Application of functional coatings in water electrolyzers and fuel cells

Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 17; no. 14; pp. 8289 - 83
Main Authors Zhou, Jiaxin, Ming, Fangwang, Liang, Hanfeng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 03.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications. This review summarizes recent advances in functional coatings in water electrolyzers and fuel cells, covering both compositional design and mechanism understanding of coating materials.
AbstractList Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.
Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.
Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications. This review summarizes recent advances in functional coatings in water electrolyzers and fuel cells, covering both compositional design and mechanism understanding of coating materials.
Author Ming, Fangwang
Zhou, Jiaxin
Liang, Hanfeng
AuthorAffiliation State Key Laboratory of Physical Chemistry of Solid Surfaces
Xiamen University
Materials Science and Engineering
College of Chemistry and Chemical Engineering
King Abdullah University of Science and Technology
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: King Abdullah University of Science and Technology
– name: Materials Science and Engineering
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces
– name: Xiamen University
Author_xml – sequence: 1
  givenname: Jiaxin
  surname: Zhou
  fullname: Zhou, Jiaxin
– sequence: 2
  givenname: Fangwang
  surname: Ming
  fullname: Ming, Fangwang
– sequence: 3
  givenname: Hanfeng
  surname: Liang
  fullname: Liang, Hanfeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40052715$$D View this record in MEDLINE/PubMed
BookMark eNpd0VFLwzAQB_AgE-emL74rBV9EqF6atkkex6ZOGAqizyVNE-nokpm0yPz0pm5O8ClH-HHc3X-EBsYahdAZhhsMhN9WmXEAmNDqAB0nkEJMCE0G-zpPh2jk_RIg5yQnR2iYAmQJxdkxmk_W66aWoq2tiayOdGdkX4smkjb8mncf1Sb6FK1ykWqUbJ1tNl_K-UiYKnAVoGoaf4IOtWi8Ot29Y_R2f_c6nceL54fH6WQRy4SzNtaUlVDmaS5JkguNpVIZLwlgmmYlS0FpSLmsuGbAsahKLnGZUJrntJQqpZKM0dW279rZj075tljVvp9AGGU7X5DQiWHOMAn08h9d2s6F1XrFMsYgYzyoi53qypWqirWrV8Jtit8bBXC9BdJZ753Se4Kh6AMoZtnTy08As4DPt9h5uXd_AZFvhMmAhQ
Cites_doi 10.1039/D2CS00038E
10.1021/acssuschemeng.2c00087
10.1016/j.cej.2021.131253
10.1021/acs.energyfuels.1c01205
10.1002/advs.202309440
10.1039/D4QM00086B
10.1002/aenm.202401227
10.1021/acsami.8b00514
10.1002/aenm.202002926
10.1016/j.rser.2023.113842
10.1021/acsami.2c09999
10.1039/D4YA00238E
10.1021/acs.inorgchem.2c02579
10.1016/j.rser.2021.110771
10.1021/acscatal.8b02217
10.1002/smsc.202300109
10.1016/j.ijhydene.2024.08.157
10.1002/aenm.202401956
10.1016/j.ijhydene.2024.11.143
10.1039/D1EE02112E
10.1016/j.ijhydene.2019.10.160
10.1039/D3QM00010A
10.1016/j.ijhydene.2023.03.299
10.1002/cctc.202400369
10.1039/D3EE01768K
10.1002/smll.202304650
10.1016/j.ijhydene.2021.03.100
10.1016/j.coelec.2024.101595
10.1039/D2CS00681B
10.1007/s10311-022-01454-5
10.1002/smll.201802755
10.1016/j.pecs.2019.05.002
10.1016/j.corsci.2022.110686
10.1021/acssuschemeng.3c05256
10.1016/j.corsci.2024.112044
10.1016/j.ijhydene.2022.05.078
10.1016/j.memsci.2023.122150
10.1039/D3EE03363E
10.1021/acs.chemrev.6b00159
10.1016/j.memsci.2021.119496
10.1039/C7TA02876H
10.1002/advs.202200307
10.1016/j.jcis.2022.12.135
10.1016/j.jpowsour.2021.230797
10.1021/acsami.0c20690
10.1002/smll.202201896
10.1016/j.ijhydene.2024.05.420
10.1016/j.jpowsour.2015.12.071
10.1002/adfm.202002138
10.1016/j.progpolymsci.2020.101345
10.1126/sciadv.aao0476
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d5nr00137d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 83
ExternalDocumentID 40052715
10_1039_D5NR00137D
d5nr00137d
Genre Journal Article
Review
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c298t-f78b0b646c326af1cee59b301745b840ef049cd9f8091adb9c1b277667bce47c3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 01:49:56 EDT 2025
Mon Jun 30 11:52:06 EDT 2025
Fri Apr 04 01:34:10 EDT 2025
Sun Jul 06 05:05:05 EDT 2025
Tue May 27 12:12:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-f78b0b646c326af1cee59b301745b840ef049cd9f8091adb9c1b277667bce47c3
Notes Jiaxin Zhou is currently pursuing a Master's degree at Xiamen University. Her main research interest focuses on the development of anti-corrosion coatings for water electrolysis application.
Dr Hanfeng Liang is currently an Associate Professor at Xiamen University and affiliated with the State Key Laboratory of Physical Chemistry of Solid Surfaces. His research interests include electrosynthesis, batterolyzers, aqueous batteries, and functional coatings. He has published over 100 papers with more than 16 000 citations and an H-index of 55. Dr Liang is a Clarivate Highly Cited Researcher (Cross-Field) and has been included in the Stanford/Elsevier World's Top 2% Scientists: Career-long Impact List for two consecutive years. Currently he serves as a Subject Editor for the International Journal of Hydrogen Energy.
Dr Fangwang Ming received his Ph.D. in Materials Science and Engineering from King Abdullah University of Science and Technology (KAUST) in 2022. Following his doctoral studies, he worked as a Senior Engineer at Amperex Technology Limited (ATL) from 2022 to 2024, focusing on the R&D of next-generation lithium-ion battery technologies. Currently, Dr Ming is a Postdoctoral Research Fellow at KAUST, where he conducts both fundamental and applied research in rechargeable battery systems. His expertise lies in the interfacial and interphasial chemistries within electrochemical energy storage devices.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1778-3975
PMID 40052715
PQID 3185880589
PQPubID 2047485
PageCount 12
ParticipantIDs proquest_miscellaneous_3174819813
pubmed_primary_40052715
rsc_primary_d5nr00137d
proquest_journals_3185880589
crossref_primary_10_1039_D5NR00137D
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lee (D5NR00137D/cit51/1) 2023; 688
Liu (D5NR00137D/cit9/1) 2023; 52
Liu (D5NR00137D/cit45/1) 2021; 11
Yin (D5NR00137D/cit20/1) 2017; 5
Liu (D5NR00137D/cit32/1) 2018; 14
Gou (D5NR00137D/cit40/1) 2022; 520
Wang (D5NR00137D/cit19/1) 2024; 3
Hyun (D5NR00137D/cit12/1) 2023; 16
Zhu (D5NR00137D/cit31/1) 2022; 20
Liu (D5NR00137D/cit50/1) 2021; 35
Wu (D5NR00137D/cit22/1) 2023; 7
Yang (D5NR00137D/cit13/1) 2022; 51
Ma (D5NR00137D/cit34/1) 2024; 73
Rojas (D5NR00137D/cit26/1) 2021; 46
Shaik (D5NR00137D/cit8/1) 2024; 14
Zhao (D5NR00137D/cit49/1) 2022; 10
Liu (D5NR00137D/cit29/1) 2021; 426
Gago (D5NR00137D/cit37/1) 2016; 307
Zhang (D5NR00137D/cit17/1) 2024; 11
Deng (D5NR00137D/cit47/1) 2023; 11
Guo (D5NR00137D/cit33/1) 2022; 18
Liu (D5NR00137D/cit38/1) 2022; 47
Yang (D5NR00137D/cit1/1) 2023; 188
Liu (D5NR00137D/cit36/1) 2022; 9
Ta (D5NR00137D/cit28/1) 2024; 20
Liu (D5NR00137D/cit46/1) 2021; 13
Thao (D5NR00137D/cit18/1) 2024; 4
Sun (D5NR00137D/cit4/1) 2020; 30
Feng (D5NR00137D/cit7/1) 2023; 48
Chen (D5NR00137D/cit11/1) 2021; 113
Miyake (D5NR00137D/cit23/1) 2017; 3
Dash (D5NR00137D/cit2/1) 2024; 83
Wen (D5NR00137D/cit21/1) 2023; 635
Kusoglu (D5NR00137D/cit24/1) 2017; 117
Hou (D5NR00137D/cit48/1) 2020; 45
Li (D5NR00137D/cit5/1) 2024; 8
Zou (D5NR00137D/cit25/1) 2021; 635
Zheng (D5NR00137D/cit10/1) 2024; 14
Cui (D5NR00137D/cit43/1) 2022; 14
Wang (D5NR00137D/cit35/1) 2024; 16
Kim (D5NR00137D/cit52/1) 2022; 12
Mulk (D5NR00137D/cit6/1) 2024; 94
Wang (D5NR00137D/cit42/1) 2024; 232
Ozden (D5NR00137D/cit27/1) 2019; 74
Yi (D5NR00137D/cit44/1) 2018; 10
Wang (D5NR00137D/cit30/1) 2022; 61
Pan (D5NR00137D/cit16/1) 2021; 141
Yu (D5NR00137D/cit14/1) 2024; 48
Huang (D5NR00137D/cit3/1) 2024; 17
Stiber (D5NR00137D/cit39/1) 2022; 15
Wang (D5NR00137D/cit41/1) 2022; 208
Li (D5NR00137D/cit15/1) 2018; 8
References_xml – volume: 51
  start-page: 9620
  year: 2022
  ident: D5NR00137D/cit13/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00038E
– volume: 12
  start-page: 11
  year: 2022
  ident: D5NR00137D/cit52/1
  publication-title: Membranes
– volume: 10
  start-page: 4269
  year: 2022
  ident: D5NR00137D/cit49/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c00087
– volume: 426
  start-page: 131253
  year: 2021
  ident: D5NR00137D/cit29/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131253
– volume: 35
  start-page: 12482
  year: 2021
  ident: D5NR00137D/cit50/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01205
– volume: 11
  start-page: 2309440
  year: 2024
  ident: D5NR00137D/cit17/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202309440
– volume: 8
  start-page: 2493
  year: 2024
  ident: D5NR00137D/cit5/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D4QM00086B
– volume: 14
  start-page: 2401227
  year: 2024
  ident: D5NR00137D/cit10/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202401227
– volume: 10
  start-page: 19087
  year: 2018
  ident: D5NR00137D/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00514
– volume: 11
  start-page: 2002926
  year: 2021
  ident: D5NR00137D/cit45/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002926
– volume: 188
  start-page: 113842
  year: 2023
  ident: D5NR00137D/cit1/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2023.113842
– volume: 14
  start-page: 37059
  year: 2022
  ident: D5NR00137D/cit43/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c09999
– volume: 3
  start-page: 2002
  year: 2024
  ident: D5NR00137D/cit19/1
  publication-title: Energy Adv.
  doi: 10.1039/D4YA00238E
– volume: 61
  start-page: 15256
  year: 2022
  ident: D5NR00137D/cit30/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02579
– volume: 141
  start-page: 110771
  year: 2021
  ident: D5NR00137D/cit16/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.110771
– volume: 8
  start-page: 11688
  year: 2018
  ident: D5NR00137D/cit15/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02217
– volume: 4
  start-page: 2300109
  year: 2024
  ident: D5NR00137D/cit18/1
  publication-title: Small Sci.
  doi: 10.1002/smsc.202300109
– volume: 83
  start-page: 614
  year: 2024
  ident: D5NR00137D/cit2/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.08.157
– volume: 14
  start-page: 2401956
  year: 2024
  ident: D5NR00137D/cit8/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202401956
– volume: 94
  start-page: 1174
  year: 2024
  ident: D5NR00137D/cit6/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.11.143
– volume: 15
  start-page: 109
  year: 2022
  ident: D5NR00137D/cit39/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02112E
– volume: 45
  start-page: 937
  year: 2020
  ident: D5NR00137D/cit48/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.160
– volume: 7
  start-page: 1025
  year: 2023
  ident: D5NR00137D/cit22/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00010A
– volume: 48
  start-page: 25830
  year: 2023
  ident: D5NR00137D/cit7/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.03.299
– volume: 16
  start-page: e202400369
  year: 2024
  ident: D5NR00137D/cit35/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202400369
– volume: 16
  start-page: 5633
  year: 2023
  ident: D5NR00137D/cit12/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01768K
– volume: 20
  start-page: 2304650
  year: 2024
  ident: D5NR00137D/cit28/1
  publication-title: Small
  doi: 10.1002/smll.202304650
– volume: 46
  start-page: 25929
  year: 2021
  ident: D5NR00137D/cit26/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.100
– volume: 48
  start-page: 101595
  year: 2024
  ident: D5NR00137D/cit14/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2024.101595
– volume: 52
  start-page: 5652
  year: 2023
  ident: D5NR00137D/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00681B
– volume: 20
  start-page: 3429
  year: 2022
  ident: D5NR00137D/cit31/1
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-022-01454-5
– volume: 14
  start-page: 1802755
  year: 2018
  ident: D5NR00137D/cit32/1
  publication-title: Small
  doi: 10.1002/smll.201802755
– volume: 74
  start-page: 50
  year: 2019
  ident: D5NR00137D/cit27/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.05.002
– volume: 208
  start-page: 110686
  year: 2022
  ident: D5NR00137D/cit41/1
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110686
– volume: 11
  start-page: 17075
  year: 2023
  ident: D5NR00137D/cit47/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.3c05256
– volume: 232
  start-page: 112044
  year: 2024
  ident: D5NR00137D/cit42/1
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2024.112044
– volume: 47
  start-page: 22915
  year: 2022
  ident: D5NR00137D/cit38/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.05.078
– volume: 688
  start-page: 122150
  year: 2023
  ident: D5NR00137D/cit51/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.122150
– volume: 17
  start-page: 1007
  year: 2024
  ident: D5NR00137D/cit3/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03363E
– volume: 117
  start-page: 987
  year: 2017
  ident: D5NR00137D/cit24/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00159
– volume: 635
  start-page: 119496
  year: 2021
  ident: D5NR00137D/cit25/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119496
– volume: 5
  start-page: 13648
  year: 2017
  ident: D5NR00137D/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02876H
– volume: 9
  start-page: 2200307
  year: 2022
  ident: D5NR00137D/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200307
– volume: 635
  start-page: 494
  year: 2023
  ident: D5NR00137D/cit21/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.12.135
– volume: 520
  start-page: 230797
  year: 2022
  ident: D5NR00137D/cit40/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230797
– volume: 13
  start-page: 16182
  year: 2021
  ident: D5NR00137D/cit46/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20690
– volume: 18
  start-page: 2201896
  year: 2022
  ident: D5NR00137D/cit33/1
  publication-title: Small
  doi: 10.1002/smll.202201896
– volume: 73
  start-page: 174
  year: 2024
  ident: D5NR00137D/cit34/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.05.420
– volume: 307
  start-page: 815
  year: 2016
  ident: D5NR00137D/cit37/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.071
– volume: 30
  start-page: 2002138
  year: 2020
  ident: D5NR00137D/cit4/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002138
– volume: 113
  start-page: 101345
  year: 2021
  ident: D5NR00137D/cit11/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2020.101345
– volume: 3
  start-page: eaao0476
  year: 2017
  ident: D5NR00137D/cit23/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao0476
SSID ssj0069363
Score 2.4713333
SecondaryResourceType review_article
Snippet Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 8289
SubjectTerms Coatings
Critical components
Diffusion layers
Electrocatalysts
Electrolytic cells
Fuel cells
Gaseous diffusion
Hydrogen production
Industrial applications
Renewable energy
Title Application of functional coatings in water electrolyzers and fuel cells
URI https://www.ncbi.nlm.nih.gov/pubmed/40052715
https://www.proquest.com/docview/3185880589
https://www.proquest.com/docview/3174819813
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4EHtAFj3QcygjeUkcSJEz8WtlLBViTUioqXyHZsiFQlqE21sb-es-t8TPRh8BJV18hp7-fc_c723SH0JgUaSgjVXsB97kXCvFI-Tz1CaRjkwPADW3j-akLHs-jTPJ53_fJsdkktzuTt1ryS_0EVZICryZL9B2TbQUEAnwFfuALCcL0XxsNu99mQPuOj3NKerHhtG3IW5dtrbgohun43i9-3JmXXLJfrtYIb1WKx6jNUMLfVCoBrAf_-s1pbrAt-U7RT6cr1Qhnx8sc1d-7PHOwp3AL0mJdaOblbVQhjexiFdMYnNCcNCdm01TlTW2SN9Uz6syTq2UITy2010j4xNU7zuFzaqqZ554qa7ffJl2w0u7zMphfz6UO0G0IIADZsd_j5_cdvjZ-ljNg-ee2vaorPEvauG_su3fgrhgBGsWw6vVhGMd1DT1wogIcbXPfRA1U-RY97BSKfoXEPYVxp3CGMG4RxUWKLML6DMAaEsUEYW4Sfo9noYvph7LneF54MWVp7OkmFL2hEJfBrrgPgMjETYI2TKBYQlCsNoZ3MmU6B8PFcMBkIUBOliZAqSiQ5QDtlVapDhIFkBgJGAG6mIskky8HwCmIKs1GpfTJArxsVZb82JU4yezSBsOw8nny1ijwfoJNGe5l7BVaZSb0HBxCnbIBetV-DgTJ_jZeqWpt7kghoZxrAg15stN4-JjK7EkkQD9ABwNCKO_iO7jHsMXrUzeATtFMv1-oUmGItXrop8wcrz2ia
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+functional+coatings+in+water+electrolyzers+and+fuel+cells&rft.jtitle=Nanoscale&rft.au=Zhou%2C+Jiaxin&rft.au=Ming%2C+Fangwang&rft.au=Liang%2C+Hanfeng&rft.date=2025-04-03&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=17&rft.issue=14&rft.spage=8289&rft_id=info:doi/10.1039%2Fd5nr00137d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon