Intelligent decision-making with bird-strike risk assessment for airport bird repellent
An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two st...
Saved in:
Published in | Aeronautical journal Vol. 122; no. 1252; pp. 988 - 1002 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-9240 2059-6464 |
DOI | 10.1017/aer.2018.45 |
Cover
Abstract | An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two steps of training and testing. After the risk assessment, the Bird-Repelling Strategy Classification Model (BRSCM) was trained based on the expert knowledge and large amount of historical bird information collected by the airport linkage system for bird detection, surveillance and repelling. Then, in the testing step, the BRSCM was continuously optimised according to the real-time intelligent bird-repelling strategy results. Through several bird-repelling examples of a certain airport, it is demonstrated that the decision accuracy of BRSCM is relatively high, and it could solve new problems by self-correction. The proposed method achieved the optimised operation of multiple bird-repelling devices against real-time bird information with great improvement of bird-repelling effects, overcoming the tolerance of birds to the bird-repelling devices due to their long-term repeated operation. |
---|---|
AbstractList | An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The bird-strike risk assessment model is established with two exponential functions to separate the risk levels, while the SVM method includes two steps of training and testing. After the risk assessment, the Bird-Repelling Strategy Classification Model (BRSCM) was trained based on the expert knowledge and large amount of historical bird information collected by the airport linkage system for bird detection, surveillance and repelling. Then, in the testing step, the BRSCM was continuously optimised according to the real-time intelligent bird-repelling strategy results. Through several bird-repelling examples of a certain airport, it is demonstrated that the decision accuracy of BRSCM is relatively high, and it could solve new problems by self-correction. The proposed method achieved the optimised operation of multiple bird-repelling devices against real-time bird information with great improvement of bird-repelling effects, overcoming the tolerance of birds to the bird-repelling devices due to their long-term repeated operation. |
Author | Chen, Weishi Li, Jing Zhang, Jie |
Author_xml | – sequence: 1 givenname: Weishi surname: Chen fullname: Chen, Weishi email: wishchen@buaa.edu.cn organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China – sequence: 2 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China – sequence: 3 givenname: Jing surname: Li fullname: Li, Jing organization: China Academy of Civil Aviation Science and Technology, Airport Research Institute, Beijing, China |
BookMark | eNp1kM1LAzEQxYNUsK2e_AcWPErqbDbZbY5S_CgUvCgeQzaZrWn3oyYp4n_vri0Ioqc5zO-9mfcmZNR2LRJymcIshbS40ehnDNL5jIsTMmYgJM15zkdkDAAplYzDGZmEsAHIgHE-Jq_LNmJduzW2MbFoXHBdSxu9de06-XDxLSmdtzRE77aYeBe2iQ4BQ2gGQdX5RDu_63z85hKPu96tX52T00rXAS-Oc0pe7u-eF4909fSwXNyuqGFSRoo4B6st2CqXRVnNkencIDBRlXnGmS2lxoqjKEohGBqTlxYtlphZyw0KyKbk6uC78937HkNUm27v2_6kYsALmXGZDVR6oIzvQvBYKeOijn3U6LWrVQpq6E_1_amhP8VFr7n-pdl512j_-Q9Nj7RuSu_sGn8e-Yv_AkAEhbs |
CitedBy_id | crossref_primary_10_2139_ssrn_4111275 crossref_primary_10_1017_aer_2023_1 crossref_primary_10_1007_s43388_023_00165_x crossref_primary_10_1016_j_gecco_2019_e00729 crossref_primary_10_1088_1361_665X_ad11ff |
Cites_doi | 10.1061/(ASCE)AS.1943-5525.0000131 10.1108/AEAT-07-2012-0111 |
ContentType | Journal Article |
Copyright | Copyright © Royal Aeronautical Society 2018 |
Copyright_xml | – notice: Copyright © Royal Aeronautical Society 2018 |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ L6V M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/aer.2018.45 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Intelligent decision-making with bird-strike risk assessment. . . Chen et al |
EISSN | 2059-6464 |
EndPage | 1002 |
ExternalDocumentID | 10_1017_aer_2018_45 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | -~X .DC 09C 09E 0R~ 6TJ 88I 8FE 8FG 8G5 AAAZR AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAUKB ABBZL ABJCF ABJNI ABMWE ABQTM ABROB ABUWG ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACGFS ACGOD ACIWK ACQPF ACUIJ ACYZP ACZBM ACZWT ADCGK ADDNB ADFEC ADKIL ADMLS ADOVH ADOVT ADVJH AEBAK AEHGV AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLVW AFZFC AGABE AGBYD AGJUD AHPGS AHQXX AHRGI AIGNW AIHIV AIOIP AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARCSS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGLVJ BJBOZ BLZWO BMAJL BPHCQ CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC DOHLZ DWQXO EBS EGQIC EJD GNUQQ GUQSH HCIFZ IH6 IOEEP IOO JHPGK JQKCU KAFGG KCGVB KFECR L6V L7B LHUNA LW7 M2O M2P M7S NIKVX NZEOI O9- P2P P62 PADUT PHGZM PHGZT PMFND PQQKQ PROAC PTHSS PYCCK RAMDC RCA ROL S6U SAAAG SC5 SJN T9M TAE TN5 UT1 WFFJZ WH7 ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ AAYXX ABGDZ AKMAY CITATION 3V. 7XB 8FK MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c299t-ee80dad0df697bf8e2a6ce025fb6342db9aef4e57b552ecc6bdedebe3dd4ce503 |
IEDL.DBID | 8FG |
ISSN | 0001-9240 |
IngestDate | Fri Jul 25 11:59:05 EDT 2025 Tue Jul 01 04:18:46 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Thu May 29 08:09:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1252 |
Keywords | risk assessment Support vector machine classification decision-making bird-strike |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c299t-ee80dad0df697bf8e2a6ce025fb6342db9aef4e57b552ecc6bdedebe3dd4ce503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2047934930 |
PQPubID | 2046297 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2047934930 crossref_citationtrail_10_1017_aer_2018_45 crossref_primary_10_1017_aer_2018_45 cambridge_journals_10_1017_aer_2018_45 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180600 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 20180600 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: London |
PublicationTitle | Aeronautical journal |
PublicationTitleAlternate | Aeronaut. j |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Ning, Chen (12) 2014; 86 Liu, Chen, Shao (5) January 2017; 32 Chen, Li (10) 2017; 39 Ma, Liang, Zhou (15) 2017; 43 Li, Shi (3) February 2012; 33 Chen, Ning, Li (11) 2012; 25 Beason, Nohara, Weber (1) January 2013; 7 Beason (S0001924018000453_ref001) January 2013; 7 Liu (S0001924018000453_ref005) January 2017; 32 Li (S0001924018000453_ref003) February 2012; 33 S0001924018000453_ref009 S0001924018000453_ref008 Vapnik (S0001924018000453_ref014) 1998 S0001924018000453_ref007 S0001924018000453_ref006 S0001924018000453_ref004 Chen (S0001924018000453_ref010) 2017; 39 S0001924018000453_ref002 S0001924018000453_ref012 S0001924018000453_ref011 Han (S0001924018000453_ref013) 2011 Ma (S0001924018000453_ref015) 2017; 43 |
References_xml | – volume: 25 start-page: 246 issue: (2) year: 2012 end-page: 255 ident: 11 article-title: Flying bird detection and hazard assessment for avian radar system publication-title: J Aerospace Engineering – volume: 33 start-page: 189 issue: (2) year: February 2012 end-page: 198 ident: 3 article-title: Investigation of the present status of research on bird impacting on commercial airplanes publication-title: Acta Aeronautica et Astronautica Sinica – volume: 39 start-page: 7 issue: (2) year: 2017 end-page: 17 ident: 10 article-title: Review on development and applications of avian radar technology publication-title: Modern Radar – volume: 7 start-page: 16 issue: (1) year: January 2013 end-page: 46 ident: 1 article-title: Beware the Boojum: Caveats and strengths of avian radar publication-title: Human-Wildlife Interactions – volume: 86 start-page: 129 issue: (2) year: 2014 end-page: 137 ident: 12 article-title: Bird strike risk evaluation at airports publication-title: Aircraft Engineering and Aerospace Technology – volume: 32 start-page: 66 issue: (1) year: January 2017 end-page: 69 ident: 5 article-title: The design and implementation of bird driving system by the airport runway publication-title: J Shandong Normal University (Natural Science) – volume: 43 start-page: 132 issue: (1) year: 2017 end-page: 141 ident: 15 article-title: A fast sparse algorithm for least squares support vector machine based on global representative points publication-title: Acta Automatica Sinca – ident: S0001924018000453_ref006 – volume: 39 start-page: 7 year: 2017 ident: S0001924018000453_ref010 article-title: Review on development and applications of avian radar technology publication-title: Modern Radar – volume-title: Statistical Learning Theory year: 1998 ident: S0001924018000453_ref014 – ident: S0001924018000453_ref007 – ident: S0001924018000453_ref009 – volume: 33 start-page: 189 year: February 2012 ident: S0001924018000453_ref003 article-title: Investigation of the present status of research on bird impacting on commercial airplanes publication-title: Acta Aeronautica et Astronautica Sinica – volume: 7 start-page: 16 year: January 2013 ident: S0001924018000453_ref001 article-title: Beware the Boojum: Caveats and strengths of avian radar publication-title: Human-Wildlife Interactions – ident: S0001924018000453_ref004 – ident: S0001924018000453_ref008 – volume: 32 start-page: 66 year: January 2017 ident: S0001924018000453_ref005 article-title: The design and implementation of bird driving system by the airport runway publication-title: J Shandong Normal University (Natural Science) – ident: S0001924018000453_ref011 doi: 10.1061/(ASCE)AS.1943-5525.0000131 – volume-title: Data Mining: Concepts and Techniques year: 2011 ident: S0001924018000453_ref013 – volume: 43 start-page: 132 year: 2017 ident: S0001924018000453_ref015 article-title: A fast sparse algorithm for least squares support vector machine based on global representative points publication-title: Acta Automatica Sinca – ident: S0001924018000453_ref012 doi: 10.1108/AEAT-07-2012-0111 – ident: S0001924018000453_ref002 |
SSID | ssj0030244 |
Score | 2.1806555 |
Snippet | An intelligent decision-making method was proposed for airport bird-repelling based on a Support Vector Machine (SVM) and bird-strike risk assessment. The... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 988 |
SubjectTerms | Aerospace engineering Aircraft Airport planning Airports Architectural engineering Aviation Bird impact Bird strike tests Decision making Exponential functions Interdisciplinary subjects Light R&D Research & development Risk assessment Risk levels Sensors Support vector machines Target recognition |
Title | Intelligent decision-making with bird-strike risk assessment for airport bird repellent |
URI | https://www.cambridge.org/core/product/identifier/S0001924018000453/type/journal_article https://www.proquest.com/docview/2047934930 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF7UXvQgPrG-2EPxIKwkze4mOYlKaxUsIhZ7C7vZCRS1ao3_35lkmyqI5x0SmFnmtTPfx1gHQMUGglw4G0ohC6uFBaNpVyaJrUqVq5bC7oZ6MJK3YzX2DbdPP1Y594mVo3ZvOfXIsUinHpBMo-D8_UMQaxS9rnoKjWXWCjHS0D1P-tdzTxxh_KlRmLFkxjoj8Pt5BBltgMBAw-SM9pgWqAq_o9Nv51xFnP4GW_epIr-obbvJlmC6xdZ-AAhus6ebBlGz5M7T5YjXimGKU4uV28nMCeLmeAZOY-TcNFCcHPNVbiaEZFxWcnwG9BaDRzts1O89Xg2Ep0oQOcaTUgAkgTMucIVOY1sk0DU6B8xnUPmR7DqbGigk2sUq1UWraevAof0i52QOKoh22cr0bQp7jGOGkocy7Bapw-opVUZqq3USgkulDZ1ps5NGXZm_8J9ZPSwWZ6jXjPSaSdVmp3NdZrkHHCfei5e_hTuN8HuNs_G32OHcKIt_L67G_v_HB2yVvlNPeh2ylXL2BUeYU5T2uLo4x6x12RveP3wD_g_PNQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLbocqAcEJQiniUH2kOloHkk2ZkDQrQF7RZYVRUIbkMy8UiIdoFlqoo_xW_EnscuSIgb51jJxPH4kdifAbYQdddikEvvQiVV4Yx0aA3XyiRdp1Ptq6Kw44Hpnaqf5_p8Ch7aWhhOq2x1YqWo_XXOd-QUpPMdkErjYPfmVnLXKH5dbVto1GJxiPf_KWS72-n_oPP9HEUH-yffe7LpKiBzUr2lREwCb33gC5N2XZFgZE2OZPrpO2MVeZdaLBRtwWkd0QaN8-hpq7H3KkcdxDTvO5hWXNHagelv-4Nfv1vdH5PFq3GfKUinyCZoKgIZpNoiw4-GyTZXTk1wHJ7bw-fmoLJxB_Mw1zinYq-WpgWYwuEHmH0CWbgIZ_0xhmcpfNOgR_6teloJvtQV7nLkJXcDuULBievCjsE_BXnIwl4ydnJZ0YkR8usPDX2E0zdh4xJ0htdDXAZBPlEeqjAqUk_xWqqtMs6YJESfKhd6uwJfxuzKml_sLqvT07oZ8TVjvmZKr8DXlpdZ3kCcc6eNPy8Tb42Jb2pkj5fJ1ttDmaw9EcbV14c3YaZ3cnyUHfUHh2vwnues88zWoVOO_uEGeTSl-9SIkYCLt5bcRw9cEFM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkKpyQEBb8cYH2kMlt3nYTnJACAELWx7qoajcUjueSCvaBZZUFX-NX8dMHrsgIW6cPUri8cQzY898H8AWok4sBoX0LlRSlc5Ih9Zwr0yaOJ1pXzeFnZ6Zo3P1_UJfTMF91wvDZZXdnlhv1P6q4DNyStL5DEhlcfCtbMsifuz3dq5vJDNI8U1rR6fRmMgx3v2n9O12u79Pa_0pinoHP_eOZMswIAvahiuJmAbe-sCXJktcmWJkTYEUBtA3xyryLrNYKpqO0zqiyRrn0dO0Y-9VgTqI6blvYCaJk4wTv7R32HmBmHxfgwBN6TrlOEHbG8hw1RYZiDRMv3IP1QTR4alnfOoYam_Xm4e5NkwVu41dLcAUDhdh9hF44Xv41R-jeVbCt1Q98m_NbiX4eFe4wchL5gW5RMEl7MKOYUAFxcrCDhhFuarlxAj5HoiGPsD5qyjxI0wPr4a4BIKioyJUYVRmnjK3TFtlnDFpiD5TLvR2GT6P1ZW3P9tt3hSqJTnpNWe95kovw5dOl3nRgp0z58af54W3xsLXDcbH82Jr3aJM3j0xy5WXhzfhLdlrftI_O16Fd_zIpuBsDaar0T9cp9Cmchu1DQn4_dpG-wCDUxMj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+decision-making+with+bird-strike+risk+assessment+for+airport+bird+repellent&rft.jtitle=Aeronautical+journal&rft.au=Chen%2C+Weishi&rft.au=Zhang%2C+Jie&rft.au=Li%2C+Jing&rft.date=2018-06-01&rft.pub=Cambridge+University+Press&rft.issn=0001-9240&rft.eissn=2059-6464&rft.volume=122&rft.issue=1252&rft.spage=988&rft_id=info:doi/10.1017%2Faer.2018.45&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9240&client=summon |