The density of imaginary multiplicative chaos is positive
Consider a log-correlated Gaussian field $\Gamma$ and its associated imaginary multiplicative chaos $:e^{i \beta \Gamma}:$ where $\beta$ is a real parameter. In our companion paper, we showed that for any nonzero test function $f$, the law of $\int f :e^{i \beta \Gamma}:$ possesses a smooth density...
Saved in:
Published in | Electronic communications in probability Vol. 29; no. none |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Institute of Mathematical Statistics (IMS)
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1083-589X 1083-589X |
DOI | 10.1214/24-ECP630 |
Cover
Loading…
Abstract | Consider a log-correlated Gaussian field $\Gamma$ and its associated imaginary multiplicative chaos $:e^{i \beta \Gamma}:$ where $\beta$ is a real parameter. In our companion paper, we showed that for any nonzero test function $f$, the law of $\int f :e^{i \beta \Gamma}:$ possesses a smooth density with respect to Lebesgue measure on $\mathbb{C}$. In this note, we show that this density is strictly positive everywhere on $\mathbb{C}$. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces. |
---|---|
AbstractList | Consider a log-correlated Gaussian field $\Gamma$ and its associated imaginary multiplicative chaos $:e^{i \beta \Gamma}:$ where $\beta$ is a real parameter. In our companion paper, we showed that for any nonzero test function $f$, the law of $\int f :e^{i \beta \Gamma}:$ possesses a smooth density with respect to Lebesgue measure on $\mathbb{C}$. In this note, we show that this density is strictly positive everywhere on $\mathbb{C}$. Our simple and direct strategy could be useful for studying other functionals on Gaussian spaces. |
Author | Junnila, Janne Aru, Juhan Jego, Antoine |
Author_xml | – sequence: 1 givenname: Juhan surname: Aru fullname: Aru, Juhan organization: École Polytechnique Fédérale de Lausanne, Switzerland – sequence: 2 givenname: Antoine surname: Jego fullname: Jego, Antoine organization: École Polytechnique Fédérale de Lausanne, Switzerland – sequence: 3 givenname: Janne surname: Junnila fullname: Junnila, Janne organization: University of Helsinki, Finland |
BackLink | https://hal.science/hal-05143010$$DView record in HAL |
BookMark | eNptkE9Lw0AQxRepYFs9-A326iF29l-aHEupVijooYK3ZbLZ2JU0G3ZjId_elEoV8TTD4_eGeW9CRo1vLCG3DO4ZZ3LGZbJavqQCLsiYQSYSleVvo1_7FZnE-AEAPFNqTPLtztLSNtF1PfUVdXt8dw2Gnu4_6861tTPYuYOlZoc-Uhdp6wd2UK7JZYV1tDffc0peH1bb5TrZPD8-LRebxPA865KsAMELhaKQSgqZCgSURWnmIA2mKJmaK-RVwUqBxphSIueQWiPmKKEAJabk7nR3h7Vuw_Bg6LVHp9eLjT5qoJgUwODAflgTfIzBVmcDA33sR3OpT_0M7OwPa1w3ZPVNF9DV_zi-AGTlaKc |
CitedBy_id | crossref_primary_10_1214_25_EJP1276 |
Cites_doi | 10.1007/s11118-012-9324-7 10.1215/00127094-2019-0045 10.1088/1751-8113/41/37/372001 10.1214/19-AAP1553 10.1007/s00440-022-01135-y 10.1016/j.jfa.2008.11.016 10.1007/s00220-015-2362-4 |
ContentType | Journal Article |
Copyright | Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1214/24-ECP630 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1083-589X |
ExternalDocumentID | oai_HAL_hal_05143010v1 10_1214_24_ECP630 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAYXX ACGFO ACIPV AENEX AFFOW ALMA_UNASSIGNED_HOLDINGS CITATION E3Z EJD GR0 GROUPED_DOAJ KQ8 M~E OK1 OVT P2P RBV REM RNS RPE TR2 XSB 1XC VOOES |
ID | FETCH-LOGICAL-c298t-8b032b5a3b4543463a0a4bdc704ca6a41575a2fb1d3acccd4a2206ec37a40b053 |
ISSN | 1083-589X |
IngestDate | Thu Jul 10 08:56:16 EDT 2025 Tue Jul 01 01:29:32 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | none |
Language | English |
License | Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c298t-8b032b5a3b4543463a0a4bdc704ca6a41575a2fb1d3acccd4a2206ec37a40b053 |
ORCID | 0000-0001-9670-670X |
OpenAccessLink | http://dx.doi.org/10.1214/24-ECP630 |
ParticipantIDs | hal_primary_oai_HAL_hal_05143010v1 crossref_primary_10_1214_24_ECP630 crossref_citationtrail_10_1214_24_ECP630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electronic communications in probability |
PublicationYear | 2024 |
Publisher | Institute of Mathematical Statistics (IMS) |
Publisher_xml | – name: Institute of Mathematical Statistics (IMS) |
References | 11 1 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 2 – ident: 5 – ident: 4 doi: 10.1007/s11118-012-9324-7 – ident: 11 doi: 10.1215/00127094-2019-0045 – ident: 1 – ident: 6 doi: 10.1088/1751-8113/41/37/372001 – ident: 7 doi: 10.1214/19-AAP1553 – ident: 3 doi: 10.1007/s00440-022-01135-y – ident: 9 doi: 10.1016/j.jfa.2008.11.016 – ident: 10 – ident: 8 doi: 10.1007/s00220-015-2362-4 |
SSID | ssj0002855 |
Score | 2.3069265 |
Snippet | Consider a log-correlated Gaussian field $\Gamma$ and its associated imaginary multiplicative chaos $:e^{i \beta \Gamma}:$ where $\beta$ is a real parameter.... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
SubjectTerms | Mathematics |
Title | The density of imaginary multiplicative chaos is positive |
URI | https://hal.science/hal-05143010 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG58XPRgfMZ3GuPBS3Xpdh8cjcEQIsYDJt42bbcrJMgaQRI9-NudPuiCcFAvGzJsu9Cv25lOv5lB6DwKioLHXJAolAlhvBAErGpFeE5jnc23YEpvFNv3cfORtZ6ip6qKo4kuGYlL-bkwruQ_qIIMcNVRsn9A1ncKAvgM-MIVEIbrrzHONQPd0ip6L7rkkKbBOZqg8ceNlY7uLYe6dLmlaI1n6D-NqhCOnI4WsQTzN3jfDX_2o5oa7zaco1tNrJZ6Ll0qgnLqoL4F1nGv79i4Ayd3LgbKplwMdlUEO41Eqal5C0pjgcwtpc55YafMoLT9zi3StMZ0HAojjZuH2J3KzCTC_qGgPG1Qb1igcUZZZpsuo1WaJOZ4vv3V8BqYpqbarf-JLqMUNL3yT52xQ5a7Eze6MSs6m2jD7QfwtQV3Cy2pwTZab_tkusMdVAeYsYMZlwX2MONZmLGBGfeGeALzLnq8bXRumsRVvCCS1tMRSUUQUhHxUDAd8huHPOBM5DIJmIQ3CoytJOK0ELU85FLKnHFKg1jJMOEsELCe7qEVPez7CNMkj5QI4rQucqYSxesyZBLsXVBuYJbyA3Qx-f-ZdOngdVWSfjY3ygfozN_6anOgLLwJBtF_r7OWN6_vMi3TKfZBjwTj2uFvejpCa9UkPEYro7d3dQKW30icGo_JqQH7GxFuW8g |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+density+of+imaginary+multiplicative+chaos+is+positive&rft.jtitle=Electronic+communications+in+probability&rft.au=Aru%2C+Juhan&rft.au=Jego%2C+Antoine&rft.au=Junnila%2C+Janne&rft.date=2024-01-01&rft.issn=1083-589X&rft.eissn=1083-589X&rft.volume=29&rft.issue=none&rft_id=info:doi/10.1214%2F24-ECP630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1214_24_ECP630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-589X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-589X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-589X&client=summon |