A multiscale 3D hotspot-rich nanostructured substrate for biomolecular detection of SARS-CoV-2

The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chip...

Full description

Saved in:
Bibliographic Details
Published inApplied physics reviews Vol. 10; no. 4
Main Authors Sahoo, Smruti R., Huang, Chun-Ta, Tsai, Kunju, Wang, Gou-Jen, Chang, Cheng-Chung
Format Journal Article
LanguageEnglish
Published 01.12.2023
Online AccessGet full text

Cover

Loading…
Abstract The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chips. More importantly, only a single-layer (2D) signal source is generated on the substrate of the chip, resulting in poor sensitivity. Herein, we constructed a single-component, multiscale, three-dimensional SERS (M3D-SERS) substrate from silver nanowires (AgNWs) packing. According to our results, the Raman enhancement effect of the M3D-SERS substrate was related to the degree of AgNWs stacking along the z axis. In addition, the light source-dependent plasmonic partition and hotspot formation of the M3D-SERS substrate were evaluated by the finite integration technique to prove that M3D-SERS offers advantages, with isotropic localized surface plasmon resonance as well as homogeneous hotspot distribution, for SERS over its 1D and 2D counterparts. Experimentally, the optimal construction of the M3D-SERS chip was explored and established based on the Raman signal enhancement of bovine serum albumin, and consequently, the efficiency of the M3D-SERS chip in detecting SARS-CoV-2-related biomolecules was investigated based on the detection superiority to biomolecules. This study demonstrates a simple, label-free, pre-treatment-free potential biosensor technology that can be used in healthcare units. Furthermore, in combination with a suitable laser light source, this technology can be applied for efficient detection in point-of-care tests with a handheld spectrometer.
AbstractList The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chips. More importantly, only a single-layer (2D) signal source is generated on the substrate of the chip, resulting in poor sensitivity. Herein, we constructed a single-component, multiscale, three-dimensional SERS (M3D-SERS) substrate from silver nanowires (AgNWs) packing. According to our results, the Raman enhancement effect of the M3D-SERS substrate was related to the degree of AgNWs stacking along the z axis. In addition, the light source-dependent plasmonic partition and hotspot formation of the M3D-SERS substrate were evaluated by the finite integration technique to prove that M3D-SERS offers advantages, with isotropic localized surface plasmon resonance as well as homogeneous hotspot distribution, for SERS over its 1D and 2D counterparts. Experimentally, the optimal construction of the M3D-SERS chip was explored and established based on the Raman signal enhancement of bovine serum albumin, and consequently, the efficiency of the M3D-SERS chip in detecting SARS-CoV-2-related biomolecules was investigated based on the detection superiority to biomolecules. This study demonstrates a simple, label-free, pre-treatment-free potential biosensor technology that can be used in healthcare units. Furthermore, in combination with a suitable laser light source, this technology can be applied for efficient detection in point-of-care tests with a handheld spectrometer.
Author Huang, Chun-Ta
Tsai, Kunju
Chang, Cheng-Chung
Sahoo, Smruti R.
Wang, Gou-Jen
Author_xml – sequence: 1
  givenname: Smruti R.
  surname: Sahoo
  fullname: Sahoo, Smruti R.
  organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
– sequence: 2
  givenname: Chun-Ta
  surname: Huang
  fullname: Huang, Chun-Ta
  organization: Protrustech Co., Ltd
– sequence: 3
  givenname: Kunju
  surname: Tsai
  fullname: Tsai, Kunju
  organization: Nanovie Co., Ltd
– sequence: 4
  givenname: Gou-Jen
  surname: Wang
  fullname: Wang, Gou-Jen
  organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
– sequence: 5
  givenname: Cheng-Chung
  surname: Chang
  fullname: Chang, Cheng-Chung
  organization: 5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
BookMark eNp9kF1LwzAYhYNMcJte-A9yq5AtaZq0uSzzEwaCG15a0nywSNuMJL3w39uxCSLi1XlfeM7hcGZg0vveAHBN8IJgTpdsgQljGeNnYEoEJUjkmEx-3BdgFuMHxhxzTqbgvYLd0CYXlWwNpHdw51Pc-4SCUzvYy97HFAaVhmA0jEMzfjIZaH2AjfOdb40aWhmgNsmo5HwPvYWb6nWDVv4NZZfg3Mo2mquTzsH24X67ekLrl8fnVbVGKhMiIaMzrUQhecOoLXOrcSlFKXTGpSqI5UJwQ3OBeWkKS_OmUZRhXYhc6nJUOgfLY6wKPsZgbK1ckoc6Y13X1gTXh3VqVp_WGR03vxz74DoZPv9kb49s_E79B_4C1NB0PA
CODEN APRPG5
CitedBy_id crossref_primary_10_1016_j_electacta_2024_145132
crossref_primary_10_1557_s43577_024_00850_2
crossref_primary_10_1063_5_0259911
Cites_doi 10.1016/j.jallcom.2020.157999
10.1016/j.bios.2021.113421
10.1016/j.bios.2022.114440
10.1021/acs.chemrev.7b00668
10.1088/1361-6528/ac2097
10.1088/1361-6463/abce7f
10.1080/05704928.2021.1969944
10.1021/acs.chemrev.7b00441
10.1016/j.molstruc.2020.129258
10.1038/s41592-019-0538-0
10.1016/j.snb.2021.129843
10.1080/05704928.2020.1796698
10.1038/lsa.2014.80
10.1002/admi.202000919
10.1080/10408347.2021.1950522
10.1002/ppsc.202100087
10.1177/0003702816686593
10.1021/acsnano.1c00352
10.1016/0009-2614(74)85388-1
10.1002/adfm.201303384
10.1016/j.snb.2021.129634
10.1016/j.foodcont.2021.108019
10.1002/jrs.4335
10.1364/OL.43.005170
10.3390/nano11061394
10.1007/s40820-021-00620-8
10.3390/molecules26020281
10.1007/s11051-012-0887-4
10.1021/acs.analchem.1c03807
10.1021/acssensors.0c01412
10.1021/jp054732v
10.1021/acs.jpcc.9b03859
10.1039/C6TA03308C
10.1016/j.jallcom.2021.159136
10.1021/ja077243c
10.1016/j.trac.2020.116122
10.1038/s41598-021-84565-3
10.1186/s11671-021-03480-8
10.1038/s43586-021-00083-6
10.1103/PhysRevB.6.4370
10.1021/acsnano.9b04224
10.1016/j.saa.2021.120370
10.1038/srep32171
10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
10.1016/j.aca.2021.338978
10.1016/j.bios.2021.113153
10.1515/nanoph-2021-0381
10.1002/adma.201602603
10.1007/s40820-020-00565-4
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AJDQP
AAYXX
CITATION
DOI 10.1063/5.0155256
DatabaseName AIP Open Access Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1931-9401
ExternalDocumentID 10_1063_5_0155256
apr
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 111-2113-M-005-013 -
  funderid: 10.13039/100020595
– fundername: National Science and Technology Council
  grantid: 111-2634-F-005 -001-
  funderid: 10.13039/100020595
GroupedDBID 23M
4.4
5GY
5VS
6J9
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ACBRY
ACGFS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ASPBG
ATXIE
AVWKF
AWQPM
AZFZN
BPZLN
EBS
EJD
FDOHQ
FFFMQ
M71
N9A
RIP
RQS
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
ID FETCH-LOGICAL-c299t-ed2dc97a6b53f84fd08a989d26ac71f6996e349068e7f34bbc350d794ad80d73
IEDL.DBID AJDQP
ISSN 1931-9401
IngestDate Tue Jul 01 05:03:00 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri Jun 21 00:15:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c299t-ed2dc97a6b53f84fd08a989d26ac71f6996e349068e7f34bbc350d794ad80d73
ORCID 0000-0002-2405-5474
0000-0001-7749-588X
0000-0002-0622-019X
0009-0009-6811-1595
0009-0008-4442-5461
OpenAccessLink http://dx.doi.org/10.1063/5.0155256
PageCount 12
ParticipantIDs crossref_citationtrail_10_1063_5_0155256
scitation_primary_10_1063_5_0155256
crossref_primary_10_1063_5_0155256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationTitle Applied physics reviews
PublicationYear 2023
References Panikar, Cialla-May, de la Rosa, Salas, Popp (c6) 2021
le Ru, Meyer, Etchegoin (c2) 2006
Pan, Bai, Pan, Liu, Ramakrishna (c19) 2021
Chou Chao, Chou Chau, Chiang (c37) 2021
Huang, Fang, Zhang, Zhu, Sun (c1) 2014
Yang (c47) 2021
Li, Choy, Ren, Zhang, Lu (c41) 2014
Wei, Pan, Zhang, Li, Li, Liu, Wang, Xu (c8) 2018
Zong, Xu, Xu, Wei, Ma, Zheng, Hu, Ren (c15) 2018
Huang, Wu, Wang, Yang, Yuan, Chai (c25) 2021
Zhou (c31) 2021
Xue (c21) 2022
Johnson, Christy (c35) 1972
Huang, Liu, Gong, Wu, Fan, Wang, Brolo (c12) 2020
Mueller (c27) 2021
Korkmaz (c26) 2021
Mosquera, Albella, Navarro, Bhattacharyya, Endrino (c38) 2016
Akanny, Bonhommé, Bessueille, Bourgeois, Bordes (c11) 2021
Schulz (c30) 2020
Dieringer, Lettan, Scheidt, van Duyne (c3) 2007
Kozik (c16) 2021
Donato, Rajamanickam, Foti, Gucciardi, Liberale, Maragò (c39) 2018
Jeong, Arnob, Baek, Lee, Shih, Jung (c40) 2016
Carlomagno (c46) 2021
Zhang (c44) 2021
Xie, Zhao, Zou, Zhu, Zhang, Wang (c23) 2021
Vieira, Mueller, Barros, Reich (c28) 2019
Langer (c7) 2020
Han, Rodriguez, Haynes, Ozaki, Zhao (c9) 2021
Sitjar, der Liao, Lee, Tsai, Wang, Liu (c42) 2021
Weiland (c34) 1996
Huang (c45) 2021
Schulz, Lokteva, Parak, Lehmkühler (c29) 2021
Liao, Liu, Chen, Hu, Gan (c24) 2021
Rygula (c49) 2013
Sahoo, Huey-Jen Hsu, Chou, Wang, Chang (c18) 2022
Huang, Jan, Chang (c32) 2021
Das, Goswami, Gayathri, Tiwari, Saxena, Mehta (c20) 2021
Hu, Shi, Min (c17) 2019
Hardy, Kelleher, de Carvalho Gomes, Buchan, Chu, Goldberg Oppenheimer (c13) 2022
Zavyalova (c43) 2021
Girmatsion, Mahmud, Abraha, Xie, Cheng, Yu, Yao, Guo, Qian (c10) 2021
Peng (c48) 2021
Geng (c22) 2021
Bari (c36) 2016
Fleischmann, Hendra, McQuillan (c4) 1974
Atkins, Buckley, Blades, Turner (c14) 2017
Habibullah, Viktorova, Ruml (c5) 2021
Mao, Feng, Ma, Wu, Zhao (c33) 2012
(2023101110061863600_c27) 2021; 15
(2023101110061863600_c32) 2021; 26
(2023101110061863600_c31) 2021; 10
(2023101110061863600_c35) 1972; 6
(2023101110061863600_c29) 2021; 38
(2023101110061863600_c39) 2018; 43
(2023101110061863600_c30) 2020; 7
(2023101110061863600_c46) 2021; 11
(2023101110061863600_c18) 2022; 213
(2023101110061863600_c5) 2021; 16
(2023101110061863600_c17) 2019; 16
(2023101110061863600_c19) 2021; 53
(2023101110061863600_c3) 2007; 129
(2023101110061863600_c10) 2021; 126
(2023101110061863600_c8) 2018; 118
(2023101110061863600_c22) 2021; 334
(2023101110061863600_c45) 2021; 93
(2023101110061863600_c38) 2016; 6
(2023101110061863600_c43) 2021; 11
(2023101110061863600_c24) 2021; 868
(2023101110061863600_c16) 2021; 1187
(2023101110061863600_c21) 2022; 265
(2023101110061863600_c26) 2021; 1223
(2023101110061863600_c49) 2013; 44
(2023101110061863600_c44) 2021; 190
(2023101110061863600_c47) 2021; 13
(2023101110061863600_c14) 2017; 71
(2023101110061863600_c7) 2020; 14
(2023101110061863600_c33) 2012; 14
(2023101110061863600_c6) 2021; 134
(2023101110061863600_c20) 2021; 32
(2023101110061863600_c36) 2016; 4
(2023101110061863600_c40) 2016; 28
(2023101110061863600_c1) 2014; 3
(2023101110061863600_c41) 2014; 24
(2023101110061863600_c2) 2006; 110
(2023101110061863600_c37) 2021; 54
(2023101110061863600_c11) 2021; 56
(2023101110061863600_c9) 2021; 1
(2023101110061863600_c48) 2021; 13
(2023101110061863600_c4) 1974; 26
(2023101110061863600_c42) 2021; 181
(2023101110061863600_c15) 2018; 118
(2023101110061863600_c28) 2019; 123
(2023101110061863600_c25) 2021; 339
(2023101110061863600_c34) 1996; 9
(2023101110061863600_c23) 2021; 861
(2023101110061863600_c12) 2020; 5
(2023101110061863600_c13) 2022; 57
References_xml – start-page: 115301
  year: 2021
  ident: c37
  article-title: Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 11365
  year: 2016
  ident: c36
  article-title: Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes
  publication-title: J. Mater. Chem. A
– start-page: 289
  year: 2021
  ident: c19
  article-title: Design, fabrication and applications of electrospun nanofiber-based surface-enhanced Raman spectroscopy substrate
  publication-title: Crit. Rev. Anal. Chem.
– start-page: 129634
  year: 2021
  ident: c22
  article-title: Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates
  publication-title: Sens. Actuators, B
– start-page: 2882
  year: 2018
  ident: c8
  article-title: Plasmon waveguiding in nanowires
  publication-title: Chem. Rev.
– start-page: 887
  year: 2012
  ident: c33
  article-title: One-dimensional silver nanowires synthesized by self-seeding polyol process
  publication-title: J. Nanopart. Res.
– start-page: 32171
  year: 2016
  ident: c38
  article-title: Effect of silver on the phase transition and wettability of titanium oxide films
  publication-title: Sci. Rep.
– start-page: 116122
  year: 2021
  ident: c6
  article-title: Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends
  publication-title: TrAC, Trends Anal. Chem.
– start-page: 16086
  year: 2021
  ident: c45
  article-title: Construction of optimal SERS hotspots based on capturing the spike receptor-binding domain (RBD) of SARS-CoV-2 for highly sensitive and specific detection by a fish model
  publication-title: Anal. Chem.
– start-page: 4370
  year: 1972
  ident: c35
  article-title: Optical constants of the noble metals
  publication-title: Phys. Rev. B
– start-page: 129258
  year: 2021
  ident: c26
  article-title: Fabrication of superhydrophobic Ag@ZnO@Bi WO membrane disc as flexible and photocatalytic active reusable SERS substrate
  publication-title: J. Mol. Struct.
– start-page: 2000919
  year: 2020
  ident: c30
  article-title: Plasmonic supercrystals with a layered structure studied by a combined TEM‐SAXS‐XCCA approach
  publication-title: Adv. Mater. Interfaces
– start-page: 495301
  year: 2021
  ident: c20
  article-title: Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens
  publication-title: Nanotechnology
– start-page: 109
  year: 2021
  ident: c47
  article-title: Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection
  publication-title: Nano Micro Lett.
– start-page: 2100087
  year: 2021
  ident: c29
  article-title: Recent notable approaches to study self‐assembly of nanoparticles with x‐ray scattering and electron microscopy
  publication-title: Part. Part. Syst. Charact.
– start-page: 47
  year: 2021
  ident: c5
  article-title: Current strategies for noble metal nanoparticle synthesis
  publication-title: Nanoscale Res. Lett.
– start-page: 52
  year: 2021
  ident: c48
  article-title: Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection
  publication-title: Nano Micro Lett.
– start-page: 1061
  year: 2013
  ident: c49
  article-title: Raman spectroscopy of proteins: A review
  publication-title: J. Raman Spectrosc.
– start-page: 281
  year: 2021
  ident: c32
  article-title: A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection
  publication-title: Molecules
– start-page: 28
  year: 2020
  ident: c7
  article-title: Present and future of surface-enhanced Raman scattering
  publication-title: ACS Nano
– start-page: 4943
  year: 2021
  ident: c46
  article-title: COVID-19 salivary Raman fingerprint: Innovative approach for the detection of current and past SARS-CoV-2 infections
  publication-title: Sci. Rep.
– start-page: 114440
  year: 2022
  ident: c18
  article-title: Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin
  publication-title: Biosens. Bioelectron.
– start-page: 8695
  year: 2016
  ident: c40
  article-title: 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis
  publication-title: Adv. Mater.
– start-page: 120370
  year: 2022
  ident: c21
  article-title: Facile fabrication of PS/Cu S/Ag sandwich structure as SERS substrate for ultra-sensitive detection
  publication-title: Spectrochim. Acta, Part A
– start-page: 17951
  year: 2019
  ident: c28
  article-title: Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers
  publication-title: J. Phys. Chem. C
– start-page: 830
  year: 2019
  ident: c17
  article-title: Biological imaging of chemical bonds by stimulated Raman scattering microscopy
  publication-title: Nat. Methods
– start-page: 129843
  year: 2021
  ident: c25
  article-title: Ag/TiO nanocomposites as a novel SERS substrate for construction of sensitive biosensor
  publication-title: Sens. Actuators, B
– start-page: 3114
  year: 2014
  ident: c41
  article-title: Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system
  publication-title: Adv. Funct. Mater.
– start-page: 767
  year: 2017
  ident: c14
  article-title: Raman spectroscopy of blood and blood components
  publication-title: Appl. Spectrosc.
– start-page: 1944
  year: 2006
  ident: c2
  article-title: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique
  publication-title: J. Phys. Chem. B
– start-page: 157999
  year: 2021
  ident: c23
  article-title: TiO nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates
  publication-title: J. Alloys Compd.
– start-page: e199
  year: 2014
  ident: c1
  article-title: Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
  publication-title: Light Sci. Appl.
– start-page: 4946
  year: 2018
  ident: c15
  article-title: Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges
  publication-title: Chem. Rev.
– start-page: 380
  year: 2021
  ident: c11
  article-title: Surface enhanced Raman spectroscopy for bacteria analysis: A review
  publication-title: Appl. Spectrosc. Rev.
– start-page: 87
  year: 2021
  ident: c9
  article-title: Surface-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Methods Primers
– start-page: 108019
  year: 2021
  ident: c10
  article-title: Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: A review
  publication-title: Food Control
– start-page: 2933
  year: 2020
  ident: c12
  article-title: Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers
  publication-title: ACS Sens.
– start-page: 113153
  year: 2021
  ident: c42
  article-title: Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants
  publication-title: Biosens. Bioelectron.
– start-page: 5170
  year: 2018
  ident: c39
  article-title: Optical force decoration of 3D microstructures with plasmonic particles
  publication-title: Opt. Lett.
– start-page: 4045
  year: 2021
  ident: c31
  article-title: High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure
  publication-title: Nanophotonics
– start-page: 16249
  year: 2007
  ident: c3
  article-title: A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
– start-page: 113421
  year: 2021
  ident: c44
  article-title: Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor
  publication-title: Biosens. Bioelectron.
– start-page: 5523
  year: 2021
  ident: c27
  article-title: Surface-enhanced Raman scattering and surface-enhanced infrared absorption by plasmon polaritons in three-dimensional nanoparticle supercrystals
  publication-title: ACS Nano
– start-page: 295
  year: 1996
  ident: c34
  article-title: Time domain electromagnetic field computation with finite difference methods
  publication-title: Int. J. Numer. Modell. Electron. Networks Devices Fields
– start-page: 163
  year: 1974
  ident: c4
  article-title: Raman spectra of pyridine adsorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
– start-page: 1394
  year: 2021
  ident: c43
  article-title: SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2
  publication-title: Nanomaterials
– start-page: 338978
  year: 2021
  ident: c16
  article-title: A review of surface-enhanced Raman spectroscopy in pathological processes
  publication-title: Anal. Chim. Acta
– start-page: 177
  year: 2022
  ident: c13
  article-title: Methods in Raman spectroscopy for saliva studies—A review
  publication-title: Appl. Spectrosc. Rev.
– start-page: 159136
  year: 2021
  ident: c24
  article-title: Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing
  publication-title: J. Alloys Compd.
– volume: 861
  start-page: 157999
  year: 2021
  ident: 2023101110061863600_c23
  article-title: TiO2 nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157999
– volume: 190
  start-page: 113421
  year: 2021
  ident: 2023101110061863600_c44
  article-title: Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113421
– volume: 213
  start-page: 114440
  year: 2022
  ident: 2023101110061863600_c18
  article-title: Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114440
– volume: 118
  start-page: 4946
  year: 2018
  ident: 2023101110061863600_c15
  article-title: Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00668
– volume: 32
  start-page: 495301
  year: 2021
  ident: 2023101110061863600_c20
  article-title: Fabrication of low cost highly structured silver capped aluminium nanorods as SERS substrate for the detection of biological pathogens
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac2097
– volume: 54
  start-page: 115301
  year: 2021
  ident: 2023101110061863600_c37
  article-title: Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/abce7f
– volume: 57
  start-page: 177
  year: 2022
  ident: 2023101110061863600_c13
  article-title: Methods in Raman spectroscopy for saliva studies—A review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2021.1969944
– volume: 118
  start-page: 2882
  year: 2018
  ident: 2023101110061863600_c8
  article-title: Plasmon waveguiding in nanowires
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00441
– volume: 1223
  start-page: 129258
  year: 2021
  ident: 2023101110061863600_c26
  article-title: Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2020.129258
– volume: 16
  start-page: 830
  year: 2019
  ident: 2023101110061863600_c17
  article-title: Biological imaging of chemical bonds by stimulated Raman scattering microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0538-0
– volume: 339
  start-page: 129843
  year: 2021
  ident: 2023101110061863600_c25
  article-title: Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.129843
– volume: 56
  start-page: 380
  year: 2021
  ident: 2023101110061863600_c11
  article-title: Surface enhanced Raman spectroscopy for bacteria analysis: A review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2020.1796698
– volume: 3
  start-page: e199
  year: 2014
  ident: 2023101110061863600_c1
  article-title: Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.80
– volume: 7
  start-page: 2000919
  year: 2020
  ident: 2023101110061863600_c30
  article-title: Plasmonic supercrystals with a layered structure studied by a combined TEM-SAXS-XCCA approach
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000919
– volume: 53
  start-page: 289
  year: 2021
  ident: 2023101110061863600_c19
  article-title: Design, fabrication and applications of electrospun nanofiber-based surface-enhanced Raman spectroscopy substrate
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2021.1950522
– volume: 38
  start-page: 2100087
  year: 2021
  ident: 2023101110061863600_c29
  article-title: Recent notable approaches to study self-assembly of nanoparticles with x-ray scattering and electron microscopy
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.202100087
– volume: 71
  start-page: 767
  year: 2017
  ident: 2023101110061863600_c14
  article-title: Raman spectroscopy of blood and blood components
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702816686593
– volume: 15
  start-page: 5523
  year: 2021
  ident: 2023101110061863600_c27
  article-title: Surface-enhanced Raman scattering and surface-enhanced infrared absorption by plasmon polaritons in three-dimensional nanoparticle supercrystals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00352
– volume: 26
  start-page: 163
  year: 1974
  ident: 2023101110061863600_c4
  article-title: Raman spectra of pyridine adsorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 24
  start-page: 3114
  year: 2014
  ident: 2023101110061863600_c41
  article-title: Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303384
– volume: 334
  start-page: 129634
  year: 2021
  ident: 2023101110061863600_c22
  article-title: Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.129634
– volume: 126
  start-page: 108019
  year: 2021
  ident: 2023101110061863600_c10
  article-title: Rapid detection of antibiotic residues in animal products using surface-enhanced Raman spectroscopy: A review
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108019
– volume: 44
  start-page: 1061
  year: 2013
  ident: 2023101110061863600_c49
  article-title: Raman spectroscopy of proteins: A review
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4335
– volume: 43
  start-page: 5170
  year: 2018
  ident: 2023101110061863600_c39
  article-title: Optical force decoration of 3D microstructures with plasmonic particles
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.005170
– volume: 11
  start-page: 1394
  year: 2021
  ident: 2023101110061863600_c43
  article-title: SERS-based aptasensor for rapid quantitative detection of SARS-CoV-2
  publication-title: Nanomaterials
  doi: 10.3390/nano11061394
– volume: 13
  start-page: 109
  year: 2021
  ident: 2023101110061863600_c47
  article-title: Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-021-00620-8
– volume: 26
  start-page: 281
  year: 2021
  ident: 2023101110061863600_c32
  article-title: A 3D plasmonic crossed-wire nanostructure for surface-enhanced Raman scattering and plasmon-enhanced fluorescence detection
  publication-title: Molecules
  doi: 10.3390/molecules26020281
– volume: 14
  start-page: 887
  year: 2012
  ident: 2023101110061863600_c33
  article-title: One-dimensional silver nanowires synthesized by self-seeding polyol process
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-0887-4
– volume: 93
  start-page: 16086
  year: 2021
  ident: 2023101110061863600_c45
  article-title: Construction of optimal SERS hotspots based on capturing the spike receptor-binding domain (RBD) of SARS-CoV-2 for highly sensitive and specific detection by a fish model
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03807
– volume: 5
  start-page: 2933
  year: 2020
  ident: 2023101110061863600_c12
  article-title: Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01412
– volume: 110
  start-page: 1944
  year: 2006
  ident: 2023101110061863600_c2
  article-title: Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054732v
– volume: 123
  start-page: 17951
  year: 2019
  ident: 2023101110061863600_c28
  article-title: Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03859
– volume: 4
  start-page: 11365
  year: 2016
  ident: 2023101110061863600_c36
  article-title: Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03308C
– volume: 868
  start-page: 159136
  year: 2021
  ident: 2023101110061863600_c24
  article-title: Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159136
– volume: 129
  start-page: 16249
  year: 2007
  ident: 2023101110061863600_c3
  article-title: A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077243c
– volume: 134
  start-page: 116122
  year: 2021
  ident: 2023101110061863600_c6
  article-title: Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116122
– volume: 11
  start-page: 4943
  year: 2021
  ident: 2023101110061863600_c46
  article-title: COVID-19 salivary Raman fingerprint: Innovative approach for the detection of current and past SARS-CoV-2 infections
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84565-3
– volume: 16
  start-page: 47
  year: 2021
  ident: 2023101110061863600_c5
  article-title: Current strategies for noble metal nanoparticle synthesis
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-021-03480-8
– volume: 1
  start-page: 87
  year: 2021
  ident: 2023101110061863600_c9
  article-title: Surface-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00083-6
– volume: 6
  start-page: 4370
  year: 1972
  ident: 2023101110061863600_c35
  article-title: Optical constants of the noble metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.4370
– volume: 14
  start-page: 28
  year: 2020
  ident: 2023101110061863600_c7
  article-title: Present and future of surface-enhanced Raman scattering
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04224
– volume: 265
  start-page: 120370
  year: 2022
  ident: 2023101110061863600_c21
  article-title: Facile fabrication of PS/Cu2S/Ag sandwich structure as SERS substrate for ultra-sensitive detection
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.120370
– volume: 6
  start-page: 32171
  year: 2016
  ident: 2023101110061863600_c38
  article-title: Effect of silver on the phase transition and wettability of titanium oxide films
  publication-title: Sci. Rep.
  doi: 10.1038/srep32171
– volume: 9
  start-page: 295
  year: 1996
  ident: 2023101110061863600_c34
  article-title: Time domain electromagnetic field computation with finite difference methods
  publication-title: Int. J. Numer. Modell. Electron. Networks Devices Fields
  doi: 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
– volume: 1187
  start-page: 338978
  year: 2021
  ident: 2023101110061863600_c16
  article-title: A review of surface-enhanced Raman spectroscopy in pathological processes
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338978
– volume: 181
  start-page: 113153
  year: 2021
  ident: 2023101110061863600_c42
  article-title: Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113153
– volume: 10
  start-page: 4045
  year: 2021
  ident: 2023101110061863600_c31
  article-title: High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0381
– volume: 28
  start-page: 8695
  year: 2016
  ident: 2023101110061863600_c40
  article-title: 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602603
– volume: 13
  start-page: 52
  year: 2021
  ident: 2023101110061863600_c48
  article-title: Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-020-00565-4
SSID ssj0060661
Score 2.3064952
Snippet The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
Title A multiscale 3D hotspot-rich nanostructured substrate for biomolecular detection of SARS-CoV-2
URI http://dx.doi.org/10.1063/5.0155256
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61RfQiPrE-SrAevAS7m002OS6tpRQraqv0ZMnmQQ-yK3b9_86-SgUFT7lMLt9O8n1hZr9B6Fo6JhXwJgmMYSTwdExiJjVRimnDQ2ptYZk_eeCjl2A8Z_MG6v5Rwef0NrfVZAyYeQu1fBDHkLqtaDx4eqwv3FyCe7Vp0OaGH1SzA4xSFrc3-GO4j_Yq4Yej8ksdoIZNDtF20YCpV0foLcJFb98KMLOYDvAyzeDFmRG4p5Y4UUlaOr1-fVqDV3DaC1dZDJIT53_Q10NusbFZ0VyV4NThafQ8Jf30lfjHaDa8m_VHpJp9QDQQREas8Y2WoeIxo04EzvSEkkIanysdeo7DM8XSQPa4sKGjQRxrynoGDpcyAlZ6gppJmthThKmiHpcxs7ESgRVaWV8b54QwgXC-9NropkZpUUOUj6d4XxT1aU4XbFEB2kZX69CP0gzjt6DuGuq_o87-FXWOdvPx7mX7yAVqAtD2EkRAFncgCQaT-2mnSoZvcwewFA
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64IHoRV9wNLuAlOtM0mfTgYXCUccVlFE-WNAsK0g62Iv4nf6SvmwsoePHUy6OkX17fQr58D2AjcDxQmDepbwynflNHNOKBpkpxbUSLWVtI5p-eie61f3TLbwfgrb4Lg4tIt9VDv5QI7j_tVADSR6w5n_ufggOC7eSCm5xjzq44lcf29QU7tnT3sIPbu-l5B_u9vS6thgpQjZE3o9Z4RgctJSLOnPSdaUgVyMB4QulW0wms_y3zg4aQtuWYH0Wa8YZBr1VG4pPhawdhGJt_gf_QcPuoc3FeR_68F2jW6kVf1_ct541iaitP2b8ksoMJGK8qUNIuv3gSBmw8BSMFE1Sn03DXJgXJMMXNs4R1yH2SYeubUQyY9yRWcVJKzj4_WUNSxLGQtyVY-5L8Kn89bZcYmxUsr5gkjly1L6_oXnJDvRno_QdeszAUJ7GdA8IUQ9AibiMlfSu1sp42zklpfOm8oDkPWzVKYQ1RPifjMSwOygULeVgBOg9rH6b9UpXjJ6P1D6h_t1r4k9UqjHZ7pyfhyeHZ8SKM5TPnS07LEgwh6HYZK5MsWqkcgkD4zy74DvgK9VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiscale+3D+hotspot-rich+nanostructured+substrate+for+biomolecular+detection+of+SARS-CoV-2&rft.jtitle=Applied+physics+reviews&rft.au=Sahoo%2C+Smruti+R.&rft.au=Huang%2C+Chun-Ta&rft.au=Tsai%2C+Kunju&rft.au=Wang%2C+Gou-Jen&rft.date=2023-12-01&rft.issn=1931-9401&rft.eissn=1931-9401&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1063%2F5.0155256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0155256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-9401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-9401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-9401&client=summon