Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation

Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 391; no. 2; pp. 241 - 257
Main Authors Hashiesh, Hebaallah Mamdouh, Azimullah, Sheikh, Nagoor Meeran, Mohamed Fizur, Saraswathiamma, Dhanya, Arunachalam, Seenipandi, Jha, Niraj Kumar, Sadek, Bassem, Adeghate, Ernest, Sethi, Gautam, Albawardi, Alia, Al Marzooqi, Saeeda, Ojha, Shreesh
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2024
Subjects
AGE
AKT
ASC
AUC
BCP
CAT
DCM
HFD
MMP
ROS
SOD
TnI
HFD
AUC
HW
ASC
BW
AGE
SOD
AKT
BCP
TnI
DCM
MMP
CAT
ROS
Online AccessGet full text

Cover

Loading…
Abstract Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. ▪
AbstractList Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. ▪
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β -caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2 β and TGF- β /Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of -caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2 and TGF- /Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
Author Azimullah, Sheikh
Saraswathiamma, Dhanya
Sethi, Gautam
Hashiesh, Hebaallah Mamdouh
Arunachalam, Seenipandi
Nagoor Meeran, Mohamed Fizur
Al Marzooqi, Saeeda
Sadek, Bassem
Jha, Niraj Kumar
Adeghate, Ernest
Albawardi, Alia
Ojha, Shreesh
Author_xml – sequence: 1
  givenname: Hebaallah Mamdouh
  surname: Hashiesh
  fullname: Hashiesh, Hebaallah Mamdouh
– sequence: 2
  givenname: Sheikh
  surname: Azimullah
  fullname: Azimullah, Sheikh
– sequence: 3
  givenname: Mohamed Fizur
  surname: Nagoor Meeran
  fullname: Nagoor Meeran, Mohamed Fizur
– sequence: 4
  givenname: Dhanya
  surname: Saraswathiamma
  fullname: Saraswathiamma, Dhanya
– sequence: 5
  givenname: Seenipandi
  surname: Arunachalam
  fullname: Arunachalam, Seenipandi
– sequence: 6
  givenname: Niraj Kumar
  surname: Jha
  fullname: Jha, Niraj Kumar
– sequence: 7
  givenname: Bassem
  surname: Sadek
  fullname: Sadek, Bassem
– sequence: 8
  givenname: Ernest
  surname: Adeghate
  fullname: Adeghate, Ernest
– sequence: 9
  givenname: Gautam
  surname: Sethi
  fullname: Sethi, Gautam
– sequence: 10
  givenname: Alia
  surname: Albawardi
  fullname: Albawardi, Alia
– sequence: 11
  givenname: Saeeda
  surname: Al Marzooqi
  fullname: Al Marzooqi, Saeeda
– sequence: 12
  givenname: Shreesh
  orcidid: 0000-0001-7801-2966
  surname: Ojha
  fullname: Ojha, Shreesh
  email: shreeshojha@uaeu.ac.ae
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38955492$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-547588$$DView record from Swedish Publication Index
BookMark eNp9kU1r2zAYgMXoWNNu592GjjvUiT6s2D6G9CtQ6Og-rkKW5OQtseRJcrb8pP3LqU1bxmC7yMI8z4t4nxN05LyzCL2nZEopK2f3g01TyviUEEZ49QpNqGC0IJTwIzTJP1nBxVwco5MY7wmhZTnnb9AxrxshyoZN0K-lck614DwYzPCd1XZIPuCFTrBTCbzDn4JPVqeI1VqBiwmfg2ptAo2XKhjw_d4PKm32OG2CH9cbvHIbaOHR9R1eXF3M7vJRrJwZtTX49ieYPHln8ecUbIxn-BLa4CPkm3Im691W9b2Kvrd_vOMtet2pbbTvnr6n6OvlxZfldXFze7VaLm4KzZqmLozhVBvVEVPWilrR6rJqVKfYvCuJFcJ0jBlqlJkbxrqGllXHWcu7Uomaca35KTo7zI0_7DC2cgjQq7CXXoE8h28L6cNajqMUZSXqOuMfD_gQ_PfRxiR7iNput8pZP0bJSSV4JeacZ_TDEzq2vTUvk59rZGB2AHReRwy2e0EokQ-95UNvmXvLQ-9siL8MDelxXSko2P7Haw6ezZvcgQ0yarAu54GQW0vj4Z_ub7EQxgY
CitedBy_id crossref_primary_10_1124_jpet_124_002418
crossref_primary_10_1007_s00210_024_03595_6
crossref_primary_10_1186_s43066_024_00400_0
Cites_doi 10.1111/jcmm.13743
10.4239/wjd.v13.i5.387
10.1038/nature10407
10.1161/01.CIR.0000147233.10318.23
10.1007/s10557-017-6725-2
10.1038/nature13073
10.1097/00004872-200301000-00002
10.1016/j.bbrc.2020.05.053
10.1293/tox.2017-0018
10.1155/2022/3790721
10.1016/j.ejphar.2019.05.022
10.1016/j.cbi.2018.10.010
10.1113/EP089730
10.1161/CIRCULATIONAHA.108.846519
10.1016/j.freeradbiomed.2021.01.046
10.1016/j.bbrc.2018.12.139
10.2174/1381612824666180716163845
10.1016/j.acthis.2014.10.001
10.3390/nu11112788
10.1111/jcmm.16601
10.1152/ajpendo.90617.2008
10.1007/s00125-005-1896-y
10.1177/1074248415612593
10.1016/j.pcad.2019.03.003
10.1007/s10741-013-9374-y
10.3390/ijms23031288
10.1111/jcmm.15725
10.1136/heartjnl-2017-311448
10.1016/j.bbagen.2011.03.014
10.1371/journal.pone.0104771
10.1016/j.cbi.2015.12.019
10.4093/dmj.2014.38.5.337
10.7150/ijbs.29680
10.1530/JOE-14-0182
10.1111/1750-3841.14511
10.1038/s41598-020-63498-3
10.1016/j.cbi.2006.10.014
10.1016/j.ejphar.2014.08.021
10.1038/nm1613
10.1017/S0007114512001298
10.18632/oncotarget.17614
10.1073/pnas.0803601105
10.1016/j.biopha.2022.112709
10.1016/j.jacme.2015.02.001
10.1016/j.jjcc.2020.05.009
10.1042/CS20070261
10.1016/j.ejphar.2008.12.056
10.1124/pr.117.014753
10.1021/acsptsci.3c00027
10.1016/j.tem.2018.03.015
10.1016/j.bbrc.2013.11.136
10.1007/s001250100580
10.1023/B:MCBI.0000028762.97754.26
10.1016/j.amjcard.2003.11.003
10.2337/db15-1274
10.1253/circj.CJ-19-1182
10.1093/lifemeta/loac013
10.1111/j.1463-1326.2011.01369.x
10.3390/ijms19030833
10.1161/CIRCULATIONAHA.106.621854
10.1016/j.intimp.2020.106556
10.1016/j.yjmcc.2006.08.017
10.1517/14728222.2015.1043268
10.1161/HYPERTENSIONAHA.111.183905
10.1371/journal.pone.0052013
10.1152/ajpheart.00390.2022
10.1139/cjpp-2021-0046
10.1007/s00281-009-0145-8
10.1186/1475-2840-10-29
10.7150/ijbs.63219
10.1177/09603271211045948
10.3389/fendo.2020.479258
10.1155/2022/9004014
10.1016/j.ejphar.2019.172628
10.3390/antiox11040784
10.1016/j.yjmcc.2008.10.007
10.3892/etm.2013.1134
10.1161/01.RES.0000110083.17024.60
10.1016/j.hfc.2019.02.003
10.1007/s10741-018-9749-1
10.3390/cells11091488
10.15690/vramn779
10.1161/CIRCRESAHA.109.212217
10.1016/j.jep.2012.08.029
10.1016/j.cardiores.2004.12.022
10.1016/j.bcp.2020.114209
10.1177/1535370219840981
10.1210/jc.2007-1817
10.3389/fphar.2019.00998
10.1186/s12906-020-03177-y
10.3390/nu12102963
10.1111/jfbc.13156
10.1111/jcmm.14493
10.2337/db15-1563
ContentType Journal Article
Copyright 2024 American Society for Pharmacology and Experimental Therapeutics
Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.
Copyright_xml – notice: 2024 American Society for Pharmacology and Experimental Therapeutics
– notice: Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DF2
DOI 10.1124/jpet.123.002037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-0103
EndPage 257
ExternalDocumentID oai_DiVA_org_uu_547588
38955492
10_1124_jpet_123_002037
S0022356524177993
Genre Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
3O-
4.4
53G
5GY
5RE
5VS
8WZ
A6W
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABIVO
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ACNCT
ADBBV
ADCOW
ADIYS
AENEX
AERNN
AFFNX
AFHIN
AFOSN
AGFXO
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
M41
MJL
MVM
O9-
OHT
OK1
P2P
R.V
R0Z
RHF
RHI
RPT
TR2
UQL
VH1
W2D
W8F
WH7
WOQ
X7M
YBU
YHG
YQT
ZGI
ZXP
AAYXX
ACVFH
ADCNI
AETEA
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ROL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c2998-dd31cdaf0d48a1e5bc479afa26f40e55df22d1dad6d22f9147f32b3f4a5823cc3
ISSN 0022-3565
1521-0103
IngestDate Thu Aug 21 06:39:00 EDT 2025
Fri Jul 11 11:24:20 EDT 2025
Mon Jul 21 06:02:58 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 05:29:01 EDT 2025
Sat Feb 08 15:52:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords HFD
HO-1
SERCA2a
AUC
HW
α-SMA
ASC
PI3K
BW
NLRP3
TGF-β
EndMT
AGE
CB2R
SOD
AKT
RAGE
IL-1β
BCP
TnI
DCM
HOMA-IR
MMP
NrF2
IL-18
CAT
ROS
Keap1
NOX4
Smad
OGTT
CB1R
Language English
License Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2998-dd31cdaf0d48a1e5bc479afa26f40e55df22d1dad6d22f9147f32b3f4a5823cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7801-2966
PMID 38955492
PQID 3075375633
PQPubID 23479
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_uu_547588
proquest_miscellaneous_3075375633
pubmed_primary_38955492
crossref_primary_10_1124_jpet_123_002037
crossref_citationtrail_10_1124_jpet_123_002037
elsevier_sciencedirect_doi_10_1124_jpet_123_002037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of pharmacology and experimental therapeutics
PublicationTitleAlternate J Pharmacol Exp Ther
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Han, Lai, Tao, Tai, Zhou, Guo, Wang, Wang, Wang (bib30) 2020; 84
Maslov, Karpov (bib55) 2017; 72
Wan, Bai, Zhou, Chen, Wang, Liu, Xue, Wei, Xie (bib84) 2022; 18
Goldin, Beckman, Schmidt, Creager (bib25) 2006; 114
Mahmoud, Swefy, Hasan, Ibrahim (bib53) 2014; 742
Dawson, Morris, Struthers (bib17) 2005; 48
Metzger, Westfall (bib59) 2004; 94
Ding, Song, Hu, Yin, Huang, Tang (bib19) 2022; 2022
Aronson (bib3) 2003; 21
Sun, Dawood, Wen, Chen, Dixon, Kirshenbaum, Liu (bib78) 2004; 110
Hongwei, Ruiping, Yingyan, Guanjun, Jie, Xingyu, Jie, Zhenghong, Qin, Junfeng (bib34) 2019; 244
Kanamori, Naruse, Yoshida, Minatoguchi, Watanabe, Kawaguchi, Tanaka, Yamada, Takasugi, Mikami (bib38) 2021; 77
Kumawat, Kaur (bib44) 2020; 44
Kumawat, Kaur (bib45) 2022; 100
Youssef, El-Fayoumi, Mahmoud (bib95) 2019; 297
Avogaro, Vigili de Kreutzenberg, Negut, Tiengo, Scognamiglio (bib5) 2004; 93
Franco-Arroyo, Viveros-Paredes, Zepeda-Morales, Roldán, Márquez-Aguirre, Zepeda-Nuño, Velázquez-Juárez, Fafutis-Morris, Ri (bib21) 2022; 25
Arulselvan, Subramanian (bib4) 2007; 165
Kumawat, Kaur (bib43) 2019; 862
Bodiga, Eda, Bodiga (bib10) 2014; 19
Wu, Liu, He, Da, Xie (bib87) 2019; 858
Yamagishi, Maeda, Matsui, Ueda, Fukami, Okuda (bib89) 2012; 1820
Messer, Jacques, Marston (bib58) 2007; 42
Okayama, Azuma, Dosaka, Iekushi, Sanada, Kusunoki, Iwabayashi, Rakugi, Taniyama, Morishita (bib63) 2012; 59
Han, Li, Fan, Chen, Gou, Su, Fan, Xu, Wang, Ma (bib29) 2017; 8
Luo, Li, Wang, Liu, Xia, Zhang, Zhang, Zhang, An (bib51) 2014; 9
Magdaleno, Blajszczak, Charles-Niño, Guadrón-Llanos, Vázquez-Álvarez, Miranda-Díaz, Nieto, Islas-Carbajal, Rincón-Sánchez (bib52) 2019; 18
El-Azab, Wakiel, Nafea, Youssef (bib20) 2022; 13
Goh, Cooper (bib24) 2008; 93
Qian, Tian, Wang, Lu, Li, Ma, Gao, Yao (bib70) 2020; 182
De Geest, Mishra (bib18) 2022; 11
Basha, Sankaranarayanan (bib7) 2015; 5
Basha, Sankaranarayanan (bib8) 2016; 245
Wu, Huang, Zhou, Liu (bib88) 2020; 530
Geddo, Scandiffio, Antoniotti, Cottone, Querio, Maffei, Bovolin, Gallo (bib22) 2019; 11
Roe, Thomas, Ren (bib73) 2011; 13
Pacher, Steffens (bib64) 2009; 31
Srivastava, Calafiore, Macisaac, Patel, Thomas, Jerums, Burrell (bib76) 2008; 114
Kovacic (bib42) 2018; 29
Li, Wang, Chen, Yang (bib48) 2020; 84
Yan, Li, Wang, Shao, Luo, Liu, Li, Wang, Zhang, Diao (bib90) 2022; 148
Zhou, Zhou, Tang, Zhang, Guang, Huang, Xu, Ying, Zhang, Li (bib100) 2009; 606
Basha, Sankaranarayanan (bib6) 2014; 116
Paolillo, Marsico, Prastaro, Renga, Esposito, De Martino, Di Napoli, Esposito, Ambrosio, Ianniruberto (bib65) 2019; 15
Yu, Wu, Cai, Xiang, Zha, Fan, Guo, Ming, Liu (bib96) 2012; 7
Parim, Sathibabu Uddandrao, Saravanan (bib66) 2019; 24
Arizuka, Murakami, Suzuki (bib2) 2017; 30
Tian, Zhang, Suo, Liu, Wang, Liu, Pan, Jin, An (bib80) 2021; 25
Greenman, Diffee, Power, Wilkins, Gold, Erickson, Baldi (bib26) 2021; 106
Jiang, Fu, Xu, Hu, Yang, Zhang, Luo, Gan, Tao, Liang (bib37) 2020; 10
Zheng, Ma, Guo, Kim, Kim, Bi, Zhang, Cai (bib99) 2019; 23
Pratley, Weyer (bib67) 2001; 44
Gu, Cheng, Wu, Kong, Wang, Xu, Zhang, Tan, Keller, Zhou (bib27) 2017; 66
Zeisberg, Tarnavski, Zeisberg, Dorfman, McMullen, Gustafsson, Chandraker, Yuan, Pu, Roberts (bib97) 2007; 13
Somaratne, Whalley, Poppe, ter Bals, Wadams, Pearl, Bagg, Doughty (bib74) 2011; 10
Belali, Ahmed, Mohany, Belali, Alotaibi, Al-Hoshani, Al-Rejaie (bib9) 2022; 23
Ren, Zhang, Liu, Cheng, Yang, Cui, Zhao, Zhao, Hao, Li (bib72) 2020; 24
Yan, Ramasamy, Schmidt (bib91) 2010; 106
Preis, Pencina, Hwang, D’Agostino, Savage, Levy, Fox (bib68) 2009; 120
Mohamed, Abdelnaby, Younis (bib60) 2022; 26
Kho, Lee, Jeong, Oh, Chaanine, Kizana, Park, Hajjar (bib40) 2011; 477
Layland, Solaro, Shah (bib47) 2005; 66
Huo, Mijiti, Cai, Gao, Aini, Mijiti, Wang, Qie (bib36) 2021; 40
Li, Yang, Chen, Ren (bib49) 2021; 12
Chen, Zhang, Cai (bib14) 2014; 38
Meeran, Laham, Azimullah, Sharma, Al Kaabi, Tariq, Adeghate, Goyal, Ojha (bib57) 2021; 167
Quan, Zhu, Wang, Chen, Chen, Li, Su, Du, Liu, Wang (bib71) 2022; 1
Gertsch, Leonti, Raduner, Racz, Chen, Xie, Altmann, Karsak, Zimmer (bib23) 2008; 105
He, Kan, Cai, Ma (bib33) 2009; 46
Hou, Mai, Qiu, Yuan, Li, Luo, Liu, Zhang, Zhao, Luo (bib35) 2019; 10
Zhang, Chen, Zong, Yuan, Wang, Wei, Wang, Liu, Zhang, Li (bib98) 2018; 22
Yang, Qin, Wang, Meng, Xian, Che, Lv, Li, Yu, Bai (bib92) 2019; 15
Karim, Rahman, Chanudom, Thongsom, Tangpong (bib39) 2019; 84
Zou, Kumar (bib101) 2018; 19
He, Qiao, Wu (bib32) 2013; 6
Moris, Georgopoulos, Felekouras, Patsouris, Theocharis (bib61) 2015; 19
Chen, Lai, Zhu, He, Hou, Wang, Chen, Wang, Tang (bib13) 2020; 11
Gushiken, Beserra, Hussni, Gonzaga, Ribeiro, de Souza, Campos, Massaro, Hussni, Takahira (bib28) 2022; 2022
Kimura, Kagami, Sato, Osaki, Ito, Horii, Toya, Masaki, Yasuda, Nagatomo (bib41) 2022; 11
Qi, Zhong (bib69) 2018; 16
Liu, Zhang (bib50) 2015; 8
Song, Yang, Guo, Lu, Shi, Wang (bib75) 2019; 509
Hashiesh, Meeran, Sharma, Sadek, Kaabi, Ojha (bib31) 2020; 12
Bowe, Franklin, Hauge-Evans, King, Persaud, Jones (bib11) 2014; 222
Wang, Gu, Huang, Peng, Li, Yang, Qin, Essandoh, Wang, Peng (bib85) 2016; 65
Landis, Quimby, Greenidge (bib46) 2018; 24
Mamdouh Hashiesh, Sheikh, Meeran, Saraswathiamma, Jha, Sadek, Adeghate, Tariq, Al Marzooqi, Ojha (bib54) 2023; 6
Tan, Chen, Fang, Zhang (bib79) 2020; 20
Wilson, Gill, Abudalo, Edgar, Watson, Grieve (bib86) 2018; 104
Andrikopoulos, Blair, Deluca, Fam, Proietto (bib1) 2008; 295
Vasanji, Dhalla, Netticadan (bib81) 2004; 261
Maslov, Khaliulin, Zhang, Krylatov, Naryzhnaya, Mechoulam, De Petrocellis, Downey (bib56) 2016; 21
Wahlquist, Jeong, Rojas-Muñoz, Kho, Lee, Mitsuyama, van Mil, Park, Sluijter, Doevendans (bib83) 2014; 508
Velagic, Li, Deo, Li, Kiriazis, Donner, Anderson, De Blasio, Woodman, Kemp-Harper (bib82) 2023; 324
Ye, Bajaj, Yang, Perez-Polo, Birnbaum (bib93) 2017; 31
Calleja, Vieites, Montero-Meléndez, Torres, Faus, Gil, Suárez (bib12) 2013; 109
Murtaza, Virk, Khalid, Lavie, Ventura, Mukherjee, Ramu, Bhogal, Kumar, Shanmugasundaram (bib62) 2019; 62
Cheng, Chen, Lee, Chen, Jung Lin, Cheng (bib15) 2012; 144
Suijun, Zhen, Ying, Yanfang (bib77) 2014; 444
Cuadrado, Manda, Hassan, Alcaraz, Barbas, Daiber, Ghezzi, León, López, Oliva (bib16) 2018; 70
Younis (bib94) 2022; 9
De Geest (10.1124/jpet.123.002037_bib18) 2022; 11
Roe (10.1124/jpet.123.002037_bib73) 2011; 13
Yamagishi (10.1124/jpet.123.002037_bib89) 2012; 1820
Moris (10.1124/jpet.123.002037_bib61) 2015; 19
Cuadrado (10.1124/jpet.123.002037_bib16) 2018; 70
Wu (10.1124/jpet.123.002037_bib87) 2019; 858
Han (10.1124/jpet.123.002037_bib29) 2017; 8
Preis (10.1124/jpet.123.002037_bib68) 2009; 120
Goh (10.1124/jpet.123.002037_bib24) 2008; 93
Maslov (10.1124/jpet.123.002037_bib56) 2016; 21
Huo (10.1124/jpet.123.002037_bib36) 2021; 40
Zhou (10.1124/jpet.123.002037_bib100) 2009; 606
Quan (10.1124/jpet.123.002037_bib71) 2022; 1
Murtaza (10.1124/jpet.123.002037_bib62) 2019; 62
Wang (10.1124/jpet.123.002037_bib85) 2016; 65
Basha (10.1124/jpet.123.002037_bib7) 2015; 5
Kovacic (10.1124/jpet.123.002037_bib42) 2018; 29
Qi (10.1124/jpet.123.002037_bib69) 2018; 16
Bodiga (10.1124/jpet.123.002037_bib10) 2014; 19
Youssef (10.1124/jpet.123.002037_bib95) 2019; 297
Meeran (10.1124/jpet.123.002037_bib57) 2021; 167
Dawson (10.1124/jpet.123.002037_bib17) 2005; 48
Parim (10.1124/jpet.123.002037_bib66) 2019; 24
He (10.1124/jpet.123.002037_bib33) 2009; 46
Calleja (10.1124/jpet.123.002037_bib12) 2013; 109
Somaratne (10.1124/jpet.123.002037_bib74) 2011; 10
Kimura (10.1124/jpet.123.002037_bib41) 2022; 11
Ren (10.1124/jpet.123.002037_bib72) 2020; 24
Suijun (10.1124/jpet.123.002037_bib77) 2014; 444
Yan (10.1124/jpet.123.002037_bib90) 2022; 148
Hou (10.1124/jpet.123.002037_bib35) 2019; 10
Liu (10.1124/jpet.123.002037_bib50) 2015; 8
Belali (10.1124/jpet.123.002037_bib9) 2022; 23
Tan (10.1124/jpet.123.002037_bib79) 2020; 20
Kanamori (10.1124/jpet.123.002037_bib38) 2021; 77
Arulselvan (10.1124/jpet.123.002037_bib4) 2007; 165
Wilson (10.1124/jpet.123.002037_bib86) 2018; 104
Zeisberg (10.1124/jpet.123.002037_bib97) 2007; 13
Zheng (10.1124/jpet.123.002037_bib99) 2019; 23
Song (10.1124/jpet.123.002037_bib75) 2019; 509
Greenman (10.1124/jpet.123.002037_bib26) 2021; 106
Pacher (10.1124/jpet.123.002037_bib64) 2009; 31
Jiang (10.1124/jpet.123.002037_bib37) 2020; 10
Yang (10.1124/jpet.123.002037_bib92) 2019; 15
Kumawat (10.1124/jpet.123.002037_bib45) 2022; 100
Yu (10.1124/jpet.123.002037_bib96) 2012; 7
El-Azab (10.1124/jpet.123.002037_bib20) 2022; 13
He (10.1124/jpet.123.002037_bib32) 2013; 6
Hongwei (10.1124/jpet.123.002037_bib34) 2019; 244
Han (10.1124/jpet.123.002037_bib30) 2020; 84
Metzger (10.1124/jpet.123.002037_bib59) 2004; 94
Gu (10.1124/jpet.123.002037_bib27) 2017; 66
Gertsch (10.1124/jpet.123.002037_bib23) 2008; 105
Arizuka (10.1124/jpet.123.002037_bib2) 2017; 30
Ding (10.1124/jpet.123.002037_bib19) 2022; 2022
Wu (10.1124/jpet.123.002037_bib88) 2020; 530
Qian (10.1124/jpet.123.002037_bib70) 2020; 182
Layland (10.1124/jpet.123.002037_bib47) 2005; 66
Bowe (10.1124/jpet.123.002037_bib11) 2014; 222
Chen (10.1124/jpet.123.002037_bib14) 2014; 38
Chen (10.1124/jpet.123.002037_bib13) 2020; 11
Goldin (10.1124/jpet.123.002037_bib25) 2006; 114
Basha (10.1124/jpet.123.002037_bib6) 2014; 116
Tian (10.1124/jpet.123.002037_bib80) 2021; 25
Kumawat (10.1124/jpet.123.002037_bib43) 2019; 862
Karim (10.1124/jpet.123.002037_bib39) 2019; 84
Okayama (10.1124/jpet.123.002037_bib63) 2012; 59
Geddo (10.1124/jpet.123.002037_bib22) 2019; 11
Franco-Arroyo (10.1124/jpet.123.002037_bib21) 2022; 25
Vasanji (10.1124/jpet.123.002037_bib81) 2004; 261
Landis (10.1124/jpet.123.002037_bib46) 2018; 24
Ye (10.1124/jpet.123.002037_bib93) 2017; 31
Messer (10.1124/jpet.123.002037_bib58) 2007; 42
Zou (10.1124/jpet.123.002037_bib101) 2018; 19
Wahlquist (10.1124/jpet.123.002037_bib83) 2014; 508
Hashiesh (10.1124/jpet.123.002037_bib31) 2020; 12
Kho (10.1124/jpet.123.002037_bib40) 2011; 477
Younis (10.1124/jpet.123.002037_bib94) 2022; 9
Velagic (10.1124/jpet.123.002037_bib82) 2023; 324
Li (10.1124/jpet.123.002037_bib48) 2020; 84
Maslov (10.1124/jpet.123.002037_bib55) 2017; 72
Kumawat (10.1124/jpet.123.002037_bib44) 2020; 44
Basha (10.1124/jpet.123.002037_bib8) 2016; 245
Cheng (10.1124/jpet.123.002037_bib15) 2012; 144
Yan (10.1124/jpet.123.002037_bib91) 2010; 106
Li (10.1124/jpet.123.002037_bib49) 2021; 12
Wan (10.1124/jpet.123.002037_bib84) 2022; 18
Pratley (10.1124/jpet.123.002037_bib67) 2001; 44
Mahmoud (10.1124/jpet.123.002037_bib53) 2014; 742
Srivastava (10.1124/jpet.123.002037_bib76) 2008; 114
Mamdouh Hashiesh (10.1124/jpet.123.002037_bib54) 2023; 6
Gushiken (10.1124/jpet.123.002037_bib28) 2022; 2022
Magdaleno (10.1124/jpet.123.002037_bib52) 2019; 18
Paolillo (10.1124/jpet.123.002037_bib65) 2019; 15
Andrikopoulos (10.1124/jpet.123.002037_bib1) 2008; 295
Aronson (10.1124/jpet.123.002037_bib3) 2003; 21
Zhang (10.1124/jpet.123.002037_bib98) 2018; 22
Mohamed (10.1124/jpet.123.002037_bib60) 2022; 26
Avogaro (10.1124/jpet.123.002037_bib5) 2004; 93
Sun (10.1124/jpet.123.002037_bib78) 2004; 110
Luo (10.1124/jpet.123.002037_bib51) 2014; 9
References_xml – volume: 44
  year: 2020
  ident: bib44
  article-title: Insulinotropic and antidiabetic effects of
  publication-title: J Food Biochem
– volume: 2022
  year: 2022
  ident: bib28
  article-title: Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model
  publication-title: Oxid Med Cell Longev
– volume: 508
  start-page: 531
  year: 2014
  end-page: 535
  ident: bib83
  article-title: Inhibition of miR-25 improves cardiac contractility in the failing heart
  publication-title: Nature
– volume: 13
  start-page: 952
  year: 2007
  end-page: 961
  ident: bib97
  article-title: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
  publication-title: Nat Med
– volume: 109
  start-page: 394
  year: 2013
  end-page: 401
  ident: bib12
  article-title: The antioxidant effect of
  publication-title: Br J Nutr
– volume: 324
  year: 2023
  ident: bib82
  article-title: A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 59
  start-page: 958
  year: 2012
  end-page: 965
  ident: bib63
  article-title: Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition
  publication-title: Hypertension
– volume: 11
  year: 2020
  ident: bib13
  article-title: Cardioprotective effect of decorin in type 2 diabetes
  publication-title: Front Endocrinol (Lausanne)
– volume: 862
  year: 2019
  ident: bib43
  article-title: Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications
  publication-title: Eur J Pharmacol
– volume: 104
  start-page: 293
  year: 2018
  end-page: 299
  ident: bib86
  article-title: Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting
  publication-title: Heart
– volume: 21
  start-page: 262
  year: 2016
  end-page: 272
  ident: bib56
  article-title: Prospects for creation of cardioprotective drugs based on cannabinoid receptor agonists
  publication-title: J Cardiovasc Pharmacol Ther
– volume: 48
  start-page: 1971
  year: 2005
  end-page: 1979
  ident: bib17
  article-title: The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus
  publication-title: Diabetologia
– volume: 222
  year: 2014
  ident: bib11
  article-title: Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models
  publication-title: J Endocrinol
– volume: 509
  start-page: 359
  year: 2019
  end-page: 366
  ident: bib75
  article-title: Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22
  publication-title: Biochem Biophys Res Commun
– volume: 11
  start-page: 784
  year: 2022
  ident: bib18
  article-title: Role of oxidative stress in diabetic cardiomyopathy
  publication-title: Antioxidants (Basel)
– volume: 1
  start-page: 54
  year: 2022
  end-page: 66
  ident: bib71
  article-title: Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing
  publication-title: Life Metabolism
– volume: 11
  start-page: 2788
  year: 2019
  ident: bib22
  article-title: PipeNig-FL, a fluid extract of black pepper (
  publication-title: Nutrients
– volume: 9
  year: 2014
  ident: bib51
  article-title: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model
  publication-title: PLoS One
– volume: 100
  start-page: 259
  year: 2022
  end-page: 271
  ident: bib45
  article-title: Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸ
  publication-title: Can J Physiol Pharmacol
– volume: 24
  start-page: 2241
  year: 2018
  end-page: 2249
  ident: bib46
  article-title: M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets
  publication-title: Curr Pharm Des
– volume: 261
  start-page: 245
  year: 2004
  end-page: 249
  ident: bib81
  article-title: Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart
  publication-title: Mol Cell Biochem
– volume: 23
  start-page: 1288
  year: 2022
  ident: bib9
  article-title: LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-
  publication-title: Int J Mol Sci
– volume: 42
  start-page: 247
  year: 2007
  end-page: 259
  ident: bib58
  article-title: Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure
  publication-title: J Mol Cell Cardiol
– volume: 167
  start-page: 348
  year: 2021
  end-page: 366
  ident: bib57
  article-title: -caryophyllene, a natural bicyclic sesquiterpene attenuates
  publication-title: Free Radic Biol Med
– volume: 10
  start-page: 998
  year: 2019
  ident: bib35
  article-title: Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice
  publication-title: Front Pharmacol
– volume: 8
  start-page: 10908
  year: 2015
  end-page: 10914
  ident: bib50
  article-title: Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor-
  publication-title: Int J Clin Exp Pathol
– volume: 62
  start-page: 315
  year: 2019
  end-page: 326
  ident: bib62
  article-title: Diabetic cardiomyopathy—a comprehensive updated review
  publication-title: Prog Cardiovasc Dis
– volume: 165
  start-page: 155
  year: 2007
  end-page: 164
  ident: bib4
  article-title: Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic
  publication-title: Chem Biol Interact
– volume: 24
  start-page: 279
  year: 2019
  end-page: 299
  ident: bib66
  article-title: Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy
  publication-title: Heart Fail Rev
– volume: 93
  start-page: 1143
  year: 2008
  end-page: 1152
  ident: bib24
  article-title: Clinical review: the role of advanced glycation end products in progression and complications of diabetes
  publication-title: J Clin Endocrinol Metab
– volume: 13
  start-page: 465
  year: 2011
  end-page: 473
  ident: bib73
  article-title: Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction
  publication-title: Diabetes Obes Metab
– volume: 40
  year: 2021
  ident: bib36
  article-title: Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice
  publication-title: Hum Exp Toxicol
– volume: 148
  year: 2022
  ident: bib90
  article-title: The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation
  publication-title: Biomed Pharmacother
– volume: 46
  start-page: 47
  year: 2009
  end-page: 58
  ident: bib33
  article-title: Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes
  publication-title: J Mol Cell Cardiol
– volume: 25
  start-page: 993
  year: 2022
  end-page: 1002
  ident: bib21
  article-title: -Caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model
  publication-title: Journal of Medicinal Food
– volume: 94
  start-page: 146
  year: 2004
  end-page: 158
  ident: bib59
  article-title: Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation
  publication-title: Circ Res
– volume: 9
  start-page: 133
  year: 2022
  ident: bib94
  article-title: -caryophyllene ameliorates cyclophosphamide induced cardiac injury: the association of TLR4/NF
  publication-title: J Cardiovasc Dev Dis
– volume: 106
  start-page: 2235
  year: 2021
  end-page: 2247
  ident: bib26
  article-title: Increased myofilament calcium sensitivity is associated with decreased cardiac troponin I phosphorylation in the diabetic rat heart
  publication-title: Exp Physiol
– volume: 18
  start-page: 3125
  year: 2019
  end-page: 3138
  ident: bib52
  article-title: Aminoguanidine reduces diabetes-associated cardiac fibrosis
  publication-title: Exp Ther Med
– volume: 477
  start-page: 601
  year: 2011
  end-page: 605
  ident: bib40
  article-title: SUMO1-dependent modulation of SERCA2a in heart failure
  publication-title: Nature
– volume: 182
  year: 2020
  ident: bib70
  article-title: A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction
  publication-title: Biochem Pharmacol
– volume: 7
  year: 2012
  ident: bib96
  article-title: Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats
  publication-title: PLoS One
– volume: 72
  start-page: 59
  year: 2017
  end-page: 65
  ident: bib55
  article-title: [Prospects for the use of cannabinoid receptor ligands for the treatment of metabolic syndrome and atherosclerosis: analysis of experimental and clinical data]
  publication-title: Vestn Ross Akad Med Nauk
– volume: 6
  start-page: 1129
  year: 2023
  end-page: 1142
  ident: bib54
  article-title: -caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors
  publication-title: ACS Pharmacol Transl Sci
– volume: 24
  start-page: 12355
  year: 2020
  end-page: 12367
  ident: bib72
  article-title: Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways
  publication-title: J Cell Mol Med
– volume: 858
  year: 2019
  ident: bib87
  article-title: Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice
  publication-title: Eur J Pharmacol
– volume: 84
  start-page: 1587
  year: 2020
  end-page: 1598
  ident: bib30
  article-title: Sustaining circulating regulatory T cell subset contributes to the therapeutic effect of paroxetine on mice with diabetic cardiomyopathy
  publication-title: Circ J
– volume: 106
  start-page: 842
  year: 2010
  end-page: 853
  ident: bib91
  article-title: The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature
  publication-title: Circ Res
– volume: 38
  start-page: 337
  year: 2014
  end-page: 345
  ident: bib14
  article-title: Diabetic cardiomyopathy and its prevention by nrf2: current status
  publication-title: Diabetes Metab J
– volume: 15
  start-page: 341
  year: 2019
  end-page: 347
  ident: bib65
  article-title: Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications
  publication-title: Heart Fail Clin
– volume: 22
  start-page: 4437
  year: 2018
  end-page: 4448
  ident: bib98
  article-title: Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation
  publication-title: J Cell Mol Med
– volume: 66
  start-page: 12
  year: 2005
  end-page: 21
  ident: bib47
  article-title: Regulation of cardiac contractile function by troponin I phosphorylation
  publication-title: Cardiovasc Res
– volume: 120
  start-page: 212
  year: 2009
  end-page: 220
  ident: bib68
  article-title: Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study
  publication-title: Circulation
– volume: 19
  start-page: 1261
  year: 2015
  end-page: 1275
  ident: bib61
  article-title: The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe?
  publication-title: Expert Opin Ther Targets
– volume: 93
  year: 2004
  ident: bib5
  article-title: Diabetic cardiomyopathy: a metabolic perspective
  publication-title: Am J Cardiol
– volume: 114
  start-page: 597
  year: 2006
  end-page: 605
  ident: bib25
  article-title: Advanced glycation end products: sparking the development of diabetic vascular injury
  publication-title: Circulation
– volume: 25
  start-page: 7642
  year: 2021
  end-page: 7659
  ident: bib80
  article-title: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPK
  publication-title: J Cell Mol Med
– volume: 444
  start-page: 451
  year: 2014
  end-page: 454
  ident: bib77
  article-title: A role for trans-caryophyllene in the moderation of insulin secretion
  publication-title: Biochem Biophys Res Commun
– volume: 20
  start-page: 378
  year: 2020
  ident: bib79
  article-title: Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-
  publication-title: BMC Complement Med Ther
– volume: 2022
  year: 2022
  ident: bib19
  article-title: The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications
  publication-title: Oxid Med Cell Longev
– volume: 19
  start-page: 49
  year: 2014
  end-page: 63
  ident: bib10
  article-title: Advanced glycation end products: role in pathology of diabetic cardiomyopathy
  publication-title: Heart Fail Rev
– volume: 10
  start-page: 29
  year: 2011
  ident: bib74
  article-title: Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community
  publication-title: Cardiovasc Diabetol
– volume: 12
  start-page: 2963
  year: 2020
  ident: bib31
  article-title: Therapeutic potential of
  publication-title: Nutrients
– volume: 26
  start-page: 8551
  year: 2022
  end-page: 8566
  ident: bib60
  article-title: -caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF-
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 11
  start-page: 1488
  year: 2022
  ident: bib41
  article-title: Sarco/endoplasmic reticulum Ca(2+) ATPase 2 activator ameliorates endothelial dysfunction; insulin resistance in diabetic mice
  publication-title: Cells
– volume: 114
  start-page: 313
  year: 2008
  end-page: 320
  ident: bib76
  article-title: Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with type 2 diabetes
  publication-title: Clin Sci (Lond)
– volume: 21
  start-page: 3
  year: 2003
  end-page: 12
  ident: bib3
  article-title: Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes
  publication-title: J Hypertens
– volume: 31
  start-page: 119
  year: 2017
  end-page: 132
  ident: bib93
  article-title: SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor
  publication-title: Cardiovasc Drugs Ther
– volume: 30
  start-page: 263
  year: 2017
  end-page: 273
  ident: bib2
  article-title: The effect of
  publication-title: J Toxicol Pathol
– volume: 606
  start-page: 262
  year: 2009
  end-page: 268
  ident: bib100
  article-title: Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats
  publication-title: Eur J Pharmacol
– volume: 6
  start-page: 567
  year: 2013
  end-page: 573
  ident: bib32
  article-title: Carbamylated erythropoietin attenuates cardiomyopathy via PI3K/Akt activation in rats with diabetic cardiomyopathy
  publication-title: Exp Ther Med
– volume: 742
  start-page: 118
  year: 2014
  end-page: 124
  ident: bib53
  article-title: Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats
  publication-title: Eur J Pharmacol
– volume: 16
  start-page: 4817
  year: 2018
  end-page: 4823
  ident: bib69
  article-title: LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway
  publication-title: Exp Ther Med
– volume: 31
  start-page: 63
  year: 2009
  end-page: 77
  ident: bib64
  article-title: The emerging role of the endocannabinoid system in cardiovascular disease
  publication-title: Semin Immunopathol
– volume: 66
  start-page: 529
  year: 2017
  end-page: 542
  ident: bib27
  article-title: Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy
  publication-title: Diabetes
– volume: 70
  start-page: 348
  year: 2018
  end-page: 383
  ident: bib16
  article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
  publication-title: Pharmacol Rev
– volume: 12
  year: 2021
  ident: bib49
  article-title: -caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-
  publication-title: Front Pharmacol
– volume: 144
  start-page: 234
  year: 2012
  end-page: 239
  ident: bib15
  article-title: Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats
  publication-title: J Ethnopharmacol
– volume: 29
  start-page: 527
  year: 2018
  end-page: 529
  ident: bib42
  article-title: The endothelial-metabolic axis: a novel cardiometabolic disease target
  publication-title: Trends Endocrinol Metab
– volume: 18
  start-page: 809
  year: 2022
  end-page: 825
  ident: bib84
  article-title: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration
  publication-title: Int J Biol Sci
– volume: 245
  start-page: 50
  year: 2016
  end-page: 58
  ident: bib8
  article-title: -Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats
  publication-title: Chem Biol Interact
– volume: 77
  start-page: 30
  year: 2021
  end-page: 40
  ident: bib38
  article-title: Morphological characteristics in diabetic cardiomyopathy associated with autophagy
  publication-title: J Cardiol
– volume: 65
  start-page: 3111
  year: 2016
  end-page: 3128
  ident: bib85
  article-title: Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice
  publication-title: Diabetes
– volume: 84
  year: 2020
  ident: bib48
  article-title: -Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells
  publication-title: Int Immunopharmacol
– volume: 116
  start-page: 1469
  year: 2014
  end-page: 1479
  ident: bib6
  article-title: -Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats
  publication-title: Acta Histochem
– volume: 530
  start-page: 15
  year: 2020
  end-page: 21
  ident: bib88
  article-title: Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice
  publication-title: Biochem Biophys Res Commun
– volume: 297
  start-page: 16
  year: 2019
  end-page: 24
  ident: bib95
  article-title: Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors
  publication-title: Chem Biol Interact
– volume: 5
  start-page: 9
  year: 2015
  end-page: 14
  ident: bib7
  article-title: Protective role of
  publication-title: Journal of Acute Medicine
– volume: 1820
  start-page: 663
  year: 2012
  end-page: 671
  ident: bib89
  article-title: Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 6427
  year: 2020
  ident: bib37
  article-title: Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses
  publication-title: Sci Rep
– volume: 110
  start-page: 3221
  year: 2004
  end-page: 3228
  ident: bib78
  article-title: Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction
  publication-title: Circulation
– volume: 23
  start-page: 5771
  year: 2019
  end-page: 5781
  ident: bib99
  article-title: 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement
  publication-title: J Cell Mol Med
– volume: 244
  start-page: 612
  year: 2019
  end-page: 620
  ident: bib34
  article-title: Effect of irbesartan on AGEs-RAGE and MMPs systems in rat type 2 diabetes myocardial-fibrosis model
  publication-title: Exp Biol Med (Maywood)
– volume: 19
  start-page: 833
  year: 2018
  ident: bib101
  article-title: Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system
  publication-title: Int J Mol Sci
– volume: 8
  start-page: 64853
  year: 2017
  end-page: 64866
  ident: bib29
  article-title: Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation
  publication-title: Oncotarget
– volume: 15
  start-page: 1010
  year: 2019
  end-page: 1019
  ident: bib92
  article-title: Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy
  publication-title: Int J Biol Sci
– volume: 295
  year: 2008
  ident: bib1
  article-title: Evaluating the glucose tolerance test in mice
  publication-title: Am J Physiol Endocrinol Metab
– volume: 13
  start-page: 387
  year: 2022
  end-page: 407
  ident: bib20
  article-title: Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy
  publication-title: World J Diabetes
– volume: 105
  start-page: 9099
  year: 2008
  end-page: 9104
  ident: bib23
  article-title: Beta-caryophyllene is a dietary cannabinoid
  publication-title: Proc Natl Acad Sci U S A
– volume: 84
  start-page: 1208
  year: 2019
  end-page: 1215
  ident: bib39
  article-title: Mangosteen vinegar rind from Garcinia mangostana prevents high-fat diet and streptozotocin-induced type II diabetes nephropathy and apoptosis
  publication-title: J Food Sci
– volume: 44
  start-page: 929
  year: 2001
  end-page: 945
  ident: bib67
  article-title: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus
  publication-title: Diabetologia
– volume: 22
  start-page: 4437
  year: 2018
  ident: 10.1124/jpet.123.002037_bib98
  article-title: Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13743
– volume: 18
  start-page: 3125
  year: 2019
  ident: 10.1124/jpet.123.002037_bib52
  article-title: Aminoguanidine reduces diabetes-associated cardiac fibrosis
  publication-title: Exp Ther Med
– volume: 13
  start-page: 387
  year: 2022
  ident: 10.1124/jpet.123.002037_bib20
  article-title: Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy
  publication-title: World J Diabetes
  doi: 10.4239/wjd.v13.i5.387
– volume: 477
  start-page: 601
  year: 2011
  ident: 10.1124/jpet.123.002037_bib40
  article-title: SUMO1-dependent modulation of SERCA2a in heart failure
  publication-title: Nature
  doi: 10.1038/nature10407
– volume: 110
  start-page: 3221
  year: 2004
  ident: 10.1124/jpet.123.002037_bib78
  article-title: Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000147233.10318.23
– volume: 31
  start-page: 119
  year: 2017
  ident: 10.1124/jpet.123.002037_bib93
  article-title: SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-017-6725-2
– volume: 508
  start-page: 531
  year: 2014
  ident: 10.1124/jpet.123.002037_bib83
  article-title: Inhibition of miR-25 improves cardiac contractility in the failing heart
  publication-title: Nature
  doi: 10.1038/nature13073
– volume: 21
  start-page: 3
  year: 2003
  ident: 10.1124/jpet.123.002037_bib3
  article-title: Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes
  publication-title: J Hypertens
  doi: 10.1097/00004872-200301000-00002
– volume: 530
  start-page: 15
  year: 2020
  ident: 10.1124/jpet.123.002037_bib88
  article-title: Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.05.053
– volume: 30
  start-page: 263
  year: 2017
  ident: 10.1124/jpet.123.002037_bib2
  article-title: The effect of β-caryophyllene on nonalcoholic steatohepatitis
  publication-title: J Toxicol Pathol
  doi: 10.1293/tox.2017-0018
– volume: 2022
  year: 2022
  ident: 10.1124/jpet.123.002037_bib19
  article-title: The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2022/3790721
– volume: 25
  start-page: 993
  year: 2022
  ident: 10.1124/jpet.123.002037_bib21
  article-title: β-Caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model
  publication-title: Journal of Medicinal Food
– volume: 858
  year: 2019
  ident: 10.1124/jpet.123.002037_bib87
  article-title: Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2019.05.022
– volume: 297
  start-page: 16
  year: 2019
  ident: 10.1124/jpet.123.002037_bib95
  article-title: Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2018.10.010
– volume: 106
  start-page: 2235
  year: 2021
  ident: 10.1124/jpet.123.002037_bib26
  article-title: Increased myofilament calcium sensitivity is associated with decreased cardiac troponin I phosphorylation in the diabetic rat heart
  publication-title: Exp Physiol
  doi: 10.1113/EP089730
– volume: 120
  start-page: 212
  year: 2009
  ident: 10.1124/jpet.123.002037_bib68
  article-title: Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.846519
– volume: 167
  start-page: 348
  year: 2021
  ident: 10.1124/jpet.123.002037_bib57
  article-title: β-caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2021.01.046
– volume: 509
  start-page: 359
  year: 2019
  ident: 10.1124/jpet.123.002037_bib75
  article-title: Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.12.139
– volume: 24
  start-page: 2241
  year: 2018
  ident: 10.1124/jpet.123.002037_bib46
  article-title: M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612824666180716163845
– volume: 116
  start-page: 1469
  year: 2014
  ident: 10.1124/jpet.123.002037_bib6
  article-title: β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats
  publication-title: Acta Histochem
  doi: 10.1016/j.acthis.2014.10.001
– volume: 11
  start-page: 2788
  year: 2019
  ident: 10.1124/jpet.123.002037_bib22
  article-title: PipeNig-FL, a fluid extract of black pepper (Piper Nigrum L.) with a high standardized content of trans-β-caryophyllene, reduces lipid accumulation in 3T3-L1 preadipocytes and improves glucose uptake in C2C12 myotubes
  publication-title: Nutrients
  doi: 10.3390/nu11112788
– volume: 8
  start-page: 10908
  year: 2015
  ident: 10.1124/jpet.123.002037_bib50
  article-title: Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor-β dependent manner
  publication-title: Int J Clin Exp Pathol
– volume: 25
  start-page: 7642
  year: 2021
  ident: 10.1124/jpet.123.002037_bib80
  article-title: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16601
– volume: 295
  year: 2008
  ident: 10.1124/jpet.123.002037_bib1
  article-title: Evaluating the glucose tolerance test in mice
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90617.2008
– volume: 48
  start-page: 1971
  year: 2005
  ident: 10.1124/jpet.123.002037_bib17
  article-title: The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-1896-y
– volume: 21
  start-page: 262
  year: 2016
  ident: 10.1124/jpet.123.002037_bib56
  article-title: Prospects for creation of cardioprotective drugs based on cannabinoid receptor agonists
  publication-title: J Cardiovasc Pharmacol Ther
  doi: 10.1177/1074248415612593
– volume: 62
  start-page: 315
  year: 2019
  ident: 10.1124/jpet.123.002037_bib62
  article-title: Diabetic cardiomyopathy—a comprehensive updated review
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2019.03.003
– volume: 26
  start-page: 8551
  year: 2022
  ident: 10.1124/jpet.123.002037_bib60
  article-title: β-caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF-κB/NLRP3 signaling pathways
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 19
  start-page: 49
  year: 2014
  ident: 10.1124/jpet.123.002037_bib10
  article-title: Advanced glycation end products: role in pathology of diabetic cardiomyopathy
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-013-9374-y
– volume: 23
  start-page: 1288
  year: 2022
  ident: 10.1124/jpet.123.002037_bib9
  article-title: LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23031288
– volume: 24
  start-page: 12355
  year: 2020
  ident: 10.1124/jpet.123.002037_bib72
  article-title: Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15725
– volume: 104
  start-page: 293
  year: 2018
  ident: 10.1124/jpet.123.002037_bib86
  article-title: Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting
  publication-title: Heart
  doi: 10.1136/heartjnl-2017-311448
– volume: 1820
  start-page: 663
  year: 2012
  ident: 10.1124/jpet.123.002037_bib89
  article-title: Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2011.03.014
– volume: 9
  year: 2014
  ident: 10.1124/jpet.123.002037_bib51
  article-title: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104771
– volume: 245
  start-page: 50
  year: 2016
  ident: 10.1124/jpet.123.002037_bib8
  article-title: β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2015.12.019
– volume: 38
  start-page: 337
  year: 2014
  ident: 10.1124/jpet.123.002037_bib14
  article-title: Diabetic cardiomyopathy and its prevention by nrf2: current status
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2014.38.5.337
– volume: 15
  start-page: 1010
  year: 2019
  ident: 10.1124/jpet.123.002037_bib92
  article-title: Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.29680
– volume: 222
  year: 2014
  ident: 10.1124/jpet.123.002037_bib11
  article-title: Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models
  publication-title: J Endocrinol
  doi: 10.1530/JOE-14-0182
– volume: 84
  start-page: 1208
  year: 2019
  ident: 10.1124/jpet.123.002037_bib39
  article-title: Mangosteen vinegar rind from Garcinia mangostana prevents high-fat diet and streptozotocin-induced type II diabetes nephropathy and apoptosis
  publication-title: J Food Sci
  doi: 10.1111/1750-3841.14511
– volume: 9
  start-page: 133
  year: 2022
  ident: 10.1124/jpet.123.002037_bib94
  article-title: β-caryophyllene ameliorates cyclophosphamide induced cardiac injury: the association of TLR4/NF β and Nrf2/HO1/NQO1 pathways
  publication-title: J Cardiovasc Dev Dis
– volume: 10
  start-page: 6427
  year: 2020
  ident: 10.1124/jpet.123.002037_bib37
  article-title: Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63498-3
– volume: 165
  start-page: 155
  year: 2007
  ident: 10.1124/jpet.123.002037_bib4
  article-title: Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic β-cells in experimental diabetes in rats
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2006.10.014
– volume: 742
  start-page: 118
  year: 2014
  ident: 10.1124/jpet.123.002037_bib53
  article-title: Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2014.08.021
– volume: 13
  start-page: 952
  year: 2007
  ident: 10.1124/jpet.123.002037_bib97
  article-title: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
  publication-title: Nat Med
  doi: 10.1038/nm1613
– volume: 109
  start-page: 394
  year: 2013
  ident: 10.1124/jpet.123.002037_bib12
  article-title: The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation
  publication-title: Br J Nutr
  doi: 10.1017/S0007114512001298
– volume: 8
  start-page: 64853
  year: 2017
  ident: 10.1124/jpet.123.002037_bib29
  article-title: Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17614
– volume: 105
  start-page: 9099
  year: 2008
  ident: 10.1124/jpet.123.002037_bib23
  article-title: Beta-caryophyllene is a dietary cannabinoid
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0803601105
– volume: 148
  year: 2022
  ident: 10.1124/jpet.123.002037_bib90
  article-title: The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2022.112709
– volume: 5
  start-page: 9
  year: 2015
  ident: 10.1124/jpet.123.002037_bib7
  article-title: Protective role of β-caryophyllene, a sesquiterpene lactone on plasma and tissue glycoprotein components in streptozotocin-induced hyperglycemic rats
  publication-title: Journal of Acute Medicine
  doi: 10.1016/j.jacme.2015.02.001
– volume: 77
  start-page: 30
  year: 2021
  ident: 10.1124/jpet.123.002037_bib38
  article-title: Morphological characteristics in diabetic cardiomyopathy associated with autophagy
  publication-title: J Cardiol
  doi: 10.1016/j.jjcc.2020.05.009
– volume: 114
  start-page: 313
  year: 2008
  ident: 10.1124/jpet.123.002037_bib76
  article-title: Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with type 2 diabetes
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20070261
– volume: 606
  start-page: 262
  year: 2009
  ident: 10.1124/jpet.123.002037_bib100
  article-title: Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2008.12.056
– volume: 16
  start-page: 4817
  year: 2018
  ident: 10.1124/jpet.123.002037_bib69
  article-title: LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway
  publication-title: Exp Ther Med
– volume: 70
  start-page: 348
  year: 2018
  ident: 10.1124/jpet.123.002037_bib16
  article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.117.014753
– volume: 6
  start-page: 1129
  year: 2023
  ident: 10.1124/jpet.123.002037_bib54
  article-title: β-caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors
  publication-title: ACS Pharmacol Transl Sci
  doi: 10.1021/acsptsci.3c00027
– volume: 29
  start-page: 527
  year: 2018
  ident: 10.1124/jpet.123.002037_bib42
  article-title: The endothelial-metabolic axis: a novel cardiometabolic disease target
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2018.03.015
– volume: 444
  start-page: 451
  year: 2014
  ident: 10.1124/jpet.123.002037_bib77
  article-title: A role for trans-caryophyllene in the moderation of insulin secretion
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2013.11.136
– volume: 44
  start-page: 929
  year: 2001
  ident: 10.1124/jpet.123.002037_bib67
  article-title: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus
  publication-title: Diabetologia
  doi: 10.1007/s001250100580
– volume: 261
  start-page: 245
  year: 2004
  ident: 10.1124/jpet.123.002037_bib81
  article-title: Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart
  publication-title: Mol Cell Biochem
  doi: 10.1023/B:MCBI.0000028762.97754.26
– volume: 93
  year: 2004
  ident: 10.1124/jpet.123.002037_bib5
  article-title: Diabetic cardiomyopathy: a metabolic perspective
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2003.11.003
– volume: 12
  year: 2021
  ident: 10.1124/jpet.123.002037_bib49
  article-title: β-caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-κB signal pathway: in silico and in vivo
  publication-title: Front Pharmacol
– volume: 66
  start-page: 529
  year: 2017
  ident: 10.1124/jpet.123.002037_bib27
  article-title: Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy
  publication-title: Diabetes
  doi: 10.2337/db15-1274
– volume: 84
  start-page: 1587
  year: 2020
  ident: 10.1124/jpet.123.002037_bib30
  article-title: Sustaining circulating regulatory T cell subset contributes to the therapeutic effect of paroxetine on mice with diabetic cardiomyopathy
  publication-title: Circ J
  doi: 10.1253/circj.CJ-19-1182
– volume: 1
  start-page: 54
  year: 2022
  ident: 10.1124/jpet.123.002037_bib71
  article-title: Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing
  publication-title: Life Metabolism
  doi: 10.1093/lifemeta/loac013
– volume: 13
  start-page: 465
  year: 2011
  ident: 10.1124/jpet.123.002037_bib73
  article-title: Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2011.01369.x
– volume: 19
  start-page: 833
  year: 2018
  ident: 10.1124/jpet.123.002037_bib101
  article-title: Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19030833
– volume: 114
  start-page: 597
  year: 2006
  ident: 10.1124/jpet.123.002037_bib25
  article-title: Advanced glycation end products: sparking the development of diabetic vascular injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.621854
– volume: 84
  year: 2020
  ident: 10.1124/jpet.123.002037_bib48
  article-title: β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2020.106556
– volume: 42
  start-page: 247
  year: 2007
  ident: 10.1124/jpet.123.002037_bib58
  article-title: Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2006.08.017
– volume: 19
  start-page: 1261
  year: 2015
  ident: 10.1124/jpet.123.002037_bib61
  article-title: The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe?
  publication-title: Expert Opin Ther Targets
  doi: 10.1517/14728222.2015.1043268
– volume: 59
  start-page: 958
  year: 2012
  ident: 10.1124/jpet.123.002037_bib63
  article-title: Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.111.183905
– volume: 7
  year: 2012
  ident: 10.1124/jpet.123.002037_bib96
  article-title: Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052013
– volume: 324
  year: 2023
  ident: 10.1124/jpet.123.002037_bib82
  article-title: A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00390.2022
– volume: 100
  start-page: 259
  year: 2022
  ident: 10.1124/jpet.123.002037_bib45
  article-title: Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/cjpp-2021-0046
– volume: 31
  start-page: 63
  year: 2009
  ident: 10.1124/jpet.123.002037_bib64
  article-title: The emerging role of the endocannabinoid system in cardiovascular disease
  publication-title: Semin Immunopathol
  doi: 10.1007/s00281-009-0145-8
– volume: 10
  start-page: 29
  year: 2011
  ident: 10.1124/jpet.123.002037_bib74
  article-title: Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-10-29
– volume: 18
  start-page: 809
  year: 2022
  ident: 10.1124/jpet.123.002037_bib84
  article-title: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.63219
– volume: 40
  year: 2021
  ident: 10.1124/jpet.123.002037_bib36
  article-title: Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice
  publication-title: Hum Exp Toxicol
  doi: 10.1177/09603271211045948
– volume: 11
  year: 2020
  ident: 10.1124/jpet.123.002037_bib13
  article-title: Cardioprotective effect of decorin in type 2 diabetes
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2020.479258
– volume: 2022
  year: 2022
  ident: 10.1124/jpet.123.002037_bib28
  article-title: Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2022/9004014
– volume: 862
  year: 2019
  ident: 10.1124/jpet.123.002037_bib43
  article-title: Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2019.172628
– volume: 11
  start-page: 784
  year: 2022
  ident: 10.1124/jpet.123.002037_bib18
  article-title: Role of oxidative stress in diabetic cardiomyopathy
  publication-title: Antioxidants (Basel)
  doi: 10.3390/antiox11040784
– volume: 46
  start-page: 47
  year: 2009
  ident: 10.1124/jpet.123.002037_bib33
  article-title: Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2008.10.007
– volume: 6
  start-page: 567
  year: 2013
  ident: 10.1124/jpet.123.002037_bib32
  article-title: Carbamylated erythropoietin attenuates cardiomyopathy via PI3K/Akt activation in rats with diabetic cardiomyopathy
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2013.1134
– volume: 94
  start-page: 146
  year: 2004
  ident: 10.1124/jpet.123.002037_bib59
  article-title: Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000110083.17024.60
– volume: 15
  start-page: 341
  year: 2019
  ident: 10.1124/jpet.123.002037_bib65
  article-title: Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications
  publication-title: Heart Fail Clin
  doi: 10.1016/j.hfc.2019.02.003
– volume: 24
  start-page: 279
  year: 2019
  ident: 10.1124/jpet.123.002037_bib66
  article-title: Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-018-9749-1
– volume: 11
  start-page: 1488
  year: 2022
  ident: 10.1124/jpet.123.002037_bib41
  article-title: Sarco/endoplasmic reticulum Ca(2+) ATPase 2 activator ameliorates endothelial dysfunction; insulin resistance in diabetic mice
  publication-title: Cells
  doi: 10.3390/cells11091488
– volume: 72
  start-page: 59
  year: 2017
  ident: 10.1124/jpet.123.002037_bib55
  article-title: [Prospects for the use of cannabinoid receptor ligands for the treatment of metabolic syndrome and atherosclerosis: analysis of experimental and clinical data]
  publication-title: Vestn Ross Akad Med Nauk
  doi: 10.15690/vramn779
– volume: 106
  start-page: 842
  year: 2010
  ident: 10.1124/jpet.123.002037_bib91
  article-title: The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.109.212217
– volume: 144
  start-page: 234
  year: 2012
  ident: 10.1124/jpet.123.002037_bib15
  article-title: Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2012.08.029
– volume: 66
  start-page: 12
  year: 2005
  ident: 10.1124/jpet.123.002037_bib47
  article-title: Regulation of cardiac contractile function by troponin I phosphorylation
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2004.12.022
– volume: 182
  year: 2020
  ident: 10.1124/jpet.123.002037_bib70
  article-title: A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2020.114209
– volume: 244
  start-page: 612
  year: 2019
  ident: 10.1124/jpet.123.002037_bib34
  article-title: Effect of irbesartan on AGEs-RAGE and MMPs systems in rat type 2 diabetes myocardial-fibrosis model
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1177/1535370219840981
– volume: 93
  start-page: 1143
  year: 2008
  ident: 10.1124/jpet.123.002037_bib24
  article-title: Clinical review: the role of advanced glycation end products in progression and complications of diabetes
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2007-1817
– volume: 10
  start-page: 998
  year: 2019
  ident: 10.1124/jpet.123.002037_bib35
  article-title: Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.00998
– volume: 20
  start-page: 378
  year: 2020
  ident: 10.1124/jpet.123.002037_bib79
  article-title: Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-κB activities
  publication-title: BMC Complement Med Ther
  doi: 10.1186/s12906-020-03177-y
– volume: 12
  start-page: 2963
  year: 2020
  ident: 10.1124/jpet.123.002037_bib31
  article-title: Therapeutic potential of β-caryophyllene: a dietary cannabinoid in diabetes and associated complications
  publication-title: Nutrients
  doi: 10.3390/nu12102963
– volume: 44
  year: 2020
  ident: 10.1124/jpet.123.002037_bib44
  article-title: Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats
  publication-title: J Food Biochem
  doi: 10.1111/jfbc.13156
– volume: 23
  start-page: 5771
  year: 2019
  ident: 10.1124/jpet.123.002037_bib99
  article-title: 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.14493
– volume: 65
  start-page: 3111
  year: 2016
  ident: 10.1124/jpet.123.002037_bib85
  article-title: Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice
  publication-title: Diabetes
  doi: 10.2337/db15-1563
SSID ssj0014463
Score 2.4948921
Snippet Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction...
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms advanced glycation end product
AGE
AKT
Animals
apoptosis-associated speck-like protein containing a CARD
area under the curve
ASC
AUC
BCP
body weight
cannabinoid 1 receptor
cannabinoid 2 receptor
CAT
catalase
CB1R
CB2R
DCM
Diabetic Cardiomyopathies - drug therapy
Diabetic Cardiomyopathies - metabolism
Diabetic Cardiomyopathies - pathology
Diabetic Cardiomyopathies - prevention & control
diabetic cardiomyopathy
EndMT
endothelial-to-mesenchymal transition
Fibrosis
Glycation End Products, Advanced - metabolism
heart weight
heme oxygenase-1
HFD
high-fat diet
HO-1
HOMA-IR
homeostatic model assessment of insulin resistance
IL-18
IL-1β
Inflammasomes - metabolism
interleukin 18
interleukin-1β
Keap1
kelch-like ECH-associated protein 1
Male
matrix metalloproteinase
Mice
Mice, Inbred C57BL
MMP
NADPH oxidase 4
NLRP3
NOX4
NrF2
nuclear factor erythroid 2–related factor 2
nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3
OGTT
oral glucose tolerance test
Oxidative Stress - drug effects
phosphoinositide 3-kinase
PI3K
protein kinase B
RAGE
reactive oxygen species
Receptor for Advanced Glycation End Products - metabolism
receptor of advanced glycation end product
Receptor, Cannabinoid, CB2 - agonists
Receptor, Cannabinoid, CB2 - metabolism
ROS
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a
SERCA2a
Signal Transduction - drug effects
Smad
SOD
superoxide dismutase
suppressor of mothers against decapentaplegic
TGF-β
TnI
transforming growth factor-β
troponin I
α-SMA
α-smooth muscle actin
β-caryophyllene
Title Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation
URI https://dx.doi.org/10.1124/jpet.123.002037
https://www.ncbi.nlm.nih.gov/pubmed/38955492
https://www.proquest.com/docview/3075375633
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-547588
Volume 391
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKuXBB7AybjAQV0iydOM52HJUuoG6CKZqb5cRxE8HEVWciaP8RP5A7z3EWd5MKl2TkTBxH3xe_9-y3IPQuSkTKx1RqL3FvSH0_0Tkgg2EswgjMA5BKQscO7-37O0f088ybraz8sbyWymU8Ss6vjSv5H1ShDXDVUbL_gGzbKTTAb8AXjoAwHG-F8QYvCg6mrcpFn2gNMD0BE7o_SZqaZToOYFn5a_BjnoMm2DceMHmiPT1EruZnStckPmvr9XwqsjzOGzVysr0Jo_sCp6Gu8aF9BQ5-5cIkC_9ahZlU2i_Y3GphshUY_2IJRJvzhZqn1mhsRbgLSauU4ZMug7ZJCHWh8oAVJLbopsxFBlZ-ZmRnzPWGQNbf43OhynaJe3Kez0t9oVrkzdL8e7f6zY-V0jmMoGvjz6wyDqoBvMx52Xos6wXzxU_toanfp5qgM5g-ub1YQmgdNWjN70Q3jM2cml7TVgsFN3Is9hN7ijeJuq6KHkK16AFbZwTawKja4g06Kdt4FuwfsK2j3V023ZxN76C7BKwbXXhje9Z6JmkLvYoLacZVZ6SCB6xf6v4mZeqqsXQpE26lPU0foPs10nhiOPwQraTFI7R2aFA_G-CphfAAr-FDiw-P0W-L6Jjghui4oxZuiI5rouOG6Pgi0XFNdNwRHSuJgeHrNs1xS3NsaD7ADckHGPiJbYpb43iCjrY2pxs7w7rGyDAhOrpUCNdJBJdjQUPupF6c0CDikhNf0nHqeUISIhzBhS8IkZFDA-mS2JWUeyFxk8R9ilYLVaTPEU4Txw9k6NLAjyl3eCR94ohY0iAQIfGiHho1YLGkTsCv68D8YJUhTijT6DJAlxl0e-hDe8OJyT1z819Jgz6rVWejEjOg5803vW14wkCo6J1CXqSqXDAQ_J4beL7r9tAzQ6B2BGDheDqtYw-9N4xqr-hM9R_zbxOmTo9ZWTKPBl4YvrjFU16ie93X-gqtLk_L9DUo-8v4TfVp_AVQdgpB
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cannabinoid+2+Receptor+Activation+Protects+against+Diabetic+Cardiomyopathy+through+Inhibition+of+AGE%2FRAGE-Induced+Oxidative+Stress%2C+Fibrosis%2C+and+Inflammasome+Activation&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Hashiesh%2C+Hebaallah+Mamdouh&rft.au=Azimullah%2C+Sheikh&rft.au=Nagoor+Meeran%2C+Mohamed+Fizur&rft.au=Saraswathiamma%2C+Dhanya&rft.date=2024-11-01&rft.issn=1521-0103&rft.eissn=1521-0103&rft.volume=391&rft.issue=2&rft.spage=241&rft_id=info:doi/10.1124%2Fjpet.123.002037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon