Enhancing the EEG classification in RSVP task by combining interval model of ERPs with spatial and temporal regions of interest

Objective. Brain–computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images....

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 18; no. 1; p. 16008
Main Authors Li, Bowen, Lin, Yanfei, Gao, Xiaorong, Liu, Zhiwen
Format Journal Article
LanguageEnglish
Published England 01.02.2021
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/abc8d5

Cover

Loading…
Abstract Objective. Brain–computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data. Approach. This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials. Main results. EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance. Significance. The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
AbstractList Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data. This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials. EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance. The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
Objective. Brain–computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data. Approach. This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials. Main results. EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance. Significance. The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
Objective.Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data.Approach.This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials.Main results.EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance.Significance.The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.Objective.Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data.Approach.This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials.Main results.EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance.Significance.The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
Author Lin, Yanfei
Gao, Xiaorong
Liu, Zhiwen
Li, Bowen
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0002-5886-4325
  surname: Li
  fullname: Li, Bowen
– sequence: 2
  givenname: Yanfei
  orcidid: 0000-0001-8874-1986
  surname: Lin
  fullname: Lin, Yanfei
– sequence: 3
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
– sequence: 4
  givenname: Zhiwen
  surname: Liu
  fullname: Liu, Zhiwen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33166945$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtPwzAUhS0EAlrYmZBHloKdxEkzIhQeUiUQr9W68YMaErvYLoiJv45DCwMSkx_3fMfWOSO0aZ1VCB1QckzJdHpCq4JOMsayE2jFVLINtPt7tfm7L8kOGoXwTEhOq5pso508p2VZF2wXfTZ2DlYY-4TjXOGmucCigxCMNgKicRYbi2_vHm9whPCC2w8sXN8aOwDGRuXfoMO9k6rDTuPm9ibgdxPnOCwSnUZgJY6qXzifDl49JccwKL9ZFeIe2tLQBbW_Xsfo4by5P7uczK4vrs5OZxOR1XWcpA8DE1UpAHLJdJ1p0WpSq6ItiNA0q_KKadrKvBUVSMLyTGaklIKpKUCZxmN0tPJdePe6TA_z3gShug6scsvAs4LVOaOsIkl6uJYu215JvvCmB__Bf0JLgnIlEN6F4JXmwsTvsKIH03FK-NAOH-LnQxV81U4CyR_wx_tf5AsKgZOR
CitedBy_id crossref_primary_10_1088_1741_2552_ac1610
crossref_primary_10_1016_j_bspc_2024_106583
crossref_primary_10_11834_jig_230031
crossref_primary_10_1109_TBME_2024_3439820
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_1088_1741_2552_ad4593
crossref_primary_10_1109_TNSRE_2023_3263502
crossref_primary_10_1109_TNSRE_2023_3285309
crossref_primary_10_1088_1741_2552_acb96f
crossref_primary_10_1109_TBME_2023_3309255
Cites_doi 10.1109/TNNLS.2014.2302898
10.1007/978-3-642-39454-6_36
10.1016/j.clinph.2007.04.019
10.1109/MSP.2008.4408441
10.1145/1961189.1961199
10.1109/TBME.2005.851521
10.1088/1741-2552/aabb82
10.1016/j.neuroimage.2010.06.048
10.1017/S0048577201393137
10.1109/34.75512
10.1016/0301-0511(95)05130-9
10.1016/j.ins.2014.08.013
10.1109/TNSRE.2018.2847316
10.1109/MSP.2008.4408447
10.5555/2997046.2997098
10.1142/S0129065718500181
10.1109/TITS.2013.2291402
10.1016/j.patcog.2016.08.025
10.1109/TNSRE.2013.2243471
10.3758/s13415-013-0179-1
10.1016/j.jneumeth.2007.07.017
10.1371/journal.pone.0184713
10.1109/TNNLS.2015.2496284
10.1109/TNSRE.2014.2304884
10.1088/1741-2552/aa9817
10.1016/j.neuroimage.2008.03.031
10.1007/978-3-540-74972-1_17
10.1142/S0129065714500038
10.1016/j.chemolab.2015.06.006
10.1073/pnas.1508080112
10.1088/1741-2560/8/3/036025
10.1109/JPROC.2009.2038406
10.1016/j.jneumeth.2003.10.009
10.1109/TBME.2011.2158542
10.1016/j.jneumeth.2010.11.016
10.1016/j.ins.2016.08.068
10.1016/j.ins.2009.06.023
10.1016/j.ins.2013.06.044
10.1088/1741-2560/13/6/061001
10.1088/1741-2552/aab2f2
10.1109/NER.2013.6696202
10.1109/TBME.2016.2583200
10.1109/TBME.2013.2289898
10.1016/j.bspc.2017.03.001
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/abc8d5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 33166945
10_1088_1741_2552_abc8d5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
CGR
CUY
CVF
ECM
EIF
HAK
NPM
7X8
ID FETCH-LOGICAL-c299t-331a5c76caa3d5f92fcbf09e4b40cf127375f1bd3bc7ad0532d206dc5e8aa6273
ISSN 1741-2560
1741-2552
IngestDate Fri Jul 11 01:14:18 EDT 2025
Thu Jan 02 22:54:38 EST 2025
Tue Jul 01 01:58:41 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords BCI
temporal auto-weighting
interval model of ERPs
RSVP
spatial projection
Language English
License 2021 IOP Publishing Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c299t-331a5c76caa3d5f92fcbf09e4b40cf127375f1bd3bc7ad0532d206dc5e8aa6273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5886-4325
0000-0001-8874-1986
PMID 33166945
PQID 2459351570
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2459351570
pubmed_primary_33166945
crossref_citationtrail_10_1088_1741_2552_abc8d5
crossref_primary_10_1088_1741_2552_abc8d5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2021
References Löw (jneabc8d5bib20) 2013; 13
Pires (jneabc8d5bib27) 2011; 195
Polich (jneabc8d5bib30) 1995; 41
Fernández-Rodríguez (jneabc8d5bib12) 2016; 13
Alpert (jneabc8d5bib1) 2013; 61
Lotte (jneabc8d5bib19) 2018; 15
Yi (jneabc8d5bib40) 2017; 61
Blankertz (jneabc8d5bib5) 2007; 25
Gonsalvez (jneabc8d5bib13) 2002; 39
Zhang (jneabc8d5bib44) 2013; 21
Bi (jneabc8d5bib2) 2013; 15
Ramos-Guajardo (jneabc8d5bib33) 2016; 372
Sajda (jneabc8d5bib35) 2010; 98
Blankertz (jneabc8d5bib4) 2011; 56
Trutschnig (jneabc8d5bib37) 2009; 179
Yu (jneabc8d5bib41) 2011; 58
Krusienski (jneabc8d5bib15) 2008; 167
Cappelli (jneabc8d5bib6) 2015; 146
Blanco-Fernández (jneabc8d5bib3) 2013; 247
Nie (jneabc8d5bib24) 2010
Song (jneabc8d5bib36) 2018; 26
Pohlmeyer (jneabc8d5bib28) 2011; 8
Jiménez (jneabc8d5bib14) 2007
Poolman (jneabc8d5bib31) 2008; 42
Chen (jneabc8d5bib9) 2015; 112
Chen (jneabc8d5bib10) 2018; 28
Delorme (jneabc8d5bib11) 2004; 134
Parra (jneabc8d5bib25) 2008; 25
Lin (jneabc8d5bib18) 2017; 12
Polich (jneabc8d5bib29) 2007; 118
Wu (jneabc8d5bib38) 2017; 28
Zhang (jneabc8d5bib42) 2018; 15
Matran-Fernandez (jneabc8d5bib23) 2016; 64
Lemm (jneabc8d5bib17) 2005; 52
Marathe (jneabc8d5bib22) 2014; 22
Cecotti (jneabc8d5bib7) 2014; 25
Lees (jneabc8d5bib16) 2018; 15
Peterson (jneabc8d5bib26) 2017; 35
Marathe (jneabc8d5bib21) 2013
Zhang (jneabc8d5bib43) 2014; 24
Chang (jneabc8d5bib8) 2011; 2
Raudys (jneabc8d5bib34) 1991; 13
Ramos-Guajardo (jneabc8d5bib32) 2014; 288
Wu (jneabc8d5bib39) 2013
References_xml – volume: 25
  start-page: 2030
  year: 2014
  ident: jneabc8d5bib7
  article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2014.2302898
– start-page: 345
  year: 2013
  ident: jneabc8d5bib21
  article-title: A novel method for single-trial classification in the face of temporal variability
  doi: 10.1007/978-3-642-39454-6_36
– volume: 118
  start-page: 2128
  year: 2007
  ident: jneabc8d5bib29
  article-title: Updating P300: an integrative theory of P3a and P3b
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.04.019
– volume: 25
  start-page: 41
  year: 2007
  ident: jneabc8d5bib5
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 2
  start-page: 1
  year: 2011
  ident: jneabc8d5bib8
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 52
  start-page: 1541
  year: 2005
  ident: jneabc8d5bib17
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
– volume: 15
  year: 2018
  ident: jneabc8d5bib42
  article-title: A study on dynamic model of steady-state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aabb82
– volume: 56
  start-page: 814
  year: 2011
  ident: jneabc8d5bib4
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 39
  start-page: 388
  year: 2002
  ident: jneabc8d5bib13
  article-title: P300 amplitude is determined by target-to-target interval
  publication-title: Psychophysiology
  doi: 10.1017/S0048577201393137
– volume: 13
  start-page: 252
  year: 1991
  ident: jneabc8d5bib34
  article-title: Small sample size effects in statistical pattern recognition: recommendations for practitioners
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/34.75512
– volume: 41
  start-page: 103
  year: 1995
  ident: jneabc8d5bib30
  article-title: Cognitive and biological determinants of P300: an integrative review
  publication-title: Biol. Psychol.
  doi: 10.1016/0301-0511(95)05130-9
– volume: 288
  start-page: 412
  year: 2014
  ident: jneabc8d5bib32
  article-title: Inclusion degree tests for the Aumann expectation of a random interval
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.013
– volume: 26
  start-page: 1353
  year: 2018
  ident: jneabc8d5bib36
  article-title: A novel technique for selecting emg-contaminated eeg channels in self-paced brain-computer interface task onset
  publication-title: IEEE Trans. Neural Sys. Rehabil.
  doi: 10.1109/TNSRE.2018.2847316
– volume: 25
  start-page: 107
  year: 2008
  ident: jneabc8d5bib25
  article-title: Spatiotemporal linear decoding of brain state
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2008.4408447
– start-page: 1813
  year: 2010
  ident: jneabc8d5bib24
  article-title: Efficient and robust feature selection via joint ℓ2, 1-norms minimization
  doi: 10.5555/2997046.2997098
– volume: 28
  year: 2018
  ident: jneabc8d5bib10
  article-title: Control of a 7-DOF robotic arm system with an SSVEP-based BCI
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500181
– volume: 15
  start-page: 959
  year: 2013
  ident: jneabc8d5bib2
  article-title: Using a head-up display-based steady-state visually evoked potential brain–computer interface to control a simulated vehicle
  publication-title: IEEE Trans. Intell. Transp.
  doi: 10.1109/TITS.2013.2291402
– volume: 61
  start-page: 524
  year: 2017
  ident: jneabc8d5bib40
  article-title: Joint sparse principal component analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.08.025
– volume: 21
  start-page: 233
  year: 2013
  ident: jneabc8d5bib44
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural Sys. Rehabil.
  doi: 10.1109/TNSRE.2013.2243471
– volume: 13
  start-page: 860
  year: 2013
  ident: jneabc8d5bib20
  article-title: Perceptual processing of natural scenes at rapid rates: effects of complexity, content, and emotional arousal
  publication-title: Cogn. Affective Behav. Neurosci.
  doi: 10.3758/s13415-013-0179-1
– volume: 167
  start-page: 15
  year: 2008
  ident: jneabc8d5bib15
  article-title: Toward enhanced P300 speller performance
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.07.017
– volume: 12
  year: 2017
  ident: jneabc8d5bib18
  article-title: Method for enhancing single-trial P300 detection by introducing the complexity degree of image information in rapid serial visual presentation tasks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184713
– volume: 28
  start-page: 862
  year: 2017
  ident: jneabc8d5bib38
  article-title: A novel algorithm for learning sparse spatio-spectral patterns for event-related potentials
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2015.2496284
– volume: 22
  start-page: 201
  year: 2014
  ident: jneabc8d5bib22
  article-title: Sliding HDCA: single-trial EEG classification to overcome and quantify temporal variability
  publication-title: IEEE Trans. Neural Sys. Rehabil.
  doi: 10.1109/TNSRE.2014.2304884
– volume: 15
  year: 2018
  ident: jneabc8d5bib16
  article-title: A review of rapid serial visual presentation-based brain–computer interfaces
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aa9817
– volume: 42
  start-page: 787
  year: 2008
  ident: jneabc8d5bib31
  article-title: A single-trial analytic framework for EEG analysis and its application to target detection and classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.031
– start-page: 120
  year: 2007
  ident: jneabc8d5bib14
  doi: 10.1007/978-3-540-74972-1_17
– volume: 24
  year: 2014
  ident: jneabc8d5bib43
  article-title: Aggregation of sparse linear discriminant analyses for event-related potential classification in brain-computer interface
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500038
– volume: 146
  start-page: 337
  year: 2015
  ident: jneabc8d5bib6
  article-title: Regime change analysis of interval-valued time series with an application to PM10
  publication-title: Chemom. Intell. Lab.
  doi: 10.1016/j.chemolab.2015.06.006
– volume: 112
  start-page: 6058
  year: 2015
  ident: jneabc8d5bib9
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1508080112
– volume: 8
  year: 2011
  ident: jneabc8d5bib28
  article-title: Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/8/3/036025
– volume: 98
  start-page: 462
  year: 2010
  ident: jneabc8d5bib35
  article-title: In a blink of an eye and a switch of a transistor: cortically coupled computer vision
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2038406
– volume: 134
  start-page: 9
  year: 2004
  ident: jneabc8d5bib11
  article-title: EEGlab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 58
  start-page: 2513
  year: 2011
  ident: jneabc8d5bib41
  article-title: Common spatio-temporal pattern for single-trial detection of event-related potential in rapid serial visual presentation triage
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2158542
– volume: 195
  start-page: 270
  year: 2011
  ident: jneabc8d5bib27
  article-title: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.11.016
– volume: 372
  start-page: 591
  year: 2016
  ident: jneabc8d5bib33
  article-title: Distance-based linear discriminant analysis for interval-valued data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.068
– volume: 179
  start-page: 3964
  year: 2009
  ident: jneabc8d5bib37
  article-title: A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.06.023
– volume: 247
  start-page: 109
  year: 2013
  ident: jneabc8d5bib3
  article-title: A set arithmetic-based linear regression model for modelling interval-valued responses through real-valued variables
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.06.044
– volume: 13
  year: 2016
  ident: jneabc8d5bib12
  article-title: Review of real brain-controlled wheelchairs
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/13/6/061001
– volume: 15
  year: 2018
  ident: jneabc8d5bib19
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aab2f2
– start-page: 1390
  year: 2013
  ident: jneabc8d5bib39
  article-title: Measuring ERP latency shifts across experimental conditions using spatial filtering
  doi: 10.1109/NER.2013.6696202
– volume: 64
  start-page: 959
  year: 2016
  ident: jneabc8d5bib23
  article-title: Brain–computer interfaces for detection and localization of targets in aerial images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2583200
– volume: 61
  start-page: 2290
  year: 2013
  ident: jneabc8d5bib1
  article-title: Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2289898
– volume: 35
  start-page: 70
  year: 2017
  ident: jneabc8d5bib26
  article-title: Generalized sparse discriminant analysis for event-related potential classification
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2017.03.001
SSID ssj0031790
Score 2.379523
Snippet Objective. Brain–computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid...
Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual...
Objective.Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 16008
SubjectTerms Algorithms
Brain-Computer Interfaces
Electroencephalography - methods
Evoked Potentials
Humans
Temporal Lobe
Title Enhancing the EEG classification in RSVP task by combining interval model of ERPs with spatial and temporal regions of interest
URI https://www.ncbi.nlm.nih.gov/pubmed/33166945
https://www.proquest.com/docview/2459351570
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagXLggoDzCS4OEkFC1ZN-PY0EpBYU2KgkKp5XttWkEbFCzAZULf50Zr71LlYIKl9XKWTuP74s99sx8w9gTHQqtY6k8Xwrt4XqtPIFWqSeM8gopzEnaKL49SPdn8Zt5Mu89-Ca7pBHP5Y9z80r-B1VsQ1wpS_YfkO0GxQa8R3zxigjj9UIYj-pjksuwCU-j0asdScYwRf9wF8R49O79ZKfhq09kaOKHEKYihJGJOPlGqSNUCsfEFx5NbKrbiqKsrYaAla4i9f-PLmbO9HVuqU3DliQy8U71Sodd1I8JHXix_N7nn41bDYMPvNZq0QUDcXOAO19w0lf4rfva-FKOF24Ae1wRBi7CuZth0YTxcB_TTsHqnLaNadnRb2O2xxmSDh5cb1rWhMyrpF_bnD__4LDcm43H5XQ0n15mV0LcU1C5i9eHE7dsRyRV1mbPtqNZnza-x7BrG7bjn7Vh_rAxMQbK9Dq7ZgGA3ZYmN9glVd9k27s1b5ZfTuEpmFhf40TZZj875gAyB5A5cJY5sKiBmAPEHBCn0DEHHHPAMAeWGog5QMwByxxA5oBjDljm0JOOObfYbG80fbnv2VIcnkR7pfGiKOCJzFLJeVQlugg1_rX9QsUi9qUO0AbOEh2IKhIy4xVVG6lCP61konLOU3z5Ntuql7W6y8BPTHa05Jks6FiXF5VKA81TpTMhq3zAhu7HLaXVqadyKZ9LEy-R5yXBURIcZQvHgD3renxtNVr-8uxjh1eJEyl5x3itlutVGcZJEaF1n_kDdqcFshsNv36aFnFy7wK977OrPe8fsK3mZK0eouHaiEeGcL8Ayj-cGw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+EEG+classification+in+RSVP+task+by+combining+interval+model+of+ERPs+with+spatial+and+temporal+regions+of+interest&rft.jtitle=Journal+of+neural+engineering&rft.au=Li%2C+Bowen&rft.au=Lin%2C+Yanfei&rft.au=Gao%2C+Xiaorong&rft.au=Liu%2C+Zhiwen&rft.date=2021-02-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Fabc8d5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon