A multiscale 3D hotspot-rich nanostructured substrate for biomolecular detection of SARS-CoV-2
The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chip...
Saved in:
Published in | Applied physics reviews Vol. 10; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chips. More importantly, only a single-layer (2D) signal source is generated on the substrate of the chip, resulting in poor sensitivity. Herein, we constructed a single-component, multiscale, three-dimensional SERS (M3D-SERS) substrate from silver nanowires (AgNWs) packing. According to our results, the Raman enhancement effect of the M3D-SERS substrate was related to the degree of AgNWs stacking along the z axis. In addition, the light source-dependent plasmonic partition and hotspot formation of the M3D-SERS substrate were evaluated by the finite integration technique to prove that M3D-SERS offers advantages, with isotropic localized surface plasmon resonance as well as homogeneous hotspot distribution, for SERS over its 1D and 2D counterparts. Experimentally, the optimal construction of the M3D-SERS chip was explored and established based on the Raman signal enhancement of bovine serum albumin, and consequently, the efficiency of the M3D-SERS chip in detecting SARS-CoV-2-related biomolecules was investigated based on the detection superiority to biomolecules. This study demonstrates a simple, label-free, pre-treatment-free potential biosensor technology that can be used in healthcare units. Furthermore, in combination with a suitable laser light source, this technology can be applied for efficient detection in point-of-care tests with a handheld spectrometer. |
---|---|
AbstractList | The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chips. More importantly, only a single-layer (2D) signal source is generated on the substrate of the chip, resulting in poor sensitivity. Herein, we constructed a single-component, multiscale, three-dimensional SERS (M3D-SERS) substrate from silver nanowires (AgNWs) packing. According to our results, the Raman enhancement effect of the M3D-SERS substrate was related to the degree of AgNWs stacking along the z axis. In addition, the light source-dependent plasmonic partition and hotspot formation of the M3D-SERS substrate were evaluated by the finite integration technique to prove that M3D-SERS offers advantages, with isotropic localized surface plasmon resonance as well as homogeneous hotspot distribution, for SERS over its 1D and 2D counterparts. Experimentally, the optimal construction of the M3D-SERS chip was explored and established based on the Raman signal enhancement of bovine serum albumin, and consequently, the efficiency of the M3D-SERS chip in detecting SARS-CoV-2-related biomolecules was investigated based on the detection superiority to biomolecules. This study demonstrates a simple, label-free, pre-treatment-free potential biosensor technology that can be used in healthcare units. Furthermore, in combination with a suitable laser light source, this technology can be applied for efficient detection in point-of-care tests with a handheld spectrometer. |
Author | Huang, Chun-Ta Tsai, Kunju Chang, Cheng-Chung Sahoo, Smruti R. Wang, Gou-Jen |
Author_xml | – sequence: 1 givenname: Smruti R. surname: Sahoo fullname: Sahoo, Smruti R. organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan – sequence: 2 givenname: Chun-Ta surname: Huang fullname: Huang, Chun-Ta organization: Protrustech Co., Ltd – sequence: 3 givenname: Kunju surname: Tsai fullname: Tsai, Kunju organization: Nanovie Co., Ltd – sequence: 4 givenname: Gou-Jen surname: Wang fullname: Wang, Gou-Jen organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan – sequence: 5 givenname: Cheng-Chung surname: Chang fullname: Chang, Cheng-Chung organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan |
BookMark | eNp9kF1LwzAYhYNMcJte-A9yq5AtaZq0uSzzEwaCG15a0nywSNuMJL3w39uxCSLi1XlfeM7hcGZg0vveAHBN8IJgTpdsgQljGeNnYEoEJUjkmEx-3BdgFuMHxhxzTqbgvYLd0CYXlWwNpHdw51Pc-4SCUzvYy97HFAaVhmA0jEMzfjIZaH2AjfOdb40aWhmgNsmo5HwPvYWb6nWDVv4NZZfg3Mo2mquTzsH24X67ekLrl8fnVbVGKhMiIaMzrUQhecOoLXOrcSlFKXTGpSqI5UJwQ3OBeWkKS_OmUZRhXYhc6nJUOgfLY6wKPsZgbK1ckoc6Y13X1gTXh3VqVp_WGR03vxz74DoZPv9kb49s_E79B_4C1NB0PA |
CODEN | APRPG5 |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_145132 crossref_primary_10_1557_s43577_024_00850_2 crossref_primary_10_1063_5_0259911 |
Cites_doi | 10.1016/j.jallcom.2020.157999 10.1016/j.bios.2021.113421 10.1016/j.bios.2022.114440 10.1021/acs.chemrev.7b00668 10.1088/1361-6528/ac2097 10.1088/1361-6463/abce7f 10.1080/05704928.2021.1969944 10.1021/acs.chemrev.7b00441 10.1016/j.molstruc.2020.129258 10.1038/s41592-019-0538-0 10.1016/j.snb.2021.129843 10.1080/05704928.2020.1796698 10.1038/lsa.2014.80 10.1002/admi.202000919 10.1080/10408347.2021.1950522 10.1002/ppsc.202100087 10.1177/0003702816686593 10.1021/acsnano.1c00352 10.1016/0009-2614(74)85388-1 10.1002/adfm.201303384 10.1016/j.snb.2021.129634 10.1016/j.foodcont.2021.108019 10.1002/jrs.4335 10.1364/OL.43.005170 10.3390/nano11061394 10.1007/s40820-021-00620-8 10.3390/molecules26020281 10.1007/s11051-012-0887-4 10.1021/acs.analchem.1c03807 10.1021/acssensors.0c01412 10.1021/jp054732v 10.1021/acs.jpcc.9b03859 10.1039/C6TA03308C 10.1016/j.jallcom.2021.159136 10.1021/ja077243c 10.1016/j.trac.2020.116122 10.1038/s41598-021-84565-3 10.1186/s11671-021-03480-8 10.1038/s43586-021-00083-6 10.1103/PhysRevB.6.4370 10.1021/acsnano.9b04224 10.1016/j.saa.2021.120370 10.1038/srep32171 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 10.1016/j.aca.2021.338978 10.1016/j.bios.2021.113153 10.1515/nanoph-2021-0381 10.1002/adma.201602603 10.1007/s40820-020-00565-4 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AJDQP AAYXX CITATION |
DOI | 10.1063/5.0155256 |
DatabaseName | AIP Open Access Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1931-9401 |
ExternalDocumentID | 10_1063_5_0155256 apr |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: 111-2113-M-005-013 - funderid: 10.13039/100020595 – fundername: National Science and Technology Council grantid: 111-2634-F-005 -001- funderid: 10.13039/100020595 |
GroupedDBID | 23M 4.4 5GY 5VS 6J9 AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ACBRY ACGFS ACZLF ADCTM AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP ALMA_UNASSIGNED_HOLDINGS AQWKA ASPBG ATXIE AVWKF AWQPM AZFZN BPZLN EBS EJD FDOHQ FFFMQ M71 N9A RIP RQS AAGWI AAYXX ABJGX ADMLS CITATION |
ID | FETCH-LOGICAL-c299t-ed2dc97a6b53f84fd08a989d26ac71f6996e349068e7f34bbc350d794ad80d73 |
IEDL.DBID | AJDQP |
ISSN | 1931-9401 |
IngestDate | Tue Jul 01 05:03:00 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri Jun 21 00:15:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c299t-ed2dc97a6b53f84fd08a989d26ac71f6996e349068e7f34bbc350d794ad80d73 |
ORCID | 0000-0002-2405-5474 0000-0001-7749-588X 0000-0002-0622-019X 0009-0009-6811-1595 0009-0008-4442-5461 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0155256 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0155256 scitation_primary_10_1063_5_0155256 crossref_primary_10_1063_5_0155256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationTitle | Applied physics reviews |
PublicationYear | 2023 |
References | Panikar, Cialla-May, de la Rosa, Salas, Popp (c6) 2021 le Ru, Meyer, Etchegoin (c2) 2006 Pan, Bai, Pan, Liu, Ramakrishna (c19) 2021 Chou Chao, Chou Chau, Chiang (c37) 2021 Huang, Fang, Zhang, Zhu, Sun (c1) 2014 Yang (c47) 2021 Li, Choy, Ren, Zhang, Lu (c41) 2014 Wei, Pan, Zhang, Li, Li, Liu, Wang, Xu (c8) 2018 Zong, Xu, Xu, Wei, Ma, Zheng, Hu, Ren (c15) 2018 Huang, Wu, Wang, Yang, Yuan, Chai (c25) 2021 Zhou (c31) 2021 Xue (c21) 2022 Johnson, Christy (c35) 1972 Huang, Liu, Gong, Wu, Fan, Wang, Brolo (c12) 2020 Mueller (c27) 2021 Korkmaz (c26) 2021 Mosquera, Albella, Navarro, Bhattacharyya, Endrino (c38) 2016 Akanny, Bonhommé, Bessueille, Bourgeois, Bordes (c11) 2021 Schulz (c30) 2020 Dieringer, Lettan, Scheidt, van Duyne (c3) 2007 Kozik (c16) 2021 Donato, Rajamanickam, Foti, Gucciardi, Liberale, Maragò (c39) 2018 Jeong, Arnob, Baek, Lee, Shih, Jung (c40) 2016 Carlomagno (c46) 2021 Zhang (c44) 2021 Xie, Zhao, Zou, Zhu, Zhang, Wang (c23) 2021 Vieira, Mueller, Barros, Reich (c28) 2019 Langer (c7) 2020 Han, Rodriguez, Haynes, Ozaki, Zhao (c9) 2021 Sitjar, der Liao, Lee, Tsai, Wang, Liu (c42) 2021 Weiland (c34) 1996 Huang (c45) 2021 Schulz, Lokteva, Parak, Lehmkühler (c29) 2021 Liao, Liu, Chen, Hu, Gan (c24) 2021 Rygula (c49) 2013 Sahoo, Huey-Jen Hsu, Chou, Wang, Chang (c18) 2022 Huang, Jan, Chang (c32) 2021 Das, Goswami, Gayathri, Tiwari, Saxena, Mehta (c20) 2021 Hu, Shi, Min (c17) 2019 Hardy, Kelleher, de Carvalho Gomes, Buchan, Chu, Goldberg Oppenheimer (c13) 2022 Zavyalova (c43) 2021 Girmatsion, Mahmud, Abraha, Xie, Cheng, Yu, Yao, Guo, Qian (c10) 2021 Peng (c48) 2021 Geng (c22) 2021 Bari (c36) 2016 Fleischmann, Hendra, McQuillan (c4) 1974 Atkins, Buckley, Blades, Turner (c14) 2017 Habibullah, Viktorova, Ruml (c5) 2021 Mao, Feng, Ma, Wu, Zhao (c33) 2012 (2023101110061863600_c27) 2021; 15 (2023101110061863600_c32) 2021; 26 (2023101110061863600_c31) 2021; 10 (2023101110061863600_c35) 1972; 6 (2023101110061863600_c29) 2021; 38 (2023101110061863600_c39) 2018; 43 (2023101110061863600_c30) 2020; 7 (2023101110061863600_c46) 2021; 11 (2023101110061863600_c18) 2022; 213 (2023101110061863600_c5) 2021; 16 (2023101110061863600_c17) 2019; 16 (2023101110061863600_c19) 2021; 53 (2023101110061863600_c3) 2007; 129 (2023101110061863600_c10) 2021; 126 (2023101110061863600_c8) 2018; 118 (2023101110061863600_c22) 2021; 334 (2023101110061863600_c45) 2021; 93 (2023101110061863600_c38) 2016; 6 (2023101110061863600_c43) 2021; 11 (2023101110061863600_c24) 2021; 868 (2023101110061863600_c16) 2021; 1187 (2023101110061863600_c21) 2022; 265 (2023101110061863600_c26) 2021; 1223 (2023101110061863600_c49) 2013; 44 (2023101110061863600_c44) 2021; 190 (2023101110061863600_c47) 2021; 13 (2023101110061863600_c14) 2017; 71 (2023101110061863600_c7) 2020; 14 (2023101110061863600_c33) 2012; 14 (2023101110061863600_c6) 2021; 134 (2023101110061863600_c20) 2021; 32 (2023101110061863600_c36) 2016; 4 (2023101110061863600_c40) 2016; 28 (2023101110061863600_c1) 2014; 3 (2023101110061863600_c41) 2014; 24 (2023101110061863600_c2) 2006; 110 (2023101110061863600_c37) 2021; 54 (2023101110061863600_c11) 2021; 56 (2023101110061863600_c9) 2021; 1 (2023101110061863600_c48) 2021; 13 (2023101110061863600_c4) 1974; 26 (2023101110061863600_c42) 2021; 181 (2023101110061863600_c15) 2018; 118 (2023101110061863600_c28) 2019; 123 (2023101110061863600_c25) 2021; 339 (2023101110061863600_c34) 1996; 9 (2023101110061863600_c23) 2021; 861 (2023101110061863600_c12) 2020; 5 (2023101110061863600_c13) 2022; 57 |
References_xml | – start-page: 115301 year: 2021 ident: c37 article-title: Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects publication-title: J. Phys. D: Appl. Phys. – start-page: 11365 year: 2016 ident: c36 article-title: Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes publication-title: J. Mater. Chem. A – start-page: 289 year: 2021 ident: c19 article-title: Design, fabrication and applications of electrospun nanofiber-based surface-enhanced Raman spectroscopy substrate publication-title: Crit. Rev. Anal. Chem. – start-page: 129634 year: 2021 ident: c22 article-title: Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates publication-title: Sens. Actuators, B – start-page: 2882 year: 2018 ident: c8 article-title: Plasmon waveguiding in nanowires publication-title: Chem. Rev. – start-page: 887 year: 2012 ident: c33 article-title: One-dimensional silver nanowires synthesized by self-seeding polyol process publication-title: J. Nanopart. Res. – start-page: 32171 year: 2016 ident: c38 article-title: Effect of silver on the phase transition and wettability of titanium oxide films publication-title: Sci. Rep. – start-page: 116122 year: 2021 ident: c6 article-title: Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends publication-title: TrAC, Trends Anal. Chem. – start-page: 16086 year: 2021 ident: c45 article-title: Construction of optimal SERS hotspots based on capturing the spike receptor-binding domain (RBD) of SARS-CoV-2 for highly sensitive and specific detection by a fish model publication-title: Anal. Chem. – start-page: 4370 year: 1972 ident: c35 article-title: Optical constants of the noble metals publication-title: Phys. Rev. B – start-page: 129258 year: 2021 ident: c26 article-title: Fabrication of superhydrophobic Ag@ZnO@Bi WO membrane disc as flexible and photocatalytic active reusable SERS substrate publication-title: J. Mol. Struct. – start-page: 2000919 year: 2020 ident: c30 article-title: Plasmonic supercrystals with a layered structure studied by a combined TEM‐SAXS‐XCCA approach publication-title: Adv. Mater. Interfaces – start-page: 495301 year: 2021 ident: c20 article-title: Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens publication-title: Nanotechnology – start-page: 109 year: 2021 ident: c47 article-title: Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection publication-title: Nano Micro Lett. – start-page: 2100087 year: 2021 ident: c29 article-title: Recent notable approaches to study self‐assembly of nanoparticles with x‐ray scattering and electron microscopy publication-title: Part. Part. Syst. Charact. – start-page: 47 year: 2021 ident: c5 article-title: Current strategies for noble metal nanoparticle synthesis publication-title: Nanoscale Res. Lett. – start-page: 52 year: 2021 ident: c48 article-title: Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection publication-title: Nano Micro Lett. – start-page: 1061 year: 2013 ident: c49 article-title: Raman spectroscopy of proteins: A review publication-title: J. Raman Spectrosc. – start-page: 281 year: 2021 ident: c32 article-title: A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection publication-title: Molecules – start-page: 28 year: 2020 ident: c7 article-title: Present and future of surface-enhanced Raman scattering publication-title: ACS Nano – start-page: 4943 year: 2021 ident: c46 article-title: COVID-19 salivary Raman fingerprint: Innovative approach for the detection of current and past SARS-CoV-2 infections publication-title: Sci. Rep. – start-page: 114440 year: 2022 ident: c18 article-title: Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin publication-title: Biosens. Bioelectron. – start-page: 8695 year: 2016 ident: c40 article-title: 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis publication-title: Adv. Mater. – start-page: 120370 year: 2022 ident: c21 article-title: Facile fabrication of PS/Cu S/Ag sandwich structure as SERS substrate for ultra-sensitive detection publication-title: Spectrochim. Acta, Part A – start-page: 17951 year: 2019 ident: c28 article-title: Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers publication-title: J. Phys. Chem. C – start-page: 830 year: 2019 ident: c17 article-title: Biological imaging of chemical bonds by stimulated Raman scattering microscopy publication-title: Nat. Methods – start-page: 129843 year: 2021 ident: c25 article-title: Ag/TiO nanocomposites as a novel SERS substrate for construction of sensitive biosensor publication-title: Sens. Actuators, B – start-page: 3114 year: 2014 ident: c41 article-title: Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system publication-title: Adv. Funct. Mater. – start-page: 767 year: 2017 ident: c14 article-title: Raman spectroscopy of blood and blood components publication-title: Appl. Spectrosc. – start-page: 1944 year: 2006 ident: c2 article-title: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique publication-title: J. Phys. Chem. B – start-page: 157999 year: 2021 ident: c23 article-title: TiO nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates publication-title: J. Alloys Compd. – start-page: e199 year: 2014 ident: c1 article-title: Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering publication-title: Light Sci. Appl. – start-page: 4946 year: 2018 ident: c15 article-title: Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges publication-title: Chem. Rev. – start-page: 380 year: 2021 ident: c11 article-title: Surface enhanced Raman spectroscopy for bacteria analysis: A review publication-title: Appl. Spectrosc. Rev. – start-page: 87 year: 2021 ident: c9 article-title: Surface-enhanced Raman spectroscopy publication-title: Nat. Rev. Methods Primers – start-page: 108019 year: 2021 ident: c10 article-title: Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: A review publication-title: Food Control – start-page: 2933 year: 2020 ident: c12 article-title: Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers publication-title: ACS Sens. – start-page: 113153 year: 2021 ident: c42 article-title: Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants publication-title: Biosens. Bioelectron. – start-page: 5170 year: 2018 ident: c39 article-title: Optical force decoration of 3D microstructures with plasmonic particles publication-title: Opt. Lett. – start-page: 4045 year: 2021 ident: c31 article-title: High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure publication-title: Nanophotonics – start-page: 16249 year: 2007 ident: c3 article-title: A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy publication-title: J. Am. Chem. Soc. – start-page: 113421 year: 2021 ident: c44 article-title: Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor publication-title: Biosens. Bioelectron. – start-page: 5523 year: 2021 ident: c27 article-title: Surface-enhanced Raman scattering and surface-enhanced infrared absorption by plasmon polaritons in three-dimensional nanoparticle supercrystals publication-title: ACS Nano – start-page: 295 year: 1996 ident: c34 article-title: Time domain electromagnetic field computation with finite difference methods publication-title: Int. J. Numer. Modell. Electron. Networks Devices Fields – start-page: 163 year: 1974 ident: c4 article-title: Raman spectra of pyridine adsorbed at a silver electrode publication-title: Chem. Phys. Lett. – start-page: 1394 year: 2021 ident: c43 article-title: SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2 publication-title: Nanomaterials – start-page: 338978 year: 2021 ident: c16 article-title: A review of surface-enhanced Raman spectroscopy in pathological processes publication-title: Anal. Chim. Acta – start-page: 177 year: 2022 ident: c13 article-title: Methods in Raman spectroscopy for saliva studies—A review publication-title: Appl. Spectrosc. Rev. – start-page: 159136 year: 2021 ident: c24 article-title: Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing publication-title: J. Alloys Compd. – volume: 861 start-page: 157999 year: 2021 ident: 2023101110061863600_c23 article-title: TiO2 nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157999 – volume: 190 start-page: 113421 year: 2021 ident: 2023101110061863600_c44 article-title: Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113421 – volume: 213 start-page: 114440 year: 2022 ident: 2023101110061863600_c18 article-title: Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114440 – volume: 118 start-page: 4946 year: 2018 ident: 2023101110061863600_c15 article-title: Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00668 – volume: 32 start-page: 495301 year: 2021 ident: 2023101110061863600_c20 article-title: Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens publication-title: Nanotechnology doi: 10.1088/1361-6528/ac2097 – volume: 54 start-page: 115301 year: 2021 ident: 2023101110061863600_c37 article-title: Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/abce7f – volume: 57 start-page: 177 year: 2022 ident: 2023101110061863600_c13 article-title: Methods in Raman spectroscopy for saliva studies—A review publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2021.1969944 – volume: 118 start-page: 2882 year: 2018 ident: 2023101110061863600_c8 article-title: Plasmon waveguiding in nanowires publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00441 – volume: 1223 start-page: 129258 year: 2021 ident: 2023101110061863600_c26 article-title: Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.129258 – volume: 16 start-page: 830 year: 2019 ident: 2023101110061863600_c17 article-title: Biological imaging of chemical bonds by stimulated Raman scattering microscopy publication-title: Nat. Methods doi: 10.1038/s41592-019-0538-0 – volume: 339 start-page: 129843 year: 2021 ident: 2023101110061863600_c25 article-title: Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.129843 – volume: 56 start-page: 380 year: 2021 ident: 2023101110061863600_c11 article-title: Surface enhanced Raman spectroscopy for bacteria analysis: A review publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2020.1796698 – volume: 3 start-page: e199 year: 2014 ident: 2023101110061863600_c1 article-title: Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.80 – volume: 7 start-page: 2000919 year: 2020 ident: 2023101110061863600_c30 article-title: Plasmonic supercrystals with a layered structure studied by a combined TEM-SAXS-XCCA approach publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000919 – volume: 53 start-page: 289 year: 2021 ident: 2023101110061863600_c19 article-title: Design, fabrication and applications of electrospun nanofiber-based surface-enhanced Raman spectroscopy substrate publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2021.1950522 – volume: 38 start-page: 2100087 year: 2021 ident: 2023101110061863600_c29 article-title: Recent notable approaches to study self-assembly of nanoparticles with x-ray scattering and electron microscopy publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.202100087 – volume: 71 start-page: 767 year: 2017 ident: 2023101110061863600_c14 article-title: Raman spectroscopy of blood and blood components publication-title: Appl. Spectrosc. doi: 10.1177/0003702816686593 – volume: 15 start-page: 5523 year: 2021 ident: 2023101110061863600_c27 article-title: Surface-enhanced Raman scattering and surface-enhanced infrared absorption by plasmon polaritons in three-dimensional nanoparticle supercrystals publication-title: ACS Nano doi: 10.1021/acsnano.1c00352 – volume: 26 start-page: 163 year: 1974 ident: 2023101110061863600_c4 article-title: Raman spectra of pyridine adsorbed at a silver electrode publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 24 start-page: 3114 year: 2014 ident: 2023101110061863600_c41 article-title: Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303384 – volume: 334 start-page: 129634 year: 2021 ident: 2023101110061863600_c22 article-title: Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.129634 – volume: 126 start-page: 108019 year: 2021 ident: 2023101110061863600_c10 article-title: Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: A review publication-title: Food Control doi: 10.1016/j.foodcont.2021.108019 – volume: 44 start-page: 1061 year: 2013 ident: 2023101110061863600_c49 article-title: Raman spectroscopy of proteins: A review publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4335 – volume: 43 start-page: 5170 year: 2018 ident: 2023101110061863600_c39 article-title: Optical force decoration of 3D microstructures with plasmonic particles publication-title: Opt. Lett. doi: 10.1364/OL.43.005170 – volume: 11 start-page: 1394 year: 2021 ident: 2023101110061863600_c43 article-title: SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2 publication-title: Nanomaterials doi: 10.3390/nano11061394 – volume: 13 start-page: 109 year: 2021 ident: 2023101110061863600_c47 article-title: Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection publication-title: Nano Micro Lett. doi: 10.1007/s40820-021-00620-8 – volume: 26 start-page: 281 year: 2021 ident: 2023101110061863600_c32 article-title: A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection publication-title: Molecules doi: 10.3390/molecules26020281 – volume: 14 start-page: 887 year: 2012 ident: 2023101110061863600_c33 article-title: One-dimensional silver nanowires synthesized by self-seeding polyol process publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-0887-4 – volume: 93 start-page: 16086 year: 2021 ident: 2023101110061863600_c45 article-title: Construction of optimal SERS hotspots based on capturing the spike receptor-binding domain (RBD) of SARS-CoV-2 for highly sensitive and specific detection by a fish model publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03807 – volume: 5 start-page: 2933 year: 2020 ident: 2023101110061863600_c12 article-title: Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers publication-title: ACS Sens. doi: 10.1021/acssensors.0c01412 – volume: 110 start-page: 1944 year: 2006 ident: 2023101110061863600_c2 article-title: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique publication-title: J. Phys. Chem. B doi: 10.1021/jp054732v – volume: 123 start-page: 17951 year: 2019 ident: 2023101110061863600_c28 article-title: Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03859 – volume: 4 start-page: 11365 year: 2016 ident: 2023101110061863600_c36 article-title: Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03308C – volume: 868 start-page: 159136 year: 2021 ident: 2023101110061863600_c24 article-title: Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159136 – volume: 129 start-page: 16249 year: 2007 ident: 2023101110061863600_c3 article-title: A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077243c – volume: 134 start-page: 116122 year: 2021 ident: 2023101110061863600_c6 article-title: Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2020.116122 – volume: 11 start-page: 4943 year: 2021 ident: 2023101110061863600_c46 article-title: COVID-19 salivary Raman fingerprint: Innovative approach for the detection of current and past SARS-CoV-2 infections publication-title: Sci. Rep. doi: 10.1038/s41598-021-84565-3 – volume: 16 start-page: 47 year: 2021 ident: 2023101110061863600_c5 article-title: Current strategies for noble metal nanoparticle synthesis publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-021-03480-8 – volume: 1 start-page: 87 year: 2021 ident: 2023101110061863600_c9 article-title: Surface-enhanced Raman spectroscopy publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00083-6 – volume: 6 start-page: 4370 year: 1972 ident: 2023101110061863600_c35 article-title: Optical constants of the noble metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.4370 – volume: 14 start-page: 28 year: 2020 ident: 2023101110061863600_c7 article-title: Present and future of surface-enhanced Raman scattering publication-title: ACS Nano doi: 10.1021/acsnano.9b04224 – volume: 265 start-page: 120370 year: 2022 ident: 2023101110061863600_c21 article-title: Facile fabrication of PS/Cu2S/Ag sandwich structure as SERS substrate for ultra-sensitive detection publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.120370 – volume: 6 start-page: 32171 year: 2016 ident: 2023101110061863600_c38 article-title: Effect of silver on the phase transition and wettability of titanium oxide films publication-title: Sci. Rep. doi: 10.1038/srep32171 – volume: 9 start-page: 295 year: 1996 ident: 2023101110061863600_c34 article-title: Time domain electromagnetic field computation with finite difference methods publication-title: Int. J. Numer. Modell. Electron. Networks Devices Fields doi: 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 – volume: 1187 start-page: 338978 year: 2021 ident: 2023101110061863600_c16 article-title: A review of surface-enhanced Raman spectroscopy in pathological processes publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338978 – volume: 181 start-page: 113153 year: 2021 ident: 2023101110061863600_c42 article-title: Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113153 – volume: 10 start-page: 4045 year: 2021 ident: 2023101110061863600_c31 article-title: High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0381 – volume: 28 start-page: 8695 year: 2016 ident: 2023101110061863600_c40 article-title: 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis publication-title: Adv. Mater. doi: 10.1002/adma.201602603 – volume: 13 start-page: 52 year: 2021 ident: 2023101110061863600_c48 article-title: Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection publication-title: Nano Micro Lett. doi: 10.1007/s40820-020-00565-4 |
SSID | ssj0060661 |
Score | 2.3064952 |
Snippet | The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
Title | A multiscale 3D hotspot-rich nanostructured substrate for biomolecular detection of SARS-CoV-2 |
URI | http://dx.doi.org/10.1063/5.0155256 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61RfQiPrE-SrAevAS7m002OS6tpRQraqv0ZMnmQQ-yK3b9_86-SgUFT7lMLt9O8n1hZr9B6Fo6JhXwJgmMYSTwdExiJjVRimnDQ2ptYZk_eeCjl2A8Z_MG6v5Rwef0NrfVZAyYeQu1fBDHkLqtaDx4eqwv3FyCe7Vp0OaGH1SzA4xSFrc3-GO4j_Yq4Yej8ksdoIZNDtF20YCpV0foLcJFb98KMLOYDvAyzeDFmRG4p5Y4UUlaOr1-fVqDV3DaC1dZDJIT53_Q10NusbFZ0VyV4NThafQ8Jf30lfjHaDa8m_VHpJp9QDQQREas8Y2WoeIxo04EzvSEkkIanysdeo7DM8XSQPa4sKGjQRxrynoGDpcyAlZ6gppJmthThKmiHpcxs7ESgRVaWV8b54QwgXC-9NropkZpUUOUj6d4XxT1aU4XbFEB2kZX69CP0gzjt6DuGuq_o87-FXWOdvPx7mX7yAVqAtD2EkRAFncgCQaT-2mnSoZvcwewFA |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64IHoRV9wNLuAlOtM0mfTgYXCUccVlFE-WNAsK0g62Iv4nf6SvmwsoePHUy6OkX17fQr58D2AjcDxQmDepbwynflNHNOKBpkpxbUSLWVtI5p-eie61f3TLbwfgrb4Lg4tIt9VDv5QI7j_tVADSR6w5n_ufggOC7eSCm5xjzq44lcf29QU7tnT3sIPbu-l5B_u9vS6thgpQjZE3o9Z4RgctJSLOnPSdaUgVyMB4QulW0wms_y3zg4aQtuWYH0Wa8YZBr1VG4pPhawdhGJt_gf_QcPuoc3FeR_68F2jW6kVf1_ct541iaitP2b8ksoMJGK8qUNIuv3gSBmw8BSMFE1Sn03DXJgXJMMXNs4R1yH2SYeubUQyY9yRWcVJKzj4_WUNSxLGQtyVY-5L8Kn89bZcYmxUsr5gkjly1L6_oXnJDvRno_QdeszAUJ7GdA8IUQ9AibiMlfSu1sp42zklpfOm8oDkPWzVKYQ1RPifjMSwOygULeVgBOg9rH6b9UpXjJ6P1D6h_t1r4k9UqjHZ7pyfhyeHZ8SKM5TPnS07LEgwh6HYZK5MsWqkcgkD4zy74DvgK9VU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+3D+hotspot-rich+nanostructured+substrate+for+biomolecular+detection+of+SARS-CoV-2&rft.jtitle=Applied+physics+reviews&rft.au=Sahoo%2C+Smruti+R.&rft.au=Huang%2C+Chun-Ta&rft.au=Tsai%2C+Kunju&rft.au=Wang%2C+Gou-Jen&rft.date=2023-12-01&rft.issn=1931-9401&rft.eissn=1931-9401&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1063%2F5.0155256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0155256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-9401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-9401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-9401&client=summon |