Co-Citation Count vs Correlation for Influence Network Visualization
Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documen...
Saved in:
Published in | Information visualization Vol. 2; no. 3; pp. 160 - 170 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2003
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documents and an edge is the most direct influence between two documents. Influence network visualizations have typically relied on co-citation correlation as a measure of document similarity. That is, the similarity between two documents is computed by correlating the sets of citations to each of the two documents. In a different line of research, co-citation count (the number of times two documents are jointly cited) has been applied as a document similarity measure. In this work, we demonstrate the impact of each of these similarity measures on the document influence network. We provide examples, and analyze the significance of the choice of similarity measure. We show that correlation-based visualizations exhibit chaining effects (low average vertex degree), a manifestation of multiple minor variations in document similarities. These minor similarity variations are absent in count-based visualizations. The result is that count-based influence network visualizations are more consistent with the intuitive expectation of authoritative documents being hubs that directly influence large numbers of documents. |
---|---|
AbstractList | Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documents and an edge is the most direct influence between two documents. Influence network visualizations have typically relied on co-citation correlation as a measure of document similarity. That is, the similarity between two documents is computed by correlating the sets of citations to each of the two documents. In a different line of research, co-citation count (the number of times two documents are jointly cited) has been applied as a document similarity measure. In this work, we demonstrate the impact of each of these similarity measures on the document influence network. We provide examples, and analyze the significance of the choice of similarity measure. We show that correlation-based visualizations exhibit chaining effects (low average vertex degree), a manifestation of multiple minor variations in document similarities. These minor similarity variations are absent in count-based visualizations. The result is that count-based influence network visualizations are more consistent with the intuitive expectation of authoritative documents being hubs that directly influence large numbers of documents. The main premise of this paper is that similarities computed from raw co-citation counts (vs co-citation correlations) yield influence networks that better capture the semantics of document collection influences. To support our position, we offer analytical arguments as well as empirical examples. While both co-citation counts and correlations have appeared in the literature as similarities in various forms of co-citation analysis, a thorough description of their differences has largely been lacking. In the next section, we formally describe co-citation count and correlation. Further section then reviews the computation and visualization of influence networks. In the penultimate section, we analyze the impact of the choice of similarity measure on the structure of the influence networks. We also show empirical results of influence networks generated using each of these measures. In the last section, we summarize our work and draw conclusions. |
Author | Noel, Steven Raghavan, Vijay Chu, Chee-Hung Henry |
Author_xml | – sequence: 1 givenname: Steven surname: Noel fullname: Noel, Steven – sequence: 2 givenname: Chee-Hung Henry surname: Chu fullname: Chu, Chee-Hung Henry – sequence: 3 givenname: Vijay surname: Raghavan fullname: Raghavan, Vijay |
BookMark | eNp9kT1PwzAQhi0EEm3hHzBEDDClnB07tkcUvipVsACr5aZ2lZLaxU6K4NcTSAGJodO9Oj3vSadniPaddwahEwxjDIxfrHW9CHpjxtUmjiUDACr30ABTnqWCE7r_m3F-iIYxLgEIpyAH6KrwaVE1uqm8SwrfuibZxC6EYOp-aX1IJs7WrXGlSe5N8-bDS_JcxVbX1cc3c4QOrK6jOd7OEXq6uX4s7tLpw-2kuJymJZGiScvSEkF0TrjBc25mOiMcuGVSAJ1pNmOCC5AAWlLIhZW5NXquCbdC6JKxLBuh8_7uOvjX1sRGrapYmrrWzvg2Kk4zjGlGaEee7SQZZzmAIB14-g9c-ja47gtFMk6AUSY6iPZQGXyMwVi1DtVKh3eFQX0ZUD8GVGdAbQ10NdzXol6Yv7s7O5-spo6h |
CitedBy_id | crossref_primary_10_4275_KSLIS_2006_40_2_333 crossref_primary_10_1109_TVCG_2019_2906900 crossref_primary_10_1109_TVCG_2016_2610422 crossref_primary_10_1109_ACCESS_2018_2815030 |
Cites_doi | 10.1002/asi.4630240406 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q 10.1002/spe.4380211102 10.1016/S0306-4573(98)00068-5 10.1002/asi.10242 10.1109/IV.2002.1028850 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4 10.1002/(SICI)1097-4571(198711)38:6<420::AID-ASI3>3.0.CO;2-S 10.2307/2346439 10.1145/294469.294486 |
ContentType | Journal Article |
Copyright | 2003 SAGE Publications Copyright (c) 2003 Palgrave Macmillan Ltd |
Copyright_xml | – notice: 2003 SAGE Publications – notice: Copyright (c) 2003 Palgrave Macmillan Ltd |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1057/palgrave.ivs.9500049 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1473-8724 |
EndPage | 170 |
ExternalDocumentID | 508141941 10_1057_palgrave_ivs_9500049 10.1057_palgrave.ivs.9500049 |
Genre | Feature |
GroupedDBID | -MK -TM .2L .2N .DC 01A 0R~ 1~K 29I 54M 5GY 77K 7WY 8FL 8R4 8R5 AACTG AADIR AADUE AAJPV AAQDB AARIX AATAA AATBZ ABAWP ABCCA ABEIX ABFWQ ABFXH ABJNI ABKRH ABLUO ABPNF ABQPY ABQXT ABRHV ACDXX ACFUR ACFZE ACGFS ACLZU ACOFE ACOXC ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ADRRZ ADTOS AENEX AEOBU AEPTA AEQLS AESZF AEUHG AEUIJ AEVPJ AEVXP AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFUIA AGDVU AGKLV AGNHF AGNWV AGWFA AHHFK AHWHD AIOMO AJUZI ALFTD ALJHS ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AYPQM AZFZN BBRGL BDDNI BDZRT BENPR BMVBW BPACV CAG CEADM CFDXU COF CS3 DG~ DO- DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_ABI_INFORM_COMPLETE GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION HVGLF HZ~ J8X JCYGO K.F K60 K6~ M4V O9- P.B P2P PQQKQ Q2X Q7P Q83 ROL S01 SCNPE SFC SPV SSDHQ ZPLXX ZPPRI ZRKOI ~32 AAYXX ACJER AEDXQ CITATION H13 7SC 8FD E3H F2A JQ2 L7M L~C L~D ADVBO |
ID | FETCH-LOGICAL-c298t-ccf282a627e1d7eba32707f59804ba5b58780900a94068f96feada27f88ac5533 |
ISSN | 1473-8716 |
IngestDate | Fri Oct 25 21:58:42 EDT 2024 Fri Oct 25 06:16:16 EDT 2024 Thu Oct 10 17:50:54 EDT 2024 Wed Sep 18 12:54:53 EDT 2024 Tue Jul 16 20:20:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | influence networks Document collection visualization co-citation analysis minimum spanning tree graph layout |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c298t-ccf282a627e1d7eba32707f59804ba5b58780900a94068f96feada27f88ac5533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 237205458 |
PQPubID | 25946 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_743114324 proquest_miscellaneous_57560082 proquest_journals_237205458 crossref_primary_10_1057_palgrave_ivs_9500049 sage_journals_10_1057_palgrave_ivs_9500049 |
PublicationCentury | 2000 |
PublicationDate | 20030900 |
PublicationDateYYYYMMDD | 2003-09-01 |
PublicationDate_xml | – month: 9 year: 2003 text: 20030900 |
PublicationDecade | 2000 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Thousand Oaks |
PublicationTitle | Information visualization |
PublicationYear | 2003 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | McCain 1990; 41 Ahlgren, Jarneving, Rousseau 2003; 54 Jones, Furnas 1987; 38 Gower, Ross 1969; 18 Fruchterman, Reingold 1991; 21 Eades 1984; 42 White, McCain 1998; 49 Small 1973; 24 Chen 1999; 35 bibr5-palgrave.ivs.9500049 bibr4-palgrave.ivs.9500049 bibr3-palgrave.ivs.9500049 bibr9-palgrave.ivs.9500049 bibr10-palgrave.ivs.9500049 bibr2-palgrave.ivs.9500049 Eades P. (bibr7-palgrave.ivs.9500049) 1984; 42 bibr11-palgrave.ivs.9500049 bibr8-palgrave.ivs.9500049 bibr12-palgrave.ivs.9500049 bibr13-palgrave.ivs.9500049 Garfield E (bibr1-palgrave.ivs.9500049) 1978 bibr6-palgrave.ivs.9500049 |
References_xml | – volume: 21 start-page: 1129 year: 1991 end-page: 1164 article-title: Graph drawing by force-directed placement publication-title: Software – Practice and Experience contributor: fullname: Reingold – volume: 54 start-page: 550 year: 2003 end-page: 560 article-title: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient publication-title: Journal of the American Society for Information Science and Technology contributor: fullname: Rousseau – volume: 35 start-page: 401 year: 1999 end-page: 420 article-title: Visualising semantic spaces and author co-citation networks in digital libraries publication-title: Information Processing & Management contributor: fullname: Chen – volume: 49 start-page: 327 year: 1998 end-page: 356 article-title: Visualizing a discipline: An author co-citation analysis of information science, 1972–1995 publication-title: Journal of the American Society for Information Science contributor: fullname: McCain – volume: 41 start-page: 433 year: 1990 end-page: 443 article-title: Mapping authors in intellectual space: A technical overview publication-title: Journal of the American Society for Information Science contributor: fullname: McCain – volume: 24 start-page: 265 year: 1973 end-page: 269 article-title: Co-citation in the scientific literature: A new measure of the relationship between two documents publication-title: Journal of the American Society of Information Science contributor: fullname: Small – volume: 18 start-page: 54 year: 1969 end-page: 64 article-title: Minimum spanning trees and single linkage cluster analysis publication-title: Applied Statistics contributor: fullname: Ross – volume: 38 start-page: 420 year: 1987 end-page: 442 article-title: Pictures of relevance: A geometric analysis of similarity measures publication-title: Journal of the American Society for Information Science contributor: fullname: Furnas – volume: 42 start-page: 149 year: 1984 end-page: 160 article-title: A heuristic for graph drawing publication-title: Congressus Numerantium contributor: fullname: Eades – ident: bibr2-palgrave.ivs.9500049 doi: 10.1002/asi.4630240406 – ident: bibr10-palgrave.ivs.9500049 doi: 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q – volume: 42 start-page: 149 year: 1984 ident: bibr7-palgrave.ivs.9500049 publication-title: Congressus Numerantium contributor: fullname: Eades P. – ident: bibr8-palgrave.ivs.9500049 doi: 10.1002/spe.4380211102 – ident: bibr3-palgrave.ivs.9500049 doi: 10.1016/S0306-4573(98)00068-5 – ident: bibr13-palgrave.ivs.9500049 doi: 10.1002/asi.10242 – ident: bibr9-palgrave.ivs.9500049 doi: 10.1109/IV.2002.1028850 – start-page: 179 volume-title: Toward a Metric of Science: The Advent of Science Indicators year: 1978 ident: bibr1-palgrave.ivs.9500049 contributor: fullname: Garfield E – ident: bibr11-palgrave.ivs.9500049 doi: 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4 – ident: bibr12-palgrave.ivs.9500049 doi: 10.1002/(SICI)1097-4571(198711)38:6<420::AID-ASI3>3.0.CO;2-S – ident: bibr5-palgrave.ivs.9500049 doi: 10.2307/2346439 – ident: bibr6-palgrave.ivs.9500049 – ident: bibr4-palgrave.ivs.9500049 doi: 10.1145/294469.294486 |
SSID | ssj0027409 |
Score | 1.6624507 |
Snippet | Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on... The main premise of this paper is that similarities computed from raw co-citation counts (vs co-citation correlations) yield influence networks that better... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Publisher |
StartPage | 160 |
SubjectTerms | Bibliographic coupling Citation analysis Cocitation Computer based modeling Computerized information storage and retrieval Correlation analysis Influence Semantics Standard deviation Studies Visualization |
Title | Co-Citation Count vs Correlation for Influence Network Visualization |
URI | https://journals.sagepub.com/doi/full/10.1057/palgrave.ivs.9500049 https://www.proquest.com/docview/237205458 https://search.proquest.com/docview/57560082 https://search.proquest.com/docview/743114324 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8AB8VOEDfCBE5VLEsdxfJwKqCANgbRN4xTZicO6Q4uaNIf99Xt2nMTVCmJcosp1rdTv5fm9vO97D6F3ZaSklFFCpFSaJFQxImlVEREzrU3iJ7J1C06-pYuz5OsFuxhTMZZd0qhZcb2XV_I_UoUxkKthyd5BssOiMACfQb5wBQnD9Z9kPF-TuauxbcnlzbQ1LTg3G4dwsxjCL30bEkPuNTCs6fmyNlTK61EoVz2efeAyTttbkxwQ1mHD2pFDNr_cdpl7rckCjMfUMh_GDNKvS-nSTefLKwfa6V800AFJ5We49r5LjBJOiYm8ukPFH-sI0r2pjT2Nop7ZjLqeAu4EjrpWIreM-25H4tmyrWeC2RhnPMwGiKH7Qb5v-n10EINdyibo4Pjn9x8nXoRuMUHD_-m5lox_2LfOri8zBigeJtC6KaeP0SMXX-DjTlmeoHt69RQ99KpOPkMfPbXBVm1wW2NPbTBoAR7UBju1wTtq8xydff50Ol8Q10yDFLHIGlIUFUTXMo25jkqulaQxD3nFRBYmSjLFMp6FIgylABcvq0RagY2RMa-yTBYMgoIXaLJar_RLhGnBwzIyoYFOk1IISXUpMxoWqVSKSh4g0m9L_rurmZJbrIMnjhy2MXfbGKDDfu9y93TVeWzaJ5msboDeDt-C6TP5LLnS622dQ6SRGhc2QPgPM4x7HJmakwF6b2QyLv-3-3l1l8mH6MH4sByhSbPZ6tfgpzbqjdOuG8-0mI0 |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | SAGE Publications |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-Citation+Count+vs+Correlation+for+Influence+Network+Visualization&rft.jtitle=Information+visualization&rft.au=Noel%2C+Steven&rft.au=Chu%2C+Chee-Hung+Henry&rft.au=Raghavan%2C+Vijay&rft.date=2003-09-01&rft.pub=SAGE+Publications&rft.issn=1473-8716&rft.eissn=1473-8724&rft.volume=2&rft.issue=3&rft.spage=160&rft.epage=170&rft_id=info:doi/10.1057%2Fpalgrave.ivs.9500049&rft.externalDocID=10.1057_palgrave.ivs.9500049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-8716&client=summon |