Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China
In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite image...
Saved in:
Published in | Symmetry (Basel) Vol. 12; no. 12; p. 1954 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-8994 2073-8994 |
DOI | 10.3390/sym12121954 |
Cover
Abstract | In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite images and various topographic and geological maps, 16 landslide susceptibility factor maps of Shexian County were initially constructed. In total, 502 landslide and random safety points were then using the “Extract Multivalues To Points” tool in ArcGIS, parameters for the 16 factors were extracted and imported into models for the five algorithms, of which 70% of samples were used for training and 30% of samples were used for verification, which makes sense for date symmetry. The Shexian grid was converted into 260130 vector points and imported into the five models, and the natural breakpoint method was used to divide the grid into four levels: low, moderate, high, and very high. Finally, by using column results gained using Area Under Curve (AUC) analysis and a grid chart, susceptibility results for mapping landslide prediction in Shexian County was compared using the five methods. Results indicate that the ratio of landslide points of high or very high levels from LR, SVM, RF, GBM, and MLP was 1.52, 1.77, 1.95, 1.83, and 1.64, and the ratio of very high landslide points to grade area was 1.92, 2.20, 2.98, 2.62, and 2.14, respectively. The success rate of training samples for the five methods was 0.781, 0.824, 0.853, 0.828, and 0.811, and prediction accuracy was 0.772, 0.803, 0.821, 0.815, and 0.803, respectively; the order of accuracy of the five algorithms was RF > SVM > MLP > GBM > LR. Our results indicate that the five machine learning algorithms have good effect on landslide susceptibility evaluation in Shexian area, with Random Forest having the best effect. |
---|---|
AbstractList | In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP) machine learning algorithms are combined with GIS techniques to map landslide susceptibility in Shexian County, China. By using satellite images and various topographic and geological maps, 16 landslide susceptibility factor maps of Shexian County were initially constructed. In total, 502 landslide and random safety points were then using the “Extract Multivalues To Points” tool in ArcGIS, parameters for the 16 factors were extracted and imported into models for the five algorithms, of which 70% of samples were used for training and 30% of samples were used for verification, which makes sense for date symmetry. The Shexian grid was converted into 260130 vector points and imported into the five models, and the natural breakpoint method was used to divide the grid into four levels: low, moderate, high, and very high. Finally, by using column results gained using Area Under Curve (AUC) analysis and a grid chart, susceptibility results for mapping landslide prediction in Shexian County was compared using the five methods. Results indicate that the ratio of landslide points of high or very high levels from LR, SVM, RF, GBM, and MLP was 1.52, 1.77, 1.95, 1.83, and 1.64, and the ratio of very high landslide points to grade area was 1.92, 2.20, 2.98, 2.62, and 2.14, respectively. The success rate of training samples for the five methods was 0.781, 0.824, 0.853, 0.828, and 0.811, and prediction accuracy was 0.772, 0.803, 0.821, 0.815, and 0.803, respectively; the order of accuracy of the five algorithms was RF > SVM > MLP > GBM > LR. Our results indicate that the five machine learning algorithms have good effect on landslide susceptibility evaluation in Shexian area, with Random Forest having the best effect. |
Author | Wang, Zitao Liu, Qimeng Liu, Yu |
Author_xml | – sequence: 1 givenname: Zitao orcidid: 0000-0002-7776-4282 surname: Wang fullname: Wang, Zitao – sequence: 2 givenname: Qimeng surname: Liu fullname: Liu, Qimeng – sequence: 3 givenname: Yu surname: Liu fullname: Liu, Yu |
BookMark | eNptUMFKAzEQDaJgrT35AwGPtppssu3GW1m0FloUas9LNkm7KdtkTbLiHv1zU-qhiDMwM8y89wbeFTg31igAbjC6J4ShB9_tcRKTpfQM9BI0IaOMMXp-Ml-Cgfc7FCNFKR2jHvhe8qbRZgsX3Ehfa6ngqvVCNUGXutahg2t_OC-5qLRRcKG4M4fFtN5ap0O19zAy4Wy-eoRTmHMfBUIrO6gNXFXqS3MDc9ua0A3h1FSthm_Ofmoj1BDmUZJfg4sNr70a_PY-WD8_vecvo8XrbJ5PFyORsCyMFJVKUpKWXCaYliWlKilpiieSUIkYUxtBkizWMYnAEqeCIaxKxDOBJUkp6YPbo27j7EerfCh2tnUmviwSOk7HE4Qxiyh8RAlnvXdqUwgdeNDWBMd1XWBUHMwuTsyOnLs_nMbpPXfdv-gfqqOC6Q |
CitedBy_id | crossref_primary_10_1016_j_jrmge_2024_09_044 crossref_primary_10_1515_arh_2022_0122 crossref_primary_10_3389_feart_2021_712240 crossref_primary_10_1007_s12665_022_10225_y crossref_primary_10_17714_gumusfenbil_1363531 crossref_primary_10_3390_app142210654 crossref_primary_10_1007_s11069_024_06609_x crossref_primary_10_1080_10106049_2022_2066202 crossref_primary_10_1007_s12145_024_01480_7 crossref_primary_10_1007_s10064_023_03498_5 crossref_primary_10_2139_ssrn_4746636 crossref_primary_10_1007_s11356_023_26961_y crossref_primary_10_1016_j_jafrearsci_2022_104535 crossref_primary_10_3390_sym13010071 crossref_primary_10_1080_19475705_2024_2314565 crossref_primary_10_1016_j_ecolind_2022_109256 crossref_primary_10_1007_s40098_024_00957_y crossref_primary_10_3390_app12052280 crossref_primary_10_1016_j_scitotenv_2022_155583 crossref_primary_10_3390_earth4030037 crossref_primary_10_1038_s41598_021_86137_x crossref_primary_10_1007_s12145_023_00953_5 crossref_primary_10_1007_s10661_023_11388_2 crossref_primary_10_3390_w15142661 crossref_primary_10_1061_JWRMD5_WRENG_5858 crossref_primary_10_1007_s12665_024_11578_2 crossref_primary_10_1016_j_foreco_2023_121288 crossref_primary_10_1007_s12665_022_10603_6 crossref_primary_10_1007_s12517_022_09488_3 crossref_primary_10_1007_s10706_022_02333_0 crossref_primary_10_1016_j_asoc_2024_111991 crossref_primary_10_1016_j_asr_2024_04_018 crossref_primary_10_1016_j_cageo_2021_104899 crossref_primary_10_1007_s12665_022_10193_3 crossref_primary_10_1038_s41598_023_30009_z crossref_primary_10_1016_j_soildyn_2024_108491 crossref_primary_10_1016_j_asr_2024_12_020 crossref_primary_10_1007_s12517_021_06995_7 crossref_primary_10_1155_2021_2677453 crossref_primary_10_1007_s11069_024_06563_8 crossref_primary_10_1007_s43538_024_00305_x crossref_primary_10_3390_ijgi10100639 crossref_primary_10_1155_2022_2058442 crossref_primary_10_1080_10106049_2022_2106315 crossref_primary_10_3390_su151813563 crossref_primary_10_1016_j_jrmge_2023_03_001 crossref_primary_10_1002_gj_5175 crossref_primary_10_1016_j_asr_2021_10_021 crossref_primary_10_3390_ijgi10020093 crossref_primary_10_1007_s13753_023_00477_y crossref_primary_10_3390_app14219639 |
Cites_doi | 10.1002/hyp.3360050103 10.1016/j.earscirev.2018.03.001 10.1016/j.patrec.2005.10.010 10.3390/ijgi8060266 10.1007/s12517-020-05764-2 10.5194/nhess-18-2161-2018 10.1007/s42452-020-3060-1 10.1007/s12517-019-4892-0 10.1007/s12040-019-1159-9 10.5194/isprsarchives-XL-4-W3-47-2013 10.1109/GEOINFORMATICS.2010.5567734 10.3390/app10113710 10.1007/s12040-013-0282-2 10.1016/j.gr.2020.08.007 10.1016/j.culher.2017.06.002 10.1016/j.enggeo.2015.09.007 10.1007/s12517-020-05689-w 10.1007/s10064-009-0188-z 10.1007/s12665-018-7778-7 10.3390/rs12091483 10.1007/s10346-016-0708-4 10.1007/s12665-012-1842-5 10.1016/j.catena.2007.01.003 10.1080/10106049.2019.1581272 10.1007/s10346-017-0872-1 10.3390/app10072466 10.3126/jngs.v58i0.24601 10.3390/ijerph17124206 10.1016/j.enggeo.2007.01.005 10.1023/A:1010933404324 10.1148/radiology.143.1.7063747 10.1016/j.catena.2019.104249 10.1016/j.catena.2020.104833 10.1080/10106049.2018.1510038 10.1016/0893-6080(89)90020-8 10.1080/24749508.2019.1619222 10.1007/978-3-642-25495-6_7 10.1186/s40677-019-0119-7 10.1016/j.catena.2019.104225 10.3390/geosciences10040131 10.1016/j.earscirev.2020.103225 10.1016/j.geomorph.2005.12.003 10.1007/s10346-020-01414-6 10.1016/j.geomorph.2009.04.004 10.1007/s12517-012-0610-x 10.1007/s10346-012-0380-2 10.1007/s13762-013-0464-0 10.1007/s12665-016-5580-y 10.1007/s42452-019-1499-8 10.1007/s11069-018-3356-2 10.3390/app10010029 10.1007/s12665-016-5919-4 10.1002/0471722146 10.1007/s12517-018-3488-4 10.1007/s12518-018-0248-9 10.1007/s12517-017-2918-z 10.1109/34.709601 10.1007/s12040-016-0686-x 10.1016/j.catena.2019.104396 10.3390/sym11060762 10.1007/s12040-015-0624-3 10.1007/s10064-018-1415-2 10.3390/ijerph13050487 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.3390/sym12121954 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Geology |
EISSN | 2073-8994 |
ExternalDocumentID | 10_3390_sym12121954 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c298t-e4ded435bad214bb44e2b4517d34d099efc328efc63dedb15c901eb0a8c1d3543 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Jul 25 10:28:02 EDT 2025 Tue Jul 01 03:25:30 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-e4ded435bad214bb44e2b4517d34d099efc328efc63dedb15c901eb0a8c1d3543 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0002-7776-4282 |
OpenAccessLink | https://www.proquest.com/docview/2465670119?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2465670119 |
PQPubID | 2032326 |
ParticipantIDs | proquest_journals_2465670119 crossref_citationtrail_10_3390_sym12121954 crossref_primary_10_3390_sym12121954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Dong (ref_52) 2009; 110 ref_58 ref_13 Jaafari (ref_29) 2014; 11 ref_56 Breiman (ref_64) 2001; 45 Gadtaula (ref_14) 2019; 58 ref_55 ref_10 Feizizadeh (ref_36) 2017; 10 Park (ref_45) 2012; 68 Das (ref_59) 2019; 1 Wang (ref_31) 2015; 124 Lee (ref_62) 2018; 77 Li (ref_49) 2019; 22 ref_16 Ho (ref_65) 1998; 20 Mondal (ref_11) 2019; 11 Dai (ref_44) 2001; 40 ref_61 ref_60 Shirani (ref_12) 2018; 93 Ohlmacher (ref_38) 2007; 91 Chen (ref_70) 2013; 3 Cristinicu (ref_41) 2017; 28 Fawcett (ref_72) 2005; 27 Barakat (ref_7) 2019; 6 Sahin (ref_66) 2020; 2 Pham (ref_67) 2015; 122 ref_63 Bui (ref_35) 2016; 75 Shahri (ref_25) 2019; 183 ref_28 Regmi (ref_19) 2014; 11 Chen (ref_42) 2017; 14 Gariano (ref_53) 2019; 78 Pandey (ref_21) 2020; 35 Harmouzi (ref_23) 2019; 12 Merghadi (ref_33) 2020; 207 Hanley (ref_71) 1982; 143 Wu (ref_27) 2020; 187 ref_34 ref_32 Vanwalleghem (ref_37) 2006; 76 Gayen (ref_47) 2020; 35 ref_30 Banerjee (ref_6) 2018; 11 Sameen (ref_24) 2020; 186 ref_39 Erener (ref_43) 2016; 203 Hornik (ref_69) 1989; 2 Wang (ref_2) 2016; 125 Yalcin (ref_46) 2008; 72 Reichenbach (ref_18) 2018; 180 Zhang (ref_40) 2016; 35 Hepdeniz (ref_8) 2020; 13 Pourghasemi (ref_22) 2013; 122 Liu (ref_9) 2020; 13 Froude (ref_54) 2018; 18 Niu (ref_26) 2019; 5 ref_1 Chen (ref_17) 2021; 196 ref_3 Zare (ref_68) 2013; 6 Moore (ref_48) 1991; 5 Kumar (ref_15) 2019; 128 Yilmaz (ref_51) 2009; 68 ref_5 Shan (ref_20) 2020; 17 Bui (ref_57) 2017; 14 ref_4 |
References_xml | – volume: 5 start-page: 3 year: 1991 ident: ref_48 article-title: Digital terrain modelling: A review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Process. doi: 10.1002/hyp.3360050103 – ident: ref_5 – volume: 180 start-page: 60 year: 2018 ident: ref_18 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – volume: 5 start-page: 42 year: 2019 ident: ref_26 article-title: Forecasting of Landslide Stability Based on Gradient Boosting Decision Tree Model publication-title: Int. Core J. Eng. – volume: 27 start-page: 861 year: 2005 ident: ref_72 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: ref_3 doi: 10.3390/ijgi8060266 – volume: 35 start-page: 284 year: 2016 ident: ref_40 article-title: Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir publication-title: Chin. J. Rock Mech. Eng. – volume: 13 start-page: 1 year: 2020 ident: ref_8 article-title: Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-05764-2 – volume: 18 start-page: 2161 year: 2018 ident: ref_54 article-title: Global fatal landslide occurrence from 2004 to 2016 publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-2161-2018 – volume: 2 start-page: 1 year: 2020 ident: ref_66 article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-3060-1 – volume: 12 start-page: 696 year: 2019 ident: ref_23 article-title: Landslide susceptibility mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial neural networks (ANN) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4892-0 – ident: ref_61 – volume: 128 start-page: 153 year: 2019 ident: ref_15 article-title: Landslide susceptibility mapping of the Tehri reservoir rim area using the weights of evidence method publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-019-1159-9 – volume: 3 start-page: 47 year: 2013 ident: ref_70 article-title: Research on geographical environment unit division based on the method of natural breaks (Jenks) publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XL-4-W3-47-2013 – ident: ref_39 doi: 10.1109/GEOINFORMATICS.2010.5567734 – ident: ref_50 doi: 10.3390/app10113710 – volume: 122 start-page: 349 year: 2013 ident: ref_22 article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-013-0282-2 – ident: ref_32 doi: 10.1016/j.gr.2020.08.007 – volume: 28 start-page: 172 year: 2017 ident: ref_41 article-title: Frequency ratio and GIS-based evaluation of landslide susceptibility applied to cultural heritage assessment publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2017.06.002 – volume: 203 start-page: 45 year: 2016 ident: ref_43 article-title: A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.09.007 – ident: ref_4 – volume: 13 start-page: 1 year: 2020 ident: ref_9 article-title: Susceptibility mapping of damming landslide based on slope unit using frequency ratio model publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-05689-w – volume: 68 start-page: 459 year: 2009 ident: ref_51 article-title: GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey) publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-009-0188-z – volume: 77 start-page: 656 year: 2018 ident: ref_62 article-title: Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7778-7 – ident: ref_10 doi: 10.3390/rs12091483 – volume: 14 start-page: 1 year: 2017 ident: ref_57 article-title: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS publication-title: Landslides doi: 10.1007/s10346-016-0708-4 – volume: 68 start-page: 1443 year: 2012 ident: ref_45 article-title: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-1842-5 – volume: 72 start-page: 1 year: 2008 ident: ref_46 article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations publication-title: Catena doi: 10.1016/j.catena.2007.01.003 – volume: 35 start-page: 1750 year: 2020 ident: ref_47 article-title: Soil erosion assessment using RUSLE model and its validation by FR probability model publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1581272 – volume: 14 start-page: 1793 year: 2017 ident: ref_42 article-title: Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: A case study of the 2016 Kumamoto earthquake publication-title: Landslides doi: 10.1007/s10346-017-0872-1 – ident: ref_55 doi: 10.3390/app10072466 – volume: 58 start-page: 163 year: 2019 ident: ref_14 article-title: Landslide susceptibility mapping using Weight of Evidence Method in Haku, Rasuwa District, Nepal publication-title: J. Nepal Geol. Soc. doi: 10.3126/jngs.v58i0.24601 – ident: ref_63 doi: 10.3390/ijerph17124206 – volume: 122 start-page: 1 year: 2015 ident: ref_67 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of nave bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. – volume: 91 start-page: 117 year: 2007 ident: ref_38 article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.01.005 – volume: 45 start-page: 5 year: 2001 ident: ref_64 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 143 start-page: 29 year: 1982 ident: ref_71 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 186 start-page: 104249 year: 2020 ident: ref_24 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena doi: 10.1016/j.catena.2019.104249 – volume: 196 start-page: 104833 year: 2021 ident: ref_17 article-title: GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods publication-title: CATENA doi: 10.1016/j.catena.2020.104833 – volume: 35 start-page: 168 year: 2020 ident: ref_21 article-title: Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1510038 – volume: 2 start-page: 359 year: 1989 ident: ref_69 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: ref_16 doi: 10.1080/24749508.2019.1619222 – ident: ref_34 – ident: ref_1 doi: 10.1007/978-3-642-25495-6_7 – volume: 6 start-page: 3 year: 2019 ident: ref_7 article-title: GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco) publication-title: Geoenviron. Disasters doi: 10.1186/s40677-019-0119-7 – volume: 183 start-page: 104225 year: 2019 ident: ref_25 article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network publication-title: Catena doi: 10.1016/j.catena.2019.104225 – ident: ref_56 doi: 10.3390/geosciences10040131 – volume: 207 start-page: 103225 year: 2020 ident: ref_33 article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103225 – volume: 76 start-page: 392 year: 2006 ident: ref_37 article-title: Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium) publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.12.003 – volume: 17 start-page: 2931 year: 2020 ident: ref_20 article-title: Rapid prediction of landslide dam stability using the logistic regression method publication-title: Landslides doi: 10.1007/s10346-020-01414-6 – volume: 110 start-page: 162 year: 2009 ident: ref_52 article-title: Discriminant analysis of the geomorphic characteristics and stability of landslide dams publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.04.004 – volume: 6 start-page: 2873 year: 2013 ident: ref_68 article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0610-x – volume: 11 start-page: 247 year: 2014 ident: ref_19 article-title: A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA publication-title: Landslides doi: 10.1007/s10346-012-0380-2 – volume: 11 start-page: 909 year: 2014 ident: ref_29 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0464-0 – ident: ref_13 doi: 10.1007/s12665-016-5580-y – volume: 1 start-page: 1453 year: 2019 ident: ref_59 article-title: Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1499-8 – volume: 93 start-page: 1379 year: 2018 ident: ref_12 article-title: Landslide susceptibility assessment by dempster–shafer and index of entropy models, Sarkhoun basin, southwestern Iran publication-title: Nat. Hazards doi: 10.1007/s11069-018-3356-2 – ident: ref_28 doi: 10.3390/app10010029 – volume: 22 start-page: 7985 year: 2019 ident: ref_49 article-title: Landslide susceptibility and influencing factors analysis in Rwanda publication-title: Environ. Dev. Sustain. – volume: 75 start-page: 1101 year: 2016 ident: ref_35 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5919-4 – ident: ref_60 doi: 10.1002/0471722146 – volume: 11 start-page: 139 year: 2018 ident: ref_6 article-title: Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-3488-4 – volume: 11 start-page: 129 year: 2019 ident: ref_11 article-title: Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model publication-title: Appl. Geomat. doi: 10.1007/s12518-018-0248-9 – volume: 10 start-page: 1 year: 2017 ident: ref_36 article-title: Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping publication-title: Arab. J. Geosci. doi: 10.1007/s12517-017-2918-z – volume: 20 start-page: 832 year: 1998 ident: ref_65 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 125 start-page: 645 year: 2016 ident: ref_2 article-title: A comparative study on the landslide susceptibility mapping using evidential belief function and weights of evidence models publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-016-0686-x – volume: 187 start-page: 104396 year: 2020 ident: ref_27 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104396 – ident: ref_30 doi: 10.3390/sym11060762 – volume: 124 start-page: 1399 year: 2015 ident: ref_31 article-title: GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-015-0624-3 – volume: 40 start-page: 381 year: 2001 ident: ref_44 article-title: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong publication-title: Environ. Earth Sci. – volume: 78 start-page: 4325 year: 2019 ident: ref_53 article-title: Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1415-2 – ident: ref_58 doi: 10.3390/ijerph13050487 |
SSID | ssj0000505460 |
Score | 2.4351802 |
Snippet | In this study, Logistics Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Machine (GBM), and Multilayer Perceptron (MLP)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1954 |
SubjectTerms | Algorithms Case studies Fault lines Geological mapping Geology Hydrology Landslides Landslides & mudslides Logistics Machine learning Multilayer perceptrons Precipitation Regression analysis River networks Satellite imagery Shear strength Support vector machines Topography Training |
Title | Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China |
URI | https://www.proquest.com/docview/2465670119 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7yoNBLyKvUaRLmkEMTImJpV44cKMUNsdMQm1A34JvQvmyDo6SRDNGx_zyz61UeUHoRCI0O0szOzu5-830AB0k7lrHMZBCHLRNwrmUgMp4FTCammYlmxh2Rdn_QurzlV6N4tASDuhfGwirrnOgStbqXdo_8JLLEXqeWoez7w5_AqkbZ09VaQiPz0grqm6MYW4ZVSskJxf3qj4vBza-XXRer28ZbzUWjHqP1_klR3YVka4nP3k9N7zOzm26667Dm60TsLBy7AUs634QPPafDW23Chh-TBX71xNGHW_C3n1m2hTFe2_7d2VRpHM4Lh1txENgKHUAA-w5AqdFzq46xMxvTp5aTuwLpTez9HJ5hB89pgkOLM6xwmuNwop8olNA2sZfVMXbyyXyKN25HQupjdELc23Dbvfh9fhl4iYVARu2kDDRXWlHFJDIVhVwIclYkeByeKsYVFY_aSBYldG0xMhRhLKl-0OTCRIaKxZx9gpX8PtefAXmbG2PPBXWTcWZMwgT9bBFLIyLdNqwBR_XfTaXnH7cyGLOU1iHWFekbVzTg4MX4YUG78W-z3dpNqR97RfoaKTv_f_wFPkZ29ezAKbuwUj7O9R6VGKXYh-Wk29v30UN3vVH4DKsW1Lc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ7gEaMvRFAjijoPmKihod3dHq0JMScCd3J3IR4kvJXur7tLjgK2F-2j_5h_m7t7W5TE-MZLX7pt2pnpzuz2m-8D2EzSWMQiF0EctXXAmBIBz1keUJHoMOdhzhyR9mDY7p6yL2fx2RL8anphLKyymRPdRC0vhd0j3yaW2GvHMpR9vLoOrGqU_bvaSGjkXlpB7jqKMd_YcaTq72YJV-72Pht_vyHkYP9krxt4lYFAkDSpAsWkkqZo4LkkEePcPC_hLI52JGXS1E9KC0oSc2xTM5BHsTApVJm3SEQkacyoue89WGa2w7UFy5_2h8dfb3Z5rE4ca4eLxkBK03C7rC8iky4s0drtVHg7E7j0dvAIVnxdip1FIK3CkirW4P6h0_2t12DVzwElvvVE1e8ew89Bbtkdxti3_cKzqVQ4mpcOJ-MgtzU6QAIOHGBToedyHWNnNjamrSYXJZor8bA3-oAd3DMJFS2uscZpgaOJ-mFCF23TfFVvYaeYzKd47HZAhNpCJ_z9BE7vxNhPoVVcFuoZIEuZ1vY_pAopo1onlBtj81hoTlSq6Tq8b6ybCc93bmU3ZplZ91hXZH-5Yh02bwZfLWg-_j1so3FT5r_1MvsTmc__f_o1POieDPpZvzc8egEPiV25O2DMBrSqb3P10pQ3FX_lYwjh_K7D9jdVtRFk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTiBeJjZADAbcw5AALWoSO22CNKGyrVvZWlWUSXvLYsduK3XZRlJBHvl7_CrOrjuYhHjbS17iRMndxXd2vvs-gO04iWQkM-lFQUt7nCvpiYxnHpOx9jPhZ9wSafcHraNT_vksOluBX8teGAOrXM6JdqLOL6XZI2-GhtirbRjKmtrBIob73Y9X155RkDJ_WpdyGpmTWch3Ld2Ya_I4VvV3Ws6Vu7198v2bMOwefN078pzigCfDJK48xXOVUwEhsjwMuBD07KHgUdDOGc-pllJasjCmY4vRQBFEktKpojeKZZCziDO67z1YbVOW5A1Y_XQwGH652fExmnG85S-aBBlL_GZZXwSUOgzp2u20eDsr2FTXfQRrrkbFziKo1mFFFRtw_9BqANcbsO7mgxLfOtLqd4_hZz8zTA9jPDG9w7NprnA0Ly1mxsJva7TgBOxb8KZCx-s6xs5sTKatJhcl0pV42Bt9wA7uUXJFg3GscVrgaKJ-UBijaaCv6h3sFJP5FId2N0SqHbQi4E_g9E6M_RQaxWWhngHyhGtt_kkqn3GmdcwEGVtEUotQJZptwvuldVPpuM-NBMcspTWQcUX6lys2Yftm8NWC8uPfw7aWbkrdd1-mf6L0-f9Pv4YHFL7pSW9w_AIehmYRbzEyW9Covs3VS6p0KvHKhRDC-V1H7W-RhxWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Landslide+Susceptibility+Using+Machine+Learning+Algorithms+and+GIS%3A+A+Case+Study+in+Shexian+County%2C+Anhui+Province%2C+China&rft.jtitle=Symmetry+%28Basel%29&rft.au=Wang%2C+Zitao&rft.au=Liu%2C+Qimeng&rft.au=Liu%2C+Yu&rft.date=2020-12-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=12&rft.issue=12&rft.spage=1954&rft_id=info:doi/10.3390%2Fsym12121954&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym12121954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |