Characterizing multi-pollutant emission impacts of sulfur reduction strategies from coal power plants
Abstract Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to impact multiple emissions together. While there has been extensive research on the co-benefits of climate policies on air quality impr...
Saved in:
Published in | Environmental research letters Vol. 19; no. 8; pp. 84009 - 84021 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to impact multiple emissions together. While there has been extensive research on the co-benefits of climate policies on air quality improvements, few studies have quantified the effect of air pollution controls on carbon emissions. Here we evaluate three multi-pollutant emission reduction strategies, focused on sulfur dioxide (SO 2 ) controls in the electricity sector. Traditional ‘add-on’ pollution controls like flue gas desulfurization (FGD) reduce SO 2 emissions from coal combustion but increase emissions of nitrogen oxides (NO X ), volatile organic compounds (VOCs), fine particulate matter (PM 2.5 ), and carbon dioxide (CO 2 ) due to heat efficiency loss. Fuel switching from coal to natural gas and renewables potentially reduces all pollutants. We identified 135 electricity generation units (EGUs) without SO 2 controls in the contiguous US in 2017 and quantified the unit-level emission changes using pollution control efficiencies, emission rates, fuel heat input, and electricity load. A cost-benefit analysis is conducted, considering pollution control costs, fuel costs, capital and operation and maintenance (O&M) costs, the monetized health benefits from avoided multi-pollutant, and the social cost of carbon as the benefit for carbon reduction. We find that add-on SO 2 controls result in an average annual net benefit of $179.3 million (95% CI: $137.5-$221.0 million) per EGU, fuel switching from coal to natural gas, $432.7 million (95% CI: $366.4-$498.9 million) per EGU; and fuel switching from coal to renewable energy sources, $537.9 million (95% CI: $457.1-$618.9 million) per EGU. Our results highlight multi-pollutant emission reduction strategy as a cost-effective way to synergistically control air pollution and mitigate climate change. |
---|---|
AbstractList | Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to impact multiple emissions together. While there has been extensive research on the co-benefits of climate policies on air quality improvements, few studies have quantified the effect of air pollution controls on carbon emissions. Here we evaluate three multi-pollutant emission reduction strategies, focused on sulfur dioxide (SO2) controls in the electricity sector. Traditional ‘add-on’ pollution controls like flue gas desulfurization (FGD) reduce SO2 emissions from coal combustion but increase emissions of nitrogen oxides (NOX), volatile organic compounds (VOCs), fine particulate matter (PM2.5), and carbon dioxide (CO2) due to heat efficiency loss. Fuel switching from coal to natural gas and renewables potentially reduces all pollutants. We identified 135 electricity generation units (EGUs) without SO2 controls in the contiguous US in 2017 and quantified the unit-level emission changes using pollution control efficiencies, emission rates, fuel heat input, and electricity load. A cost-benefit analysis is conducted, considering pollution control costs, fuel costs, capital and operation and maintenance (O&M) costs, the monetized health benefits from avoided multi-pollutant, and the social cost of carbon as the benefit for carbon reduction. We find that add-on SO2 controls result in an average annual net benefit of $179.3 million (95% CI: $137.5-$221.0 million) per EGU, fuel switching from coal to natural gas, $432.7 million (95% CI: $366.4-$498.9 million) per EGU; and fuel switching from coal to renewable energy sources, $537.9 million (95% CI: $457.1-$618.9 million) per EGU. Our results highlight multi-pollutant emission reduction strategy as a cost-effective way to synergistically control air pollution and mitigate climate change. Abstract Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to impact multiple emissions together. While there has been extensive research on the co-benefits of climate policies on air quality improvements, few studies have quantified the effect of air pollution controls on carbon emissions. Here we evaluate three multi-pollutant emission reduction strategies, focused on sulfur dioxide (SO 2 ) controls in the electricity sector. Traditional ‘add-on’ pollution controls like flue gas desulfurization (FGD) reduce SO 2 emissions from coal combustion but increase emissions of nitrogen oxides (NO X ), volatile organic compounds (VOCs), fine particulate matter (PM 2.5 ), and carbon dioxide (CO 2 ) due to heat efficiency loss. Fuel switching from coal to natural gas and renewables potentially reduces all pollutants. We identified 135 electricity generation units (EGUs) without SO 2 controls in the contiguous US in 2017 and quantified the unit-level emission changes using pollution control efficiencies, emission rates, fuel heat input, and electricity load. A cost-benefit analysis is conducted, considering pollution control costs, fuel costs, capital and operation and maintenance (O&M) costs, the monetized health benefits from avoided multi-pollutant, and the social cost of carbon as the benefit for carbon reduction. We find that add-on SO 2 controls result in an average annual net benefit of $179.3 million (95% CI: $137.5-$221.0 million) per EGU, fuel switching from coal to natural gas, $432.7 million (95% CI: $366.4-$498.9 million) per EGU; and fuel switching from coal to renewable energy sources, $537.9 million (95% CI: $457.1-$618.9 million) per EGU. Our results highlight multi-pollutant emission reduction strategy as a cost-effective way to synergistically control air pollution and mitigate climate change. Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to impact multiple emissions together. While there has been extensive research on the co-benefits of climate policies on air quality improvements, few studies have quantified the effect of air pollution controls on carbon emissions. Here we evaluate three multi-pollutant emission reduction strategies, focused on sulfur dioxide (SO _2 ) controls in the electricity sector. Traditional ‘add-on’ pollution controls like flue gas desulfurization (FGD) reduce SO _2 emissions from coal combustion but increase emissions of nitrogen oxides (NO _X ), volatile organic compounds (VOCs), fine particulate matter (PM _2.5 ), and carbon dioxide (CO _2 ) due to heat efficiency loss. Fuel switching from coal to natural gas and renewables potentially reduces all pollutants. We identified 135 electricity generation units (EGUs) without SO _2 controls in the contiguous US in 2017 and quantified the unit-level emission changes using pollution control efficiencies, emission rates, fuel heat input, and electricity load. A cost-benefit analysis is conducted, considering pollution control costs, fuel costs, capital and operation and maintenance (O&M) costs, the monetized health benefits from avoided multi-pollutant, and the social cost of carbon as the benefit for carbon reduction. We find that add-on SO _2 controls result in an average annual net benefit of $179.3 million (95% CI: $137.5-$221.0 million) per EGU, fuel switching from coal to natural gas, $432.7 million (95% CI: $366.4-$498.9 million) per EGU; and fuel switching from coal to renewable energy sources, $537.9 million (95% CI: $457.1-$618.9 million) per EGU. Our results highlight multi-pollutant emission reduction strategy as a cost-effective way to synergistically control air pollution and mitigate climate change. |
Author | Wu, Xinran Meier, Paul Edwards, Morgan Holloway, Tracey |
Author_xml | – sequence: 1 givenname: Xinran orcidid: 0009-0006-2173-9068 surname: Wu fullname: Wu, Xinran organization: Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison , Madison, WI 53705, United States of America – sequence: 2 givenname: Tracey orcidid: 0000-0002-8488-408X surname: Holloway fullname: Holloway, Tracey organization: University of Wisconsin-Madison Department of Atmospheric and Oceanic Sciences, Madison, WI 53705, United States of America – sequence: 3 givenname: Paul surname: Meier fullname: Meier, Paul organization: Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison , Madison, WI 53705, United States of America – sequence: 4 givenname: Morgan orcidid: 0000-0001-9296-7865 surname: Edwards fullname: Edwards, Morgan organization: La Follette School of Public Affairs, University of Wisconsin-Madison , Madison, WI 53705, United States of America |
BookMark | eNp1kc9v1TAMxyM0JLbBnWMkrnRz0x9JjuiJwaRJXOAcuYnzyFPblCQVgr-ePjoNLrvYlv31x5Z9xS7mOBNjb2u4qUGp21q2qtKN6G_RdTj0L9jlU-riv_gVu8r5BNC1nVSXjA7fMaEtlMLvMB_5tI4lVEscx7XgXDhNIecQZx6mZZNlHj3P6-jXxBO51ZZzLZeEhY6BMvcpTtxGHPkSf1Liy7hR8mv20uOY6c2jv2bf7j5-PXyuHr58uj98eKis0LpUDlvftWR1AxY0tVJDM0iNHtA3w9DqVggCJXohlHQKJHaN1AMN0vWuEXVzze53rot4MksKE6ZfJmIwfxMxHQ2mEuxIxjqrB-zQkvAtKK2gV9gBEDmSXU0b693OWlL8sVIu5hTXNG_rmwakrjcj5aaCXWVTzDmRf5pagzk_xpwvb86XN_tjtpb3e0uIyz_ms_I_eLuTHw |
CODEN | ERLNAL |
Cites_doi | 10.1038/s41598-018-20404-2 10.1016/j.apenergy.2021.116494 10.1021/es201942m 10.1016/j.eneco.2020.104917 10.1007/s11869-009-0044-0 10.1016/j.tej.2016.12.007 10.1088/1748-9326/ab31d9 10.1021/acs.est.8b06417 10.1016/j.enpol.2015.09.041 10.1016/j.jclepro.2013.03.024 10.1016/j.aap.2016.04.026 10.1038/s41586-022-05224-9 10.1016/j.cjpre.2023.11.009 10.1080/10962247.2016.1192071 10.1073/pnas.1202407109 10.1080/20016689.2020.1717030 10.1016/j.engeos.2020.11.001 10.3389/fpubh.2020.563358 10.1038/s41467-021-27252-1 10.1016/j.eng.2019.10.018 10.1016/j.atmosenv.2017.11.049 10.1596/978-1-4648-0522-6_ch13 10.1016/j.atmosenv.2014.04.057 10.1038/s41893-019-0221-6 10.1016/j.jclepro.2013.10.023 10.1073/pnas.2214262120 10.1088/1748-9326/ac4ec2 10.1016/j.scitotenv.2017.03.287 10.1016/j.jenvman.2021.113829 10.1007/s10311-022-01532-8 10.1109/CCA.2010.5611176 10.1016/j.jclepro.2018.06.035 10.1002/2013ef000196 10.5094/APR.2010.037 10.5547/01956574.34.L8 10.1016/j.scitotenv.2018.09.273 10.1016/j.energy.2016.03.078 10.1016/j.enpol.2007.10.013 10.1088/1748-9326/5/1/014007 10.3390/en12203908 10.1016/j.jclepro.2013.12.017 10.1007/s10098-022-02328-8 10.1017/bca.2017.16 10.1016/j.rser.2023.113189 10.1016/j.enpol.2017.03.009 10.1016/j.gsf.2022.101498 10.1016/j.jclepro.2019.119515 10.1126/science.adf4915 10.1016/j.jes.2022.04.003 10.1002/ep.13630 10.1016/j.jclepro.2015.04.098 10.1016/j.jenvman.2023.118731 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1088/1748-9326/ad5ab6 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database ProQuest Central Student Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Environmental Science Collection ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: IOP_英国物理学会OA刊 url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1748-9326 |
ExternalDocumentID | oai_doaj_org_article_cdc9ba5ace2f40898068a500eede751e 10_1088_1748_9326_ad5ab6 erlad5ab6 |
GrantInformation_xml | – fundername: Earthjustice |
GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KNG KQ8 LAP M7S M~E N5L N9A O3W OK1 P2P PATMY PIMPY PJBAE PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX CITATION 8FE 8FG ABUWG AZQEC DWQXO GNUQQ L6V PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c299t-da4f54ec930c09e47903b79af0af3bb49422e08262287d807a5379beb7d6d3213 |
IEDL.DBID | O3W |
ISSN | 1748-9326 |
IngestDate | Tue Oct 22 15:10:16 EDT 2024 Thu Oct 10 22:56:00 EDT 2024 Wed Jul 31 12:33:25 EDT 2024 Sun Aug 18 17:40:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c299t-da4f54ec930c09e47903b79af0af3bb49422e08262287d807a5379beb7d6d3213 |
Notes | ERL-117939.R2 |
ORCID | 0009-0006-2173-9068 0000-0001-9296-7865 0000-0002-8488-408X |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1748-9326/ad5ab6 |
PQID | 3079130777 |
PQPubID | 4998671 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cdc9ba5ace2f40898068a500eede751e proquest_journals_3079130777 crossref_primary_10_1088_1748_9326_ad5ab6 iop_journals_10_1088_1748_9326_ad5ab6 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Environmental research letters |
PublicationTitleAbbrev | ERL |
PublicationTitleAlternate | Environ. Res. Lett |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Liu (erlad5ab6bib23) 2013; 58 Peng (erlad5ab6bib24) 2017; 598 Osman (erlad5ab6bib64) 2023; 21 Abel (erlad5ab6bib25) 2019; 53 Zhu (erlad5ab6bib28) 2020; 250 Wan (erlad5ab6bib39) 2023; 345 Henneman (erlad5ab6bib71) 2023; 382 Cao (erlad5ab6bib66) 2023; 21 Huisingh (erlad5ab6bib60) 2015; 103 Feng (erlad5ab6bib8) 2014; 68 Zhang (erlad5ab6bib38) 2023; 123 EPA (erlad5ab6bib41) Wang (erlad5ab6bib17) 2020; 6 NREL (erlad5ab6bib46) Filonchyk (erlad5ab6bib3) 2023; 14 Frey (erlad5ab6bib7) 2013; 34 Rennert (erlad5ab6bib51) 2022; 610 Deng (erlad5ab6bib6) 2019; 12 EIA (erlad5ab6bib45) Cropper (erlad5ab6bib19) 2017 EIA (erlad5ab6bib43) 2016 Gallagher (erlad5ab6bib31) 2020; 8 Kumari (erlad5ab6bib58) 2022; 301 Yang (erlad5ab6bib69) 2016; 95 Resource Watch (erlad5ab6bib53) Finkelman (erlad5ab6bib1) 2021; 2 Wei (erlad5ab6bib12) 2020; 92 Global Energy Monitor (erlad5ab6bib5) US Census Bureau (erlad5ab6bib52) McDougall (erlad5ab6bib68) 2020; 8 Alvarez (erlad5ab6bib56) 2012; 109 Brown (erlad5ab6bib15) 2017; 30 Kavouridis (erlad5ab6bib59) 2008; 36 Tang (erlad5ab6bib61) 2015; 87 EPA (erlad5ab6bib42) EPA (erlad5ab6bib50) Edwards (erlad5ab6bib62) 2022; 17 EPA (erlad5ab6bib57) 1998 Karplus (erlad5ab6bib18) 2023; 120 Alvarez-Herranz (erlad5ab6bib27) 2017; 105 Asif (erlad5ab6bib2) 2022 Hoffmann (erlad5ab6bib67) 2017; 8 Dimanchev (erlad5ab6bib32) 2019; 14 EPA (erlad5ab6bib48) 1995 EPA (erlad5ab6bib49) 2018 Resource Watch (erlad5ab6bib54) IEA & NEA (erlad5ab6bib65) 2020 Wolfe (erlad5ab6bib72) 2019; 650 EPA (erlad5ab6bib47) Li (erlad5ab6bib36) 2021; 285 Mao (erlad5ab6bib11) 2014; 67 Oberschelp (erlad5ab6bib35) 2019; 2 de Gouw (erlad5ab6bib22) 2014; 2 Lueken (erlad5ab6bib21) 2016; 109 Nemet (erlad5ab6bib29) 2010; 5 Schuster (erlad5ab6bib14) 2010 Lin (erlad5ab6bib10) 2018; 8 Dupré la Tour (erlad5ab6bib63) 2023; 179 Fann (erlad5ab6bib70) 2009; 2 Guttikunda (erlad5ab6bib20) 2014; 92 EPA (erlad5ab6bib40) Abel (erlad5ab6bib26) 2018; 175 IEA (erlad5ab6bib4) Thompson (erlad5ab6bib30) 2016; 66 EIA (erlad5ab6bib44) Ortolano (erlad5ab6bib9) 2018 Wang (erlad5ab6bib33) 2021; 12 EIA (erlad5ab6bib16) Wesson (erlad5ab6bib34) 2010; 1 Du (erlad5ab6bib13) 2021; 43 Wu (erlad5ab6bib37) 2018; 199 Burnham (erlad5ab6bib55) 2012; 46 |
References_xml | – volume: 8 start-page: 1 year: 2018 ident: erlad5ab6bib10 article-title: A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease publication-title: Sci. Rep. doi: 10.1038/s41598-018-20404-2 contributor: fullname: Lin – ident: erlad5ab6bib40 contributor: fullname: EPA – ident: erlad5ab6bib44 contributor: fullname: EIA – volume: 285 year: 2021 ident: erlad5ab6bib36 article-title: Unit-level cost-benefit analysis for coal power plants retrofitted with biomass Co-firing at a national level by combined GIS and life cycle assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116494 contributor: fullname: Li – volume: 46 start-page: 619 year: 2012 ident: erlad5ab6bib55 article-title: Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum publication-title: Environ. Sci. Technol. doi: 10.1021/es201942m contributor: fullname: Burnham – volume: 92 year: 2020 ident: erlad5ab6bib12 article-title: Evaluation of potential Co-benefits of air pollution control and climate mitigation policies for China’s electricity sector publication-title: Energy Econ. doi: 10.1016/j.eneco.2020.104917 contributor: fullname: Wei – volume: 2 start-page: 169 year: 2009 ident: erlad5ab6bib70 article-title: The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-009-0044-0 contributor: fullname: Fann – year: 1995 ident: erlad5ab6bib48 contributor: fullname: EPA – volume: 30 start-page: 17 year: 2017 ident: erlad5ab6bib15 article-title: Sulfur dioxide emission reductions: shifting factors and a carbon dioxide penalty publication-title: Electr. J. doi: 10.1016/j.tej.2016.12.007 contributor: fullname: Brown – ident: erlad5ab6bib41 contributor: fullname: EPA – volume: 14 start-page: 8 year: 2019 ident: erlad5ab6bib32 article-title: Health Co-benefits of sub-national renewable energy policy in the US publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab31d9 contributor: fullname: Dimanchev – ident: erlad5ab6bib16 contributor: fullname: EIA – volume: 53 start-page: 3987 year: 2019 ident: erlad5ab6bib25 article-title: Air quality-related health benefits of energy efficiency in the United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06417 contributor: fullname: Abel – volume: 87 start-page: 517 year: 2015 ident: erlad5ab6bib61 article-title: Clean coal use in china: challenges and policy implications publication-title: Energy Policy doi: 10.1016/j.enpol.2015.09.041 contributor: fullname: Tang – volume: 58 start-page: 25 year: 2013 ident: erlad5ab6bib23 article-title: Integrating mitigation of air pollutants and greenhouse gases in Chinese cities: development of GAINS-city model for beijing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.03.024 contributor: fullname: Liu – ident: erlad5ab6bib42 contributor: fullname: EPA – volume: 95 start-page: 308 year: 2016 ident: erlad5ab6bib69 article-title: Estimation of social value of statistical life using willingness-to-pay method in nanjing, China publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.04.026 contributor: fullname: Yang – ident: erlad5ab6bib45 contributor: fullname: EIA – volume: 610 start-page: 687 year: 2022 ident: erlad5ab6bib51 article-title: Comprehensive evidence implies a higher social cost of CO2 publication-title: Nature doi: 10.1038/s41586-022-05224-9 contributor: fullname: Rennert – ident: erlad5ab6bib4 contributor: fullname: IEA – volume: 21 start-page: 269 year: 2023 ident: erlad5ab6bib66 article-title: Estimating the value of a statistical life in china: a contingent valuation study in six representative cities publication-title: Chin. J. Popul. Resour. Environ. doi: 10.1016/j.cjpre.2023.11.009 contributor: fullname: Cao – volume: 66 start-page: 988 year: 2016 ident: erlad5ab6bib30 article-title: Air quality Co-benefits of subnational carbon policies publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2016.1192071 contributor: fullname: Thompson – volume: 109 start-page: 17 year: 2012 ident: erlad5ab6bib56 article-title: Greater focus needed on methane leakage from natural gas infrastructure publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1202407109 contributor: fullname: Alvarez – year: 2018 ident: erlad5ab6bib9 contributor: fullname: Ortolano – volume: 8 year: 2020 ident: erlad5ab6bib68 article-title: Understanding the global measurement of willingness to pay in health publication-title: J. Market Access. Health Policy doi: 10.1080/20016689.2020.1717030 contributor: fullname: McDougall – volume: 2 start-page: 99 year: 2021 ident: erlad5ab6bib1 article-title: The future environmental and health impacts of coal publication-title: Energy Geosci. doi: 10.1016/j.engeos.2020.11.001 contributor: fullname: Finkelman – volume: 8 year: 2020 ident: erlad5ab6bib31 article-title: Integrating air quality and public health benefits in U.S. decarbonization strategies publication-title: Front. Public Health doi: 10.3389/fpubh.2020.563358 contributor: fullname: Gallagher – volume: 12 start-page: 1 year: 2021 ident: erlad5ab6bib33 article-title: Location-specific Co-benefits of carbon emissions reduction from coal-fired power plants in China publication-title: Nat. Commun. doi: 10.1038/s41467-021-27252-1 contributor: fullname: Wang – ident: erlad5ab6bib46 contributor: fullname: NREL – volume: 6 start-page: 1408 year: 2020 ident: erlad5ab6bib17 article-title: Near-zero air pollutant emission technologies and applications for clean coal-fired power publication-title: Engineering doi: 10.1016/j.eng.2019.10.018 contributor: fullname: Wang – volume: 175 start-page: 65 year: 2018 ident: erlad5ab6bib26 article-title: Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.049 contributor: fullname: Abel – year: 2017 ident: erlad5ab6bib19 article-title: Costs and benefits of installing flue-gas desulfurization units at coal-fired power plants in India doi: 10.1596/978-1-4648-0522-6_ch13 contributor: fullname: Cropper – ident: erlad5ab6bib50 contributor: fullname: EPA – volume: 92 start-page: 449 year: 2014 ident: erlad5ab6bib20 article-title: Atmospheric emissions and pollution from the coal-fired thermal power plants in India publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.04.057 contributor: fullname: Guttikunda – volume: 2 start-page: 113 year: 2019 ident: erlad5ab6bib35 article-title: Global emission hotspots of coal power generation publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0221-6 contributor: fullname: Oberschelp – volume: 68 start-page: 81 year: 2014 ident: erlad5ab6bib8 article-title: Comparative life cycle environmental assessment of flue gas desulphurization technologies in china publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.10.023 contributor: fullname: Feng – volume: 120 year: 2023 ident: erlad5ab6bib18 article-title: Dynamic responses of SO2 pollution to China’s environmental inspections publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2214262120 contributor: fullname: Karplus – volume: 17 start-page: 2 year: 2022 ident: erlad5ab6bib62 article-title: Quantifying the regional stranded asset risks from new coal plants under 1.5 °C publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac4ec2 contributor: fullname: Edwards – volume: 598 start-page: 1076 year: 2017 ident: erlad5ab6bib24 article-title: Substantial air quality and climate Co-benefits achievable now with sectoral mitigation strategies in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.287 contributor: fullname: Peng – volume: 301 year: 2022 ident: erlad5ab6bib58 article-title: A decision analysis model for reducing carbon emission from coal-fired power plants and its compensatory units publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113829 contributor: fullname: Kumari – volume: 21 start-page: 741 year: 2023 ident: erlad5ab6bib64 article-title: Cost, environmental impact, and resilience of renewable energy under a changing climate: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-022-01532-8 contributor: fullname: Osman – start-page: 2184 year: 2010 ident: erlad5ab6bib14 article-title: Integrated real-time optimization of boiler and post-combustion system in coal-based power plants via extremum seeking doi: 10.1109/CCA.2010.5611176 contributor: fullname: Schuster – year: 2016 ident: erlad5ab6bib43 contributor: fullname: EIA – volume: 199 start-page: 1035 year: 2018 ident: erlad5ab6bib37 article-title: Integrating synergistic effects of air pollution control technologies: more cost-effective approach in the coal-fired sector in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.035 contributor: fullname: Wu – ident: erlad5ab6bib53 contributor: fullname: Resource Watch – volume: 2 start-page: 75 year: 2014 ident: erlad5ab6bib22 article-title: Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology publication-title: Earths Future doi: 10.1002/2013ef000196 contributor: fullname: de Gouw – ident: erlad5ab6bib47 contributor: fullname: EPA – year: 2020 ident: erlad5ab6bib65 contributor: fullname: IEA & NEA – volume: 1 start-page: 296 year: 2010 ident: erlad5ab6bib34 article-title: Multi-pollutant, risk-based approach to air quality management: case study for detroit publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2010.037 contributor: fullname: Wesson – volume: 34 start-page: 177 year: 2013 ident: erlad5ab6bib7 article-title: Technology diffusion and environmental regulation: the adoption of scrubbers by coal-fired power plants publication-title: Source doi: 10.5547/01956574.34.L8 contributor: fullname: Frey – volume: 650 start-page: 2490 year: 2019 ident: erlad5ab6bib72 article-title: Monetized health benefits attributable to mobile source emission reductions across the United States in 2025 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.273 contributor: fullname: Wolfe – volume: 109 start-page: 1160 year: 2016 ident: erlad5ab6bib21 article-title: The climate and health effects of a USA switch from coal to gas electricity generation publication-title: Energy doi: 10.1016/j.energy.2016.03.078 contributor: fullname: Lueken – volume: 36 start-page: 693 year: 2008 ident: erlad5ab6bib59 article-title: Coal and sustainable energy supply challenges and barriers publication-title: Energy Policy doi: 10.1016/j.enpol.2007.10.013 contributor: fullname: Kavouridis – volume: 5 start-page: 1 year: 2010 ident: erlad5ab6bib29 article-title: Implications of incorporating air-quality co-benefits into climate change policymaking publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/5/1/014007 contributor: fullname: Nemet – volume: 12 start-page: 20 year: 2019 ident: erlad5ab6bib6 article-title: Flue gas desulphurization in circulating fluidized beds publication-title: Energies doi: 10.3390/en12203908 contributor: fullname: Deng – volume: 67 start-page: 220 year: 2014 ident: erlad5ab6bib11 article-title: Co-control of local air pollutants and CO2 from the Chinese coal-fired power industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.12.017 contributor: fullname: Mao – year: 1998 ident: erlad5ab6bib57 contributor: fullname: EPA – year: 2022 ident: erlad5ab6bib2 article-title: Update on air pollution control strategies for coal-fired power plants doi: 10.1007/s10098-022-02328-8 contributor: fullname: Asif – volume: 8 start-page: 251 year: 2017 ident: erlad5ab6bib67 article-title: Building a set of internationally comparable value of statistical life studies: estimates of Chinese willingness to pay to reduce mortality risk publication-title: J. Benefit Cost Anal. doi: 10.1017/bca.2017.16 contributor: fullname: Hoffmann – volume: 179 year: 2023 ident: erlad5ab6bib63 article-title: Photovoltaic and wind energy potential in europe—a systematic review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113189 contributor: fullname: Dupré la Tour – year: 2018 ident: erlad5ab6bib49 contributor: fullname: EPA – ident: erlad5ab6bib5 contributor: fullname: Global Energy Monitor – volume: 105 start-page: 386 year: 2017 ident: erlad5ab6bib27 article-title: Energy innovation and renewable energy consumption in the correction of air pollution levels publication-title: Energy Policy doi: 10.1016/j.enpol.2017.03.009 contributor: fullname: Alvarez-Herranz – volume: 14 start-page: 2 year: 2023 ident: erlad5ab6bib3 article-title: An integrated analysis of air pollution from US coal-fired power plants publication-title: Geosci. Front. doi: 10.1016/j.gsf.2022.101498 contributor: fullname: Filonchyk – volume: 250 year: 2020 ident: erlad5ab6bib28 article-title: Does renewable energy technological innovation control China’s air pollution? A spatial analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119515 contributor: fullname: Zhu – volume: 382 start-page: 941 year: 2023 ident: erlad5ab6bib71 article-title: Mortality risk from united states coal electricity generation publication-title: Science doi: 10.1126/science.adf4915 contributor: fullname: Henneman – volume: 123 start-page: 270 year: 2023 ident: erlad5ab6bib38 article-title: Technology development and cost analysis of multiple pollutant abatement for ultra-low emission coal-fired power plants in China publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2022.04.003 contributor: fullname: Zhang – volume: 43 year: 2021 ident: erlad5ab6bib13 article-title: Analysis of the synergistic effects of air pollutant emission reduction and carbon emissions at coal-fired power plants in China publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.13630 contributor: fullname: Du – volume: 103 start-page: 1 year: 2015 ident: erlad5ab6bib60 article-title: Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.04.098 contributor: fullname: Huisingh – ident: erlad5ab6bib52 contributor: fullname: US Census Bureau – volume: 345 year: 2023 ident: erlad5ab6bib39 article-title: Cost-benefits analysis of ultra-low emissions standard on air quality and health impact in thermal power plants in China publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2023.118731 contributor: fullname: Wan – ident: erlad5ab6bib54 contributor: fullname: Resource Watch |
SSID | ssj0054578 |
Score | 2.4433727 |
Snippet | Abstract Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel... Fuel combustion for electricity generation emits a mix of health- and climate-relevant air emissions, with the potential for technology or fuel switching to... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 84009 |
SubjectTerms | Air pollution Air pollution control Air pollution effects Air quality Carbon Carbon dioxide Climate change Climate change mitigation Climate policy Coal Coal-fired power plants Combustion Cost benefit analysis Costs Electrical loads Electricity Electricity generation Emission analysis emission reduction Emissions Emissions control Energy costs Environmental policy Flue gas Fuel combustion fuel switching Industrial plant emissions multi-pollutant Natural gas net benefits Nitrogen oxides Organic compounds Outdoor air quality Particulate emissions Particulate matter Pollutants Pollution control Power plants Renewable energy sources Sulfur Sulfur dioxide Switching VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxfxVaxWyUEPHpamm2STHFVaiqAnC70teS0IpV267cVf78zutlUEvXjdDSTMl3kkmfmGkFvvJZhAwROnC7y6qd93FU-Y40F757RUWJz88ppNpuJ5JmdfWn1hTlhDD9wIbuCDN85K62NaCKaNZplGFn-w7VHJYaytLzPbw1RjgyEsULp9lAQ1GkDYDWoNkcrABmld9s0J1Vz94Frel-UPg1x7mfExOWrDQ_rQLOuEHMTFKemO9tVo8LNVx-qMxKcd3fIHuCBaZwcmJXYvxubAFHu54W0YbWohK7osaLWZF5sVXSFlK4JCq_WWLYJirQn1S5ijxOZptJxjlsw5mY5Hb0-TpO2bkHhwLuskWFFIEb3hzDMThTKMO2VswWzBnRNGpGkE15-lcFwKmikruTIuOhWywNMh75LOYrmIF4QGK33ICg6a70RgzjIPcg8RoLAhy1SP3G8FmZcNPUZeP2trnaPQcxR63gi9Rx5R0rtxSGxdfwC48xbu_C-4e-QOcMpbRat-may_RXI_GOyZAZ-tlLr8j7VckcMUQpwmHbBPOuvVJl5DiLJ2N_Vu_AQwLOcw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSxwxFA-6e_EitipdqyWHeuhh2DhJJslJXFkRwaVIBW9DvqYUZGfc2b341_e9mYxLKSxzmwQC7-V95H39CPnuvQQVKHjmdIWhmy6_q3jGHA_aO6elwubkx0Vx_yweXuRLCri1qaxy0Imdog61xxj5FO6iAX2rlLpu3jJEjcLsaoLQ2CfjHF4KbETGs_ni59Ogi8E9UDolJ0GcpuB-g3iDxzK1QVpX_GOMupn9YGL-1M1_irmzNndH5DC5ifSm5-snsheXn8npfNuVBotJLNtjEm8_xi6_gymiXZVg1iCKMYIEU8R0w6gY7XsiW1pXtN28VpsVXeHoVmQObdfD1AiKPSfU13BGgyBqtHnFapkT8nw3_3V7nyX8hMyDkVlnwYpKiugNZ56ZKJRh3CljK2Yr7pwwIs8juABFDs-moJmykivjolOhCDy_4qdktKyX8QuhwUofioqDBnAiMGeZjwG-SjAbikJNyI-BkGXTj8kou_S21iUSvUSilz3RJ2SGlP7YhwOuux_16neZ5KX0wRtnpfUxhzO00azQCN4AJj0qeRUn5BL4VCaBa3ccdj5wcrt5e5fOdi9_JQc5ODF9wd85Ga1Xm3gBTsjafUs37S8P597U priority: 102 providerName: ProQuest |
Title | Characterizing multi-pollutant emission impacts of sulfur reduction strategies from coal power plants |
URI | https://iopscience.iop.org/article/10.1088/1748-9326/ad5ab6 https://www.proquest.com/docview/3079130777 https://doaj.org/article/cdc9ba5ace2f40898068a500eede751e |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcMTjwgUVWsRSWPlADz2kmNiObXECtAtUKqCqCG6RXzmh3Wize-HrmUmyixBVVUWKosTJRDOehz0vgOMQFIpAKTJvKtq6af27WmTci2iC90ZpSk7-dVtcP8ifT-ppDc5WuTDTuhf9P_CyKxTcobAPiDMnaEMjj6LZceKicr5Yh01B3jKczHficSmG0TLQpvdL_u2td3qoLdeP2gVBfpDJraIZf4Lt3kJk593_7MBamuzC3ugtIQ0f9hzZfIZ0uaq4_IJaiLUBgllNDYypPzCjdm60Ica6dMiGTSvWLJ6rxYzNqGor0YU182XBCEbpJixMEUZN_dNY_UyBMl_gYTz6c3md9a0TsoD6ZZ5FJyslU7CCB26T1JYLr62ruKuE99LKPE-o_YscV0zRcO2U0NYnr2MRRX4q9mBjMp2kfWDRqRCLSiDzexm5dzykiEcluYtFoQfwfYnIsu4qZJStZ9uYkpBeEtLLDukDuCBMr8ZRbev2BtK57Olchhisd8qFlCMMYw0vDPVtQG2etDpNA_iGdCp7Xmv-AexwScm3wSjSLKptrfXBf37mK2zlaMh0QX-HsDGfLdIRGiJzP4R1M74awubF6Pb-97BdzuP55u5-2E7FV5E74JI |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38877,38902,43612,43817,53854,53880 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxQxFA_aHvQiVi2urW0OevAwbDpJJslJbNmyaruItNBbyNcUoeyMO7uX_vW-N5PpIoUyt0kg8F7eR97Xj5BPIUhQgYIXXtcYuunzu4oXzPOog_daKmxOvlxU82vx40be5IBbl8sqR53YK-rYBIyRT-EuGtC3Sqmv7d8CUaMwu5ohNJ6TXRxVBY-v3dPZ4tfvUReDe6B0Tk6COE3B_QbxBo9l6qJ0vvrPGPUz-8HE_GnaR4q5tzbnr8mr7CbSbwNf98iztHxD9mfbrjRYzGLZvSXp7GHs8j2YItpXCRYtohgjSDBFTDeMitGhJ7KjTU27zV29WdEVjm5F5tBuPU6NoNhzQkMDZ7QIokbbO6yWeUeuz2dXZ_Mi4ycUAYzMuohO1FKkYDgLzCShDONeGVczV3PvhRFlmcAFqEp4NkXNlJNcGZ-8ilXk5QnfJzvLZpneExqdDLGqOWgALyLzjoUU4asFc7Gq1IR8GQlp22FMhu3T21pbJLpFotuB6BNyipR-2IcDrvsfzerWZnmxIQbjnXQhlXCGNppVGsEbwKQnJU_ShHwGPtkscN0Thx2OnNxu3t6lD08vH5MX86vLC3vxffHzgLwswaEZiv8Oyc56tUkfwSFZ-6N86_4BybLhzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYolapeELRFXaDgQ3voIayJ7dg-8loBbWkPReVm-XlCu9Fm98KvZybxgqqiCuUSJU4mmrFnJp6Zbwj5HIIEFSh45XXGrZs-vqt4xTyPOnivpcLi5B_XzcWNuLqVt6XPaV8LM2uL6j-E0wEoeGBhSYjTY_ChYY2C2zF2UTrfjNuYX5HXEmFNYEL_5H9Wqhi8A6VLbPK5J_-yRT1kP1gYIPuPXu6NzWSTbBQvkR4P37RF1tL0Hdk-fypKg5tlVXbvSTp9RF2-B0tE-yTBqsUmxtgjmGJLN9wUo0NJZEdnmXbLu7yc0zkit6JsaLdYgUZQLDmhYQY0WuyhRts7TJb5QG4m579PL6rSPqEKYGMWVXQiS5GC4Swwk4QyjHtlXGYuc--FEXWdwANoavhripopJ7kyPnkVm8jrI75N1qezafpIaHQyxCZzUABeROYdCynCkQVzsWnUiHxdMdK2A0qG7aPbWltkukWm24HpI3KCnH4ch_jW_QWQtS2ytiEG4510IdVAQxvNGo29G8CiJyWP0oh8ATnZst66_xDbW0nyaTCoNQOmWym188LXHJA3v84m9vvl9bdd8rYGv2bIAdwj64v5Mn0Cv2Th9_u59wCvM-AR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+multi-pollutant+emission+impacts+of+sulfur+reduction+strategies+from+coal+power+plants&rft.jtitle=Environmental+research+letters&rft.au=Wu%2C+Xinran&rft.au=Holloway%2C+Tracey&rft.au=Meier%2C+Paul&rft.au=Edwards%2C+Morgan&rft.date=2024-08-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=19&rft.issue=8&rft_id=info:doi/10.1088%2F1748-9326%2Fad5ab6&rft.externalDocID=erlad5ab6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |