The Generalized Trust-Region Sub-Problem with Additional Linear Inequality Constraints—Two Convex Quadratic Relaxations and Strong Duality

In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional linear inequality constraints. Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two different c...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 12; no. 8; p. 1369
Main Authors Almaadeed, Temadher A., Taati, Akram, Salahi, Maziar, Hamdi, Abdelouahed
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2020
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym12081369

Cover

Abstract In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional linear inequality constraints. Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two different conditions, that are minimizing a linear objective function over two convex quadratic constraints with additional linear inequality constraints. Then, we discuss cases where the CQRs return the optimal solution of the problem, revealing new conditions under which the underlying problem admits strong Lagrangian duality and enjoys exact semidefinite optimization relaxation. Finally, under the given sufficient conditions, we present necessary and sufficient conditions for global optimality of the problem and obtain a form of S-lemma for a system of two quadratic and a fixed number of linear inequalities.
AbstractList In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional linear inequality constraints. Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two different conditions, that are minimizing a linear objective function over two convex quadratic constraints with additional linear inequality constraints. Then, we discuss cases where the CQRs return the optimal solution of the problem, revealing new conditions under which the underlying problem admits strong Lagrangian duality and enjoys exact semidefinite optimization relaxation. Finally, under the given sufficient conditions, we present necessary and sufficient conditions for global optimality of the problem and obtain a form of S-lemma for a system of two quadratic and a fixed number of linear inequalities.
Author Taati, Akram
Hamdi, Abdelouahed
Almaadeed, Temadher A.
Salahi, Maziar
Author_xml – sequence: 1
  givenname: Temadher A.
  orcidid: 0000-0002-0308-2422
  surname: Almaadeed
  fullname: Almaadeed, Temadher A.
– sequence: 2
  givenname: Akram
  surname: Taati
  fullname: Taati, Akram
– sequence: 3
  givenname: Maziar
  surname: Salahi
  fullname: Salahi, Maziar
– sequence: 4
  givenname: Abdelouahed
  orcidid: 0000-0003-1950-8907
  surname: Hamdi
  fullname: Hamdi, Abdelouahed
BookMark eNptULtOAzEQtBBIBEjFD1iiRAf22Xexyyg8pUhAEuqTY2_A6GKD7SOEig-g5Av5Ei6EAiG22dXuzGhndtCm8w4Q2qfkiDFJjuNyTnMiKCvlBurkpMcyISXf_DVvo26MD6StghS8JB30PrkHfA4OgqrtKxg8CU1M2QjurHd43Eyz6-CnNczxwqZ73DfGpvaiajy0DlTAlw6empablnjgXUxBWZfi59vHZOFXm2d4wTeNMkElq_EIavWiVgoRK2fwOAXv7vDJWmEPbc1UHaH703fR7dnpZHCRDa_OLwf9YaZzKVKmGS0J40yCpsAN7UkuikJJrQojNBG8pwoiTKkZTKlkM6WmkHNCNQhGcyPYLjpY6z4G_9RATNWDb0JrKlY5ZyWRnOd5i6JrlA4-xgCzStv0_fvKZF1RUq1yr37l3nIO_3Aeg52rsPwX_QXX_4kS
CitedBy_id crossref_primary_10_1007_s41980_021_00541_7
crossref_primary_10_1007_s10957_022_02018_x
Cites_doi 10.1287/moor.28.2.246.14485
10.1137/S003614450444556X
10.1137/0904038
10.1137/050644471
10.1137/1.9780898718829
10.1080/10556789308805542
10.1007/s10898-010-9625-6
10.1016/j.orl.2003.12.007
10.1007/s10589-019-00105-w
10.1016/j.orl.2014.12.002
10.1137/S1052623497322735
10.1007/s10589-013-9635-7
10.1137/16M1058200
10.1007/s10107-013-0716-2
10.1137/1.9780898719857
10.1016/j.orl.2011.02.007
10.1137/16M1065197
10.1137/S105262340139001X
10.1137/100791841
10.1007/BF02592331
10.1137/18M1174313
10.1007/s10107-017-1145-4
10.1007/s11590-016-1001-0
10.1007/s10589-016-9867-4
10.1007/s10107-017-1206-8
10.1007/s10107-013-0710-8
10.1137/S105262349928887X
10.1007/s40314-016-0349-1
10.1080/10556780410001647186
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym12081369
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym12081369
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-c31603439ec1e4d1794855a9ca5d8c0847a508d6c3eb193faabe2401ce8312d83
IEDL.DBID 8FG
ISSN 2073-8994
IngestDate Fri Jul 25 12:07:58 EDT 2025
Tue Jul 01 03:25:27 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-c31603439ec1e4d1794855a9ca5d8c0847a508d6c3eb193faabe2401ce8312d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1950-8907
0000-0002-0308-2422
OpenAccessLink https://www.proquest.com/docview/2436094422?pq-origsite=%requestingapplication%
PQID 2436094422
PQPubID 2032326
ParticipantIDs proquest_journals_2436094422
crossref_citationtrail_10_3390_sym12081369
crossref_primary_10_3390_sym12081369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jeyakumar (ref_3) 2010; 20
Pong (ref_22) 2014; 58
Rojas (ref_10) 2001; 11
Jiang (ref_18) 2018; 169
Gould (ref_8) 1999; 9
ref_32
ref_30
Boggs (ref_2) 1995; 4
Ye (ref_11) 2003; 14
ref_16
(ref_17) 2017; 27
Jeyakumar (ref_4) 2011; 39
Locatelli (ref_27) 2015; 43
Taati (ref_24) 2019; 74
Lancaster (ref_31) 2005; 47
Sturm (ref_13) 2003; 28
Adachi (ref_6) 2017; 27
Fortin (ref_7) 2004; 19
Teboulle (ref_19) 1996; 72
Hertog (ref_26) 2014; 143
Bertsimas (ref_5) 2004; 32
(ref_21) 1993; 2
Locatelli (ref_28) 2016; 10
Salahi (ref_25) 2018; 37
Jiang (ref_29) 2019; 29
Feng (ref_20) 2012; 54
Sorensen (ref_9) 1983; 4
Beck (ref_12) 2006; 17
ref_1
Salahi (ref_14) 2017; 66
Jeyakumar (ref_15) 2014; 147
Adachi (ref_23) 2019; 173
Hsia (ref_33) 2014; 10
References_xml – ident: ref_30
– volume: 10
  start-page: 461
  year: 2014
  ident: ref_33
  article-title: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil
  publication-title: Pac. J. Optim.
– volume: 28
  start-page: 246
  year: 2003
  ident: ref_13
  article-title: On cones of nonnegative quadratic functions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– volume: 47
  start-page: 407
  year: 2005
  ident: ref_31
  article-title: Canonical forms for hermitian matrix pairs under strict equivalence and congruence
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444556X
– volume: 4
  start-page: 553
  year: 1983
  ident: ref_9
  article-title: Computing a trust region step
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904038
– volume: 17
  start-page: 844
  year: 2006
  ident: ref_12
  article-title: Strong duality in nonconvex quadratic optimization with two quadratic constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644471
– ident: ref_32
  doi: 10.1137/1.9780898718829
– volume: 2
  start-page: 189
  year: 1993
  ident: ref_21
  article-title: Generalizations of the trust region problem
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
– ident: ref_16
– volume: 54
  start-page: 275
  year: 2012
  ident: ref_20
  article-title: Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-010-9625-6
– volume: 32
  start-page: 510
  year: 2004
  ident: ref_5
  article-title: Robust linear optimization under general norms
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2003.12.007
– volume: 74
  start-page: 195
  year: 2019
  ident: ref_24
  article-title: A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00105-w
– volume: 43
  start-page: 126
  year: 2015
  ident: ref_27
  article-title: Some results for quadratic problems with one or two quadratic constraints
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.12.002
– volume: 9
  start-page: 504
  year: 1999
  ident: ref_8
  article-title: Solving the trust-region subproblem using the Lanczos method
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497322735
– volume: 4
  start-page: 1
  year: 1995
  ident: ref_2
  article-title: Sequential quadratic programming
  publication-title: Math. Program. Numer.
– volume: 58
  start-page: 273
  year: 2014
  ident: ref_22
  article-title: The generalized trust region subproblem
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
– volume: 27
  start-page: 269
  year: 2017
  ident: ref_6
  article-title: Solving the trust region subproblem by a generalized eigenvalue problem
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1058200
– volume: 147
  start-page: 171
  year: 2014
  ident: ref_15
  article-title: Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and robust optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
– ident: ref_1
  doi: 10.1137/1.9780898719857
– volume: 39
  start-page: 109
  year: 2011
  ident: ref_4
  article-title: A robust von-Neumann minimax theorem for zero-sum games under bounded payoff uncertainty
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2011.02.007
– volume: 27
  start-page: 1485
  year: 2017
  ident: ref_17
  article-title: A Second-order cone based approach for solving the trust-region subproblem and its variants
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1065197
– volume: 14
  start-page: 245
  year: 2003
  ident: ref_11
  article-title: New results on quadratic minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
– volume: 20
  start-page: 3384
  year: 2010
  ident: ref_3
  article-title: Strong duality in robust convex programming: Complete characterizations
  publication-title: SIAM J. Optim.
  doi: 10.1137/100791841
– volume: 72
  start-page: 51
  year: 1996
  ident: ref_19
  article-title: Hidden convexity in some nonconvex quadratically constrained quadratic programming
  publication-title: Math. Program.
  doi: 10.1007/BF02592331
– volume: 29
  start-page: 1603
  year: 2019
  ident: ref_29
  article-title: Novel reformulations and efficient algorithms for the generalized trust region subproblem
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1174313
– volume: 169
  start-page: 531
  year: 2018
  ident: ref_18
  article-title: SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1145-4
– volume: 10
  start-page: 1141
  year: 2016
  ident: ref_28
  article-title: Exactness conditions for an SDP relaxation of the extended trust region problem
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1001-0
– volume: 66
  start-page: 223
  year: 2017
  ident: ref_14
  article-title: Local nonglobal minima for solving large-scale extended trust-region subproblems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-016-9867-4
– volume: 173
  start-page: 79
  year: 2019
  ident: ref_23
  article-title: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1206-8
– volume: 143
  start-page: 1
  year: 2014
  ident: ref_26
  article-title: Hidden conic quadratic representation of some nonconvex quadratic optimization problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0710-8
– volume: 11
  start-page: 611
  year: 2001
  ident: ref_10
  article-title: A new matrix-free algorithm for the large-scale trust-region subproblem
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262349928887X
– volume: 37
  start-page: 395
  year: 2018
  ident: ref_25
  article-title: An efficient algorithm for solving the generalized trust region subproblem
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-016-0349-1
– volume: 19
  start-page: 41
  year: 2004
  ident: ref_7
  article-title: The trust region subproblem and semidefinite programming
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780410001647186
SSID ssj0000505460
Score 2.1714013
Snippet In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1369
SubjectTerms Inequality
Linear functions
Optimization
Quadratic equations
Title The Generalized Trust-Region Sub-Problem with Additional Linear Inequality Constraints—Two Convex Quadratic Relaxations and Strong Duality
URI https://www.proquest.com/docview/2436094422
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu3BBjIcYjCkHDoAUsTZtl54Qj42BBOKxSbtVaZIiJOiAbsA48QM48gv5JdhtxkNCHNNGlVo7_mzX9kfIuu-rMBEKlBfQiXnNRDMRh5KFgWrqphaOMticfHIadHrecd_v24RbZssqJzYxN9R6oDBHvu16PIBQxHPdnbt7hqxR-HfVUmhMk7IDSIN6LtqHXzkWZGnzgkbRlschut_OxreOCyjIscD5JxD9tsM5uLTnyKz1CuluIcYKmTLpPKnYc5fRDTscenOBvIFcqV1evxhNu9g0wS4M1hVTMAPsrKCIoZhhpbtaXxfZPgpRJ2g1PUpN0Ug5pkjWmVNEDLOP1_fu0wCvPJpnej6SGjVDUayVey6SelSmml5i5vyKHhRPWCS9dqu732GWUYEpNxRDpjiySoMPYpRjPI2HUfi-DJX0tVANQCoJDpsOFAcTHvJEytgA5IPABHdcLfgSKaWD1CwTKptJmJjEuFr6ngbgN0EspYo5RL1xGMgq2Zp83kjZceP4SjcRhB0oi-iHLKpk_WvzXTFl4-9ttYmcInvUsuhbMVb-v71KZlwMlvPqvRopDR9GZg08imFcz9WmTsp7rdOzC1gd9p1P8pTSvQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuqC0gCgXmUCRAsrprJ9n4gFDpj3b7syplK_UWHNtBlSBbmi3tcuIBOPIcfSiepDPrpC0S4tZjEstKPJ_nLzP-AJbj2OoitQResk4i6hZOpLk2Qie267ou7VjPzcm7g6R3EG0dxoczcNH0wnBZZaMTp4rajSznyFdkpBIKRSIp3x1_E8waxX9XGwqNAIttPzmjkK16218n-b6UcnNjuNYTNauAsFKnY2EVMyuTHfa24yPHgEzj2GhrYpfaNmlrQ06LS6wiNaZVYUzuyezRS6eqI12qaN47MBtxR2sLZt9vDPb2r7I6zAsXJe3QCKiUbq9Uk68dSXZXcUn1TdP3t-afmrPNObhf-6G4GoAzDzO-XID5eqdX-Ko-jvr1A_hFSML68uiHdzjkNg2x77mSGUnxiL1ASoOc08VV545CfhEpzqUFw37pQ-vmBJkedEpKMa7-_Pw9PBvxne_-HD-cGsdYtMjVeechjYimdPiRc_WfcT3M8BAObmW1H0GrHJX-MaDpFrrwhZfOxJEjV8MnuTE2VxRn5zoxi_CmWd7M1gec8yd9ySjQYVlkN2SxCMtXg4_DuR7_HrbUyCmrN3eVXUPxyf8fv4C7veHuTrbTH2w_hXuSQ_Vp7eAStMYnp_4Z-TPj_HkNIoRPt43bS1jiDfY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dThQxFG4QEuONEdSIopwLTNSk2d12ftoLY4jLwooS1CXhbui0HUOis8AswnrlA3jJ0_A4PAnnTGcAE-MdlzPTNGnP1_M35_RjbCWOrS6URfCideJRWjiucm24TmzqUqd61lNz8qetZGMn-rAb786w87YXhsoqW51YK2o3tpQj74hIJhiKREJ0iqYsYrs_eHdwyIlBiv60tnQaASKbfnqC4Vv1dthHWb8UYrA2er_BG4YBboVWE24lsSyjTfa25yNH4FRxbLQ1sVO2i5rboAPjEitRpWlZGJN7NIG4ACV7wimJ895hc6lMNQV-arB-ld8hhrgo6YaWQCl1t1NNf_QEWmBJxdU3jeDfNqA2bIMH7H7jkcJqgNA8m_HlAptvznwFr5qLqV8_ZH8QU9A87v_yDkbUsMG_eKppBlRBfDvQ0wBld2HVuf2QaQSMeHG7YFj60MQ5BSIKrekpJtXF77PRyZje_PSn8PnYOEKlBarTOw0JRTClg6-Utf8G_TDDI7ZzK3v9mM2W49I_YWDSQhe-8MKZOHLodPgkN8bmEiPuXCdmkb1ptzezzVXntKTvGYY8JIvshiwW2crV4INww8e_hy21csqaY15l16B8-v_Py-wuojX7ONzafMbuCYrZ6yLCJTY7OTr2z9GxmeQvagQB27ttyF4CyKMQxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Generalized+Trust-Region+Sub-Problem+with+Additional+Linear+Inequality+Constraints%E2%80%94Two+Convex+Quadratic+Relaxations+and+Strong+Duality&rft.jtitle=Symmetry+%28Basel%29&rft.au=Almaadeed%2C+Temadher+A&rft.au=Taati%2C+Akram&rft.au=Salahi%2C+Maziar&rft.au=Hamdi%2C+Abdelouahed&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=12&rft.issue=8&rft.spage=1369&rft_id=info:doi/10.3390%2Fsym12081369&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon