Application of functional coatings in water electrolyzers and fuel cells
Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency...
Saved in:
Published in | Nanoscale Vol. 17; no. 14; pp. 8289 - 83 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
03.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.
This review summarizes recent advances in functional coatings in water electrolyzers and fuel cells, covering both compositional design and mechanism understanding of coating materials. |
---|---|
AbstractList | Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications. Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications. Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications. This review summarizes recent advances in functional coatings in water electrolyzers and fuel cells, covering both compositional design and mechanism understanding of coating materials. |
Author | Ming, Fangwang Zhou, Jiaxin Liang, Hanfeng |
AuthorAffiliation | State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen University Materials Science and Engineering College of Chemistry and Chemical Engineering King Abdullah University of Science and Technology |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: King Abdullah University of Science and Technology – name: Materials Science and Engineering – name: State Key Laboratory of Physical Chemistry of Solid Surfaces – name: Xiamen University |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Zhou fullname: Zhou, Jiaxin – sequence: 2 givenname: Fangwang surname: Ming fullname: Ming, Fangwang – sequence: 3 givenname: Hanfeng surname: Liang fullname: Liang, Hanfeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40052715$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0VFLwzAQB_AgE-emL74rBV9EqF6atkkex6ZOGAqizyVNE-nokpm0yPz0pm5O8ClH-HHc3X-EBsYahdAZhhsMhN9WmXEAmNDqAB0nkEJMCE0G-zpPh2jk_RIg5yQnR2iYAmQJxdkxmk_W66aWoq2tiayOdGdkX4smkjb8mncf1Sb6FK1ykWqUbJ1tNl_K-UiYKnAVoGoaf4IOtWi8Ot29Y_R2f_c6nceL54fH6WQRy4SzNtaUlVDmaS5JkguNpVIZLwlgmmYlS0FpSLmsuGbAsahKLnGZUJrntJQqpZKM0dW279rZj075tljVvp9AGGU7X5DQiWHOMAn08h9d2s6F1XrFMsYgYzyoi53qypWqirWrV8Jtit8bBXC9BdJZ753Se4Kh6AMoZtnTy08As4DPt9h5uXd_AZFvhMmAhQ |
Cites_doi | 10.1039/D2CS00038E 10.1021/acssuschemeng.2c00087 10.1016/j.cej.2021.131253 10.1021/acs.energyfuels.1c01205 10.1002/advs.202309440 10.1039/D4QM00086B 10.1002/aenm.202401227 10.1021/acsami.8b00514 10.1002/aenm.202002926 10.1016/j.rser.2023.113842 10.1021/acsami.2c09999 10.1039/D4YA00238E 10.1021/acs.inorgchem.2c02579 10.1016/j.rser.2021.110771 10.1021/acscatal.8b02217 10.1002/smsc.202300109 10.1016/j.ijhydene.2024.08.157 10.1002/aenm.202401956 10.1016/j.ijhydene.2024.11.143 10.1039/D1EE02112E 10.1016/j.ijhydene.2019.10.160 10.1039/D3QM00010A 10.1016/j.ijhydene.2023.03.299 10.1002/cctc.202400369 10.1039/D3EE01768K 10.1002/smll.202304650 10.1016/j.ijhydene.2021.03.100 10.1016/j.coelec.2024.101595 10.1039/D2CS00681B 10.1007/s10311-022-01454-5 10.1002/smll.201802755 10.1016/j.pecs.2019.05.002 10.1016/j.corsci.2022.110686 10.1021/acssuschemeng.3c05256 10.1016/j.corsci.2024.112044 10.1016/j.ijhydene.2022.05.078 10.1016/j.memsci.2023.122150 10.1039/D3EE03363E 10.1021/acs.chemrev.6b00159 10.1016/j.memsci.2021.119496 10.1039/C7TA02876H 10.1002/advs.202200307 10.1016/j.jcis.2022.12.135 10.1016/j.jpowsour.2021.230797 10.1021/acsami.0c20690 10.1002/smll.202201896 10.1016/j.ijhydene.2024.05.420 10.1016/j.jpowsour.2015.12.071 10.1002/adfm.202002138 10.1016/j.progpolymsci.2020.101345 10.1126/sciadv.aao0476 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d5nr00137d |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 83 |
ExternalDocumentID | 40052715 10_1039_D5NR00137D d5nr00137d |
Genre | Journal Article Review |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c298t-f78b0b646c326af1cee59b301745b840ef049cd9f8091adb9c1b277667bce47c3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 01:49:56 EDT 2025 Mon Jun 30 11:52:06 EDT 2025 Fri Apr 04 01:34:10 EDT 2025 Sun Jul 06 05:05:05 EDT 2025 Tue May 27 12:12:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c298t-f78b0b646c326af1cee59b301745b840ef049cd9f8091adb9c1b277667bce47c3 |
Notes | Jiaxin Zhou is currently pursuing a Master's degree at Xiamen University. Her main research interest focuses on the development of anti-corrosion coatings for water electrolysis application. Dr Hanfeng Liang is currently an Associate Professor at Xiamen University and affiliated with the State Key Laboratory of Physical Chemistry of Solid Surfaces. His research interests include electrosynthesis, batterolyzers, aqueous batteries, and functional coatings. He has published over 100 papers with more than 16 000 citations and an H-index of 55. Dr Liang is a Clarivate Highly Cited Researcher (Cross-Field) and has been included in the Stanford/Elsevier World's Top 2% Scientists: Career-long Impact List for two consecutive years. Currently he serves as a Subject Editor for the International Journal of Hydrogen Energy. Dr Fangwang Ming received his Ph.D. in Materials Science and Engineering from King Abdullah University of Science and Technology (KAUST) in 2022. Following his doctoral studies, he worked as a Senior Engineer at Amperex Technology Limited (ATL) from 2022 to 2024, focusing on the R&D of next-generation lithium-ion battery technologies. Currently, Dr Ming is a Postdoctoral Research Fellow at KAUST, where he conducts both fundamental and applied research in rechargeable battery systems. His expertise lies in the interfacial and interphasial chemistries within electrochemical energy storage devices. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1778-3975 |
PMID | 40052715 |
PQID | 3185880589 |
PQPubID | 2047485 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3174819813 pubmed_primary_40052715 rsc_primary_d5nr00137d proquest_journals_3185880589 crossref_primary_10_1039_D5NR00137D |
PublicationCentury | 2000 |
PublicationDate | 2025-04-03 |
PublicationDateYYYYMMDD | 2025-04-03 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lee (D5NR00137D/cit51/1) 2023; 688 Liu (D5NR00137D/cit9/1) 2023; 52 Liu (D5NR00137D/cit45/1) 2021; 11 Yin (D5NR00137D/cit20/1) 2017; 5 Liu (D5NR00137D/cit32/1) 2018; 14 Gou (D5NR00137D/cit40/1) 2022; 520 Wang (D5NR00137D/cit19/1) 2024; 3 Hyun (D5NR00137D/cit12/1) 2023; 16 Zhu (D5NR00137D/cit31/1) 2022; 20 Liu (D5NR00137D/cit50/1) 2021; 35 Wu (D5NR00137D/cit22/1) 2023; 7 Yang (D5NR00137D/cit13/1) 2022; 51 Ma (D5NR00137D/cit34/1) 2024; 73 Rojas (D5NR00137D/cit26/1) 2021; 46 Shaik (D5NR00137D/cit8/1) 2024; 14 Zhao (D5NR00137D/cit49/1) 2022; 10 Liu (D5NR00137D/cit29/1) 2021; 426 Gago (D5NR00137D/cit37/1) 2016; 307 Zhang (D5NR00137D/cit17/1) 2024; 11 Deng (D5NR00137D/cit47/1) 2023; 11 Guo (D5NR00137D/cit33/1) 2022; 18 Liu (D5NR00137D/cit38/1) 2022; 47 Yang (D5NR00137D/cit1/1) 2023; 188 Liu (D5NR00137D/cit36/1) 2022; 9 Ta (D5NR00137D/cit28/1) 2024; 20 Liu (D5NR00137D/cit46/1) 2021; 13 Thao (D5NR00137D/cit18/1) 2024; 4 Sun (D5NR00137D/cit4/1) 2020; 30 Feng (D5NR00137D/cit7/1) 2023; 48 Chen (D5NR00137D/cit11/1) 2021; 113 Miyake (D5NR00137D/cit23/1) 2017; 3 Dash (D5NR00137D/cit2/1) 2024; 83 Wen (D5NR00137D/cit21/1) 2023; 635 Kusoglu (D5NR00137D/cit24/1) 2017; 117 Hou (D5NR00137D/cit48/1) 2020; 45 Li (D5NR00137D/cit5/1) 2024; 8 Zou (D5NR00137D/cit25/1) 2021; 635 Zheng (D5NR00137D/cit10/1) 2024; 14 Cui (D5NR00137D/cit43/1) 2022; 14 Wang (D5NR00137D/cit35/1) 2024; 16 Kim (D5NR00137D/cit52/1) 2022; 12 Mulk (D5NR00137D/cit6/1) 2024; 94 Wang (D5NR00137D/cit42/1) 2024; 232 Ozden (D5NR00137D/cit27/1) 2019; 74 Yi (D5NR00137D/cit44/1) 2018; 10 Wang (D5NR00137D/cit30/1) 2022; 61 Pan (D5NR00137D/cit16/1) 2021; 141 Yu (D5NR00137D/cit14/1) 2024; 48 Huang (D5NR00137D/cit3/1) 2024; 17 Stiber (D5NR00137D/cit39/1) 2022; 15 Wang (D5NR00137D/cit41/1) 2022; 208 Li (D5NR00137D/cit15/1) 2018; 8 |
References_xml | – volume: 51 start-page: 9620 year: 2022 ident: D5NR00137D/cit13/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00038E – volume: 12 start-page: 11 year: 2022 ident: D5NR00137D/cit52/1 publication-title: Membranes – volume: 10 start-page: 4269 year: 2022 ident: D5NR00137D/cit49/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c00087 – volume: 426 start-page: 131253 year: 2021 ident: D5NR00137D/cit29/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131253 – volume: 35 start-page: 12482 year: 2021 ident: D5NR00137D/cit50/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01205 – volume: 11 start-page: 2309440 year: 2024 ident: D5NR00137D/cit17/1 publication-title: Adv. Sci. doi: 10.1002/advs.202309440 – volume: 8 start-page: 2493 year: 2024 ident: D5NR00137D/cit5/1 publication-title: Mater. Chem. Front. doi: 10.1039/D4QM00086B – volume: 14 start-page: 2401227 year: 2024 ident: D5NR00137D/cit10/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202401227 – volume: 10 start-page: 19087 year: 2018 ident: D5NR00137D/cit44/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00514 – volume: 11 start-page: 2002926 year: 2021 ident: D5NR00137D/cit45/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002926 – volume: 188 start-page: 113842 year: 2023 ident: D5NR00137D/cit1/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2023.113842 – volume: 14 start-page: 37059 year: 2022 ident: D5NR00137D/cit43/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c09999 – volume: 3 start-page: 2002 year: 2024 ident: D5NR00137D/cit19/1 publication-title: Energy Adv. doi: 10.1039/D4YA00238E – volume: 61 start-page: 15256 year: 2022 ident: D5NR00137D/cit30/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02579 – volume: 141 start-page: 110771 year: 2021 ident: D5NR00137D/cit16/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.110771 – volume: 8 start-page: 11688 year: 2018 ident: D5NR00137D/cit15/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02217 – volume: 4 start-page: 2300109 year: 2024 ident: D5NR00137D/cit18/1 publication-title: Small Sci. doi: 10.1002/smsc.202300109 – volume: 83 start-page: 614 year: 2024 ident: D5NR00137D/cit2/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.08.157 – volume: 14 start-page: 2401956 year: 2024 ident: D5NR00137D/cit8/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202401956 – volume: 94 start-page: 1174 year: 2024 ident: D5NR00137D/cit6/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.11.143 – volume: 15 start-page: 109 year: 2022 ident: D5NR00137D/cit39/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02112E – volume: 45 start-page: 937 year: 2020 ident: D5NR00137D/cit48/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.160 – volume: 7 start-page: 1025 year: 2023 ident: D5NR00137D/cit22/1 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00010A – volume: 48 start-page: 25830 year: 2023 ident: D5NR00137D/cit7/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.03.299 – volume: 16 start-page: e202400369 year: 2024 ident: D5NR00137D/cit35/1 publication-title: ChemCatChem doi: 10.1002/cctc.202400369 – volume: 16 start-page: 5633 year: 2023 ident: D5NR00137D/cit12/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE01768K – volume: 20 start-page: 2304650 year: 2024 ident: D5NR00137D/cit28/1 publication-title: Small doi: 10.1002/smll.202304650 – volume: 46 start-page: 25929 year: 2021 ident: D5NR00137D/cit26/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.100 – volume: 48 start-page: 101595 year: 2024 ident: D5NR00137D/cit14/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2024.101595 – volume: 52 start-page: 5652 year: 2023 ident: D5NR00137D/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00681B – volume: 20 start-page: 3429 year: 2022 ident: D5NR00137D/cit31/1 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-022-01454-5 – volume: 14 start-page: 1802755 year: 2018 ident: D5NR00137D/cit32/1 publication-title: Small doi: 10.1002/smll.201802755 – volume: 74 start-page: 50 year: 2019 ident: D5NR00137D/cit27/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.05.002 – volume: 208 start-page: 110686 year: 2022 ident: D5NR00137D/cit41/1 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110686 – volume: 11 start-page: 17075 year: 2023 ident: D5NR00137D/cit47/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.3c05256 – volume: 232 start-page: 112044 year: 2024 ident: D5NR00137D/cit42/1 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.112044 – volume: 47 start-page: 22915 year: 2022 ident: D5NR00137D/cit38/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.078 – volume: 688 start-page: 122150 year: 2023 ident: D5NR00137D/cit51/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.122150 – volume: 17 start-page: 1007 year: 2024 ident: D5NR00137D/cit3/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03363E – volume: 117 start-page: 987 year: 2017 ident: D5NR00137D/cit24/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00159 – volume: 635 start-page: 119496 year: 2021 ident: D5NR00137D/cit25/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119496 – volume: 5 start-page: 13648 year: 2017 ident: D5NR00137D/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02876H – volume: 9 start-page: 2200307 year: 2022 ident: D5NR00137D/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.202200307 – volume: 635 start-page: 494 year: 2023 ident: D5NR00137D/cit21/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.12.135 – volume: 520 start-page: 230797 year: 2022 ident: D5NR00137D/cit40/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230797 – volume: 13 start-page: 16182 year: 2021 ident: D5NR00137D/cit46/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20690 – volume: 18 start-page: 2201896 year: 2022 ident: D5NR00137D/cit33/1 publication-title: Small doi: 10.1002/smll.202201896 – volume: 73 start-page: 174 year: 2024 ident: D5NR00137D/cit34/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.05.420 – volume: 307 start-page: 815 year: 2016 ident: D5NR00137D/cit37/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.071 – volume: 30 start-page: 2002138 year: 2020 ident: D5NR00137D/cit4/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002138 – volume: 113 start-page: 101345 year: 2021 ident: D5NR00137D/cit11/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101345 – volume: 3 start-page: eaao0476 year: 2017 ident: D5NR00137D/cit23/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao0476 |
SSID | ssj0069363 |
Score | 2.4713333 |
SecondaryResourceType | review_article |
Snippet | Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8289 |
SubjectTerms | Coatings Critical components Diffusion layers Electrocatalysts Electrolytic cells Fuel cells Gaseous diffusion Hydrogen production Industrial applications Renewable energy |
Title | Application of functional coatings in water electrolyzers and fuel cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40052715 https://www.proquest.com/docview/3185880589 https://www.proquest.com/docview/3174819813 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4EHtAFj3QcygjeUkcSJEz8WtlLBViTUioqXyHZsiFQlqE21sb-es-t8TPRh8BJV18hp7-fc_c723SH0JgUaSgjVXsB97kXCvFI-Tz1CaRjkwPADW3j-akLHs-jTPJ53_fJsdkktzuTt1ryS_0EVZICryZL9B2TbQUEAnwFfuALCcL0XxsNu99mQPuOj3NKerHhtG3IW5dtrbgohun43i9-3JmXXLJfrtYIb1WKx6jNUMLfVCoBrAf_-s1pbrAt-U7RT6cr1Qhnx8sc1d-7PHOwp3AL0mJdaOblbVQhjexiFdMYnNCcNCdm01TlTW2SN9Uz6syTq2UITy2010j4xNU7zuFzaqqZ554qa7ffJl2w0u7zMphfz6UO0G0IIADZsd_j5_cdvjZ-ljNg-ee2vaorPEvauG_su3fgrhgBGsWw6vVhGMd1DT1wogIcbXPfRA1U-RY97BSKfoXEPYVxp3CGMG4RxUWKLML6DMAaEsUEYW4Sfo9noYvph7LneF54MWVp7OkmFL2hEJfBrrgPgMjETYI2TKBYQlCsNoZ3MmU6B8PFcMBkIUBOliZAqSiQ5QDtlVapDhIFkBgJGAG6mIskky8HwCmIKs1GpfTJArxsVZb82JU4yezSBsOw8nny1ijwfoJNGe5l7BVaZSb0HBxCnbIBetV-DgTJ_jZeqWpt7kghoZxrAg15stN4-JjK7EkkQD9ABwNCKO_iO7jHsMXrUzeATtFMv1-oUmGItXrop8wcrz2ia |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+functional+coatings+in+water+electrolyzers+and+fuel+cells&rft.jtitle=Nanoscale&rft.au=Zhou%2C+Jiaxin&rft.au=Ming%2C+Fangwang&rft.au=Liang%2C+Hanfeng&rft.date=2025-04-03&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=17&rft.issue=14&rft.spage=8289&rft_id=info:doi/10.1039%2Fd5nr00137d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |