng
– volume: 311
  start-page: H487
  year: 2016
  end-page: H497
  article-title: Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 26
  start-page: 471
  year: 2010
  end-page: 487
  article-title: Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells
  publication-title: Intl J. Numer. Meth. Biomed. Engng
– volume: 8
  start-page: 34
  year: 1993
  end-page: 38
  article-title: The arterial lumen is controlled by flow-related shear stress
  publication-title: News Physiol. Sci.
– volume: 43
  start-page: 738
  year: 1978
  end-page: 749
  article-title: The distribution of blood rheological parameters in the microvasculature of cat mesentery
  publication-title: Circulat. Res.
– volume: 30
  start-page: 472
  year: 2002
  end-page: 482
  article-title: Role of subcellular shear-stress distributions in endothelial cell mechanotransduction
  publication-title: Ann. Biomed. Engng
– volume: 39
  start-page: 359
  year: 2011
  end-page: 366
  article-title: Effect of cell-free layer variation on arteriolar wall shear stress
  publication-title: Ann. Biomed. Engng
– volume: 55
  start-page: 511
  year: 2016
  end-page: 521
  article-title: Effect of tube diameter and capillary number on platelet margination and near-wall dynamics
  publication-title: Rheol. Acta.
– volume: 17
  start-page: 615
  year: 2010
  end-page: 628
  article-title: Blood flow and cell-free layer in microvessels
  publication-title: Microcirculation
– ident: S0022112019000454_r13
  doi: 10.3233/BIR-1962-1102
– ident: S0022112019000454_r40
  doi: 10.1007/s10439-010-0130-3
– ident: S0022112019000454_r20
  doi: 10.1039/C3SM52860J
– ident: S0022112019000454_r56
  doi: 10.1016/S0006-3495(73)85983-1
– ident: S0022112019000454_r4
  doi: 10.1063/1.5024783
– volume: 6
  start-page: 83
  year: 2009a
  ident: S0022112019000454_r29
  article-title: Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates
  publication-title: Mol. Cell. Biomech.
– ident: S0022112019000454_r6
  doi: 10.1111/j.1549-8719.2010.00069.x
– ident: S0022112019000454_r33
  doi: 10.1007/s00397-015-0891-6
– ident: S0022112019000454_r1
  doi: 10.1103/PhysRevLett.88.068103
– ident: S0022112019000454_r17
  doi: 10.1115/1.2895708
– ident: S0022112019000454_r36
  doi: 10.1161/01.RES.43.5.738
– ident: S0022112019000454_r3
  doi: 10.1016/j.bpj.2017.10.020
– ident: S0022112019000454_r38
  doi: 10.1017/S0022112076001596
– volume: 268
  start-page: H1959
  year: 1995
  ident: S0022112019000454_r58
  article-title: Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation
  publication-title: Am. J. Phys.
– ident: S0022112019000454_r23
  doi: 10.1007/978-1-4757-2257-4
– ident: S0022112019000454_r61
  doi: 10.1115/1.1634992
– ident: S0022112019000454_r62
  doi: 10.1017/S0022112091002914
– ident: S0022112019000454_r32
  doi: 10.1103/PhysRevLett.109.108102
– ident: S0022112019000454_r7
  doi: 10.1002/aja.1001100204
– ident: S0022112019000454_r45
  doi: 10.1007/s10237-014-0636-y
– ident: S0022112019000454_r49
  doi: 10.1201/9780203503959
– ident: S0022112019000454_r8
  doi: 10.1038/srep04348
– volume: 43
  start-page: 147
  year: 2006
  ident: S0022112019000454_r18
  article-title: Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma
  publication-title: Biorheology
– ident: S0022112019000454_r10
  doi: 10.1103/PhysRevLett.83.880
– ident: S0022112019000454_r16
  doi: 10.1161/01.RES.72.2.239
– ident: S0022112019000454_r39
  doi: 10.1016/j.mvr.2014.01.007
– ident: S0022112019000454_r65
  doi: 10.1016/j.mvr.2013.05.002
– ident: S0022112019000454_r35
  doi: 10.1073/pnas.96.15.8757
– ident: S0022112019000454_r26
  doi: 10.1016/j.mvr.2015.02.006
– volume: 271
  start-page: H2454
  year: 1996
  ident: S0022112019000454_r37
  article-title: Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance
  publication-title: Am. J. Phys.
– ident: S0022112019000454_r15
  doi: 10.1063/1.3023159
– ident: S0022112019000454_r11
  doi: 10.1080/10739680500383407
– ident: S0022112019000454_r52
  doi: 10.1016/j.crhy.2013.04.002
– ident: S0022112019000454_r2
  doi: 10.1016/j.jcp.2017.01.007
– volume: 253
  start-page: H540
  year: 1987
  ident: S0022112019000454_r51
  article-title: Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation
  publication-title: Am. J. Phys.
– ident: S0022112019000454_r66
  doi: 10.1152/nips.01395.2001
– ident: S0022112019000454_r19
  doi: 10.1111/j.1549-8719.2010.00056.x
– ident: S0022112019000454_r42
  doi: 10.1016/j.mvr.2011.11.003
– volume-title: Biomechanics: Circulation
  year: 1996
  ident: S0022112019000454_r24
– ident: S0022112019000454_r9
  doi: 10.3233/BIR-1970-7202
– ident: S0022112019000454_r30
  doi: 10.3233/BIR-2009-0530
– ident: S0022112019000454_r68
  doi: 10.1103/PhysRevA.39.5280
– ident: S0022112019000454_r67
  doi: 10.1063/1.3677935
– ident: S0022112019000454_r50
  doi: 10.1073/pnas.86.9.3375
– ident: S0022112019000454_r44
  doi: 10.1152/ajpheart.01182.2009
– ident: S0022112019000454_r12
  doi: 10.1090/qam/814230
– ident: S0022112019000454_r46
  doi: 10.1016/S0092-8240(83)80040-8
– volume: 8
  start-page: 34
  year: 1993
  ident: S0022112019000454_r57
  article-title: The arterial lumen is controlled by flow-related shear stress
  publication-title: News Physiol. Sci.
– ident: S0022112019000454_r47
  doi: 10.1016/0026-2862(89)90018-6
– ident: S0022112019000454_r14
  doi: 10.1002/cnm.1274
– ident: S0022112019000454_r53
  doi: 10.1146/annurev-fluid-010816-060302
– ident: S0022112019000454_r22
  doi: 10.1063/1.2472479
– ident: S0022112019000454_r41
  doi: 10.1152/ajpheart.00223.2016
– volume: 44
  start-page: 375
  year: 2007
  ident: S0022112019000454_r31
  article-title: Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo
  publication-title: Biorheology
– ident: S0022112019000454_r21
  doi: 10.1016/0026-2862(85)90010-X
– ident: S0022112019000454_r63
  doi: 10.1016/j.mvr.2016.03.003
– ident: S0022112019000454_r5
  doi: 10.1114/1.1467678
– ident: S0022112019000454_r60
  doi: 10.1063/1.3072796
– ident: S0022112019000454_r55
  doi: 10.1017/jfm.2013.624
– volume: 38
  start-page: 415
  year: 2001
  ident: S0022112019000454_r54
  article-title: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall
  publication-title: Biorheology
– ident: S0022112019000454_r43
  doi: 10.1088/0967-3334/32/3/N01
– ident: S0022112019000454_r28
  doi: 10.1152/ajpheart.01090.2006
– ident: S0022112019000454_r25
  doi: 10.1103/PhysRevLett.110.108101
– ident: S0022112019000454_r64
  doi: 10.3233/BIR-2012-0608
– ident: S0022112019000454_r59
  doi: 10.1016/0021-9290(94)90052-3
– ident: S0022112019000454_r34
  doi: 10.1017/S0022112087000880
– ident: S0022112019000454_r27
  doi: 10.1080/10739680600556878
– ident: S0022112019000454_r48
  doi: 10.1016/S0008-6363(96)00065-X
SSID ssj0013097
Score 2.4421642
Snippet In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 768
SubjectTerms Asymmetry
Bifurcations
Blood cells
Blood flow
Blood vessels
Cellular communication
Complexity
Computer simulation
Curvature
Downstream
Erythrocytes
Flow velocity
Fluid mechanics
Hydrodynamics
JFM Papers
Mesentery
Microvasculature
Physiology
Profiles
Simulation
Streams
Studies
Topology
Tortuosity
Tubes
Velocity
Title The cell-free layer in simulated microvascular networks
URI https://www.cambridge.org/core/product/identifier/S0022112019000454/type/journal_article
https://www.proquest.com/docview/2216663368
Volume 864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q9AHP6bidI4-DB-EaJumTfokKptDcIg42FtJ8wGTrZvr_P9NtnRzMHzukcIvl8vl7nd3AC1KmWZYE-RnCUYkCSTiJPFRIIztE1xqvQhdvPXibp-8DqKBC7gVjlZZ2sSFoZYTYWPk9xjbBFcYxuxh-o3s1CibXXUjNHahakwwM4-v6lO79_6xziP4CS37hRvPwncVerZp9Je2hehBcmcrmdZ9FTbvp03zvLhzOsdw6JxF73G5uyewo_IaHDnH0XPHsqjBwZ-ugjXYW7A6RXEK1CiBZ0PzSM-U8kbc-NfeMPeK4dhO7TJrjC0fr2SjevmSE16cQb_T_nzuIjcpAVlI58jAzVWopFKB1FmoKBc-Z7GOQ0Kw8IWghEscyYjiLFI6YZxqpmKOfSnizFzb51DJJ7m6AE-GIY6UfQcqTCLNOTNWIMoIZzgTjJE63KywSp2-F-mSK0ZTA2pqQU1JVIfbEshUuH7jduzFaLtwayU8XbbZ2C7WKHdk_e-1Zlz-__kK9u06NhcU-A2ozGc_6tq4FPOsCbus89J02vMLEHbLLg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlQ4FFhALKWtD9BDJUNiO7FzQAi1XZbnCSRuwfFDAkFYyFYVf4rfWE8ebJEQN86x7Gj8eWbsmfkGYENK5RXzgkZFxqjIYku1yCIam6D7jLbe108XJ6fp8FwcXiQXU_DU1cJgWmWnE2tFbe8MvpFvM4YBLs5TtTu6p9g1CqOrXQuNBhZH7vFvuLJVOwe_wv5uMjb4ffZzSNuuAhSXH9Pwa9pxZ52LrS-4k9pEWqU-5UIwExkjhbYssYlkReJ8prT0yqWaRdakRU10EFT-B8F5hidKDfYnUYsokx07efBjorYeECmqrz2WvcfZFtZNTVgcXlrDl8agtnCDBfjUuqZkr8HSIky5sgfzrZtKWiVQ9WDuPw7DHszUOaSmWgIZIEcwEED9g3PkRgdvnlyVpLq6xR5hYY5bzP7rcl9J2WSgV8tw_i4SXIHp8q50q0As5yxxeOt0TCReaxV0TlIIrVhhlBJ9-P4sq7w9XVXeZKbJPAg1R6HmIunDj06QuWnZzbHJxs3rgzeeB48aUo_Xh613OzJZe4LDtbc_f4OPw7OT4_z44PToM8zinBiFiqN1mB4__HFfgjMzLr7WCCJw-d6Q_QdocAg_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cell-free+layer+in+simulated+microvascular+networks&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Balogh%2C+Peter&rft.au=Bagchi%2C+Prosenjit&rft.date=2019-04-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=864&rft.spage=768&rft.epage=806&rft_id=info:doi/10.1017%2Fjfm.2019.45
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon