RELICS: Properties of z ≥ 5.5 Galaxies Inferred from Spitzer and Hubble Imaging, Including A Candidate z ∼ 6.8 Strong [O iii] emitter
We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲ z ≲ 8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fi...
Saved in:
Published in | The Astrophysical journal Vol. 910; no. 2; p. 135 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Philadelphia
IOP Publishing
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲
z
≲ 8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fitting using EA
z
Y and BAGPIPES. Of the 207 candidates for which we could successfully measure (or place limits on) Spitzer fluxes, 23 were demoted to likely
z
< 4. Among the high-
z
candidates, we find intrinsic stellar masses between 1 × 10
6
M
⊙
and 4 × 10
9
M
⊙
, and rest-frame UV absolute magnitudes between −22.6 and −14.5 mag. While our sample is mostly comprised of
L
m
UV
/
L
m
UV
*
<
1
galaxies, it extends to
L
m
UV
/
L
m
UV
*
∼
2
. Our sample spans ∼4 orders of magnitude in stellar mass and star formation rates, and exhibits ages that range from maximally young to maximally old. We highlight 11
z
≥ 6.5 galaxies with detections in Spitzer/IRAC imaging, several of which show evidence for some combination of evolved stellar populations, large contributions of nebular emission lines, and/or dust. Among these is PLCKG287+32-2013, one of the brightest
z
∼ 7 candidates known (AB mag 24.9 at 1.6
μ
m) with a Spitzer 3.6
μ
m flux excess suggesting strong [O
iii
] + H-
β
emission (∼1000 Å rest-frame equivalent width). We discuss the possible uses and limits of our sample and present a public catalog of Hubble + Spitzer photometry along with physical property estimates for all objects in the sample. Because of their apparent brightnesses, high redshifts, and variety of stellar populations, these objects are excellent targets for follow-up with the James Webb Space Telescope. |
---|---|
AbstractList | We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲ z ≲ 8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fitting using EAzY and BAGPIPES. Of the 207 candidates for which we could successfully measure (or place limits on) Spitzer fluxes, 23 were demoted to likely z < 4. Among the high-z candidates, we find intrinsic stellar masses between 1 × 106 M ⊙ and 4 × 109 M ⊙, and rest-frame UV absolute magnitudes between −22.6 and −14.5 mag. While our sample is mostly comprised of \({L}_{m\mathrm{UV}}/{L}_{m\mathrm{UV}}^{* }\lt 1\) galaxies, it extends to \({L}_{m\mathrm{UV}}/{L}_{m\mathrm{UV}}^{* }\sim 2\). Our sample spans ∼4 orders of magnitude in stellar mass and star formation rates, and exhibits ages that range from maximally young to maximally old. We highlight 11 z ≥ 6.5 galaxies with detections in Spitzer/IRAC imaging, several of which show evidence for some combination of evolved stellar populations, large contributions of nebular emission lines, and/or dust. Among these is PLCKG287+32-2013, one of the brightest z ∼ 7 candidates known (AB mag 24.9 at 1.6 μm) with a Spitzer 3.6 μm flux excess suggesting strong [O iii] + H-β emission (∼1000 Å rest-frame equivalent width). We discuss the possible uses and limits of our sample and present a public catalog of Hubble + Spitzer photometry along with physical property estimates for all objects in the sample. Because of their apparent brightnesses, high redshifts, and variety of stellar populations, these objects are excellent targets for follow-up with the James Webb Space Telescope. We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲ z ≲ 8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fitting using EA z Y and BAGPIPES. Of the 207 candidates for which we could successfully measure (or place limits on) Spitzer fluxes, 23 were demoted to likely z < 4. Among the high- z candidates, we find intrinsic stellar masses between 1 × 10 6 M ⊙ and 4 × 10 9 M ⊙ , and rest-frame UV absolute magnitudes between −22.6 and −14.5 mag. While our sample is mostly comprised of L m UV / L m UV * < 1 galaxies, it extends to L m UV / L m UV * ∼ 2 . Our sample spans ∼4 orders of magnitude in stellar mass and star formation rates, and exhibits ages that range from maximally young to maximally old. We highlight 11 z ≥ 6.5 galaxies with detections in Spitzer/IRAC imaging, several of which show evidence for some combination of evolved stellar populations, large contributions of nebular emission lines, and/or dust. Among these is PLCKG287+32-2013, one of the brightest z ∼ 7 candidates known (AB mag 24.9 at 1.6 μ m) with a Spitzer 3.6 μ m flux excess suggesting strong [O iii ] + H- β emission (∼1000 Å rest-frame equivalent width). We discuss the possible uses and limits of our sample and present a public catalog of Hubble + Spitzer photometry along with physical property estimates for all objects in the sample. Because of their apparent brightnesses, high redshifts, and variety of stellar populations, these objects are excellent targets for follow-up with the James Webb Space Telescope. We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲ z ≲ 8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fitting using EAzY and BAGPIPES. Of the 207 candidates for which we could successfully measure (or place limits on) Spitzer fluxes, 23 were demoted to likely z < 4. Among the high-z candidates, we find intrinsic stellar masses between 1 × 106M⊙ and 4 × 109M⊙, and rest-frame UV absolute magnitudes between -22.6 and -14.5 mag. While our sample is mostly comprised of galaxies, it extends to . Our sample spans ~4 orders of magnitude in stellar mass and star formation rates, and exhibits ages that range from maximally young to maximally old. We highlight 11 z ≥ 6.5 galaxies with detections in Spitzer/IRAC imaging, several of which show evidence for some combination of evolved stellar populations, large contributions of nebular emission lines, and/or dust. Among these is PLCKG287+32-2013, one of the brightest z ~ 7 candidates known (AB mag 24.9 at 1.6 μm) with a Spitzer 3.6 μm flux excess suggesting strong [O iii ] + H-β emission (~1000 Å rest-frame equivalent width). We discuss the possible uses and limits of our sample and present a public catalog of Hubble + Spitzer photometry along with physical property estimates for all objects in the sample. Because of their apparent brightnesses, high redshifts, and variety of stellar populations, these objects are excellent targets for follow-up with the James Webb Space Telescope. |
Author | Lemaux, Brian C. Vulcani, Benedetta Pelliccia, Debora Nonino, Mario Zitrin, Adi Andrade-Santos, Felipe Jones, Christine Carnall, Adam C. Coe, Dan Ouchi, Masami Mainali, Ramesh Dawson, William A. Umetsu, Keiichi Oguri, Masamune Bradley, Larry Stark, Daniel P. Paterno-Mahler, Rachel Sharon, Keren Neufeld, Chloe Frye, Brenda L. Oesch, Pascal A. Strait, Victoria Acebron, Ana Trenti, Michele Mahler, Guillaume Carrasco, Daniela Avila, Roberto J. Ogaz, Sara Bradač, Maruša |
Author_xml | – sequence: 1 givenname: Victoria orcidid: 0000-0002-6338-7295 surname: Strait fullname: Strait, Victoria – sequence: 2 givenname: Maruša orcidid: 0000-0001-5984-0395 surname: Bradač fullname: Bradač, Maruša – sequence: 3 givenname: Dan orcidid: 0000-0001-7410-7669 surname: Coe fullname: Coe, Dan – sequence: 4 givenname: Brian C. orcidid: 0000-0002-1428-7036 surname: Lemaux fullname: Lemaux, Brian C. – sequence: 5 givenname: Adam C. surname: Carnall fullname: Carnall, Adam C. – sequence: 6 givenname: Larry orcidid: 0000-0002-7908-9284 surname: Bradley fullname: Bradley, Larry – sequence: 7 givenname: Debora orcidid: 0000-0002-3007-0013 surname: Pelliccia fullname: Pelliccia, Debora – sequence: 8 givenname: Keren orcidid: 0000-0002-7559-0864 surname: Sharon fullname: Sharon, Keren – sequence: 9 givenname: Adi orcidid: 0000-0002-0350-4488 surname: Zitrin fullname: Zitrin, Adi – sequence: 10 givenname: Ana orcidid: 0000-0003-3108-9039 surname: Acebron fullname: Acebron, Ana – sequence: 11 givenname: Chloe surname: Neufeld fullname: Neufeld, Chloe – sequence: 12 givenname: Felipe orcidid: 0000-0002-8144-9285 surname: Andrade-Santos fullname: Andrade-Santos, Felipe – sequence: 13 givenname: Roberto J. surname: Avila fullname: Avila, Roberto J. – sequence: 14 givenname: Brenda L. surname: Frye fullname: Frye, Brenda L. – sequence: 15 givenname: Guillaume orcidid: 0000-0003-3266-2001 surname: Mahler fullname: Mahler, Guillaume – sequence: 16 givenname: Mario surname: Nonino fullname: Nonino, Mario – sequence: 17 givenname: Sara surname: Ogaz fullname: Ogaz, Sara – sequence: 18 givenname: Masamune orcidid: 0000-0003-3484-399X surname: Oguri fullname: Oguri, Masamune – sequence: 19 givenname: Masami surname: Ouchi fullname: Ouchi, Masami – sequence: 20 givenname: Rachel orcidid: 0000-0003-3653-3741 surname: Paterno-Mahler fullname: Paterno-Mahler, Rachel – sequence: 21 givenname: Daniel P. surname: Stark fullname: Stark, Daniel P. – sequence: 22 givenname: Ramesh orcidid: 0000-0003-0094-6827 surname: Mainali fullname: Mainali, Ramesh – sequence: 23 givenname: Pascal A. orcidid: 0000-0001-5851-6649 surname: Oesch fullname: Oesch, Pascal A. – sequence: 24 givenname: Michele orcidid: 0000-0001-9391-305X surname: Trenti fullname: Trenti, Michele – sequence: 25 givenname: Daniela orcidid: 0000-0002-3772-0330 surname: Carrasco fullname: Carrasco, Daniela – sequence: 26 givenname: William A. orcidid: 0000-0003-0248-6123 surname: Dawson fullname: Dawson, William A. – sequence: 27 givenname: Christine surname: Jones fullname: Jones, Christine – sequence: 28 givenname: Keiichi orcidid: 0000-0002-7196-4822 surname: Umetsu fullname: Umetsu, Keiichi – sequence: 29 givenname: Benedetta orcidid: 0000-0003-0980-1499 surname: Vulcani fullname: Vulcani, Benedetta |
BackLink | https://www.osti.gov/servlets/purl/1862746$$D View this record in Osti.gov |
BookMark | eNp1kd1qFDEUx4O04LZ672XQW2ebydfMeFeW2i4sVLoKgkjIZE7WlNnJmmSk7RPYB_EtfBqfxAwjXghena_f_3AO_xN0NPgBEHpRkiWreXVWClYXnInqTLcgGHuCFn9bR2hBCOGFZNXHp-gkxtuppE2zQI83F5v1avsGvwv-ACE5iNhb_IB_Pf7AYinwpe713dRdDxZCgA7b4Pd4e3DpAQLWQ4evxrbtAa_3eueG3etMmn7scorP8SoDrtMJppXff2K5rPE2BZ-Hn66xc-4zhr1LCcIzdGx1H-H5n3iKPry9eL-6KjbXl-vV-aYw-WBWSG5sVVdc2JqCMbySJaWdbPM_vLQcCOiGktIKqsFQSlirJakso6asW6oJO0Uv570-JqeicQnMF-OHAUxSZS1pxWWG2Az1DnagfGid-kaV127Ox36ntFEtKEplrRij2YOsejWrDsF_HSEmdevHMORvFBWkIaQRkmeKzJQJPsYAVh2C2-twr0qiJi_VZJyajFOzl1ki_5Hks3VyfkhBu_7_wt_hj6Pa |
CitedBy_id | crossref_primary_10_3847_1538_4357_ac7e44 crossref_primary_10_3847_1538_4357_ac4cad crossref_primary_10_1051_0004_6361_202349135 crossref_primary_10_3847_1538_4357_acecfe crossref_primary_10_3847_2041_8213_acbfb9 crossref_primary_10_1093_mnras_stad1999 crossref_primary_10_3847_1538_4357_aca8a8 crossref_primary_10_1093_mnras_stad1238 crossref_primary_10_3847_2041_8213_ac959b crossref_primary_10_3847_1538_4357_ac8ff1 crossref_primary_10_3847_1538_4357_ad684a crossref_primary_10_1038_s41586_022_04449_y crossref_primary_10_1093_mnras_stae411 crossref_primary_10_3847_2041_8213_ac62cc crossref_primary_10_1093_mnrasl_slac136 crossref_primary_10_3847_2041_8213_ac8e6e crossref_primary_10_3847_1538_4365_ad07e0 crossref_primary_10_1093_mnras_stae1943 crossref_primary_10_1051_0004_6361_202245532 crossref_primary_10_1051_0004_6361_202450541 crossref_primary_10_1093_mnras_stac2280 crossref_primary_10_1093_mnras_stad1627 crossref_primary_10_3847_1538_4357_aca470 crossref_primary_10_3847_2041_8213_ac9316 crossref_primary_10_1051_0004_6361_202039346 crossref_primary_10_3847_1538_4357_ac4ae5 |
Cites_doi | 10.1086/192112 10.1051/0004-6361/202038163 10.3847/1538-4357/ab04a2 10.1086/376392 10.1111/j.1365-2966.2005.09434.x 10.3847/1538-4357/ab425b 10.1088/0004-637X/795/2/126 10.1086/322412 10.1093/mnras/153.4.471 10.3847/1538-4357/ab3792 10.1111/j.1365-2966.2009.15514.x 10.1093/mnras/staa751 10.3847/2041-8213/ab75ec 10.1038/nature12657 10.1051/0004-6361/201526471 10.1088/0004-637X/801/2/122 10.1093/pasj/62.4.1017 10.3847/1538-4357/837/1/97 10.1088/2041-8205/804/2/L30 10.1086/591786 10.3847/1538-4357/aa901e 10.3847/1538-4357/ab133c 10.1051/0004-6361/201423816 10.3847/1538-4357/abbfa7 10.1111/j.1365-2966.2012.21041.x 10.1038/s41586-018-0117-z 10.1111/j.1365-2966.2007.12738.x 10.3847/1538-4357/ab929d 10.1093/mnras/staa2561 10.1093/mnras/stw2233 10.1111/j.1365-2966.2009.14654.x 10.1086/308692 10.3847/0004-637X/823/2/143 10.3847/2041-8213/aadc10 10.1088/0004-637X/811/2/140 10.3847/1538-4357/ab412b 10.1051/0004-6361/201323179 10.3847/1538-4365/aaacce 10.1051/aas:1996164 10.1038/s41550-020-1104-5 10.1038/nature11446 10.1038/nature14500 10.3847/2041-8213/aa69be 10.3847/1538-4357/aa8874 10.1093/mnras/stw3066 10.3847/1538-4357/aad2d3 10.3847/0004-637X/817/1/11 10.3847/1538-4357/ab042b 10.1093/mnras/stz2119 10.3847/1538-4357/ab5a8b 10.1093/mnras/stx2064 10.1088/0004-637X/799/2/183 10.1088/2041-8205/708/1/L26 10.1088/2041-8205/786/1/L4 10.1088/0004-637X/785/2/108 10.1093/mnras/sty2169 10.3847/1538-4357/ab6596 10.1088/0067-0049/184/1/100 10.1051/0004-6361/201731935 10.1111/j.1365-2966.2007.12353.x 10.1086/307523 10.1038/nature24631 10.1093/mnras/stz940 10.3847/2041-8205/823/1/L14 10.1086/323432 10.3847/1538-4357/aabe29 10.1051/0004-6361/201527514 10.3847/1538-4357/ab5daf 10.3847/0004-637X/821/2/122 10.1088/2041-8205/762/2/L30 10.3847/1538-4357/aad239 10.1093/mnras/stz3032 10.3847/0004-637X/832/1/79 10.3847/0004-637X/819/2/129 10.1093/mnras/staa2085 10.1051/0004-6361/201936965 10.1088/0004-637X/801/1/44 10.1086/491695 10.3847/2041-8213/836/1/L2 10.1111/j.1365-2966.2009.14548.x 10.1088/0067-0049/199/2/25 10.1046/j.1365-8711.2003.06897.x 10.1093/mnras/staa1479 10.1088/0004-637X/763/2/129 10.1088/0004-637X/738/1/69 10.3847/1538-4357/abbd44 10.3847/1538-4357/ab22a2 10.1086/190287 10.1051/0004-6361/201527513 10.1088/2041-8205/777/2/L19 10.1088/0004-637X/784/1/58 10.1051/0004-6361:20030151 10.1051/0004-6361/200913946 10.3847/1538-4357/abb943 10.1088/0004-637X/807/2/180 10.3847/1538-4357/aabe7b 10.3847/1538-4357/ab3213 10.3847/0004-637X/831/2/176 10.1051/0004-6361/201731172 10.1093/mnras/staa3370 10.1093/mnras/staa1649 10.3847/1538-4357/ab0adf |
ContentType | Journal Article Web Resource |
Copyright | Copyright IOP Publishing Apr 01, 2021 |
Copyright_xml | – notice: Copyright IOP Publishing Apr 01, 2021 |
CorporateAuthor | Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M Q33 OIOZB OTOTI |
DOI | 10.3847/1538-4357/abe533 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Université de Liège - Open Repository and Bibliography (ORBI) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 1862746 oai_orbi_ulg_ac_be_2268_332847 10_3847_1538_4357_abe533 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AAYXX ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CITATION CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW 7TG 8FD AEINN H8D KL. L7M 41~ 6TJ 6TS 9M8 AALHV ABDPE ADIYS ADXHL AETEA AI. EJD FA8 MVM OHT Q33 VH1 WHG XOL YYP ZCG ZKB ZY4 ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c2993-64cf78745f82ecc476122d6b04241f4e0ea9201f52aec2203ba607f32c18b2a03 |
ISSN | 0004-637X 1538-4357 |
IngestDate | Sat Jun 17 13:45:48 EDT 2023 Fri Aug 01 18:59:30 EDT 2025 Wed Aug 13 09:38:54 EDT 2025 Tue Jul 01 03:24:36 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2993-64cf78745f82ecc476122d6b04241f4e0ea9201f52aec2203ba607f32c18b2a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85104616309 National Aeronautics and Space Administration (NASA) Simons Foundation AC52-07NA27344; NAS-26555; 80NSSC18K0945; 2018-1140 LLNL-JRNL-831922 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0003-3653-3741 0000-0001-9391-305X 0000-0001-7410-7669 0000-0003-0248-6123 0000-0002-0350-4488 0000-0002-1428-7036 0000-0001-5851-6649 0000-0003-0980-1499 0000-0003-3266-2001 0000-0003-0094-6827 0000-0002-6338-7295 0000-0002-7196-4822 0000-0002-3772-0330 0000-0002-3007-0013 0000-0001-5984-0395 0000-0003-3108-9039 0000-0002-7559-0864 0000-0002-7908-9284 0000-0002-8144-9285 0000-0003-3484-399X 0000000159840395 0000000302486123 0000000331089039 000000019391305X 0000000214287036 0000000271964822 0000000309801499 0000000279089284 0000000230070013 0000000332662001 0000000300946827 0000000281449285 0000000203504488 0000000158516649 0000000336533741 0000000174107669 0000000275590864 0000000263387295 0000000237720330 000000033484399X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1862746 |
PQID | 2509009564 |
PQPubID | 4562441 |
ParticipantIDs | osti_scitechconnect_1862746 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_332847 proquest_journals_2509009564 crossref_primary_10_3847_1538_4357_abe533 crossref_citationtrail_10_3847_1538_4357_abe533 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Le Fèvre (apjabe533bib54) 2020; 643 Cibirka (apjabe533bib26) 2018; 863 Endsley (apjabe533bib33) 2021; 500 Paterno-Mahler (apjabe533bib75) 2018; 863 Faisst (apjabe533bib36) 2019; 884 Amorín (apjabe533bib4) 2014; 568 Knudsen (apjabe533bib50) 2017; 466 Salmon (apjabe533bib83) 2015; 799 Ryan (apjabe533bib80) 2014; 786 Meneghetti (apjabe533bib63) 2017; 472 Bouwens (apjabe533bib8) 2015; 811 Eldridge (apjabe533bib32) 2009; 400 Feroz (apjabe533bib40) 2013 Stark (apjabe533bib94) 2013; 763 Eyles (apjabe533bib34) 2005; 364 Salmon (apjabe533bib82) 2020; 889 Bruzual (apjabe533bib17) 2003; 344 Carnall (apjabe533bib22) 2018; 480 Hashimoto (apjabe533bib43) 2018; 557 Jullo (apjabe533bib48) 2009; 395 Lotz (apjabe533bib58) 2017; 837 Mahler (apjabe533bib60) 2019; 873 Oguri (apjabe533bib70) 2010; 62 Roberts-Borsani (apjabe533bib79) 2020; 497 Finkelstein (apjabe533bib41) 2013; 502 Feroz (apjabe533bib38) 2008; 384 Jones (apjabe533bib47) 2020; 903 Brammer (apjabe533bib14) 2008; 686 Carnall (apjabe533bib21) 2019; 873 Mainali (apjabe533bib61) 2020; 494 Anders (apjabe533bib5) 2003; 401 Cerny (apjabe533bib24) 2018; 859 Chabrier (apjabe533bib25) 2003; 115 Yan (apjabe533bib99) 2005; 634 Leitherer (apjabe533bib56) 1995; 96 Zitrin (apjabe533bib104) 2013; 762 Bradač (apjabe533bib11) 2017; 836 Bradač (apjabe533bib13) 2014; 785 Merlin (apjabe533bib64) 2016; 590 Labbé (apjabe533bib51) 2010; 708 Sanders (apjabe533bib84) 2020; 491 Bradač (apjabe533bib10) 2020; 4 Oesch (apjabe533bib68) 2016; 819 Acebron (apjabe533bib3) 2020; 898 Capak (apjabe533bib19) 2015; 522 Faisst (apjabe533bib35) 2016; 821 Mawatari (apjabe533bib62) 2020; 889 Oke (apjabe533bib72) 1974; 27 Nakajima (apjabe533bib67) 2018; 612 Schaerer (apjabe533bib86) 2010; 515 Calzetti (apjabe533bib18) 2000; 533 Smit (apjabe533bib90) 2018; 553 Acebron (apjabe533bib2) 2018; 858 Labbé (apjabe533bib52) 2013; 777 Leja (apjabe533bib57) 2019; 876 Jung (apjabe533bib49) 2020; 904 Bertin (apjabe533bib6) 1996; 117 Huang (apjabe533bib45) 2016b; 823 Roberts-Borsani (apjabe533bib78) 2016; 823 Bouwens (apjabe533bib7) 2014; 795 Eldridge (apjabe533bib31) 2008; 384 Coe (apjabe533bib27) 2019; 884 Postman (apjabe533bib76) 2012; 199 Zitrin (apjabe533bib105) 2017; 839 Bridge (apjabe533bib15) 2019; 882 Lower (apjabe533bib59) 2020; 904 Shipley (apjabe533bib89) 2018; 235 Pacifici (apjabe533bib73) 2016; 832 Okabe (apjabe533bib71) 2020; 496 Strait (apjabe533bib96) 2020; 888 Feroz (apjabe533bib39) 2009; 398 De Barros (apjabe533bib28) 2019; 489 Stark (apjabe533bib93) 2017; 464 Smit (apjabe533bib91) 2015; 801 Smit (apjabe533bib92) 2014; 784 Shim (apjabe533bib88) 2011; 738 Fudamoto (apjabe533bib42) 2020; 643 Caputi (apjabe533bib20) 2017; 849 Bradač (apjabe533bib12) 2019; 489 Castellano (apjabe533bib23) 2016; 590 Zitrin (apjabe533bib102) 2012; 423 Meurer (apjabe533bib66) 1999; 521 Yang (apjabe533bib100) 2020; 496 Ferland (apjabe533bib37) 2017; 53 Laporte (apjabe533bib53) 2014; 562 Salmon (apjabe533bib81) 2018; 864 Santini (apjabe533bib85) 2017; 847 Shapley (apjabe533bib87) 2001; 562 Brocklehurst (apjabe533bib16) 1971; 153 Duncan (apjabe533bib30) 2020; 498 Tilvi (apjabe533bib97) 2020; 891 Lee (apjabe533bib55) 2009; 184 Stefanon (apjabe533bib95) 2019; 883 Acebron (apjabe533bib1) 2019; 874 Di Criscienzo (apjabe533bib29) 2017; 607 Prevot (apjabe533bib77) 1984; 132 Bouwens (apjabe533bib9) 2016; 831 Papovich (apjabe533bib74) 2001; 559 Willott (apjabe533bib98) 2015; 807 Zheng (apjabe533bib101) 2012; 489 Huang (apjabe533bib44) 2016a; 817 Hutchison (apjabe533bib46) 2019; 879 Merlin (apjabe533bib65) 2015; 582 Oesch (apjabe533bib69) 2015; 804 Zitrin (apjabe533bib103) 2015; 801 |
References_xml | – start-page: 106 year: 2013 ident: apjabe533bib40 – volume: 96 start-page: 9 year: 1995 ident: apjabe533bib56 publication-title: ApJS doi: 10.1086/192112 – volume: 643 start-page: A4 year: 2020 ident: apjabe533bib42 publication-title: A&A doi: 10.1051/0004-6361/202038163 – volume: 873 start-page: 44 year: 2019 ident: apjabe533bib21 publication-title: ApJ doi: 10.3847/1538-4357/ab04a2 – volume: 115 start-page: 763 year: 2003 ident: apjabe533bib25 publication-title: PASP doi: 10.1086/376392 – volume: 364 start-page: 443 year: 2005 ident: apjabe533bib34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09434.x – volume: 884 start-page: 133 year: 2019 ident: apjabe533bib36 publication-title: ApJ doi: 10.3847/1538-4357/ab425b – volume: 795 start-page: 126 year: 2014 ident: apjabe533bib7 publication-title: ApJ doi: 10.1088/0004-637X/795/2/126 – volume: 559 start-page: 620 year: 2001 ident: apjabe533bib74 publication-title: ApJ doi: 10.1086/322412 – volume: 153 start-page: 471 year: 1971 ident: apjabe533bib16 publication-title: MNRAS doi: 10.1093/mnras/153.4.471 – volume: 883 start-page: 99 year: 2019 ident: apjabe533bib95 publication-title: ApJ doi: 10.3847/1538-4357/ab3792 – volume: 400 start-page: 1019 year: 2009 ident: apjabe533bib32 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15514.x – volume: 494 start-page: 719 year: 2020 ident: apjabe533bib61 publication-title: MNRAS doi: 10.1093/mnras/staa751 – volume: 891 start-page: L10 year: 2020 ident: apjabe533bib97 publication-title: ApJL doi: 10.3847/2041-8213/ab75ec – volume: 502 start-page: 524 year: 2013 ident: apjabe533bib41 publication-title: Natur doi: 10.1038/nature12657 – volume: 582 start-page: A15 year: 2015 ident: apjabe533bib65 publication-title: A&A doi: 10.1051/0004-6361/201526471 – volume: 801 start-page: 122 year: 2015 ident: apjabe533bib91 publication-title: ApJ doi: 10.1088/0004-637X/801/2/122 – volume: 62 start-page: 1017 year: 2010 ident: apjabe533bib70 publication-title: PASJ doi: 10.1093/pasj/62.4.1017 – volume: 837 start-page: 97 year: 2017 ident: apjabe533bib58 publication-title: ApJ doi: 10.3847/1538-4357/837/1/97 – volume: 804 start-page: L30 year: 2015 ident: apjabe533bib69 publication-title: ApJL doi: 10.1088/2041-8205/804/2/L30 – volume: 686 start-page: 1503 year: 2008 ident: apjabe533bib14 publication-title: ApJ doi: 10.1086/591786 – volume: 849 start-page: 45 year: 2017 ident: apjabe533bib20 publication-title: ApJ doi: 10.3847/1538-4357/aa901e – volume: 876 start-page: 3 year: 2019 ident: apjabe533bib57 publication-title: ApJ doi: 10.3847/1538-4357/ab133c – volume: 568 start-page: L8 year: 2014 ident: apjabe533bib4 publication-title: A&A doi: 10.1051/0004-6361/201423816 – volume: 904 start-page: 33 year: 2020 ident: apjabe533bib59 publication-title: ApJ doi: 10.3847/1538-4357/abbfa7 – volume: 423 start-page: 2308 year: 2012 ident: apjabe533bib102 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21041.x – volume: 557 start-page: 392 year: 2018 ident: apjabe533bib43 publication-title: Natur doi: 10.1038/s41586-018-0117-z – volume: 384 start-page: 1109 year: 2008 ident: apjabe533bib31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12738.x – volume: 898 start-page: 6 year: 2020 ident: apjabe533bib3 publication-title: ApJ doi: 10.3847/1538-4357/ab929d – volume: 498 start-page: 3648 year: 2020 ident: apjabe533bib30 publication-title: MNRAS doi: 10.1093/mnras/staa2561 – volume: 464 start-page: 469 year: 2017 ident: apjabe533bib93 publication-title: MNRAS doi: 10.1093/mnras/stw2233 – volume: 395 start-page: 1319 year: 2009 ident: apjabe533bib48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14654.x – volume: 533 start-page: 682 year: 2000 ident: apjabe533bib18 publication-title: ApJ doi: 10.1086/308692 – volume: 823 start-page: 143 year: 2016 ident: apjabe533bib78 publication-title: ApJ doi: 10.3847/0004-637X/823/2/143 – volume: 864 start-page: L22 year: 2018 ident: apjabe533bib81 publication-title: ApJL doi: 10.3847/2041-8213/aadc10 – volume: 811 start-page: 140 year: 2015 ident: apjabe533bib8 publication-title: ApJ doi: 10.1088/0004-637X/811/2/140 – volume: 884 start-page: 85 year: 2019 ident: apjabe533bib27 publication-title: ApJ doi: 10.3847/1538-4357/ab412b – volume: 562 start-page: L8 year: 2014 ident: apjabe533bib53 publication-title: A&A doi: 10.1051/0004-6361/201323179 – volume: 235 start-page: 14 year: 2018 ident: apjabe533bib89 publication-title: ApJS doi: 10.3847/1538-4365/aaacce – volume: 117 start-page: 393 year: 1996 ident: apjabe533bib6 publication-title: A&AS doi: 10.1051/aas:1996164 – volume: 4 start-page: 478 year: 2020 ident: apjabe533bib10 publication-title: NatAs doi: 10.1038/s41550-020-1104-5 – volume: 489 start-page: 406 year: 2012 ident: apjabe533bib101 publication-title: Natur doi: 10.1038/nature11446 – volume: 522 start-page: 455 year: 2015 ident: apjabe533bib19 publication-title: Natur doi: 10.1038/nature14500 – volume: 839 start-page: L11 year: 2017 ident: apjabe533bib105 publication-title: ApJL doi: 10.3847/2041-8213/aa69be – volume: 847 start-page: 76 year: 2017 ident: apjabe533bib85 publication-title: ApJ doi: 10.3847/1538-4357/aa8874 – volume: 466 start-page: 138 year: 2017 ident: apjabe533bib50 publication-title: MNRAS doi: 10.1093/mnras/stw3066 – volume: 863 start-page: 145 year: 2018 ident: apjabe533bib26 publication-title: ApJ doi: 10.3847/1538-4357/aad2d3 – volume: 817 start-page: 11 year: 2016a ident: apjabe533bib44 publication-title: ApJ doi: 10.3847/0004-637X/817/1/11 – volume: 873 start-page: 96 year: 2019 ident: apjabe533bib60 publication-title: ApJ doi: 10.3847/1538-4357/ab042b – volume: 489 start-page: 99 year: 2019 ident: apjabe533bib12 publication-title: MNRAS doi: 10.1093/mnras/stz2119 – volume: 889 start-page: 189 year: 2020 ident: apjabe533bib82 publication-title: ApJ doi: 10.3847/1538-4357/ab5a8b – volume: 472 start-page: 3177 year: 2017 ident: apjabe533bib63 publication-title: MNRAS doi: 10.1093/mnras/stx2064 – volume: 799 start-page: 183 year: 2015 ident: apjabe533bib83 publication-title: ApJ doi: 10.1088/0004-637X/799/2/183 – volume: 708 start-page: L26 year: 2010 ident: apjabe533bib51 publication-title: ApJL doi: 10.1088/2041-8205/708/1/L26 – volume: 786 start-page: L4 year: 2014 ident: apjabe533bib80 publication-title: ApJL doi: 10.1088/2041-8205/786/1/L4 – volume: 785 start-page: 108 year: 2014 ident: apjabe533bib13 publication-title: ApJ doi: 10.1088/0004-637X/785/2/108 – volume: 480 start-page: 4379 year: 2018 ident: apjabe533bib22 publication-title: MNRAS doi: 10.1093/mnras/sty2169 – volume: 889 start-page: 137 year: 2020 ident: apjabe533bib62 publication-title: ApJ doi: 10.3847/1538-4357/ab6596 – volume: 184 start-page: 100 year: 2009 ident: apjabe533bib55 publication-title: ApJS doi: 10.1088/0067-0049/184/1/100 – volume: 612 start-page: A94 year: 2018 ident: apjabe533bib67 publication-title: A&A doi: 10.1051/0004-6361/201731935 – volume: 384 start-page: 449 year: 2008 ident: apjabe533bib38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12353.x – volume: 521 start-page: 64 year: 1999 ident: apjabe533bib66 publication-title: ApJ doi: 10.1086/307523 – volume: 553 start-page: 178 year: 2018 ident: apjabe533bib90 publication-title: Natur doi: 10.1038/nature24631 – volume: 489 start-page: 2355 year: 2019 ident: apjabe533bib28 publication-title: MNRAS doi: 10.1093/mnras/stz940 – volume: 823 start-page: L14 year: 2016b ident: apjabe533bib45 publication-title: ApJL doi: 10.3847/2041-8205/823/1/L14 – volume: 562 start-page: 95 year: 2001 ident: apjabe533bib87 publication-title: ApJ doi: 10.1086/323432 – volume: 858 start-page: 42 year: 2018 ident: apjabe533bib2 publication-title: ApJ doi: 10.3847/1538-4357/aabe29 – volume: 590 start-page: A31 year: 2016 ident: apjabe533bib23 publication-title: A&A doi: 10.1051/0004-6361/201527514 – volume: 888 start-page: 124 year: 2020 ident: apjabe533bib96 publication-title: ApJ doi: 10.3847/1538-4357/ab5daf – volume: 821 start-page: 122 year: 2016 ident: apjabe533bib35 publication-title: ApJ doi: 10.3847/0004-637X/821/2/122 – volume: 53 start-page: 385 year: 2017 ident: apjabe533bib37 publication-title: RMxAA – volume: 762 start-page: L30 year: 2013 ident: apjabe533bib104 publication-title: ApJL doi: 10.1088/2041-8205/762/2/L30 – volume: 863 start-page: 154 year: 2018 ident: apjabe533bib75 publication-title: ApJ doi: 10.3847/1538-4357/aad239 – volume: 491 start-page: 1427 year: 2020 ident: apjabe533bib84 publication-title: MNRAS doi: 10.1093/mnras/stz3032 – volume: 832 start-page: 79 year: 2016 ident: apjabe533bib73 publication-title: ApJ doi: 10.3847/0004-637X/832/1/79 – volume: 819 start-page: 129 year: 2016 ident: apjabe533bib68 publication-title: ApJ doi: 10.3847/0004-637X/819/2/129 – volume: 497 start-page: 3 year: 2020 ident: apjabe533bib79 publication-title: MNRAS doi: 10.1093/mnras/staa2085 – volume: 643 start-page: A1 year: 2020 ident: apjabe533bib54 publication-title: A&A doi: 10.1051/0004-6361/201936965 – volume: 132 start-page: 389 year: 1984 ident: apjabe533bib77 publication-title: A&A – volume: 801 start-page: 44 year: 2015 ident: apjabe533bib103 publication-title: ApJ doi: 10.1088/0004-637X/801/1/44 – volume: 634 start-page: 109 year: 2005 ident: apjabe533bib99 publication-title: ApJ doi: 10.1086/491695 – volume: 836 start-page: L2 year: 2017 ident: apjabe533bib11 publication-title: ApJL doi: 10.3847/2041-8213/836/1/L2 – volume: 398 start-page: 1601 year: 2009 ident: apjabe533bib39 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14548.x – volume: 199 start-page: 25 year: 2012 ident: apjabe533bib76 publication-title: ApJS doi: 10.1088/0067-0049/199/2/25 – volume: 344 start-page: 1000 year: 2003 ident: apjabe533bib17 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06897.x – volume: 496 start-page: 2591 year: 2020 ident: apjabe533bib71 publication-title: MNRAS doi: 10.1093/mnras/staa1479 – volume: 763 start-page: 129 year: 2013 ident: apjabe533bib94 publication-title: ApJ doi: 10.1088/0004-637X/763/2/129 – volume: 738 start-page: 69 year: 2011 ident: apjabe533bib88 publication-title: ApJ doi: 10.1088/0004-637X/738/1/69 – volume: 904 start-page: 144 year: 2020 ident: apjabe533bib49 publication-title: ApJ doi: 10.3847/1538-4357/abbd44 – volume: 879 start-page: 70 year: 2019 ident: apjabe533bib46 publication-title: ApJ doi: 10.3847/1538-4357/ab22a2 – volume: 27 start-page: 21 year: 1974 ident: apjabe533bib72 publication-title: ApJS doi: 10.1086/190287 – volume: 590 start-page: A30 year: 2016 ident: apjabe533bib64 publication-title: A&A doi: 10.1051/0004-6361/201527513 – volume: 777 start-page: L19 year: 2013 ident: apjabe533bib52 publication-title: ApJ doi: 10.1088/2041-8205/777/2/L19 – volume: 784 start-page: 58 year: 2014 ident: apjabe533bib92 publication-title: ApJ doi: 10.1088/0004-637X/784/1/58 – volume: 401 start-page: 1063 year: 2003 ident: apjabe533bib5 publication-title: A&A doi: 10.1051/0004-6361:20030151 – volume: 515 start-page: A73 year: 2010 ident: apjabe533bib86 publication-title: A&A doi: 10.1051/0004-6361/200913946 – volume: 903 start-page: 150 year: 2020 ident: apjabe533bib47 publication-title: ApJ doi: 10.3847/1538-4357/abb943 – volume: 807 start-page: 180 year: 2015 ident: apjabe533bib98 publication-title: ApJ doi: 10.1088/0004-637X/807/2/180 – volume: 859 start-page: 159 year: 2018 ident: apjabe533bib24 publication-title: ApJ doi: 10.3847/1538-4357/aabe7b – volume: 882 start-page: 42 year: 2019 ident: apjabe533bib15 publication-title: ApJ doi: 10.3847/1538-4357/ab3213 – volume: 831 start-page: 176 year: 2016 ident: apjabe533bib9 publication-title: ApJ doi: 10.3847/0004-637X/831/2/176 – volume: 607 start-page: A30 year: 2017 ident: apjabe533bib29 publication-title: A&A doi: 10.1051/0004-6361/201731172 – volume: 500 start-page: 5229 year: 2021 ident: apjabe533bib33 publication-title: MNRAS doi: 10.1093/mnras/staa3370 – volume: 496 start-page: 2648 year: 2020 ident: apjabe533bib100 publication-title: MNRAS doi: 10.1093/mnras/staa1649 – volume: 874 start-page: 132 year: 2019 ident: apjabe533bib1 publication-title: ApJ doi: 10.3847/1538-4357/ab0adf |
RestrictionsOnAccess | open access |
SSID | ssj0004299 |
Score | 2.544717 |
Snippet | We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲
z
≲ 8 galaxy candidates from the... We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6 ≲ z ≲ 8 galaxy candidates from the... |
SourceID | osti liege proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 135 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Astrophysics Astrophysics - Astrophysics of Galaxies Aérospatiale, astronomie & astrophysique Candidates Emission Emission lines Emitters Fluxes Galactic clusters Galaxies High-redshift galaxies Hubble Space Telescope Ionization James Webb Space Telescope Photometry Physical properties Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Polls & surveys Space science, astronomy & astrophysics Space telescopes Spectral energy distribution Star & galaxy formation Star formation Star formation rate Stars & galaxies Stellar age Stellar evolution Stellar mass Stellar populations |
Title | RELICS: Properties of z ≥ 5.5 Galaxies Inferred from Spitzer and Hubble Imaging, Including A Candidate z ∼ 6.8 Strong [O iii] emitter |
URI | https://www.proquest.com/docview/2509009564 http://orbi.ulg.ac.be/handle/2268/332847 https://www.osti.gov/servlets/purl/1862746 |
Volume | 910 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJiRuEAzQygbyBUVCWbrGdv6467rBhoBNbINJCFm2m6Cgrq26Bk19AvYgvAWPwFPwJJwTJ202fsS4iawkPUp6vpwf-zvHhDzyuIpFyJQbC-O7AvTgKnArbpoYobnocbt7w6vXwc6ReHHsHy8sfK-xlvKJbpnpb-tK_kercA70ilWyV9DsTCicgDHoF46gYTj-k47fbL_c7R5gUr-Pc-pjbI6K0d_UKTgMcbPjO37Ld56rvjrDa7tY3oeM86Kq5GCUTaaJJVHu5BprqHZPil2LSsvRz4uSl47TxeIXnBuoREfNza4TtCJc1cbdipr-5p6TZVnT33KSk2xSkX4_zcHYOYVbRxUs6u9X0IrHKiv8wdsMlxGy2jyB6qki5N0qa4vyZtdvdrw5xciyGbfq7KITlZ9Z6KIB67bqkxvMq3FiKoMt3ICHx9ZdzW00RHlh3YjHJTk2qyXT1iR7th3KZVfBwS3jrEUlDH2iTnzbleNiX-5L_nLGYoT8CaVIlCFRhrQSrpElBkkLWt09_m5epcviMhmzr2QXzVHCxuwpNqyEC0HSUh_pExAyDMHo_xIyFHHQ4S1ys0xgaMei8TZZSAbLZKVQLpbH0Me0pujTZXJ9347ukHML16d0DlY6TOmU_jj_SgGmtIIprWBKEaa0hCkFDFILU1rCdJ3OQEo7dAZSFPnlGwV4UgtP-n6PAjg_0BKad8nRs-3D7o5b7gTiGoYE00CYNMSNGdKIgc0RIcTlrBdoXLf3UpG0ExVDJJv6TCWGsTbXKmiHKWfGizRTbX6PLA6Gg2SF0Eho7EoXRJ5iIkk9HXjacOOJnlDchL0G2aj-emnKNvn4CfTln9TdIE9mvxjZFjF_uXe90KYcjnUmPzOJ3d2Lcd7_KJWROpGQEEWSc4wbG2QVlS4hGsaWzga5b2YivQh3zAoaZK3Cgiy_2lMJKU2MeVMg7l_huVbJjfnnt0YWJ-M8eQDR9kQ_LED8E5CvySQ |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RELICS%3A+Properties+of+z+%E2%89%A5+5.5+Galaxies+Inferred+from+Spitzer+and+Hubble+Imaging%2C+Including+A+Candidate+z+%E2%88%BC+6.8+Strong+%5BO+iii%5D+emitter&rft.jtitle=The+Astrophysical+journal&rft.au=Strait%2C+Victoria&rft.au=Brada%C4%8D%2C+Maru%C5%A1a&rft.au=Coe%2C+Dan&rft.au=Lemaux%2C+Brian+C.&rft.date=2021-04-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=910&rft.issue=2&rft.spage=135&rft_id=info:doi/10.3847%2F1538-4357%2Fabe533&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_abe533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |