Co-Citation Count vs Correlation for Influence Network Visualization

Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documen...

Full description

Saved in:
Bibliographic Details
Published inInformation visualization Vol. 2; no. 3; pp. 160 - 170
Main Authors Noel, Steven, Chu, Chee-Hung Henry, Raghavan, Vijay
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.09.2003
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documents and an edge is the most direct influence between two documents. Influence network visualizations have typically relied on co-citation correlation as a measure of document similarity. That is, the similarity between two documents is computed by correlating the sets of citations to each of the two documents. In a different line of research, co-citation count (the number of times two documents are jointly cited) has been applied as a document similarity measure. In this work, we demonstrate the impact of each of these similarity measures on the document influence network. We provide examples, and analyze the significance of the choice of similarity measure. We show that correlation-based visualizations exhibit chaining effects (low average vertex degree), a manifestation of multiple minor variations in document similarities. These minor similarity variations are absent in count-based visualizations. The result is that count-based influence network visualizations are more consistent with the intuitive expectation of authoritative documents being hubs that directly influence large numbers of documents.
AbstractList Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on each other in a document collection. The influence network is constructed based on the minimum spanning tree, in which the nodes are documents and an edge is the most direct influence between two documents. Influence network visualizations have typically relied on co-citation correlation as a measure of document similarity. That is, the similarity between two documents is computed by correlating the sets of citations to each of the two documents. In a different line of research, co-citation count (the number of times two documents are jointly cited) has been applied as a document similarity measure. In this work, we demonstrate the impact of each of these similarity measures on the document influence network. We provide examples, and analyze the significance of the choice of similarity measure. We show that correlation-based visualizations exhibit chaining effects (low average vertex degree), a manifestation of multiple minor variations in document similarities. These minor similarity variations are absent in count-based visualizations. The result is that count-based influence network visualizations are more consistent with the intuitive expectation of authoritative documents being hubs that directly influence large numbers of documents.
The main premise of this paper is that similarities computed from raw co-citation counts (vs co-citation correlations) yield influence networks that better capture the semantics of document collection influences. To support our position, we offer analytical arguments as well as empirical examples. While both co-citation counts and correlations have appeared in the literature as similarities in various forms of co-citation analysis, a thorough description of their differences has largely been lacking. In the next section, we formally describe co-citation count and correlation. Further section then reviews the computation and visualization of influence networks. In the penultimate section, we analyze the impact of the choice of similarity measure on the structure of the influence networks. We also show empirical results of influence networks generated using each of these measures. In the last section, we summarize our work and draw conclusions.
Author Noel, Steven
Raghavan, Vijay
Chu, Chee-Hung Henry
Author_xml – sequence: 1
  givenname: Steven
  surname: Noel
  fullname: Noel, Steven
– sequence: 2
  givenname: Chee-Hung Henry
  surname: Chu
  fullname: Chu, Chee-Hung Henry
– sequence: 3
  givenname: Vijay
  surname: Raghavan
  fullname: Raghavan, Vijay
BookMark eNp9kT1PwzAQhi0EEm3hHzBEDDClnB07tkcUvipVsACr5aZ2lZLaxU6K4NcTSAGJodO9Oj3vSadniPaddwahEwxjDIxfrHW9CHpjxtUmjiUDACr30ABTnqWCE7r_m3F-iIYxLgEIpyAH6KrwaVE1uqm8SwrfuibZxC6EYOp-aX1IJs7WrXGlSe5N8-bDS_JcxVbX1cc3c4QOrK6jOd7OEXq6uX4s7tLpw-2kuJymJZGiScvSEkF0TrjBc25mOiMcuGVSAJ1pNmOCC5AAWlLIhZW5NXquCbdC6JKxLBuh8_7uOvjX1sRGrapYmrrWzvg2Kk4zjGlGaEee7SQZZzmAIB14-g9c-ja47gtFMk6AUSY6iPZQGXyMwVi1DtVKh3eFQX0ZUD8GVGdAbQ10NdzXol6Yv7s7O5-spo6h
CitedBy_id crossref_primary_10_4275_KSLIS_2006_40_2_333
crossref_primary_10_1109_TVCG_2019_2906900
crossref_primary_10_1109_TVCG_2016_2610422
crossref_primary_10_1109_ACCESS_2018_2815030
Cites_doi 10.1002/asi.4630240406
10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
10.1002/spe.4380211102
10.1016/S0306-4573(98)00068-5
10.1002/asi.10242
10.1109/IV.2002.1028850
10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4
10.1002/(SICI)1097-4571(198711)38:6<420::AID-ASI3>3.0.CO;2-S
10.2307/2346439
10.1145/294469.294486
ContentType Journal Article
Copyright 2003 SAGE Publications
Copyright (c) 2003 Palgrave Macmillan Ltd
Copyright_xml – notice: 2003 SAGE Publications
– notice: Copyright (c) 2003 Palgrave Macmillan Ltd
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1057/palgrave.ivs.9500049
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1473-8724
EndPage 170
ExternalDocumentID 508141941
10_1057_palgrave_ivs_9500049
10.1057_palgrave.ivs.9500049
Genre Feature
GroupedDBID -MK
-TM
.2L
.2N
.DC
01A
0R~
1~K
29I
54M
5GY
77K
7WY
8FL
8R4
8R5
AACTG
AADIR
AADUE
AAJPV
AAQDB
AARIX
AATAA
AATBZ
ABAWP
ABCCA
ABEIX
ABFWQ
ABFXH
ABJNI
ABKRH
ABLUO
ABPNF
ABQPY
ABQXT
ABRHV
ACDXX
ACFUR
ACFZE
ACGFS
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ADRRZ
ADTOS
AENEX
AEOBU
AEPTA
AEQLS
AESZF
AEUHG
AEUIJ
AEVPJ
AEVXP
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AGWFA
AHHFK
AHWHD
AIOMO
AJUZI
ALFTD
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AYPQM
AZFZN
BBRGL
BDDNI
BDZRT
BENPR
BMVBW
BPACV
CAG
CEADM
CFDXU
COF
CS3
DG~
DO-
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_ABI_INFORM_COMPLETE
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HVGLF
HZ~
J8X
JCYGO
K.F
K60
K6~
M4V
O9-
P.B
P2P
PQQKQ
Q2X
Q7P
Q83
ROL
S01
SCNPE
SFC
SPV
SSDHQ
ZPLXX
ZPPRI
ZRKOI
~32
AAYXX
ACJER
AEDXQ
CITATION
H13
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ADVBO
ID FETCH-LOGICAL-c298t-ccf282a627e1d7eba32707f59804ba5b58780900a94068f96feada27f88ac5533
ISSN 1473-8716
IngestDate Fri Oct 25 21:58:42 EDT 2024
Fri Oct 25 06:16:16 EDT 2024
Thu Oct 10 17:50:54 EDT 2024
Wed Sep 18 12:54:53 EDT 2024
Tue Jul 16 20:20:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords influence networks
Document collection visualization
co-citation analysis
minimum spanning tree
graph layout
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-ccf282a627e1d7eba32707f59804ba5b58780900a94068f96feada27f88ac5533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 237205458
PQPubID 25946
PageCount 11
ParticipantIDs proquest_miscellaneous_743114324
proquest_miscellaneous_57560082
proquest_journals_237205458
crossref_primary_10_1057_palgrave_ivs_9500049
sage_journals_10_1057_palgrave_ivs_9500049
PublicationCentury 2000
PublicationDate 20030900
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 9
  year: 2003
  text: 20030900
PublicationDecade 2000
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Thousand Oaks
PublicationTitle Information visualization
PublicationYear 2003
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References McCain 1990; 41
Ahlgren, Jarneving, Rousseau 2003; 54
Jones, Furnas 1987; 38
Gower, Ross 1969; 18
Fruchterman, Reingold 1991; 21
Eades 1984; 42
White, McCain 1998; 49
Small 1973; 24
Chen 1999; 35
bibr5-palgrave.ivs.9500049
bibr4-palgrave.ivs.9500049
bibr3-palgrave.ivs.9500049
bibr9-palgrave.ivs.9500049
bibr10-palgrave.ivs.9500049
bibr2-palgrave.ivs.9500049
Eades P. (bibr7-palgrave.ivs.9500049) 1984; 42
bibr11-palgrave.ivs.9500049
bibr8-palgrave.ivs.9500049
bibr12-palgrave.ivs.9500049
bibr13-palgrave.ivs.9500049
Garfield E (bibr1-palgrave.ivs.9500049) 1978
bibr6-palgrave.ivs.9500049
References_xml – volume: 21
  start-page: 1129
  year: 1991
  end-page: 1164
  article-title: Graph drawing by force-directed placement
  publication-title: Software – Practice and Experience
  contributor:
    fullname: Reingold
– volume: 54
  start-page: 550
  year: 2003
  end-page: 560
  article-title: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient
  publication-title: Journal of the American Society for Information Science and Technology
  contributor:
    fullname: Rousseau
– volume: 35
  start-page: 401
  year: 1999
  end-page: 420
  article-title: Visualising semantic spaces and author co-citation networks in digital libraries
  publication-title: Information Processing & Management
  contributor:
    fullname: Chen
– volume: 49
  start-page: 327
  year: 1998
  end-page: 356
  article-title: Visualizing a discipline: An author co-citation analysis of information science, 1972–1995
  publication-title: Journal of the American Society for Information Science
  contributor:
    fullname: McCain
– volume: 41
  start-page: 433
  year: 1990
  end-page: 443
  article-title: Mapping authors in intellectual space: A technical overview
  publication-title: Journal of the American Society for Information Science
  contributor:
    fullname: McCain
– volume: 24
  start-page: 265
  year: 1973
  end-page: 269
  article-title: Co-citation in the scientific literature: A new measure of the relationship between two documents
  publication-title: Journal of the American Society of Information Science
  contributor:
    fullname: Small
– volume: 18
  start-page: 54
  year: 1969
  end-page: 64
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: Applied Statistics
  contributor:
    fullname: Ross
– volume: 38
  start-page: 420
  year: 1987
  end-page: 442
  article-title: Pictures of relevance: A geometric analysis of similarity measures
  publication-title: Journal of the American Society for Information Science
  contributor:
    fullname: Furnas
– volume: 42
  start-page: 149
  year: 1984
  end-page: 160
  article-title: A heuristic for graph drawing
  publication-title: Congressus Numerantium
  contributor:
    fullname: Eades
– ident: bibr2-palgrave.ivs.9500049
  doi: 10.1002/asi.4630240406
– ident: bibr10-palgrave.ivs.9500049
  doi: 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
– volume: 42
  start-page: 149
  year: 1984
  ident: bibr7-palgrave.ivs.9500049
  publication-title: Congressus Numerantium
  contributor:
    fullname: Eades P.
– ident: bibr8-palgrave.ivs.9500049
  doi: 10.1002/spe.4380211102
– ident: bibr3-palgrave.ivs.9500049
  doi: 10.1016/S0306-4573(98)00068-5
– ident: bibr13-palgrave.ivs.9500049
  doi: 10.1002/asi.10242
– ident: bibr9-palgrave.ivs.9500049
  doi: 10.1109/IV.2002.1028850
– start-page: 179
  volume-title: Toward a Metric of Science: The Advent of Science Indicators
  year: 1978
  ident: bibr1-palgrave.ivs.9500049
  contributor:
    fullname: Garfield E
– ident: bibr11-palgrave.ivs.9500049
  doi: 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4
– ident: bibr12-palgrave.ivs.9500049
  doi: 10.1002/(SICI)1097-4571(198711)38:6<420::AID-ASI3>3.0.CO;2-S
– ident: bibr5-palgrave.ivs.9500049
  doi: 10.2307/2346439
– ident: bibr6-palgrave.ivs.9500049
– ident: bibr4-palgrave.ivs.9500049
  doi: 10.1145/294469.294486
SSID ssj0027409
Score 1.6624507
Snippet Visualization of author or document influence networks as a two-dimensional image can provide key insights into the direct influence of authors or documents on...
The main premise of this paper is that similarities computed from raw co-citation counts (vs co-citation correlations) yield influence networks that better...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Publisher
StartPage 160
SubjectTerms Bibliographic coupling
Citation analysis
Cocitation
Computer based modeling
Computerized information storage and retrieval
Correlation analysis
Influence
Semantics
Standard deviation
Studies
Visualization
Title Co-Citation Count vs Correlation for Influence Network Visualization
URI https://journals.sagepub.com/doi/full/10.1057/palgrave.ivs.9500049
https://www.proquest.com/docview/237205458
https://search.proquest.com/docview/57560082
https://search.proquest.com/docview/743114324
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8AB8VOEDfCBE5VLEsdxfJwKqCANgbRN4xTZicO6Q4uaNIf99Xt2nMTVCmJcosp1rdTv5fm9vO97D6F3ZaSklFFCpFSaJFQxImlVEREzrU3iJ7J1C06-pYuz5OsFuxhTMZZd0qhZcb2XV_I_UoUxkKthyd5BssOiMACfQb5wBQnD9Z9kPF-TuauxbcnlzbQ1LTg3G4dwsxjCL30bEkPuNTCs6fmyNlTK61EoVz2efeAyTttbkxwQ1mHD2pFDNr_cdpl7rckCjMfUMh_GDNKvS-nSTefLKwfa6V800AFJ5We49r5LjBJOiYm8ukPFH-sI0r2pjT2Nop7ZjLqeAu4EjrpWIreM-25H4tmyrWeC2RhnPMwGiKH7Qb5v-n10EINdyibo4Pjn9x8nXoRuMUHD_-m5lox_2LfOri8zBigeJtC6KaeP0SMXX-DjTlmeoHt69RQ99KpOPkMfPbXBVm1wW2NPbTBoAR7UBju1wTtq8xydff50Ol8Q10yDFLHIGlIUFUTXMo25jkqulaQxD3nFRBYmSjLFMp6FIgylABcvq0RagY2RMa-yTBYMgoIXaLJar_RLhGnBwzIyoYFOk1IISXUpMxoWqVSKSh4g0m9L_rurmZJbrIMnjhy2MXfbGKDDfu9y93TVeWzaJ5msboDeDt-C6TP5LLnS622dQ6SRGhc2QPgPM4x7HJmakwF6b2QyLv-3-3l1l8mH6MH4sByhSbPZ6tfgpzbqjdOuG8-0mI0
link.rule.ids 315,783,787,27938,27939
linkProvider SAGE Publications
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-Citation+Count+vs+Correlation+for+Influence+Network+Visualization&rft.jtitle=Information+visualization&rft.au=Noel%2C+Steven&rft.au=Chu%2C+Chee-Hung+Henry&rft.au=Raghavan%2C+Vijay&rft.date=2003-09-01&rft.pub=SAGE+Publications&rft.issn=1473-8716&rft.eissn=1473-8724&rft.volume=2&rft.issue=3&rft.spage=160&rft.epage=170&rft_id=info:doi/10.1057%2Fpalgrave.ivs.9500049&rft.externalDocID=10.1057_palgrave.ivs.9500049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-8716&client=summon