Intelligent decision-making with bird-strike risk assessment for airport bird repellent

An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two st...

Full description

Saved in:
Bibliographic Details
Published inAeronautical journal Vol. 122; no. 1252; pp. 988 - 1002
Main Authors Chen, Weishi, Zhang, Jie, Li, Jing
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2018
Subjects
Online AccessGet full text
ISSN0001-9240
2059-6464
DOI10.1017/aer.2018.45

Cover

Abstract An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two steps of training and testing. After the risk assessment, the Bird-Repelling Strategy Classification Model (BRSCM) was trained based on the expert knowledge and large amount of historical bird information collected by the airport linkage system for bird detection, surveillance and repelling. Then, in the testing step, the BRSCM was continuously optimised according to the real-time intelligent bird-repelling strategy results. Through several bird-repelling examples of a certain airport, it is demonstrated that the decision accuracy of BRSCM is relatively high, and it could solve new problems by self-correction. The proposed method achieved the optimised operation of multiple bird-repelling devices against real-time bird information with great improvement of bird-repelling effects, overcoming the tolerance of birds to the bird-repelling devices due to their long-term repeated operation.
AbstractList An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two steps of training and testing. After the risk assessment, the Bird-Repelling Strategy Classification Model (BRSCM) was trained based on the expert knowledge and large amount of historical bird information collected by the airport linkage system for bird detection, surveillance and repelling. Then, in the testing step, the BRSCM was continuously optimised according to the real-time intelligent bird-repelling strategy results. Through several bird-repelling examples of a certain airport, it is demonstrated that the decision accuracy of BRSCM is relatively high, and it could solve new problems by self-correction. The proposed method achieved the optimised operation of multiple bird-repelling devices against real-time bird information with great improvement of bird-repelling effects, overcoming the tolerance of birds to the bird-repelling devices due to their long-term repeated operation.
Author Chen, Weishi
Li, Jing
Zhang, Jie
Author_xml – sequence: 1
  givenname: Weishi
  surname: Chen
  fullname: Chen, Weishi
  email: wishchen@buaa.edu.cn
  organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China
– sequence: 2
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China
– sequence: 3
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China
BookMark eNp1kM1LAzEQxYNUsK2e_AcWPErqbDbZbY5S_CgUvCgeQzaZrWn3oyYp4n_vri0Ioqc5zO-9mfcmZNR2LRJymcIshbS40ehnDNL5jIsTMmYgJM15zkdkDAAplYzDGZmEsAHIgHE-Jq_LNmJduzW2MbFoXHBdSxu9de06-XDxLSmdtzRE77aYeBe2iQ4BQ2gGQdX5RDu_63z85hKPu96tX52T00rXAS-Oc0pe7u-eF4909fSwXNyuqGFSRoo4B6st2CqXRVnNkencIDBRlXnGmS2lxoqjKEohGBqTlxYtlphZyw0KyKbk6uC78937HkNUm27v2_6kYsALmXGZDVR6oIzvQvBYKeOijn3U6LWrVQpq6E_1_amhP8VFr7n-pdl512j_-Q9Nj7RuSu_sGn8e-Yv_AkAEhbs
CitedBy_id crossref_primary_10_2139_ssrn_4111275
crossref_primary_10_1017_aer_2023_1
crossref_primary_10_1007_s43388_023_00165_x
crossref_primary_10_1016_j_gecco_2019_e00729
crossref_primary_10_1088_1361_665X_ad11ff
Cites_doi 10.1061/(ASCE)AS.1943-5525.0000131
10.1108/AEAT-07-2012-0111
ContentType Journal Article
Copyright Copyright © Royal Aeronautical Society 2018
Copyright_xml – notice: Copyright © Royal Aeronautical Society 2018
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/aer.2018.45
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Intelligent decision-making with bird-strike risk assessment. . .
Chen et al
EISSN 2059-6464
EndPage 1002
ExternalDocumentID 10_1017_aer_2018_45
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID -~X
.DC
09C
09E
0R~
6TJ
88I
8FE
8FG
8G5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
ABBZL
ABJCF
ABJNI
ABMWE
ABQTM
ABROB
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACBMC
ACDLN
ACGFS
ACGOD
ACIWK
ACQPF
ACUIJ
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADOVH
ADOVT
ADVJH
AEBAK
AEHGV
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGBYD
AGJUD
AHPGS
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARCSS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
GUQSH
HCIFZ
IH6
IOEEP
IOO
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L7B
LHUNA
LW7
M2O
M2P
M7S
NIKVX
NZEOI
O9-
P2P
P62
PADUT
PHGZM
PHGZT
PMFND
PQQKQ
PROAC
PTHSS
PYCCK
RAMDC
RCA
ROL
S6U
SAAAG
SC5
SJN
T9M
TAE
TN5
UT1
WFFJZ
WH7
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
AAYXX
ABGDZ
AKMAY
CITATION
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c299t-ee80dad0df697bf8e2a6ce025fb6342db9aef4e57b552ecc6bdedebe3dd4ce503
IEDL.DBID 8FG
ISSN 0001-9240
IngestDate Fri Jul 25 11:59:05 EDT 2025
Tue Jul 01 04:18:46 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Thu May 29 08:09:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1252
Keywords risk assessment
Support vector machine
classification
decision-making
bird-strike
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c299t-ee80dad0df697bf8e2a6ce025fb6342db9aef4e57b552ecc6bdedebe3dd4ce503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2047934930
PQPubID 2046297
PageCount 15
ParticipantIDs proquest_journals_2047934930
crossref_citationtrail_10_1017_aer_2018_45
crossref_primary_10_1017_aer_2018_45
cambridge_journals_10_1017_aer_2018_45
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180600
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: London
PublicationTitle Aeronautical journal
PublicationTitleAlternate Aeronaut. j
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Ning, Chen (12) 2014; 86
Liu, Chen, Shao (5) January 2017; 32
Chen, Li (10) 2017; 39
Ma, Liang, Zhou (15) 2017; 43
Li, Shi (3) February 2012; 33
Chen, Ning, Li (11) 2012; 25
Beason, Nohara, Weber (1) January 2013; 7
Beason (S0001924018000453_ref001) January 2013; 7
Liu (S0001924018000453_ref005) January 2017; 32
Li (S0001924018000453_ref003) February 2012; 33
S0001924018000453_ref009
S0001924018000453_ref008
Vapnik (S0001924018000453_ref014) 1998
S0001924018000453_ref007
S0001924018000453_ref006
S0001924018000453_ref004
Chen (S0001924018000453_ref010) 2017; 39
S0001924018000453_ref002
S0001924018000453_ref012
S0001924018000453_ref011
Han (S0001924018000453_ref013) 2011
Ma (S0001924018000453_ref015) 2017; 43
References_xml – volume: 25
  start-page: 246
  issue: (2)
  year: 2012
  end-page: 255
  ident: 11
  article-title: Flying bird detection and hazard assessment for avian radar system
  publication-title: J Aerospace Engineering
– volume: 33
  start-page: 189
  issue: (2)
  year: February 2012
  end-page: 198
  ident: 3
  article-title: Investigation of the present status of research on bird impacting on commercial airplanes
  publication-title: Acta Aeronautica et Astronautica Sinica
– volume: 39
  start-page: 7
  issue: (2)
  year: 2017
  end-page: 17
  ident: 10
  article-title: Review on development and applications of avian radar technology
  publication-title: Modern Radar
– volume: 7
  start-page: 16
  issue: (1)
  year: January 2013
  end-page: 46
  ident: 1
  article-title: Beware the Boojum: Caveats and strengths of avian radar
  publication-title: Human-Wildlife Interactions
– volume: 86
  start-page: 129
  issue: (2)
  year: 2014
  end-page: 137
  ident: 12
  article-title: Bird strike risk evaluation at airports
  publication-title: Aircraft Engineering and Aerospace Technology
– volume: 32
  start-page: 66
  issue: (1)
  year: January 2017
  end-page: 69
  ident: 5
  article-title: The design and implementation of bird driving system by the airport runway
  publication-title: J Shandong Normal University (Natural Science)
– volume: 43
  start-page: 132
  issue: (1)
  year: 2017
  end-page: 141
  ident: 15
  article-title: A fast sparse algorithm for least squares support vector machine based on global representative points
  publication-title: Acta Automatica Sinca
– ident: S0001924018000453_ref006
– volume: 39
  start-page: 7
  year: 2017
  ident: S0001924018000453_ref010
  article-title: Review on development and applications of avian radar technology
  publication-title: Modern Radar
– volume-title: Statistical Learning Theory
  year: 1998
  ident: S0001924018000453_ref014
– ident: S0001924018000453_ref007
– ident: S0001924018000453_ref009
– volume: 33
  start-page: 189
  year: February 2012
  ident: S0001924018000453_ref003
  article-title: Investigation of the present status of research on bird impacting on commercial airplanes
  publication-title: Acta Aeronautica et Astronautica Sinica
– volume: 7
  start-page: 16
  year: January 2013
  ident: S0001924018000453_ref001
  article-title: Beware the Boojum: Caveats and strengths of avian radar
  publication-title: Human-Wildlife Interactions
– ident: S0001924018000453_ref004
– ident: S0001924018000453_ref008
– volume: 32
  start-page: 66
  year: January 2017
  ident: S0001924018000453_ref005
  article-title: The design and implementation of bird driving system by the airport runway
  publication-title: J Shandong Normal University (Natural Science)
– ident: S0001924018000453_ref011
  doi: 10.1061/(ASCE)AS.1943-5525.0000131
– volume-title: Data Mining: Concepts and Techniques
  year: 2011
  ident: S0001924018000453_ref013
– volume: 43
  start-page: 132
  year: 2017
  ident: S0001924018000453_ref015
  article-title: A fast sparse algorithm for least squares support vector machine based on global representative points
  publication-title: Acta Automatica Sinca
– ident: S0001924018000453_ref012
  doi: 10.1108/AEAT-07-2012-0111
– ident: S0001924018000453_ref002
SSID ssj0030244
Score 2.1806555
Snippet An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 988
SubjectTerms Aerospace engineering
Aircraft
Airport planning
Airports
Architectural engineering
Aviation
Bird impact
Bird strike tests
Decision making
Exponential functions
Interdisciplinary subjects
Light
R&D
Research & development
Risk assessment
Risk levels
Sensors
Support vector machines
Target recognition
Title Intelligent decision-making with bird-strike risk assessment for airport bird repellent
URI https://www.cambridge.org/core/product/identifier/S0001924018000453/type/journal_article
https://www.proquest.com/docview/2047934930
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF7UXvQgPrG-2EPxIKwkze4mOYlKaxUsIhZ7C7vZCRS1ao3_35lkmyqI5x0SmFnmtTPfx1gHQMUGglw4G0ohC6uFBaNpVyaJrUqVq5bC7oZ6MJK3YzX2DbdPP1Y594mVo3ZvOfXIsUinHpBMo-D8_UMQaxS9rnoKjWXWCjHS0D1P-tdzTxxh_KlRmLFkxjoj8Pt5BBltgMBAw-SM9pgWqAq_o9Nv51xFnP4GW_epIr-obbvJlmC6xdZ-AAhus6ebBlGz5M7T5YjXimGKU4uV28nMCeLmeAZOY-TcNFCcHPNVbiaEZFxWcnwG9BaDRzts1O89Xg2Ep0oQOcaTUgAkgTMucIVOY1sk0DU6B8xnUPmR7DqbGigk2sUq1UWraevAof0i52QOKoh22cr0bQp7jGOGkocy7Bapw-opVUZqq3USgkulDZ1ps5NGXZm_8J9ZPSwWZ6jXjPSaSdVmp3NdZrkHHCfei5e_hTuN8HuNs_G32OHcKIt_L67G_v_HB2yVvlNPeh2ylXL2BUeYU5T2uLo4x6x12RveP3wD_g_PNQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLbocqAcEJQiniUH2kOloHkk2ZkDQrQF7RZYVRUIbkMy8UiIdoFlqoo_xW_EnscuSIgb51jJxPH4kdifAbYQdddikEvvQiVV4Yx0aA3XyiRdp1Ptq6Kw44Hpnaqf5_p8Ch7aWhhOq2x1YqWo_XXOd-QUpPMdkErjYPfmVnLXKH5dbVto1GJxiPf_KWS72-n_oPP9HEUH-yffe7LpKiBzUr2lREwCb33gC5N2XZFgZE2OZPrpO2MVeZdaLBRtwWkd0QaN8-hpq7H3KkcdxDTvO5hWXNHagelv-4Nfv1vdH5PFq3GfKUinyCZoKgIZpNoiw4-GyTZXTk1wHJ7bw-fmoLJxB_Mw1zinYq-WpgWYwuEHmH0CWbgIZ_0xhmcpfNOgR_6teloJvtQV7nLkJXcDuULBievCjsE_BXnIwl4ydnJZ0YkR8usPDX2E0zdh4xJ0htdDXAZBPlEeqjAqUk_xWqqtMs6YJESfKhd6uwJfxuzKml_sLqvT07oZ8TVjvmZKr8DXlpdZ3kCcc6eNPy8Tb42Jb2pkj5fJ1ttDmaw9EcbV14c3YaZ3cnyUHfUHh2vwnues88zWoVOO_uEGeTSl-9SIkYCLt5bcRw9cEFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyQEBb8cYH2kMlt3nYTnJACAELWx7qoajcUjueSCvaBZZUFX-NX8dMHrsgIW6cPUri8cQzY898H8AWok4sBoX0LlRSlc5Ih9Zwr0yaOJ1pXzeFnZ6Zo3P1_UJfTMF91wvDZZXdnlhv1P6q4DNyStL5DEhlcfCtbMsifuz3dq5vJDNI8U1rR6fRmMgx3v2n9O12u79Pa_0pinoHP_eOZMswIAvahiuJmAbe-sCXJktcmWJkTYEUBtA3xyryLrNYKpqO0zqiyRrn0dO0Y-9VgTqI6blvYCaJk4wTv7R32HmBmHxfgwBN6TrlOEHbG8hw1RYZiDRMv3IP1QTR4alnfOoYam_Xm4e5NkwVu41dLcAUDhdh9hF44Xv41R-jeVbCt1Q98m_NbiX4eFe4wchL5gW5RMEl7MKOYUAFxcrCDhhFuarlxAj5HoiGPsD5qyjxI0wPr4a4BIKioyJUYVRmnjK3TFtlnDFpiD5TLvR2GT6P1ZW3P9tt3hSqJTnpNWe95kovw5dOl3nRgp0z58af54W3xsLXDcbH82Jr3aJM3j0xy5WXhzfhLdlrftI_O16Fd_zIpuBsDaar0T9cp9Cmchu1DQn4_dpG-wCDUxMj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+decision-making+with+bird-strike+risk+assessment+for+airport+bird+repellent&rft.jtitle=Aeronautical+journal&rft.au=Chen%2C+Weishi&rft.au=Zhang%2C+Jie&rft.au=Li%2C+Jing&rft.date=2018-06-01&rft.pub=Cambridge+University+Press&rft.issn=0001-9240&rft.eissn=2059-6464&rft.volume=122&rft.issue=1252&rft.spage=988&rft_id=info:doi/10.1017%2Faer.2018.45&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9240&client=summon