Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation
Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 391; no. 2; pp. 241 - 257 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms.
BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
▪ |
---|---|
AbstractList | Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms.
BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.
▪ Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β -caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2 β and TGF- β /Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of -caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2 and TGF- /Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. |
Author | Azimullah, Sheikh Saraswathiamma, Dhanya Sethi, Gautam Hashiesh, Hebaallah Mamdouh Arunachalam, Seenipandi Nagoor Meeran, Mohamed Fizur Al Marzooqi, Saeeda Sadek, Bassem Jha, Niraj Kumar Adeghate, Ernest Albawardi, Alia Ojha, Shreesh |
Author_xml | – sequence: 1 givenname: Hebaallah Mamdouh surname: Hashiesh fullname: Hashiesh, Hebaallah Mamdouh – sequence: 2 givenname: Sheikh surname: Azimullah fullname: Azimullah, Sheikh – sequence: 3 givenname: Mohamed Fizur surname: Nagoor Meeran fullname: Nagoor Meeran, Mohamed Fizur – sequence: 4 givenname: Dhanya surname: Saraswathiamma fullname: Saraswathiamma, Dhanya – sequence: 5 givenname: Seenipandi surname: Arunachalam fullname: Arunachalam, Seenipandi – sequence: 6 givenname: Niraj Kumar surname: Jha fullname: Jha, Niraj Kumar – sequence: 7 givenname: Bassem surname: Sadek fullname: Sadek, Bassem – sequence: 8 givenname: Ernest surname: Adeghate fullname: Adeghate, Ernest – sequence: 9 givenname: Gautam surname: Sethi fullname: Sethi, Gautam – sequence: 10 givenname: Alia surname: Albawardi fullname: Albawardi, Alia – sequence: 11 givenname: Saeeda surname: Al Marzooqi fullname: Al Marzooqi, Saeeda – sequence: 12 givenname: Shreesh orcidid: 0000-0001-7801-2966 surname: Ojha fullname: Ojha, Shreesh email: shreeshojha@uaeu.ac.ae |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38955492$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-547588$$DView record from Swedish Publication Index |
BookMark | eNp9kU1r2zAYgMXoWNNu592GjjvUiT6s2D6G9CtQ6Og-rkKW5OQtseRJcrb8pP3LqU1bxmC7yMI8z4t4nxN05LyzCL2nZEopK2f3g01TyviUEEZ49QpNqGC0IJTwIzTJP1nBxVwco5MY7wmhZTnnb9AxrxshyoZN0K-lck614DwYzPCd1XZIPuCFTrBTCbzDn4JPVqeI1VqBiwmfg2ptAo2XKhjw_d4PKm32OG2CH9cbvHIbaOHR9R1eXF3M7vJRrJwZtTX49ieYPHln8ecUbIxn-BLa4CPkm3Im691W9b2Kvrd_vOMtet2pbbTvnr6n6OvlxZfldXFze7VaLm4KzZqmLozhVBvVEVPWilrR6rJqVKfYvCuJFcJ0jBlqlJkbxrqGllXHWcu7Uomaca35KTo7zI0_7DC2cgjQq7CXXoE8h28L6cNajqMUZSXqOuMfD_gQ_PfRxiR7iNput8pZP0bJSSV4JeacZ_TDEzq2vTUvk59rZGB2AHReRwy2e0EokQ-95UNvmXvLQ-9siL8MDelxXSko2P7Haw6ezZvcgQ0yarAu54GQW0vj4Z_ub7EQxgY |
CitedBy_id | crossref_primary_10_1124_jpet_124_002418 crossref_primary_10_1007_s00210_024_03595_6 crossref_primary_10_1186_s43066_024_00400_0 |
Cites_doi | 10.1111/jcmm.13743 10.4239/wjd.v13.i5.387 10.1038/nature10407 10.1161/01.CIR.0000147233.10318.23 10.1007/s10557-017-6725-2 10.1038/nature13073 10.1097/00004872-200301000-00002 10.1016/j.bbrc.2020.05.053 10.1293/tox.2017-0018 10.1155/2022/3790721 10.1016/j.ejphar.2019.05.022 10.1016/j.cbi.2018.10.010 10.1113/EP089730 10.1161/CIRCULATIONAHA.108.846519 10.1016/j.freeradbiomed.2021.01.046 10.1016/j.bbrc.2018.12.139 10.2174/1381612824666180716163845 10.1016/j.acthis.2014.10.001 10.3390/nu11112788 10.1111/jcmm.16601 10.1152/ajpendo.90617.2008 10.1007/s00125-005-1896-y 10.1177/1074248415612593 10.1016/j.pcad.2019.03.003 10.1007/s10741-013-9374-y 10.3390/ijms23031288 10.1111/jcmm.15725 10.1136/heartjnl-2017-311448 10.1016/j.bbagen.2011.03.014 10.1371/journal.pone.0104771 10.1016/j.cbi.2015.12.019 10.4093/dmj.2014.38.5.337 10.7150/ijbs.29680 10.1530/JOE-14-0182 10.1111/1750-3841.14511 10.1038/s41598-020-63498-3 10.1016/j.cbi.2006.10.014 10.1016/j.ejphar.2014.08.021 10.1038/nm1613 10.1017/S0007114512001298 10.18632/oncotarget.17614 10.1073/pnas.0803601105 10.1016/j.biopha.2022.112709 10.1016/j.jacme.2015.02.001 10.1016/j.jjcc.2020.05.009 10.1042/CS20070261 10.1016/j.ejphar.2008.12.056 10.1124/pr.117.014753 10.1021/acsptsci.3c00027 10.1016/j.tem.2018.03.015 10.1016/j.bbrc.2013.11.136 10.1007/s001250100580 10.1023/B:MCBI.0000028762.97754.26 10.1016/j.amjcard.2003.11.003 10.2337/db15-1274 10.1253/circj.CJ-19-1182 10.1093/lifemeta/loac013 10.1111/j.1463-1326.2011.01369.x 10.3390/ijms19030833 10.1161/CIRCULATIONAHA.106.621854 10.1016/j.intimp.2020.106556 10.1016/j.yjmcc.2006.08.017 10.1517/14728222.2015.1043268 10.1161/HYPERTENSIONAHA.111.183905 10.1371/journal.pone.0052013 10.1152/ajpheart.00390.2022 10.1139/cjpp-2021-0046 10.1007/s00281-009-0145-8 10.1186/1475-2840-10-29 10.7150/ijbs.63219 10.1177/09603271211045948 10.3389/fendo.2020.479258 10.1155/2022/9004014 10.1016/j.ejphar.2019.172628 10.3390/antiox11040784 10.1016/j.yjmcc.2008.10.007 10.3892/etm.2013.1134 10.1161/01.RES.0000110083.17024.60 10.1016/j.hfc.2019.02.003 10.1007/s10741-018-9749-1 10.3390/cells11091488 10.15690/vramn779 10.1161/CIRCRESAHA.109.212217 10.1016/j.jep.2012.08.029 10.1016/j.cardiores.2004.12.022 10.1016/j.bcp.2020.114209 10.1177/1535370219840981 10.1210/jc.2007-1817 10.3389/fphar.2019.00998 10.1186/s12906-020-03177-y 10.3390/nu12102963 10.1111/jfbc.13156 10.1111/jcmm.14493 10.2337/db15-1563 |
ContentType | Journal Article |
Copyright | 2024 American Society for Pharmacology and Experimental Therapeutics Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics. |
Copyright_xml | – notice: 2024 American Society for Pharmacology and Experimental Therapeutics – notice: Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS DF2 |
DOI | 10.1124/jpet.123.002037 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-0103 |
EndPage | 257 |
ExternalDocumentID | oai_DiVA_org_uu_547588 38955492 10_1124_jpet_123_002037 S0022356524177993 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 2WC 3O- 4.4 53G 5GY 5RE 5VS 8WZ A6W AAJMC AALRI AAXUO AAYOK ABCQX ABIVO ABJNI ABOCM ABSQV ACGFO ACGFS ACNCT ADBBV ADCOW ADIYS AENEX AERNN AFFNX AFHIN AFOSN AGFXO AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ INIJC KQ8 L7B LSO M41 MJL MVM O9- OHT OK1 P2P R.V R0Z RHF RHI RPT TR2 UQL VH1 W2D W8F WH7 WOQ X7M YBU YHG YQT ZGI ZXP AAYXX ACVFH ADCNI AETEA AEUPX AFPUW AIGII AKBMS AKYEP CITATION ROL CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c2998-dd31cdaf0d48a1e5bc479afa26f40e55df22d1dad6d22f9147f32b3f4a5823cc3 |
ISSN | 0022-3565 1521-0103 |
IngestDate | Thu Aug 21 06:39:00 EDT 2025 Fri Jul 11 11:24:20 EDT 2025 Mon Jul 21 06:02:58 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Tue Jul 01 05:29:01 EDT 2025 Sat Feb 08 15:52:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | HFD HO-1 SERCA2a AUC HW α-SMA ASC PI3K BW NLRP3 TGF-β EndMT AGE CB2R SOD AKT RAGE IL-1β BCP TnI DCM HOMA-IR MMP NrF2 IL-18 CAT ROS Keap1 NOX4 Smad OGTT CB1R |
Language | English |
License | Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2998-dd31cdaf0d48a1e5bc479afa26f40e55df22d1dad6d22f9147f32b3f4a5823cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7801-2966 |
PMID | 38955492 |
PQID | 3075375633 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_547588 proquest_miscellaneous_3075375633 pubmed_primary_38955492 crossref_primary_10_1124_jpet_123_002037 crossref_citationtrail_10_1124_jpet_123_002037 elsevier_sciencedirect_doi_10_1124_jpet_123_002037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of pharmacology and experimental therapeutics |
PublicationTitleAlternate | J Pharmacol Exp Ther |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Han, Lai, Tao, Tai, Zhou, Guo, Wang, Wang, Wang (bib30) 2020; 84 Maslov, Karpov (bib55) 2017; 72 Wan, Bai, Zhou, Chen, Wang, Liu, Xue, Wei, Xie (bib84) 2022; 18 Goldin, Beckman, Schmidt, Creager (bib25) 2006; 114 Mahmoud, Swefy, Hasan, Ibrahim (bib53) 2014; 742 Dawson, Morris, Struthers (bib17) 2005; 48 Metzger, Westfall (bib59) 2004; 94 Ding, Song, Hu, Yin, Huang, Tang (bib19) 2022; 2022 Aronson (bib3) 2003; 21 Sun, Dawood, Wen, Chen, Dixon, Kirshenbaum, Liu (bib78) 2004; 110 Hongwei, Ruiping, Yingyan, Guanjun, Jie, Xingyu, Jie, Zhenghong, Qin, Junfeng (bib34) 2019; 244 Kanamori, Naruse, Yoshida, Minatoguchi, Watanabe, Kawaguchi, Tanaka, Yamada, Takasugi, Mikami (bib38) 2021; 77 Kumawat, Kaur (bib44) 2020; 44 Kumawat, Kaur (bib45) 2022; 100 Youssef, El-Fayoumi, Mahmoud (bib95) 2019; 297 Avogaro, Vigili de Kreutzenberg, Negut, Tiengo, Scognamiglio (bib5) 2004; 93 Franco-Arroyo, Viveros-Paredes, Zepeda-Morales, Roldán, Márquez-Aguirre, Zepeda-Nuño, Velázquez-Juárez, Fafutis-Morris, Ri (bib21) 2022; 25 Arulselvan, Subramanian (bib4) 2007; 165 Kumawat, Kaur (bib43) 2019; 862 Bodiga, Eda, Bodiga (bib10) 2014; 19 Wu, Liu, He, Da, Xie (bib87) 2019; 858 Yamagishi, Maeda, Matsui, Ueda, Fukami, Okuda (bib89) 2012; 1820 Messer, Jacques, Marston (bib58) 2007; 42 Okayama, Azuma, Dosaka, Iekushi, Sanada, Kusunoki, Iwabayashi, Rakugi, Taniyama, Morishita (bib63) 2012; 59 Han, Li, Fan, Chen, Gou, Su, Fan, Xu, Wang, Ma (bib29) 2017; 8 Luo, Li, Wang, Liu, Xia, Zhang, Zhang, Zhang, An (bib51) 2014; 9 Magdaleno, Blajszczak, Charles-Niño, Guadrón-Llanos, Vázquez-Álvarez, Miranda-Díaz, Nieto, Islas-Carbajal, Rincón-Sánchez (bib52) 2019; 18 El-Azab, Wakiel, Nafea, Youssef (bib20) 2022; 13 Goh, Cooper (bib24) 2008; 93 Qian, Tian, Wang, Lu, Li, Ma, Gao, Yao (bib70) 2020; 182 De Geest, Mishra (bib18) 2022; 11 Basha, Sankaranarayanan (bib7) 2015; 5 Basha, Sankaranarayanan (bib8) 2016; 245 Wu, Huang, Zhou, Liu (bib88) 2020; 530 Geddo, Scandiffio, Antoniotti, Cottone, Querio, Maffei, Bovolin, Gallo (bib22) 2019; 11 Roe, Thomas, Ren (bib73) 2011; 13 Pacher, Steffens (bib64) 2009; 31 Srivastava, Calafiore, Macisaac, Patel, Thomas, Jerums, Burrell (bib76) 2008; 114 Kovacic (bib42) 2018; 29 Li, Wang, Chen, Yang (bib48) 2020; 84 Yan, Li, Wang, Shao, Luo, Liu, Li, Wang, Zhang, Diao (bib90) 2022; 148 Zhou, Zhou, Tang, Zhang, Guang, Huang, Xu, Ying, Zhang, Li (bib100) 2009; 606 Basha, Sankaranarayanan (bib6) 2014; 116 Paolillo, Marsico, Prastaro, Renga, Esposito, De Martino, Di Napoli, Esposito, Ambrosio, Ianniruberto (bib65) 2019; 15 Yu, Wu, Cai, Xiang, Zha, Fan, Guo, Ming, Liu (bib96) 2012; 7 Parim, Sathibabu Uddandrao, Saravanan (bib66) 2019; 24 Arizuka, Murakami, Suzuki (bib2) 2017; 30 Tian, Zhang, Suo, Liu, Wang, Liu, Pan, Jin, An (bib80) 2021; 25 Greenman, Diffee, Power, Wilkins, Gold, Erickson, Baldi (bib26) 2021; 106 Jiang, Fu, Xu, Hu, Yang, Zhang, Luo, Gan, Tao, Liang (bib37) 2020; 10 Zheng, Ma, Guo, Kim, Kim, Bi, Zhang, Cai (bib99) 2019; 23 Pratley, Weyer (bib67) 2001; 44 Gu, Cheng, Wu, Kong, Wang, Xu, Zhang, Tan, Keller, Zhou (bib27) 2017; 66 Zeisberg, Tarnavski, Zeisberg, Dorfman, McMullen, Gustafsson, Chandraker, Yuan, Pu, Roberts (bib97) 2007; 13 Somaratne, Whalley, Poppe, ter Bals, Wadams, Pearl, Bagg, Doughty (bib74) 2011; 10 Belali, Ahmed, Mohany, Belali, Alotaibi, Al-Hoshani, Al-Rejaie (bib9) 2022; 23 Ren, Zhang, Liu, Cheng, Yang, Cui, Zhao, Zhao, Hao, Li (bib72) 2020; 24 Yan, Ramasamy, Schmidt (bib91) 2010; 106 Preis, Pencina, Hwang, D’Agostino, Savage, Levy, Fox (bib68) 2009; 120 Mohamed, Abdelnaby, Younis (bib60) 2022; 26 Kho, Lee, Jeong, Oh, Chaanine, Kizana, Park, Hajjar (bib40) 2011; 477 Layland, Solaro, Shah (bib47) 2005; 66 Huo, Mijiti, Cai, Gao, Aini, Mijiti, Wang, Qie (bib36) 2021; 40 Li, Yang, Chen, Ren (bib49) 2021; 12 Chen, Zhang, Cai (bib14) 2014; 38 Meeran, Laham, Azimullah, Sharma, Al Kaabi, Tariq, Adeghate, Goyal, Ojha (bib57) 2021; 167 Quan, Zhu, Wang, Chen, Chen, Li, Su, Du, Liu, Wang (bib71) 2022; 1 Gertsch, Leonti, Raduner, Racz, Chen, Xie, Altmann, Karsak, Zimmer (bib23) 2008; 105 He, Kan, Cai, Ma (bib33) 2009; 46 Hou, Mai, Qiu, Yuan, Li, Luo, Liu, Zhang, Zhao, Luo (bib35) 2019; 10 Zhang, Chen, Zong, Yuan, Wang, Wei, Wang, Liu, Zhang, Li (bib98) 2018; 22 Yang, Qin, Wang, Meng, Xian, Che, Lv, Li, Yu, Bai (bib92) 2019; 15 Karim, Rahman, Chanudom, Thongsom, Tangpong (bib39) 2019; 84 Zou, Kumar (bib101) 2018; 19 He, Qiao, Wu (bib32) 2013; 6 Moris, Georgopoulos, Felekouras, Patsouris, Theocharis (bib61) 2015; 19 Chen, Lai, Zhu, He, Hou, Wang, Chen, Wang, Tang (bib13) 2020; 11 Gushiken, Beserra, Hussni, Gonzaga, Ribeiro, de Souza, Campos, Massaro, Hussni, Takahira (bib28) 2022; 2022 Kimura, Kagami, Sato, Osaki, Ito, Horii, Toya, Masaki, Yasuda, Nagatomo (bib41) 2022; 11 Qi, Zhong (bib69) 2018; 16 Liu, Zhang (bib50) 2015; 8 Song, Yang, Guo, Lu, Shi, Wang (bib75) 2019; 509 Hashiesh, Meeran, Sharma, Sadek, Kaabi, Ojha (bib31) 2020; 12 Bowe, Franklin, Hauge-Evans, King, Persaud, Jones (bib11) 2014; 222 Wang, Gu, Huang, Peng, Li, Yang, Qin, Essandoh, Wang, Peng (bib85) 2016; 65 Landis, Quimby, Greenidge (bib46) 2018; 24 Mamdouh Hashiesh, Sheikh, Meeran, Saraswathiamma, Jha, Sadek, Adeghate, Tariq, Al Marzooqi, Ojha (bib54) 2023; 6 Tan, Chen, Fang, Zhang (bib79) 2020; 20 Wilson, Gill, Abudalo, Edgar, Watson, Grieve (bib86) 2018; 104 Andrikopoulos, Blair, Deluca, Fam, Proietto (bib1) 2008; 295 Vasanji, Dhalla, Netticadan (bib81) 2004; 261 Maslov, Khaliulin, Zhang, Krylatov, Naryzhnaya, Mechoulam, De Petrocellis, Downey (bib56) 2016; 21 Wahlquist, Jeong, Rojas-Muñoz, Kho, Lee, Mitsuyama, van Mil, Park, Sluijter, Doevendans (bib83) 2014; 508 Velagic, Li, Deo, Li, Kiriazis, Donner, Anderson, De Blasio, Woodman, Kemp-Harper (bib82) 2023; 324 Ye, Bajaj, Yang, Perez-Polo, Birnbaum (bib93) 2017; 31 Calleja, Vieites, Montero-Meléndez, Torres, Faus, Gil, Suárez (bib12) 2013; 109 Murtaza, Virk, Khalid, Lavie, Ventura, Mukherjee, Ramu, Bhogal, Kumar, Shanmugasundaram (bib62) 2019; 62 Cheng, Chen, Lee, Chen, Jung Lin, Cheng (bib15) 2012; 144 Suijun, Zhen, Ying, Yanfang (bib77) 2014; 444 Cuadrado, Manda, Hassan, Alcaraz, Barbas, Daiber, Ghezzi, León, López, Oliva (bib16) 2018; 70 Younis (bib94) 2022; 9 De Geest (10.1124/jpet.123.002037_bib18) 2022; 11 Roe (10.1124/jpet.123.002037_bib73) 2011; 13 Yamagishi (10.1124/jpet.123.002037_bib89) 2012; 1820 Moris (10.1124/jpet.123.002037_bib61) 2015; 19 Cuadrado (10.1124/jpet.123.002037_bib16) 2018; 70 Wu (10.1124/jpet.123.002037_bib87) 2019; 858 Han (10.1124/jpet.123.002037_bib29) 2017; 8 Preis (10.1124/jpet.123.002037_bib68) 2009; 120 Goh (10.1124/jpet.123.002037_bib24) 2008; 93 Maslov (10.1124/jpet.123.002037_bib56) 2016; 21 Huo (10.1124/jpet.123.002037_bib36) 2021; 40 Zhou (10.1124/jpet.123.002037_bib100) 2009; 606 Quan (10.1124/jpet.123.002037_bib71) 2022; 1 Murtaza (10.1124/jpet.123.002037_bib62) 2019; 62 Wang (10.1124/jpet.123.002037_bib85) 2016; 65 Basha (10.1124/jpet.123.002037_bib7) 2015; 5 Kovacic (10.1124/jpet.123.002037_bib42) 2018; 29 Qi (10.1124/jpet.123.002037_bib69) 2018; 16 Bodiga (10.1124/jpet.123.002037_bib10) 2014; 19 Youssef (10.1124/jpet.123.002037_bib95) 2019; 297 Meeran (10.1124/jpet.123.002037_bib57) 2021; 167 Dawson (10.1124/jpet.123.002037_bib17) 2005; 48 Parim (10.1124/jpet.123.002037_bib66) 2019; 24 He (10.1124/jpet.123.002037_bib33) 2009; 46 Calleja (10.1124/jpet.123.002037_bib12) 2013; 109 Somaratne (10.1124/jpet.123.002037_bib74) 2011; 10 Kimura (10.1124/jpet.123.002037_bib41) 2022; 11 Ren (10.1124/jpet.123.002037_bib72) 2020; 24 Suijun (10.1124/jpet.123.002037_bib77) 2014; 444 Yan (10.1124/jpet.123.002037_bib90) 2022; 148 Hou (10.1124/jpet.123.002037_bib35) 2019; 10 Liu (10.1124/jpet.123.002037_bib50) 2015; 8 Belali (10.1124/jpet.123.002037_bib9) 2022; 23 Tan (10.1124/jpet.123.002037_bib79) 2020; 20 Kanamori (10.1124/jpet.123.002037_bib38) 2021; 77 Arulselvan (10.1124/jpet.123.002037_bib4) 2007; 165 Wilson (10.1124/jpet.123.002037_bib86) 2018; 104 Zeisberg (10.1124/jpet.123.002037_bib97) 2007; 13 Zheng (10.1124/jpet.123.002037_bib99) 2019; 23 Song (10.1124/jpet.123.002037_bib75) 2019; 509 Greenman (10.1124/jpet.123.002037_bib26) 2021; 106 Pacher (10.1124/jpet.123.002037_bib64) 2009; 31 Jiang (10.1124/jpet.123.002037_bib37) 2020; 10 Yang (10.1124/jpet.123.002037_bib92) 2019; 15 Kumawat (10.1124/jpet.123.002037_bib45) 2022; 100 Yu (10.1124/jpet.123.002037_bib96) 2012; 7 El-Azab (10.1124/jpet.123.002037_bib20) 2022; 13 He (10.1124/jpet.123.002037_bib32) 2013; 6 Hongwei (10.1124/jpet.123.002037_bib34) 2019; 244 Han (10.1124/jpet.123.002037_bib30) 2020; 84 Metzger (10.1124/jpet.123.002037_bib59) 2004; 94 Gu (10.1124/jpet.123.002037_bib27) 2017; 66 Gertsch (10.1124/jpet.123.002037_bib23) 2008; 105 Arizuka (10.1124/jpet.123.002037_bib2) 2017; 30 Ding (10.1124/jpet.123.002037_bib19) 2022; 2022 Wu (10.1124/jpet.123.002037_bib88) 2020; 530 Qian (10.1124/jpet.123.002037_bib70) 2020; 182 Layland (10.1124/jpet.123.002037_bib47) 2005; 66 Bowe (10.1124/jpet.123.002037_bib11) 2014; 222 Chen (10.1124/jpet.123.002037_bib14) 2014; 38 Chen (10.1124/jpet.123.002037_bib13) 2020; 11 Goldin (10.1124/jpet.123.002037_bib25) 2006; 114 Basha (10.1124/jpet.123.002037_bib6) 2014; 116 Tian (10.1124/jpet.123.002037_bib80) 2021; 25 Kumawat (10.1124/jpet.123.002037_bib43) 2019; 862 Karim (10.1124/jpet.123.002037_bib39) 2019; 84 Okayama (10.1124/jpet.123.002037_bib63) 2012; 59 Geddo (10.1124/jpet.123.002037_bib22) 2019; 11 Franco-Arroyo (10.1124/jpet.123.002037_bib21) 2022; 25 Vasanji (10.1124/jpet.123.002037_bib81) 2004; 261 Landis (10.1124/jpet.123.002037_bib46) 2018; 24 Ye (10.1124/jpet.123.002037_bib93) 2017; 31 Messer (10.1124/jpet.123.002037_bib58) 2007; 42 Zou (10.1124/jpet.123.002037_bib101) 2018; 19 Wahlquist (10.1124/jpet.123.002037_bib83) 2014; 508 Hashiesh (10.1124/jpet.123.002037_bib31) 2020; 12 Kho (10.1124/jpet.123.002037_bib40) 2011; 477 Younis (10.1124/jpet.123.002037_bib94) 2022; 9 Velagic (10.1124/jpet.123.002037_bib82) 2023; 324 Li (10.1124/jpet.123.002037_bib48) 2020; 84 Maslov (10.1124/jpet.123.002037_bib55) 2017; 72 Kumawat (10.1124/jpet.123.002037_bib44) 2020; 44 Basha (10.1124/jpet.123.002037_bib8) 2016; 245 Cheng (10.1124/jpet.123.002037_bib15) 2012; 144 Yan (10.1124/jpet.123.002037_bib91) 2010; 106 Li (10.1124/jpet.123.002037_bib49) 2021; 12 Wan (10.1124/jpet.123.002037_bib84) 2022; 18 Pratley (10.1124/jpet.123.002037_bib67) 2001; 44 Mahmoud (10.1124/jpet.123.002037_bib53) 2014; 742 Srivastava (10.1124/jpet.123.002037_bib76) 2008; 114 Mamdouh Hashiesh (10.1124/jpet.123.002037_bib54) 2023; 6 Gushiken (10.1124/jpet.123.002037_bib28) 2022; 2022 Magdaleno (10.1124/jpet.123.002037_bib52) 2019; 18 Paolillo (10.1124/jpet.123.002037_bib65) 2019; 15 Andrikopoulos (10.1124/jpet.123.002037_bib1) 2008; 295 Aronson (10.1124/jpet.123.002037_bib3) 2003; 21 Zhang (10.1124/jpet.123.002037_bib98) 2018; 22 Mohamed (10.1124/jpet.123.002037_bib60) 2022; 26 Avogaro (10.1124/jpet.123.002037_bib5) 2004; 93 Sun (10.1124/jpet.123.002037_bib78) 2004; 110 Luo (10.1124/jpet.123.002037_bib51) 2014; 9 |
References_xml | – volume: 44 year: 2020 ident: bib44 article-title: Insulinotropic and antidiabetic effects of publication-title: J Food Biochem – volume: 2022 year: 2022 ident: bib28 article-title: Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model publication-title: Oxid Med Cell Longev – volume: 508 start-page: 531 year: 2014 end-page: 535 ident: bib83 article-title: Inhibition of miR-25 improves cardiac contractility in the failing heart publication-title: Nature – volume: 13 start-page: 952 year: 2007 end-page: 961 ident: bib97 article-title: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis publication-title: Nat Med – volume: 109 start-page: 394 year: 2013 end-page: 401 ident: bib12 article-title: The antioxidant effect of publication-title: Br J Nutr – volume: 324 year: 2023 ident: bib82 article-title: A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy publication-title: Am J Physiol Heart Circ Physiol – volume: 59 start-page: 958 year: 2012 end-page: 965 ident: bib63 article-title: Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition publication-title: Hypertension – volume: 11 year: 2020 ident: bib13 article-title: Cardioprotective effect of decorin in type 2 diabetes publication-title: Front Endocrinol (Lausanne) – volume: 862 year: 2019 ident: bib43 article-title: Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications publication-title: Eur J Pharmacol – volume: 104 start-page: 293 year: 2018 end-page: 299 ident: bib86 article-title: Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting publication-title: Heart – volume: 21 start-page: 262 year: 2016 end-page: 272 ident: bib56 article-title: Prospects for creation of cardioprotective drugs based on cannabinoid receptor agonists publication-title: J Cardiovasc Pharmacol Ther – volume: 48 start-page: 1971 year: 2005 end-page: 1979 ident: bib17 article-title: The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus publication-title: Diabetologia – volume: 222 year: 2014 ident: bib11 article-title: Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models publication-title: J Endocrinol – volume: 509 start-page: 359 year: 2019 end-page: 366 ident: bib75 article-title: Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22 publication-title: Biochem Biophys Res Commun – volume: 11 start-page: 784 year: 2022 ident: bib18 article-title: Role of oxidative stress in diabetic cardiomyopathy publication-title: Antioxidants (Basel) – volume: 1 start-page: 54 year: 2022 end-page: 66 ident: bib71 article-title: Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing publication-title: Life Metabolism – volume: 11 start-page: 2788 year: 2019 ident: bib22 article-title: PipeNig-FL, a fluid extract of black pepper ( publication-title: Nutrients – volume: 9 year: 2014 ident: bib51 article-title: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model publication-title: PLoS One – volume: 100 start-page: 259 year: 2022 end-page: 271 ident: bib45 article-title: Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸ publication-title: Can J Physiol Pharmacol – volume: 24 start-page: 2241 year: 2018 end-page: 2249 ident: bib46 article-title: M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets publication-title: Curr Pharm Des – volume: 261 start-page: 245 year: 2004 end-page: 249 ident: bib81 article-title: Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart publication-title: Mol Cell Biochem – volume: 23 start-page: 1288 year: 2022 ident: bib9 article-title: LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF- publication-title: Int J Mol Sci – volume: 42 start-page: 247 year: 2007 end-page: 259 ident: bib58 article-title: Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure publication-title: J Mol Cell Cardiol – volume: 167 start-page: 348 year: 2021 end-page: 366 ident: bib57 article-title: -caryophyllene, a natural bicyclic sesquiterpene attenuates publication-title: Free Radic Biol Med – volume: 10 start-page: 998 year: 2019 ident: bib35 article-title: Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice publication-title: Front Pharmacol – volume: 8 start-page: 10908 year: 2015 end-page: 10914 ident: bib50 article-title: Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor- publication-title: Int J Clin Exp Pathol – volume: 62 start-page: 315 year: 2019 end-page: 326 ident: bib62 article-title: Diabetic cardiomyopathy—a comprehensive updated review publication-title: Prog Cardiovasc Dis – volume: 165 start-page: 155 year: 2007 end-page: 164 ident: bib4 article-title: Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic publication-title: Chem Biol Interact – volume: 24 start-page: 279 year: 2019 end-page: 299 ident: bib66 article-title: Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy publication-title: Heart Fail Rev – volume: 93 start-page: 1143 year: 2008 end-page: 1152 ident: bib24 article-title: Clinical review: the role of advanced glycation end products in progression and complications of diabetes publication-title: J Clin Endocrinol Metab – volume: 13 start-page: 465 year: 2011 end-page: 473 ident: bib73 article-title: Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction publication-title: Diabetes Obes Metab – volume: 40 year: 2021 ident: bib36 article-title: Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice publication-title: Hum Exp Toxicol – volume: 148 year: 2022 ident: bib90 article-title: The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation publication-title: Biomed Pharmacother – volume: 46 start-page: 47 year: 2009 end-page: 58 ident: bib33 article-title: Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes publication-title: J Mol Cell Cardiol – volume: 25 start-page: 993 year: 2022 end-page: 1002 ident: bib21 article-title: -Caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model publication-title: Journal of Medicinal Food – volume: 94 start-page: 146 year: 2004 end-page: 158 ident: bib59 article-title: Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation publication-title: Circ Res – volume: 9 start-page: 133 year: 2022 ident: bib94 article-title: -caryophyllene ameliorates cyclophosphamide induced cardiac injury: the association of TLR4/NF publication-title: J Cardiovasc Dev Dis – volume: 106 start-page: 2235 year: 2021 end-page: 2247 ident: bib26 article-title: Increased myofilament calcium sensitivity is associated with decreased cardiac troponin I phosphorylation in the diabetic rat heart publication-title: Exp Physiol – volume: 18 start-page: 3125 year: 2019 end-page: 3138 ident: bib52 article-title: Aminoguanidine reduces diabetes-associated cardiac fibrosis publication-title: Exp Ther Med – volume: 477 start-page: 601 year: 2011 end-page: 605 ident: bib40 article-title: SUMO1-dependent modulation of SERCA2a in heart failure publication-title: Nature – volume: 182 year: 2020 ident: bib70 article-title: A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction publication-title: Biochem Pharmacol – volume: 7 year: 2012 ident: bib96 article-title: Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats publication-title: PLoS One – volume: 72 start-page: 59 year: 2017 end-page: 65 ident: bib55 article-title: [Prospects for the use of cannabinoid receptor ligands for the treatment of metabolic syndrome and atherosclerosis: analysis of experimental and clinical data] publication-title: Vestn Ross Akad Med Nauk – volume: 6 start-page: 1129 year: 2023 end-page: 1142 ident: bib54 article-title: -caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors publication-title: ACS Pharmacol Transl Sci – volume: 24 start-page: 12355 year: 2020 end-page: 12367 ident: bib72 article-title: Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways publication-title: J Cell Mol Med – volume: 858 year: 2019 ident: bib87 article-title: Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice publication-title: Eur J Pharmacol – volume: 84 start-page: 1587 year: 2020 end-page: 1598 ident: bib30 article-title: Sustaining circulating regulatory T cell subset contributes to the therapeutic effect of paroxetine on mice with diabetic cardiomyopathy publication-title: Circ J – volume: 106 start-page: 842 year: 2010 end-page: 853 ident: bib91 article-title: The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature publication-title: Circ Res – volume: 38 start-page: 337 year: 2014 end-page: 345 ident: bib14 article-title: Diabetic cardiomyopathy and its prevention by nrf2: current status publication-title: Diabetes Metab J – volume: 15 start-page: 341 year: 2019 end-page: 347 ident: bib65 article-title: Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications publication-title: Heart Fail Clin – volume: 22 start-page: 4437 year: 2018 end-page: 4448 ident: bib98 article-title: Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation publication-title: J Cell Mol Med – volume: 66 start-page: 12 year: 2005 end-page: 21 ident: bib47 article-title: Regulation of cardiac contractile function by troponin I phosphorylation publication-title: Cardiovasc Res – volume: 120 start-page: 212 year: 2009 end-page: 220 ident: bib68 article-title: Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study publication-title: Circulation – volume: 19 start-page: 1261 year: 2015 end-page: 1275 ident: bib61 article-title: The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? publication-title: Expert Opin Ther Targets – volume: 93 year: 2004 ident: bib5 article-title: Diabetic cardiomyopathy: a metabolic perspective publication-title: Am J Cardiol – volume: 114 start-page: 597 year: 2006 end-page: 605 ident: bib25 article-title: Advanced glycation end products: sparking the development of diabetic vascular injury publication-title: Circulation – volume: 25 start-page: 7642 year: 2021 end-page: 7659 ident: bib80 article-title: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPK publication-title: J Cell Mol Med – volume: 444 start-page: 451 year: 2014 end-page: 454 ident: bib77 article-title: A role for trans-caryophyllene in the moderation of insulin secretion publication-title: Biochem Biophys Res Commun – volume: 20 start-page: 378 year: 2020 ident: bib79 article-title: Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF- publication-title: BMC Complement Med Ther – volume: 2022 year: 2022 ident: bib19 article-title: The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications publication-title: Oxid Med Cell Longev – volume: 19 start-page: 49 year: 2014 end-page: 63 ident: bib10 article-title: Advanced glycation end products: role in pathology of diabetic cardiomyopathy publication-title: Heart Fail Rev – volume: 10 start-page: 29 year: 2011 ident: bib74 article-title: Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community publication-title: Cardiovasc Diabetol – volume: 12 start-page: 2963 year: 2020 ident: bib31 article-title: Therapeutic potential of publication-title: Nutrients – volume: 26 start-page: 8551 year: 2022 end-page: 8566 ident: bib60 article-title: -caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF- publication-title: Eur Rev Med Pharmacol Sci – volume: 11 start-page: 1488 year: 2022 ident: bib41 article-title: Sarco/endoplasmic reticulum Ca(2+) ATPase 2 activator ameliorates endothelial dysfunction; insulin resistance in diabetic mice publication-title: Cells – volume: 114 start-page: 313 year: 2008 end-page: 320 ident: bib76 article-title: Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with type 2 diabetes publication-title: Clin Sci (Lond) – volume: 21 start-page: 3 year: 2003 end-page: 12 ident: bib3 article-title: Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes publication-title: J Hypertens – volume: 31 start-page: 119 year: 2017 end-page: 132 ident: bib93 article-title: SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor publication-title: Cardiovasc Drugs Ther – volume: 30 start-page: 263 year: 2017 end-page: 273 ident: bib2 article-title: The effect of publication-title: J Toxicol Pathol – volume: 606 start-page: 262 year: 2009 end-page: 268 ident: bib100 article-title: Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats publication-title: Eur J Pharmacol – volume: 6 start-page: 567 year: 2013 end-page: 573 ident: bib32 article-title: Carbamylated erythropoietin attenuates cardiomyopathy via PI3K/Akt activation in rats with diabetic cardiomyopathy publication-title: Exp Ther Med – volume: 742 start-page: 118 year: 2014 end-page: 124 ident: bib53 article-title: Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats publication-title: Eur J Pharmacol – volume: 16 start-page: 4817 year: 2018 end-page: 4823 ident: bib69 article-title: LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway publication-title: Exp Ther Med – volume: 31 start-page: 63 year: 2009 end-page: 77 ident: bib64 article-title: The emerging role of the endocannabinoid system in cardiovascular disease publication-title: Semin Immunopathol – volume: 66 start-page: 529 year: 2017 end-page: 542 ident: bib27 article-title: Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy publication-title: Diabetes – volume: 70 start-page: 348 year: 2018 end-page: 383 ident: bib16 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol Rev – volume: 12 year: 2021 ident: bib49 article-title: -caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF- publication-title: Front Pharmacol – volume: 144 start-page: 234 year: 2012 end-page: 239 ident: bib15 article-title: Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats publication-title: J Ethnopharmacol – volume: 29 start-page: 527 year: 2018 end-page: 529 ident: bib42 article-title: The endothelial-metabolic axis: a novel cardiometabolic disease target publication-title: Trends Endocrinol Metab – volume: 18 start-page: 809 year: 2022 end-page: 825 ident: bib84 article-title: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration publication-title: Int J Biol Sci – volume: 245 start-page: 50 year: 2016 end-page: 58 ident: bib8 article-title: -Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats publication-title: Chem Biol Interact – volume: 77 start-page: 30 year: 2021 end-page: 40 ident: bib38 article-title: Morphological characteristics in diabetic cardiomyopathy associated with autophagy publication-title: J Cardiol – volume: 65 start-page: 3111 year: 2016 end-page: 3128 ident: bib85 article-title: Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice publication-title: Diabetes – volume: 84 year: 2020 ident: bib48 article-title: -Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells publication-title: Int Immunopharmacol – volume: 116 start-page: 1469 year: 2014 end-page: 1479 ident: bib6 article-title: -Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats publication-title: Acta Histochem – volume: 530 start-page: 15 year: 2020 end-page: 21 ident: bib88 article-title: Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice publication-title: Biochem Biophys Res Commun – volume: 297 start-page: 16 year: 2019 end-page: 24 ident: bib95 article-title: Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors publication-title: Chem Biol Interact – volume: 5 start-page: 9 year: 2015 end-page: 14 ident: bib7 article-title: Protective role of publication-title: Journal of Acute Medicine – volume: 1820 start-page: 663 year: 2012 end-page: 671 ident: bib89 article-title: Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes publication-title: Biochim Biophys Acta – volume: 10 start-page: 6427 year: 2020 ident: bib37 article-title: Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses publication-title: Sci Rep – volume: 110 start-page: 3221 year: 2004 end-page: 3228 ident: bib78 article-title: Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction publication-title: Circulation – volume: 23 start-page: 5771 year: 2019 end-page: 5781 ident: bib99 article-title: 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement publication-title: J Cell Mol Med – volume: 244 start-page: 612 year: 2019 end-page: 620 ident: bib34 article-title: Effect of irbesartan on AGEs-RAGE and MMPs systems in rat type 2 diabetes myocardial-fibrosis model publication-title: Exp Biol Med (Maywood) – volume: 19 start-page: 833 year: 2018 ident: bib101 article-title: Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system publication-title: Int J Mol Sci – volume: 8 start-page: 64853 year: 2017 end-page: 64866 ident: bib29 article-title: Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation publication-title: Oncotarget – volume: 15 start-page: 1010 year: 2019 end-page: 1019 ident: bib92 article-title: Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy publication-title: Int J Biol Sci – volume: 295 year: 2008 ident: bib1 article-title: Evaluating the glucose tolerance test in mice publication-title: Am J Physiol Endocrinol Metab – volume: 13 start-page: 387 year: 2022 end-page: 407 ident: bib20 article-title: Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy publication-title: World J Diabetes – volume: 105 start-page: 9099 year: 2008 end-page: 9104 ident: bib23 article-title: Beta-caryophyllene is a dietary cannabinoid publication-title: Proc Natl Acad Sci U S A – volume: 84 start-page: 1208 year: 2019 end-page: 1215 ident: bib39 article-title: Mangosteen vinegar rind from Garcinia mangostana prevents high-fat diet and streptozotocin-induced type II diabetes nephropathy and apoptosis publication-title: J Food Sci – volume: 44 start-page: 929 year: 2001 end-page: 945 ident: bib67 article-title: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus publication-title: Diabetologia – volume: 22 start-page: 4437 year: 2018 ident: 10.1124/jpet.123.002037_bib98 article-title: Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation publication-title: J Cell Mol Med doi: 10.1111/jcmm.13743 – volume: 18 start-page: 3125 year: 2019 ident: 10.1124/jpet.123.002037_bib52 article-title: Aminoguanidine reduces diabetes-associated cardiac fibrosis publication-title: Exp Ther Med – volume: 13 start-page: 387 year: 2022 ident: 10.1124/jpet.123.002037_bib20 article-title: Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy publication-title: World J Diabetes doi: 10.4239/wjd.v13.i5.387 – volume: 477 start-page: 601 year: 2011 ident: 10.1124/jpet.123.002037_bib40 article-title: SUMO1-dependent modulation of SERCA2a in heart failure publication-title: Nature doi: 10.1038/nature10407 – volume: 110 start-page: 3221 year: 2004 ident: 10.1124/jpet.123.002037_bib78 article-title: Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction publication-title: Circulation doi: 10.1161/01.CIR.0000147233.10318.23 – volume: 31 start-page: 119 year: 2017 ident: 10.1124/jpet.123.002037_bib93 article-title: SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor publication-title: Cardiovasc Drugs Ther doi: 10.1007/s10557-017-6725-2 – volume: 508 start-page: 531 year: 2014 ident: 10.1124/jpet.123.002037_bib83 article-title: Inhibition of miR-25 improves cardiac contractility in the failing heart publication-title: Nature doi: 10.1038/nature13073 – volume: 21 start-page: 3 year: 2003 ident: 10.1124/jpet.123.002037_bib3 article-title: Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes publication-title: J Hypertens doi: 10.1097/00004872-200301000-00002 – volume: 530 start-page: 15 year: 2020 ident: 10.1124/jpet.123.002037_bib88 article-title: Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.05.053 – volume: 30 start-page: 263 year: 2017 ident: 10.1124/jpet.123.002037_bib2 article-title: The effect of β-caryophyllene on nonalcoholic steatohepatitis publication-title: J Toxicol Pathol doi: 10.1293/tox.2017-0018 – volume: 2022 year: 2022 ident: 10.1124/jpet.123.002037_bib19 article-title: The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications publication-title: Oxid Med Cell Longev doi: 10.1155/2022/3790721 – volume: 25 start-page: 993 year: 2022 ident: 10.1124/jpet.123.002037_bib21 article-title: β-Caryophyllene, a dietary cannabinoid, protects against metabolic and immune dysregulation in a diet-induced obesity mouse model publication-title: Journal of Medicinal Food – volume: 858 year: 2019 ident: 10.1124/jpet.123.002037_bib87 article-title: Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2019.05.022 – volume: 297 start-page: 16 year: 2019 ident: 10.1124/jpet.123.002037_bib95 article-title: Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2018.10.010 – volume: 106 start-page: 2235 year: 2021 ident: 10.1124/jpet.123.002037_bib26 article-title: Increased myofilament calcium sensitivity is associated with decreased cardiac troponin I phosphorylation in the diabetic rat heart publication-title: Exp Physiol doi: 10.1113/EP089730 – volume: 120 start-page: 212 year: 2009 ident: 10.1124/jpet.123.002037_bib68 article-title: Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.846519 – volume: 167 start-page: 348 year: 2021 ident: 10.1124/jpet.123.002037_bib57 article-title: β-caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2021.01.046 – volume: 509 start-page: 359 year: 2019 ident: 10.1124/jpet.123.002037_bib75 article-title: Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2018.12.139 – volume: 24 start-page: 2241 year: 2018 ident: 10.1124/jpet.123.002037_bib46 article-title: M1/M2 macrophages in diabetic nephropathy: Nrf2/HO-1 as therapeutic targets publication-title: Curr Pharm Des doi: 10.2174/1381612824666180716163845 – volume: 116 start-page: 1469 year: 2014 ident: 10.1124/jpet.123.002037_bib6 article-title: β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats publication-title: Acta Histochem doi: 10.1016/j.acthis.2014.10.001 – volume: 11 start-page: 2788 year: 2019 ident: 10.1124/jpet.123.002037_bib22 article-title: PipeNig-FL, a fluid extract of black pepper (Piper Nigrum L.) with a high standardized content of trans-β-caryophyllene, reduces lipid accumulation in 3T3-L1 preadipocytes and improves glucose uptake in C2C12 myotubes publication-title: Nutrients doi: 10.3390/nu11112788 – volume: 8 start-page: 10908 year: 2015 ident: 10.1124/jpet.123.002037_bib50 article-title: Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor-β dependent manner publication-title: Int J Clin Exp Pathol – volume: 25 start-page: 7642 year: 2021 ident: 10.1124/jpet.123.002037_bib80 article-title: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats publication-title: J Cell Mol Med doi: 10.1111/jcmm.16601 – volume: 295 year: 2008 ident: 10.1124/jpet.123.002037_bib1 article-title: Evaluating the glucose tolerance test in mice publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.90617.2008 – volume: 48 start-page: 1971 year: 2005 ident: 10.1124/jpet.123.002037_bib17 article-title: The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus publication-title: Diabetologia doi: 10.1007/s00125-005-1896-y – volume: 21 start-page: 262 year: 2016 ident: 10.1124/jpet.123.002037_bib56 article-title: Prospects for creation of cardioprotective drugs based on cannabinoid receptor agonists publication-title: J Cardiovasc Pharmacol Ther doi: 10.1177/1074248415612593 – volume: 62 start-page: 315 year: 2019 ident: 10.1124/jpet.123.002037_bib62 article-title: Diabetic cardiomyopathy—a comprehensive updated review publication-title: Prog Cardiovasc Dis doi: 10.1016/j.pcad.2019.03.003 – volume: 26 start-page: 8551 year: 2022 ident: 10.1124/jpet.123.002037_bib60 article-title: β-caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF-κB/NLRP3 signaling pathways publication-title: Eur Rev Med Pharmacol Sci – volume: 19 start-page: 49 year: 2014 ident: 10.1124/jpet.123.002037_bib10 article-title: Advanced glycation end products: role in pathology of diabetic cardiomyopathy publication-title: Heart Fail Rev doi: 10.1007/s10741-013-9374-y – volume: 23 start-page: 1288 year: 2022 ident: 10.1124/jpet.123.002037_bib9 article-title: LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways publication-title: Int J Mol Sci doi: 10.3390/ijms23031288 – volume: 24 start-page: 12355 year: 2020 ident: 10.1124/jpet.123.002037_bib72 article-title: Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways publication-title: J Cell Mol Med doi: 10.1111/jcmm.15725 – volume: 104 start-page: 293 year: 2018 ident: 10.1124/jpet.123.002037_bib86 article-title: Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting publication-title: Heart doi: 10.1136/heartjnl-2017-311448 – volume: 1820 start-page: 663 year: 2012 ident: 10.1124/jpet.123.002037_bib89 article-title: Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2011.03.014 – volume: 9 year: 2014 ident: 10.1124/jpet.123.002037_bib51 article-title: NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model publication-title: PLoS One doi: 10.1371/journal.pone.0104771 – volume: 245 start-page: 50 year: 2016 ident: 10.1124/jpet.123.002037_bib8 article-title: β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2015.12.019 – volume: 38 start-page: 337 year: 2014 ident: 10.1124/jpet.123.002037_bib14 article-title: Diabetic cardiomyopathy and its prevention by nrf2: current status publication-title: Diabetes Metab J doi: 10.4093/dmj.2014.38.5.337 – volume: 15 start-page: 1010 year: 2019 ident: 10.1124/jpet.123.002037_bib92 article-title: Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy publication-title: Int J Biol Sci doi: 10.7150/ijbs.29680 – volume: 222 year: 2014 ident: 10.1124/jpet.123.002037_bib11 article-title: Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models publication-title: J Endocrinol doi: 10.1530/JOE-14-0182 – volume: 84 start-page: 1208 year: 2019 ident: 10.1124/jpet.123.002037_bib39 article-title: Mangosteen vinegar rind from Garcinia mangostana prevents high-fat diet and streptozotocin-induced type II diabetes nephropathy and apoptosis publication-title: J Food Sci doi: 10.1111/1750-3841.14511 – volume: 9 start-page: 133 year: 2022 ident: 10.1124/jpet.123.002037_bib94 article-title: β-caryophyllene ameliorates cyclophosphamide induced cardiac injury: the association of TLR4/NF β and Nrf2/HO1/NQO1 pathways publication-title: J Cardiovasc Dev Dis – volume: 10 start-page: 6427 year: 2020 ident: 10.1124/jpet.123.002037_bib37 article-title: Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses publication-title: Sci Rep doi: 10.1038/s41598-020-63498-3 – volume: 165 start-page: 155 year: 2007 ident: 10.1124/jpet.123.002037_bib4 article-title: Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic β-cells in experimental diabetes in rats publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2006.10.014 – volume: 742 start-page: 118 year: 2014 ident: 10.1124/jpet.123.002037_bib53 article-title: Role of cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct ligation in rats publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2014.08.021 – volume: 13 start-page: 952 year: 2007 ident: 10.1124/jpet.123.002037_bib97 article-title: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis publication-title: Nat Med doi: 10.1038/nm1613 – volume: 109 start-page: 394 year: 2013 ident: 10.1124/jpet.123.002037_bib12 article-title: The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation publication-title: Br J Nutr doi: 10.1017/S0007114512001298 – volume: 8 start-page: 64853 year: 2017 ident: 10.1124/jpet.123.002037_bib29 article-title: Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation publication-title: Oncotarget doi: 10.18632/oncotarget.17614 – volume: 105 start-page: 9099 year: 2008 ident: 10.1124/jpet.123.002037_bib23 article-title: Beta-caryophyllene is a dietary cannabinoid publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0803601105 – volume: 148 year: 2022 ident: 10.1124/jpet.123.002037_bib90 article-title: The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2022.112709 – volume: 5 start-page: 9 year: 2015 ident: 10.1124/jpet.123.002037_bib7 article-title: Protective role of β-caryophyllene, a sesquiterpene lactone on plasma and tissue glycoprotein components in streptozotocin-induced hyperglycemic rats publication-title: Journal of Acute Medicine doi: 10.1016/j.jacme.2015.02.001 – volume: 77 start-page: 30 year: 2021 ident: 10.1124/jpet.123.002037_bib38 article-title: Morphological characteristics in diabetic cardiomyopathy associated with autophagy publication-title: J Cardiol doi: 10.1016/j.jjcc.2020.05.009 – volume: 114 start-page: 313 year: 2008 ident: 10.1124/jpet.123.002037_bib76 article-title: Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with type 2 diabetes publication-title: Clin Sci (Lond) doi: 10.1042/CS20070261 – volume: 606 start-page: 262 year: 2009 ident: 10.1124/jpet.123.002037_bib100 article-title: Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2008.12.056 – volume: 16 start-page: 4817 year: 2018 ident: 10.1124/jpet.123.002037_bib69 article-title: LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway publication-title: Exp Ther Med – volume: 70 start-page: 348 year: 2018 ident: 10.1124/jpet.123.002037_bib16 article-title: Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach publication-title: Pharmacol Rev doi: 10.1124/pr.117.014753 – volume: 6 start-page: 1129 year: 2023 ident: 10.1124/jpet.123.002037_bib54 article-title: β-caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors publication-title: ACS Pharmacol Transl Sci doi: 10.1021/acsptsci.3c00027 – volume: 29 start-page: 527 year: 2018 ident: 10.1124/jpet.123.002037_bib42 article-title: The endothelial-metabolic axis: a novel cardiometabolic disease target publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2018.03.015 – volume: 444 start-page: 451 year: 2014 ident: 10.1124/jpet.123.002037_bib77 article-title: A role for trans-caryophyllene in the moderation of insulin secretion publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2013.11.136 – volume: 44 start-page: 929 year: 2001 ident: 10.1124/jpet.123.002037_bib67 article-title: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus publication-title: Diabetologia doi: 10.1007/s001250100580 – volume: 261 start-page: 245 year: 2004 ident: 10.1124/jpet.123.002037_bib81 article-title: Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart publication-title: Mol Cell Biochem doi: 10.1023/B:MCBI.0000028762.97754.26 – volume: 93 year: 2004 ident: 10.1124/jpet.123.002037_bib5 article-title: Diabetic cardiomyopathy: a metabolic perspective publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2003.11.003 – volume: 12 year: 2021 ident: 10.1124/jpet.123.002037_bib49 article-title: β-caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-κB signal pathway: in silico and in vivo publication-title: Front Pharmacol – volume: 66 start-page: 529 year: 2017 ident: 10.1124/jpet.123.002037_bib27 article-title: Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy publication-title: Diabetes doi: 10.2337/db15-1274 – volume: 84 start-page: 1587 year: 2020 ident: 10.1124/jpet.123.002037_bib30 article-title: Sustaining circulating regulatory T cell subset contributes to the therapeutic effect of paroxetine on mice with diabetic cardiomyopathy publication-title: Circ J doi: 10.1253/circj.CJ-19-1182 – volume: 1 start-page: 54 year: 2022 ident: 10.1124/jpet.123.002037_bib71 article-title: Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing publication-title: Life Metabolism doi: 10.1093/lifemeta/loac013 – volume: 13 start-page: 465 year: 2011 ident: 10.1124/jpet.123.002037_bib73 article-title: Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2011.01369.x – volume: 19 start-page: 833 year: 2018 ident: 10.1124/jpet.123.002037_bib101 article-title: Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system publication-title: Int J Mol Sci doi: 10.3390/ijms19030833 – volume: 114 start-page: 597 year: 2006 ident: 10.1124/jpet.123.002037_bib25 article-title: Advanced glycation end products: sparking the development of diabetic vascular injury publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.621854 – volume: 84 year: 2020 ident: 10.1124/jpet.123.002037_bib48 article-title: β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2020.106556 – volume: 42 start-page: 247 year: 2007 ident: 10.1124/jpet.123.002037_bib58 article-title: Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2006.08.017 – volume: 19 start-page: 1261 year: 2015 ident: 10.1124/jpet.123.002037_bib61 article-title: The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.2015.1043268 – volume: 59 start-page: 958 year: 2012 ident: 10.1124/jpet.123.002037_bib63 article-title: Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.183905 – volume: 7 year: 2012 ident: 10.1124/jpet.123.002037_bib96 article-title: Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats publication-title: PLoS One doi: 10.1371/journal.pone.0052013 – volume: 324 year: 2023 ident: 10.1124/jpet.123.002037_bib82 article-title: A high-sucrose diet exacerbates the left ventricular phenotype in a high fat-fed streptozotocin rat model of diabetic cardiomyopathy publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00390.2022 – volume: 100 start-page: 259 year: 2022 ident: 10.1124/jpet.123.002037_bib45 article-title: Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition publication-title: Can J Physiol Pharmacol doi: 10.1139/cjpp-2021-0046 – volume: 31 start-page: 63 year: 2009 ident: 10.1124/jpet.123.002037_bib64 article-title: The emerging role of the endocannabinoid system in cardiovascular disease publication-title: Semin Immunopathol doi: 10.1007/s00281-009-0145-8 – volume: 10 start-page: 29 year: 2011 ident: 10.1124/jpet.123.002037_bib74 article-title: Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-10-29 – volume: 18 start-page: 809 year: 2022 ident: 10.1124/jpet.123.002037_bib84 article-title: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration publication-title: Int J Biol Sci doi: 10.7150/ijbs.63219 – volume: 40 year: 2021 ident: 10.1124/jpet.123.002037_bib36 article-title: Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice publication-title: Hum Exp Toxicol doi: 10.1177/09603271211045948 – volume: 11 year: 2020 ident: 10.1124/jpet.123.002037_bib13 article-title: Cardioprotective effect of decorin in type 2 diabetes publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2020.479258 – volume: 2022 year: 2022 ident: 10.1124/jpet.123.002037_bib28 article-title: Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model publication-title: Oxid Med Cell Longev doi: 10.1155/2022/9004014 – volume: 862 year: 2019 ident: 10.1124/jpet.123.002037_bib43 article-title: Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2019.172628 – volume: 11 start-page: 784 year: 2022 ident: 10.1124/jpet.123.002037_bib18 article-title: Role of oxidative stress in diabetic cardiomyopathy publication-title: Antioxidants (Basel) doi: 10.3390/antiox11040784 – volume: 46 start-page: 47 year: 2009 ident: 10.1124/jpet.123.002037_bib33 article-title: Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2008.10.007 – volume: 6 start-page: 567 year: 2013 ident: 10.1124/jpet.123.002037_bib32 article-title: Carbamylated erythropoietin attenuates cardiomyopathy via PI3K/Akt activation in rats with diabetic cardiomyopathy publication-title: Exp Ther Med doi: 10.3892/etm.2013.1134 – volume: 94 start-page: 146 year: 2004 ident: 10.1124/jpet.123.002037_bib59 article-title: Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation publication-title: Circ Res doi: 10.1161/01.RES.0000110083.17024.60 – volume: 15 start-page: 341 year: 2019 ident: 10.1124/jpet.123.002037_bib65 article-title: Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications publication-title: Heart Fail Clin doi: 10.1016/j.hfc.2019.02.003 – volume: 24 start-page: 279 year: 2019 ident: 10.1124/jpet.123.002037_bib66 article-title: Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy publication-title: Heart Fail Rev doi: 10.1007/s10741-018-9749-1 – volume: 11 start-page: 1488 year: 2022 ident: 10.1124/jpet.123.002037_bib41 article-title: Sarco/endoplasmic reticulum Ca(2+) ATPase 2 activator ameliorates endothelial dysfunction; insulin resistance in diabetic mice publication-title: Cells doi: 10.3390/cells11091488 – volume: 72 start-page: 59 year: 2017 ident: 10.1124/jpet.123.002037_bib55 article-title: [Prospects for the use of cannabinoid receptor ligands for the treatment of metabolic syndrome and atherosclerosis: analysis of experimental and clinical data] publication-title: Vestn Ross Akad Med Nauk doi: 10.15690/vramn779 – volume: 106 start-page: 842 year: 2010 ident: 10.1124/jpet.123.002037_bib91 article-title: The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature publication-title: Circ Res doi: 10.1161/CIRCRESAHA.109.212217 – volume: 144 start-page: 234 year: 2012 ident: 10.1124/jpet.123.002037_bib15 article-title: Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2012.08.029 – volume: 66 start-page: 12 year: 2005 ident: 10.1124/jpet.123.002037_bib47 article-title: Regulation of cardiac contractile function by troponin I phosphorylation publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2004.12.022 – volume: 182 year: 2020 ident: 10.1124/jpet.123.002037_bib70 article-title: A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2020.114209 – volume: 244 start-page: 612 year: 2019 ident: 10.1124/jpet.123.002037_bib34 article-title: Effect of irbesartan on AGEs-RAGE and MMPs systems in rat type 2 diabetes myocardial-fibrosis model publication-title: Exp Biol Med (Maywood) doi: 10.1177/1535370219840981 – volume: 93 start-page: 1143 year: 2008 ident: 10.1124/jpet.123.002037_bib24 article-title: Clinical review: the role of advanced glycation end products in progression and complications of diabetes publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2007-1817 – volume: 10 start-page: 998 year: 2019 ident: 10.1124/jpet.123.002037_bib35 article-title: Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00998 – volume: 20 start-page: 378 year: 2020 ident: 10.1124/jpet.123.002037_bib79 article-title: Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-κB activities publication-title: BMC Complement Med Ther doi: 10.1186/s12906-020-03177-y – volume: 12 start-page: 2963 year: 2020 ident: 10.1124/jpet.123.002037_bib31 article-title: Therapeutic potential of β-caryophyllene: a dietary cannabinoid in diabetes and associated complications publication-title: Nutrients doi: 10.3390/nu12102963 – volume: 44 year: 2020 ident: 10.1124/jpet.123.002037_bib44 article-title: Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats publication-title: J Food Biochem doi: 10.1111/jfbc.13156 – volume: 23 start-page: 5771 year: 2019 ident: 10.1124/jpet.123.002037_bib99 article-title: 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement publication-title: J Cell Mol Med doi: 10.1111/jcmm.14493 – volume: 65 start-page: 3111 year: 2016 ident: 10.1124/jpet.123.002037_bib85 article-title: Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice publication-title: Diabetes doi: 10.2337/db15-1563 |
SSID | ssj0014463 |
Score | 2.4948921 |
Snippet | Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction... Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 241 |
SubjectTerms | advanced glycation end product AGE AKT Animals apoptosis-associated speck-like protein containing a CARD area under the curve ASC AUC BCP body weight cannabinoid 1 receptor cannabinoid 2 receptor CAT catalase CB1R CB2R DCM Diabetic Cardiomyopathies - drug therapy Diabetic Cardiomyopathies - metabolism Diabetic Cardiomyopathies - pathology Diabetic Cardiomyopathies - prevention & control diabetic cardiomyopathy EndMT endothelial-to-mesenchymal transition Fibrosis Glycation End Products, Advanced - metabolism heart weight heme oxygenase-1 HFD high-fat diet HO-1 HOMA-IR homeostatic model assessment of insulin resistance IL-18 IL-1β Inflammasomes - metabolism interleukin 18 interleukin-1β Keap1 kelch-like ECH-associated protein 1 Male matrix metalloproteinase Mice Mice, Inbred C57BL MMP NADPH oxidase 4 NLRP3 NOX4 NrF2 nuclear factor erythroid 2–related factor 2 nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 OGTT oral glucose tolerance test Oxidative Stress - drug effects phosphoinositide 3-kinase PI3K protein kinase B RAGE reactive oxygen species Receptor for Advanced Glycation End Products - metabolism receptor of advanced glycation end product Receptor, Cannabinoid, CB2 - agonists Receptor, Cannabinoid, CB2 - metabolism ROS sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a SERCA2a Signal Transduction - drug effects Smad SOD superoxide dismutase suppressor of mothers against decapentaplegic TGF-β TnI transforming growth factor-β troponin I α-SMA α-smooth muscle actin β-caryophyllene |
Title | Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation |
URI | https://dx.doi.org/10.1124/jpet.123.002037 https://www.ncbi.nlm.nih.gov/pubmed/38955492 https://www.proquest.com/docview/3075375633 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-547588 |
Volume | 391 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKuXBB7AybjAQV0iydOM52HJUuoG6CKZqb5cRxE8HEVWciaP8RP5A7z3EWd5MKl2TkTBxH3xe_9-y3IPQuSkTKx1RqL3FvSH0_0Tkgg2EswgjMA5BKQscO7-37O0f088ybraz8sbyWymU8Ss6vjSv5H1ShDXDVUbL_gGzbKTTAb8AXjoAwHG-F8QYvCg6mrcpFn2gNMD0BE7o_SZqaZToOYFn5a_BjnoMm2DceMHmiPT1EruZnStckPmvr9XwqsjzOGzVysr0Jo_sCp6Gu8aF9BQ5-5cIkC_9ahZlU2i_Y3GphshUY_2IJRJvzhZqn1mhsRbgLSauU4ZMug7ZJCHWh8oAVJLbopsxFBlZ-ZmRnzPWGQNbf43OhynaJe3Kez0t9oVrkzdL8e7f6zY-V0jmMoGvjz6wyDqoBvMx52Xos6wXzxU_toanfp5qgM5g-ub1YQmgdNWjN70Q3jM2cml7TVgsFN3Is9hN7ijeJuq6KHkK16AFbZwTawKja4g06Kdt4FuwfsK2j3V023ZxN76C7BKwbXXhje9Z6JmkLvYoLacZVZ6SCB6xf6v4mZeqqsXQpE26lPU0foPs10nhiOPwQraTFI7R2aFA_G-CphfAAr-FDiw-P0W-L6Jjghui4oxZuiI5rouOG6Pgi0XFNdNwRHSuJgeHrNs1xS3NsaD7ADckHGPiJbYpb43iCjrY2pxs7w7rGyDAhOrpUCNdJBJdjQUPupF6c0CDikhNf0nHqeUISIhzBhS8IkZFDA-mS2JWUeyFxk8R9ilYLVaTPEU4Txw9k6NLAjyl3eCR94ohY0iAQIfGiHho1YLGkTsCv68D8YJUhTijT6DJAlxl0e-hDe8OJyT1z819Jgz6rVWejEjOg5803vW14wkCo6J1CXqSqXDAQ_J4beL7r9tAzQ6B2BGDheDqtYw-9N4xqr-hM9R_zbxOmTo9ZWTKPBl4YvrjFU16ie93X-gqtLk_L9DUo-8v4TfVp_AVQdgpB |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cannabinoid+2+Receptor+Activation+Protects+against+Diabetic+Cardiomyopathy+through+Inhibition+of+AGE%2FRAGE-Induced+Oxidative+Stress%2C+Fibrosis%2C+and+Inflammasome+Activation&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Hashiesh%2C+Hebaallah+Mamdouh&rft.au=Azimullah%2C+Sheikh&rft.au=Nagoor+Meeran%2C+Mohamed+Fizur&rft.au=Saraswathiamma%2C+Dhanya&rft.date=2024-11-01&rft.issn=1521-0103&rft.eissn=1521-0103&rft.volume=391&rft.issue=2&rft.spage=241&rft_id=info:doi/10.1124%2Fjpet.123.002037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon |