Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China

In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite image...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 12; no. 12; p. 1954
Main Authors Wang, Zitao, Liu, Qimeng, Liu, Yu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym12121954

Cover

Abstract In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite images and various topographic and geological maps, 16 landslide susceptibility factor maps of Shexian County were initially constructed. In total, 502 landslide and random safety points were then using the “Extract Multivalues To Points” tool in ArcGIS, parameters for the 16 factors were extracted and imported into models for the five algorithms, of which 70% of samples were used for training and 30% of samples were used for verification, which makes sense for date symmetry. The Shexian grid was converted into 260130 vector points and imported into the five models, and the natural breakpoint method was used to divide the grid into four levels: low, moderate, high, and very high. Finally, by using column results gained using Area Under Curve (AUC) analysis and a grid chart, susceptibility results for mapping landslide prediction in Shexian County was compared using the five methods. Results indicate that the ratio of landslide points of high or very high levels from LR, SVM, RF, GBM, and MLP was 1.52, 1.77, 1.95, 1.83, and 1.64, and the ratio of very high landslide points to grade area was 1.92, 2.20, 2.98, 2.62, and 2.14, respectively. The success rate of training samples for the five methods was 0.781, 0.824, 0.853, 0.828, and 0.811, and prediction accuracy was 0.772, 0.803, 0.821, 0.815, and 0.803, respectively; the order of accuracy of the five algorithms was RF > SVM > MLP > GBM > LR. Our results indicate that the five machine learning algorithms have good effect on landslide susceptibility evaluation in Shexian area, with Random Forest having the best effect.
AbstractList In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite images and various topographic and geological maps, 16 landslide susceptibility factor maps of Shexian County were initially constructed. In total, 502 landslide and random safety points were then using the “Extract Multivalues To Points” tool in ArcGIS, parameters for the 16 factors were extracted and imported into models for the five algorithms, of which 70% of samples were used for training and 30% of samples were used for verification, which makes sense for date symmetry. The Shexian grid was converted into 260130 vector points and imported into the five models, and the natural breakpoint method was used to divide the grid into four levels: low, moderate, high, and very high. Finally, by using column results gained using Area Under Curve (AUC) analysis and a grid chart, susceptibility results for mapping landslide prediction in Shexian County was compared using the five methods. Results indicate that the ratio of landslide points of high or very high levels from LR, SVM, RF, GBM, and MLP was 1.52, 1.77, 1.95, 1.83, and 1.64, and the ratio of very high landslide points to grade area was 1.92, 2.20, 2.98, 2.62, and 2.14, respectively. The success rate of training samples for the five methods was 0.781, 0.824, 0.853, 0.828, and 0.811, and prediction accuracy was 0.772, 0.803, 0.821, 0.815, and 0.803, respectively; the order of accuracy of the five algorithms was RF > SVM > MLP > GBM > LR. Our results indicate that the five machine learning algorithms have good effect on landslide susceptibility evaluation in Shexian area, with Random Forest having the best effect.
Author Wang, Zitao
Liu, Qimeng
Liu, Yu
Author_xml – sequence: 1
  givenname: Zitao
  orcidid: 0000-0002-7776-4282
  surname: Wang
  fullname: Wang, Zitao
– sequence: 2
  givenname: Qimeng
  surname: Liu
  fullname: Liu, Qimeng
– sequence: 3
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
BookMark eNptUMFKAzEQDaJgrT35AwGPtppssu3GW1m0FloUas9LNkm7KdtkTbLiHv1zU-qhiDMwM8y89wbeFTg31igAbjC6J4ShB9_tcRKTpfQM9BI0IaOMMXp-Ml-Cgfc7FCNFKR2jHvhe8qbRZgsX3Ehfa6ngqvVCNUGXutahg2t_OC-5qLRRcKG4M4fFtN5ap0O19zAy4Wy-eoRTmHMfBUIrO6gNXFXqS3MDc9ua0A3h1FSthm_Ofmoj1BDmUZJfg4sNr70a_PY-WD8_vecvo8XrbJ5PFyORsCyMFJVKUpKWXCaYliWlKilpiieSUIkYUxtBkizWMYnAEqeCIaxKxDOBJUkp6YPbo27j7EerfCh2tnUmviwSOk7HE4Qxiyh8RAlnvXdqUwgdeNDWBMd1XWBUHMwuTsyOnLs_nMbpPXfdv-gfqqOC6Q
CitedBy_id crossref_primary_10_1016_j_jrmge_2024_09_044
crossref_primary_10_1515_arh_2022_0122
crossref_primary_10_3389_feart_2021_712240
crossref_primary_10_1007_s12665_022_10225_y
crossref_primary_10_17714_gumusfenbil_1363531
crossref_primary_10_3390_app142210654
crossref_primary_10_1007_s11069_024_06609_x
crossref_primary_10_1080_10106049_2022_2066202
crossref_primary_10_1007_s12145_024_01480_7
crossref_primary_10_1007_s10064_023_03498_5
crossref_primary_10_2139_ssrn_4746636
crossref_primary_10_1007_s11356_023_26961_y
crossref_primary_10_1016_j_jafrearsci_2022_104535
crossref_primary_10_3390_sym13010071
crossref_primary_10_1080_19475705_2024_2314565
crossref_primary_10_1016_j_ecolind_2022_109256
crossref_primary_10_1007_s40098_024_00957_y
crossref_primary_10_3390_app12052280
crossref_primary_10_1016_j_scitotenv_2022_155583
crossref_primary_10_3390_earth4030037
crossref_primary_10_1038_s41598_021_86137_x
crossref_primary_10_1007_s12145_023_00953_5
crossref_primary_10_1007_s10661_023_11388_2
crossref_primary_10_3390_w15142661
crossref_primary_10_1061_JWRMD5_WRENG_5858
crossref_primary_10_1007_s12665_024_11578_2
crossref_primary_10_1016_j_foreco_2023_121288
crossref_primary_10_1007_s12665_022_10603_6
crossref_primary_10_1007_s12517_022_09488_3
crossref_primary_10_1007_s10706_022_02333_0
crossref_primary_10_1016_j_asoc_2024_111991
crossref_primary_10_1016_j_asr_2024_04_018
crossref_primary_10_1016_j_cageo_2021_104899
crossref_primary_10_1007_s12665_022_10193_3
crossref_primary_10_1038_s41598_023_30009_z
crossref_primary_10_1016_j_soildyn_2024_108491
crossref_primary_10_1016_j_asr_2024_12_020
crossref_primary_10_1007_s12517_021_06995_7
crossref_primary_10_1155_2021_2677453
crossref_primary_10_1007_s11069_024_06563_8
crossref_primary_10_1007_s43538_024_00305_x
crossref_primary_10_3390_ijgi10100639
crossref_primary_10_1155_2022_2058442
crossref_primary_10_1080_10106049_2022_2106315
crossref_primary_10_3390_su151813563
crossref_primary_10_1016_j_jrmge_2023_03_001
crossref_primary_10_1002_gj_5175
crossref_primary_10_1016_j_asr_2021_10_021
crossref_primary_10_3390_ijgi10020093
crossref_primary_10_1007_s13753_023_00477_y
crossref_primary_10_3390_app14219639
Cites_doi 10.1002/hyp.3360050103
10.1016/j.earscirev.2018.03.001
10.1016/j.patrec.2005.10.010
10.3390/ijgi8060266
10.1007/s12517-020-05764-2
10.5194/nhess-18-2161-2018
10.1007/s42452-020-3060-1
10.1007/s12517-019-4892-0
10.1007/s12040-019-1159-9
10.5194/isprsarchives-XL-4-W3-47-2013
10.1109/GEOINFORMATICS.2010.5567734
10.3390/app10113710
10.1007/s12040-013-0282-2
10.1016/j.gr.2020.08.007
10.1016/j.culher.2017.06.002
10.1016/j.enggeo.2015.09.007
10.1007/s12517-020-05689-w
10.1007/s10064-009-0188-z
10.1007/s12665-018-7778-7
10.3390/rs12091483
10.1007/s10346-016-0708-4
10.1007/s12665-012-1842-5
10.1016/j.catena.2007.01.003
10.1080/10106049.2019.1581272
10.1007/s10346-017-0872-1
10.3390/app10072466
10.3126/jngs.v58i0.24601
10.3390/ijerph17124206
10.1016/j.enggeo.2007.01.005
10.1023/A:1010933404324
10.1148/radiology.143.1.7063747
10.1016/j.catena.2019.104249
10.1016/j.catena.2020.104833
10.1080/10106049.2018.1510038
10.1016/0893-6080(89)90020-8
10.1080/24749508.2019.1619222
10.1007/978-3-642-25495-6_7
10.1186/s40677-019-0119-7
10.1016/j.catena.2019.104225
10.3390/geosciences10040131
10.1016/j.earscirev.2020.103225
10.1016/j.geomorph.2005.12.003
10.1007/s10346-020-01414-6
10.1016/j.geomorph.2009.04.004
10.1007/s12517-012-0610-x
10.1007/s10346-012-0380-2
10.1007/s13762-013-0464-0
10.1007/s12665-016-5580-y
10.1007/s42452-019-1499-8
10.1007/s11069-018-3356-2
10.3390/app10010029
10.1007/s12665-016-5919-4
10.1002/0471722146
10.1007/s12517-018-3488-4
10.1007/s12518-018-0248-9
10.1007/s12517-017-2918-z
10.1109/34.709601
10.1007/s12040-016-0686-x
10.1016/j.catena.2019.104396
10.3390/sym11060762
10.1007/s12040-015-0624-3
10.1007/s10064-018-1415-2
10.3390/ijerph13050487
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym12121954
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geology
EISSN 2073-8994
ExternalDocumentID 10_3390_sym12121954
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-e4ded435bad214bb44e2b4517d34d099efc328efc63dedb15c901eb0a8c1d3543
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Fri Jul 25 10:28:02 EDT 2025
Tue Jul 01 03:25:30 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-e4ded435bad214bb44e2b4517d34d099efc328efc63dedb15c901eb0a8c1d3543
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-7776-4282
OpenAccessLink https://www.proquest.com/docview/2465670119?pq-origsite=%requestingapplication%&accountid=15518
PQID 2465670119
PQPubID 2032326
ParticipantIDs proquest_journals_2465670119
crossref_citationtrail_10_3390_sym12121954
crossref_primary_10_3390_sym12121954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Dong (ref_52) 2009; 110
ref_58
ref_13
Jaafari (ref_29) 2014; 11
ref_56
Breiman (ref_64) 2001; 45
Gadtaula (ref_14) 2019; 58
ref_55
ref_10
Feizizadeh (ref_36) 2017; 10
Park (ref_45) 2012; 68
Das (ref_59) 2019; 1
Wang (ref_31) 2015; 124
Lee (ref_62) 2018; 77
Li (ref_49) 2019; 22
ref_16
Ho (ref_65) 1998; 20
Mondal (ref_11) 2019; 11
Dai (ref_44) 2001; 40
ref_61
ref_60
Shirani (ref_12) 2018; 93
Ohlmacher (ref_38) 2007; 91
Chen (ref_70) 2013; 3
Cristinicu (ref_41) 2017; 28
Fawcett (ref_72) 2005; 27
Barakat (ref_7) 2019; 6
Sahin (ref_66) 2020; 2
Pham (ref_67) 2015; 122
ref_63
Bui (ref_35) 2016; 75
Shahri (ref_25) 2019; 183
ref_28
Regmi (ref_19) 2014; 11
Chen (ref_42) 2017; 14
Gariano (ref_53) 2019; 78
Pandey (ref_21) 2020; 35
Harmouzi (ref_23) 2019; 12
Merghadi (ref_33) 2020; 207
Hanley (ref_71) 1982; 143
Wu (ref_27) 2020; 187
ref_34
ref_32
Vanwalleghem (ref_37) 2006; 76
Gayen (ref_47) 2020; 35
ref_30
Banerjee (ref_6) 2018; 11
Sameen (ref_24) 2020; 186
ref_39
Erener (ref_43) 2016; 203
Hornik (ref_69) 1989; 2
Wang (ref_2) 2016; 125
Yalcin (ref_46) 2008; 72
Reichenbach (ref_18) 2018; 180
Zhang (ref_40) 2016; 35
Hepdeniz (ref_8) 2020; 13
Pourghasemi (ref_22) 2013; 122
Liu (ref_9) 2020; 13
Froude (ref_54) 2018; 18
Niu (ref_26) 2019; 5
ref_1
Chen (ref_17) 2021; 196
ref_3
Zare (ref_68) 2013; 6
Moore (ref_48) 1991; 5
Kumar (ref_15) 2019; 128
Yilmaz (ref_51) 2009; 68
ref_5
Shan (ref_20) 2020; 17
Bui (ref_57) 2017; 14
ref_4
References_xml – volume: 5
  start-page: 3
  year: 1991
  ident: ref_48
  article-title: Digital terrain modelling: A review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– ident: ref_5
– volume: 180
  start-page: 60
  year: 2018
  ident: ref_18
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 5
  start-page: 42
  year: 2019
  ident: ref_26
  article-title: Forecasting of Landslide Stability Based on Gradient Boosting Decision Tree Model
  publication-title: Int. Core J. Eng.
– volume: 27
  start-page: 861
  year: 2005
  ident: ref_72
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_3
  doi: 10.3390/ijgi8060266
– volume: 35
  start-page: 284
  year: 2016
  ident: ref_40
  article-title: Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_8
  article-title: Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-05764-2
– volume: 18
  start-page: 2161
  year: 2018
  ident: ref_54
  article-title: Global fatal landslide occurrence from 2004 to 2016
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-2161-2018
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_66
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3060-1
– volume: 12
  start-page: 696
  year: 2019
  ident: ref_23
  article-title: Landslide susceptibility mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial neural networks (ANN)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4892-0
– ident: ref_61
– volume: 128
  start-page: 153
  year: 2019
  ident: ref_15
  article-title: Landslide susceptibility mapping of the Tehri reservoir rim area using the weights of evidence method
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-019-1159-9
– volume: 3
  start-page: 47
  year: 2013
  ident: ref_70
  article-title: Research on geographical environment unit division based on the method of natural breaks (Jenks)
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XL-4-W3-47-2013
– ident: ref_39
  doi: 10.1109/GEOINFORMATICS.2010.5567734
– ident: ref_50
  doi: 10.3390/app10113710
– volume: 122
  start-page: 349
  year: 2013
  ident: ref_22
  article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-013-0282-2
– ident: ref_32
  doi: 10.1016/j.gr.2020.08.007
– volume: 28
  start-page: 172
  year: 2017
  ident: ref_41
  article-title: Frequency ratio and GIS-based evaluation of landslide susceptibility applied to cultural heritage assessment
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2017.06.002
– volume: 203
  start-page: 45
  year: 2016
  ident: ref_43
  article-title: A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.09.007
– ident: ref_4
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Susceptibility mapping of damming landslide based on slope unit using frequency ratio model
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-05689-w
– volume: 68
  start-page: 459
  year: 2009
  ident: ref_51
  article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-009-0188-z
– volume: 77
  start-page: 656
  year: 2018
  ident: ref_62
  article-title: Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7778-7
– ident: ref_10
  doi: 10.3390/rs12091483
– volume: 14
  start-page: 1
  year: 2017
  ident: ref_57
  article-title: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS
  publication-title: Landslides
  doi: 10.1007/s10346-016-0708-4
– volume: 68
  start-page: 1443
  year: 2012
  ident: ref_45
  article-title: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-1842-5
– volume: 72
  start-page: 1
  year: 2008
  ident: ref_46
  article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations
  publication-title: Catena
  doi: 10.1016/j.catena.2007.01.003
– volume: 35
  start-page: 1750
  year: 2020
  ident: ref_47
  article-title: Soil erosion assessment using RUSLE model and its validation by FR probability model
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1581272
– volume: 14
  start-page: 1793
  year: 2017
  ident: ref_42
  article-title: Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: A case study of the 2016 Kumamoto earthquake
  publication-title: Landslides
  doi: 10.1007/s10346-017-0872-1
– ident: ref_55
  doi: 10.3390/app10072466
– volume: 58
  start-page: 163
  year: 2019
  ident: ref_14
  article-title: Landslide susceptibility mapping using Weight of Evidence Method in Haku, Rasuwa District, Nepal
  publication-title: J. Nepal Geol. Soc.
  doi: 10.3126/jngs.v58i0.24601
– ident: ref_63
  doi: 10.3390/ijerph17124206
– volume: 122
  start-page: 1
  year: 2015
  ident: ref_67
  article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of nave bayes, multilayer perceptron neural networks, and functional trees methods
  publication-title: Theor. Appl. Climatol.
– volume: 91
  start-page: 117
  year: 2007
  ident: ref_38
  article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.01.005
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_64
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 143
  start-page: 29
  year: 1982
  ident: ref_71
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 186
  start-page: 104249
  year: 2020
  ident: ref_24
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– volume: 196
  start-page: 104833
  year: 2021
  ident: ref_17
  article-title: GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104833
– volume: 35
  start-page: 168
  year: 2020
  ident: ref_21
  article-title: Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1510038
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_69
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref_16
  doi: 10.1080/24749508.2019.1619222
– ident: ref_34
– ident: ref_1
  doi: 10.1007/978-3-642-25495-6_7
– volume: 6
  start-page: 3
  year: 2019
  ident: ref_7
  article-title: GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco)
  publication-title: Geoenviron. Disasters
  doi: 10.1186/s40677-019-0119-7
– volume: 183
  start-page: 104225
  year: 2019
  ident: ref_25
  article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104225
– ident: ref_56
  doi: 10.3390/geosciences10040131
– volume: 207
  start-page: 103225
  year: 2020
  ident: ref_33
  article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 76
  start-page: 392
  year: 2006
  ident: ref_37
  article-title: Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2005.12.003
– volume: 17
  start-page: 2931
  year: 2020
  ident: ref_20
  article-title: Rapid prediction of landslide dam stability using the logistic regression method
  publication-title: Landslides
  doi: 10.1007/s10346-020-01414-6
– volume: 110
  start-page: 162
  year: 2009
  ident: ref_52
  article-title: Discriminant analysis of the geomorphic characteristics and stability of landslide dams
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.04.004
– volume: 6
  start-page: 2873
  year: 2013
  ident: ref_68
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0610-x
– volume: 11
  start-page: 247
  year: 2014
  ident: ref_19
  article-title: A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA
  publication-title: Landslides
  doi: 10.1007/s10346-012-0380-2
– volume: 11
  start-page: 909
  year: 2014
  ident: ref_29
  article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0464-0
– ident: ref_13
  doi: 10.1007/s12665-016-5580-y
– volume: 1
  start-page: 1453
  year: 2019
  ident: ref_59
  article-title: Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1499-8
– volume: 93
  start-page: 1379
  year: 2018
  ident: ref_12
  article-title: Landslide susceptibility assessment by dempster–shafer and index of entropy models, Sarkhoun basin, southwestern Iran
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3356-2
– ident: ref_28
  doi: 10.3390/app10010029
– volume: 22
  start-page: 7985
  year: 2019
  ident: ref_49
  article-title: Landslide susceptibility and influencing factors analysis in Rwanda
  publication-title: Environ. Dev. Sustain.
– volume: 75
  start-page: 1101
  year: 2016
  ident: ref_35
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5919-4
– ident: ref_60
  doi: 10.1002/0471722146
– volume: 11
  start-page: 139
  year: 2018
  ident: ref_6
  article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-3488-4
– volume: 11
  start-page: 129
  year: 2019
  ident: ref_11
  article-title: Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-018-0248-9
– volume: 10
  start-page: 1
  year: 2017
  ident: ref_36
  article-title: Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-017-2918-z
– volume: 20
  start-page: 832
  year: 1998
  ident: ref_65
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 125
  start-page: 645
  year: 2016
  ident: ref_2
  article-title: A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-016-0686-x
– volume: 187
  start-page: 104396
  year: 2020
  ident: ref_27
  article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104396
– ident: ref_30
  doi: 10.3390/sym11060762
– volume: 124
  start-page: 1399
  year: 2015
  ident: ref_31
  article-title: GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China
  publication-title: J. Earth Syst. Sci.
  doi: 10.1007/s12040-015-0624-3
– volume: 40
  start-page: 381
  year: 2001
  ident: ref_44
  article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong
  publication-title: Environ. Earth Sci.
– volume: 78
  start-page: 4325
  year: 2019
  ident: ref_53
  article-title: Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1415-2
– ident: ref_58
  doi: 10.3390/ijerph13050487
SSID ssj0000505460
Score 2.4351802
Snippet In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1954
SubjectTerms Algorithms
Case studies
Fault lines
Geological mapping
Geology
Hydrology
Landslides
Landslides & mudslides
Logistics
Machine learning
Multilayer perceptrons
Precipitation
Regression analysis
River networks
Satellite imagery
Shear strength
Support vector machines
Topography
Training
Title Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China
URI https://www.proquest.com/docview/2465670119
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7yoNBLyKvUaRLmkEMTImJpV44cKMUNsdMQm1A34JvQvmyDo6SRDNGx_zyz61UeUHoRCI0O0szOzu5-830AB0k7lrHMZBCHLRNwrmUgMp4FTCammYlmxh2Rdn_QurzlV6N4tASDuhfGwirrnOgStbqXdo_8JLLEXqeWoez7w5_AqkbZ09VaQiPz0grqm6MYW4ZVSskJxf3qj4vBza-XXRer28ZbzUWjHqP1_klR3YVka4nP3k9N7zOzm26667Dm60TsLBy7AUs634QPPafDW23Chh-TBX71xNGHW_C3n1m2hTFe2_7d2VRpHM4Lh1txENgKHUAA-w5AqdFzq46xMxvTp5aTuwLpTez9HJ5hB89pgkOLM6xwmuNwop8olNA2sZfVMXbyyXyKN25HQupjdELc23Dbvfh9fhl4iYVARu2kDDRXWlHFJDIVhVwIclYkeByeKsYVFY_aSBYldG0xMhRhLKl-0OTCRIaKxZx9gpX8PtefAXmbG2PPBXWTcWZMwgT9bBFLIyLdNqwBR_XfTaXnH7cyGLOU1iHWFekbVzTg4MX4YUG78W-z3dpNqR97RfoaKTv_f_wFPkZ29ezAKbuwUj7O9R6VGKXYh-Wk29v30UN3vVH4DKsW1Lc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ7gEaMvRFAjijoPmKihod3dHq0JMScCd3J3IR4kvJXur7tLjgK2F-2j_5h_m7t7W5TE-MZLX7pt2pnpzuz2m-8D2EzSWMQiF0EctXXAmBIBz1keUJHoMOdhzhyR9mDY7p6yL2fx2RL8anphLKyymRPdRC0vhd0j3yaW2GvHMpR9vLoOrGqU_bvaSGjkXlpB7jqKMd_YcaTq72YJV-72Pht_vyHkYP9krxt4lYFAkDSpAsWkkqZo4LkkEePcPC_hLI52JGXS1E9KC0oSc2xTM5BHsTApVJm3SEQkacyoue89WGa2w7UFy5_2h8dfb3Z5rE4ca4eLxkBK03C7rC8iky4s0drtVHg7E7j0dvAIVnxdip1FIK3CkirW4P6h0_2t12DVzwElvvVE1e8ew89Bbtkdxti3_cKzqVQ4mpcOJ-MgtzU6QAIOHGBToedyHWNnNjamrSYXJZor8bA3-oAd3DMJFS2uscZpgaOJ-mFCF23TfFVvYaeYzKd47HZAhNpCJ_z9BE7vxNhPoVVcFuoZIEuZ1vY_pAopo1onlBtj81hoTlSq6Tq8b6ybCc93bmU3ZplZ91hXZH-5Yh02bwZfLWg-_j1so3FT5r_1MvsTmc__f_o1POieDPpZvzc8egEPiV25O2DMBrSqb3P10pQ3FX_lYwjh_K7D9jdVtRFk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTiBeJjZADAbcw5AALWoSO22CNKGyrVvZWlWUSXvLYsduK3XZRlJBHvl7_CrOrjuYhHjbS17iRMndxXd2vvs-gO04iWQkM-lFQUt7nCvpiYxnHpOx9jPhZ9wSafcHraNT_vksOluBX8teGAOrXM6JdqLOL6XZI2-GhtirbRjKmtrBIob73Y9X155RkDJ_WpdyGpmTWch3Ld2Ya_I4VvV3Ws6Vu7198v2bMOwefN078pzigCfDJK48xXOVUwEhsjwMuBD07KHgUdDOGc-pllJasjCmY4vRQBFEktKpojeKZZCziDO67z1YbVOW5A1Y_XQwGH652fExmnG85S-aBBlL_GZZXwSUOgzp2u20eDsr2FTXfQRrrkbFziKo1mFFFRtw_9BqANcbsO7mgxLfOtLqd4_hZz8zTA9jPDG9w7NprnA0Ly1mxsJva7TgBOxb8KZCx-s6xs5sTKatJhcl0pV42Bt9wA7uUXJFg3GscVrgaKJ-UBijaaCv6h3sFJP5FId2N0SqHbQi4E_g9E6M_RQaxWWhngHyhGtt_kkqn3GmdcwEGVtEUotQJZptwvuldVPpuM-NBMcspTWQcUX6lys2Yftm8NWC8uPfw7aWbkrdd1-mf6L0-f9Pv4YHFL7pSW9w_AIehmYRbzEyW9Covs3VS6p0KvHKhRDC-V1H7W-RhxWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Landslide+Susceptibility+Using+Machine+Learning+Algorithms+and+GIS%3A+A+Case+Study+in+Shexian+County%2C+Anhui+Province%2C+China&rft.jtitle=Symmetry+%28Basel%29&rft.au=Wang%2C+Zitao&rft.au=Liu%2C+Qimeng&rft.au=Liu%2C+Yu&rft.date=2020-12-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=12&rft.issue=12&rft.spage=1954&rft_id=info:doi/10.3390%2Fsym12121954&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym12121954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon