Estimating the Variance of Estimator of the Latent Factor Linear Mixed Model Using Supplemented Expectation-Maximization Algorithm
This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the mod...
Saved in:
Published in | Symmetry (Basel) Vol. 13; no. 7; p. 1286 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium. |
---|---|
AbstractList | This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium. |
Author | Saefuddin, Asep Notodiputro, Khairil Anwar Toharudin, Toni Angraini, Yenni Folmer, Henk |
Author_xml | – sequence: 1 givenname: Yenni orcidid: 0000-0003-3186-2378 surname: Angraini fullname: Angraini, Yenni – sequence: 2 givenname: Khairil Anwar surname: Notodiputro fullname: Notodiputro, Khairil Anwar – sequence: 3 givenname: Henk surname: Folmer fullname: Folmer, Henk – sequence: 4 givenname: Asep surname: Saefuddin fullname: Saefuddin, Asep – sequence: 5 givenname: Toni orcidid: 0000-0001-6077-0881 surname: Toharudin fullname: Toharudin, Toni |
BookMark | eNptkE1PwzAMhiM0JMbHiT8QiSMqJE3bNMdp2gBpEwc-rlWWOlumtilJJg2O_HJSxgEhfImd97Etv6do1NkOELqk5IYxQW79e0sZ4TQtiyM0TglnSSlENvqVn6AL77ckRk7yrCBj9DnzwbQymG6Nwwbwq3RGdgqw1fhHsm4oBnEhA3QBz6UaPhemA-nw0uyhxktbQ4Nf_DDnadf3DbQRjcJs34MKcYHtkqXcm9Z8fBd40qytM2HTnqNjLRsPFz_vGXqZz56n98ni8e5hOlkkKhVlSPhKa56TFBjIopZAKEDBa1rzgslVKeKRIpVUKEmylaaUCc1EnpYgtFaZytgZujrM7Z1924EP1dbuXBdXVmmeZ5wXJSWRuj5QylnvHeiqd9EF915RUg0-V798jjT9QytzODY4aZp_e74AreyEuw |
CitedBy_id | crossref_primary_10_3390_sym15051103 |
Cites_doi | 10.3390/sym13040657 10.1080/01621459.1991.10475130 10.1080/00273170902794255 10.1348/000711007X249603 10.1177/0013164412465875 10.2307/1386767 10.1093/biomet/81.4.633 10.1093/biomet/80.2.267 10.3390/sym12111877 10.1044/2015_JSLHR-S-14-0095 10.1093/biomet/85.4.755 10.1002/9780470191613 10.1080/00273171.2013.836621 10.1111/j.1467-9574.2007.00378.x 10.1002/9781119013563 10.1002/sim.5825 10.1007/978-3-531-18898-0 10.1525/9780520325883-036 10.1111/j.2517-6161.1977.tb01600.x 10.1002/sim.7347 10.1080/23311908.2017.1279435 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.3390/sym13071286 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2073-8994 |
ExternalDocumentID | 10_3390_sym13071286 |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c298t-7bff7502e3ea6dae01ee67d1d763ab8920792a19ca04bf1139f39528e9ffc4c43 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Jul 25 11:48:21 EDT 2025 Tue Jul 01 03:25:37 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-7bff7502e3ea6dae01ee67d1d763ab8920792a19ca04bf1139f39528e9ffc4c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3186-2378 0000-0001-6077-0881 |
OpenAccessLink | https://www.proquest.com/docview/2554776810?pq-origsite=%requestingapplication% |
PQID | 2554776810 |
PQPubID | 2032326 |
ParticipantIDs | proquest_journals_2554776810 crossref_primary_10_3390_sym13071286 crossref_citationtrail_10_3390_sym13071286 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Meng (ref_25) 1995; 5 Angraini (ref_23) 2014; 49 Wang (ref_3) 2017; 36 Billiet (ref_19) 1995; 34 ref_14 Toharudin (ref_21) 2008; 62 Meng (ref_24) 1993; 80 ref_10 Tian (ref_9) 2012; 73 ref_18 Meng (ref_6) 1991; 86 ref_17 ref_16 ref_15 Cai (ref_7) 2008; 61 Orchard (ref_12) 1972; Volume 1 Liu (ref_28) 1998; 85 Cai (ref_8) 2009; 44 Pritikin (ref_11) 2017; 4 ref_22 ref_20 Kondaurova (ref_2) 2015; 58 Dempster (ref_13) 1977; 39 ref_26 An (ref_1) 2013; 32 Liu (ref_27) 1994; 81 ref_5 ref_4 |
References_xml | – ident: ref_10 doi: 10.3390/sym13040657 – volume: 86 start-page: 899 year: 1991 ident: ref_6 article-title: Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1991.10475130 – volume: 44 start-page: 281 year: 2009 ident: ref_8 article-title: Covariance Structure Model Fit Testing Under Missing Data: An Application of the Supplemented EM Algorithm Covariance Structure Model Fit Testing Under Missing Data: An Application of the Supplemented EM Algorithm publication-title: Multivar. Behav. Res. doi: 10.1080/00273170902794255 – volume: 61 start-page: 309 year: 2008 ident: ref_7 article-title: SEM of another flavour: Two new applications of the supplemented EM algorithm publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711007X249603 – volume: 73 start-page: 412 year: 2012 ident: ref_9 article-title: Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling: An Evaluation and a New Proposal publication-title: Educ. Psychol. Meas doi: 10.1177/0013164412465875 – volume: 34 start-page: 224 year: 1995 ident: ref_19 article-title: Church Involvement, Individualism, and Ethnic Prejudice among Flemish Roman Catholics: New Evidence of a Moderating Effect publication-title: J. Sci. Study Relig. doi: 10.2307/1386767 – volume: 81 start-page: 633 year: 1994 ident: ref_27 article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika doi: 10.1093/biomet/81.4.633 – volume: 80 start-page: 267 year: 1993 ident: ref_24 article-title: Maximum likelihood estimation via the ECM algorithm: A general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – ident: ref_26 doi: 10.3390/sym12111877 – volume: 58 start-page: 590 year: 2015 ident: ref_2 article-title: Affective Properties of Mothers’ Speech to Infants with Hearing Impairment and Cochlear Implants publication-title: J. Speech Lang. Hear. Res. doi: 10.1044/2015_JSLHR-S-14-0095 – ident: ref_16 – volume: 85 start-page: 755 year: 1998 ident: ref_28 article-title: Parameter Expansion to Accelerate EM: The PX-EM Algorithm publication-title: Biometrika doi: 10.1093/biomet/85.4.755 – ident: ref_5 doi: 10.1002/9780470191613 – ident: ref_18 – volume: 49 start-page: 41 year: 2014 ident: ref_23 article-title: The Relationships between Individualism, Nationalism, Ethnocentrism, and Authoritarianism in Flanders: A Continuous Time-Structural Equation Modeling Approach publication-title: Multivar. Behav. Res. doi: 10.1080/00273171.2013.836621 – volume: 62 start-page: 83 year: 2008 ident: ref_21 article-title: Assessing the relationships between Nationalism, Ethnocentrism, and Individualism in Flanders using Bergstrom’s approximate discrete model publication-title: Stat. Neerl. doi: 10.1111/j.1467-9574.2007.00378.x – volume: 5 start-page: 55 year: 1995 ident: ref_25 article-title: Maximum Likelihood Estimation via the ECM Algorithm: Computing The Asymptotic Variance publication-title: Stat. Sin. – ident: ref_4 – ident: ref_14 doi: 10.1002/9781119013563 – volume: 32 start-page: 4229 year: 2013 ident: ref_1 article-title: A latent factor linear mixed model for high-dimensional longitudinal data analysis publication-title: Stat. Med. doi: 10.1002/sim.5825 – ident: ref_22 doi: 10.1007/978-3-531-18898-0 – volume: Volume 1 start-page: 697 year: 1972 ident: ref_12 article-title: A Missing Information Principle: Theory and Applications publication-title: Theory of Statistics doi: 10.1525/9780520325883-036 – ident: ref_15 – volume: 39 start-page: 1 year: 1977 ident: ref_13 article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm A publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 36 start-page: 3244 year: 2017 ident: ref_3 article-title: Multidimensional latent trait linear mixed model: An application in clinical studies with multivariate longitudinal outcomes publication-title: Stat. Med. doi: 10.1002/sim.7347 – ident: ref_17 – volume: 4 start-page: 1 year: 2017 ident: ref_11 article-title: A comparison of parameter covariance estimation methods for item response models in an expectation-maximization framework publication-title: Cogent Psychol. doi: 10.1080/23311908.2017.1279435 – ident: ref_20 |
SSID | ssj0000505460 |
Score | 2.1994977 |
Snippet | This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1286 |
SubjectTerms | Algorithms Dimensional changes Estimates Mathematical models Matrices (mathematics) Maximization Normal distribution Optimization Regression coefficients Simulation Statistical analysis Variables Variance |
Title | Estimating the Variance of Estimator of the Latent Factor Linear Mixed Model Using Supplemented Expectation-Maximization Algorithm |
URI | https://www.proquest.com/docview/2554776810 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXryI9YGPWnLwoEJwX90kJ6nSKmKLiEpvS54qtFttV6hXf7mTbVoriMcwOWUyk28mM_MhdES1aWprFBERT0kijSZgRYpIrpkCQK4pdd3I3V56_Zjc9Jt9n3Cb-LLKuU8sHbUeKZcjPwPom1Dqpmedv70Txxrlflc9hcYqqoILZqyCqhft3t39IsvieNqSNJg15sUQ359NPofgtmlYdk8vP0W_PXH5vHQ20LrHhbg1U2QNrZh8E9W85U3wsR8PfbKFvtpglQ5n5s8Y0Bt-gmjXqQ6PLPai0dgtnPAWoGRe4E7JqoMh8ISLjbuvU6OxY0Eb4LJkAJfcnmWiEARu-rGa_dCTrpi-Dn2rJm4NnuFEipfhNnrstB8ur4lnUiAq4qwgVFoL0CAysRGpFiYIjUmpDjV4FyEZjwLKIxFyJYJE2hBQoY15M2KGW6sSlcQ7qJKPcrOLsAyb0jFTR0rwJGCWpUrGRnI4aRGzQO-h0_mhZsqPGXdsF4MMwg2ngWxJA3voaLH5bTZd4-9t9bl2Mm9ik-znQuz_Lz5Aa5ErRClrbOuoUow_zCEgiUI20CrrXDX8pYHVVT_8BmYkzxM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoLKtCqUEp9oBKtZJE43jg-VAi1LEvZ5QQVt9RPQNrNUjZV4dofxG9kxkkolSpuHKOJchjP4xtnZj5CNqXzPRe8ZZqrnAnjHQMvsswoV1gA5E5KnEYeHeWDE_HttHc6R267WRhsq-xiYgzUbmrxjnwboK-QErdn7Vz-ZMgahX9XOwqNxiwO_c1vKNlmnw--wvl-4Ly_d_xlwFpWAWa5KmomTQiQJrnPvM6d9knqfS5d6sDTtCkUT6TiOlVWJ8KEFBBSyFSPF16FYIUVGXz3GVkQGWRynEzv79_f6SArnMiTZgwQ5Mn27GYCSUKmcVb7YeL7N-7HZNZ_SRZbFEp3G7NZInO-WiZLrZ_P6Fa7jPrjCvmzBzEAUW11RgEr0u9QW6Oh0GmgrWh6hQ8oHAJwrWrajxw-FMpc0BcdXVx7R5FzbUxjgwKNTKLxWhIEuGvZNv0AbKSvLybtYCjdHZ-B_uvzySty8iQafk3mq2nl3xBq0p5BHmxutRJJEYrcmswbBZrWWZG4VfKpU2pp26XmyK0xLqG4wRMoH5zAKtm8f_my2eXx_9fWu9MpW4eelX_Nb-1x8XvyfHA8GpbDg6PDt-QFxxaY2N27Tubrq1_-HWCY2mxEw6Hkx1Nb6h3m2Qlt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhfjPgRUcR9wERNmmu3vW73wRiUu4BwF2LE8Fb3E0juesjVCK_8Wfx1zLRbxMT4xmMzTR_mY-c325n5AWwI6wbWOxMpLvMo085GGEUm0tIWBgG5FYKmkceTfPsg-3I4OFyCq24WhtoquzOxOajt3NAdeR-hbyYEbc_q-9AWsb81-nj6MyIGKfrT2tFptC6y6y5-Y_m2-LCzhbZ-w_lo-O3zdhQYBiLDZVFHQnuPKZO71KncKhcnzuXCJhajTulC8lhIrhJpVJxpnyBa8qkc8MJJ701mshS_ew-WBVVFPVj-NJzsf7254SGOuCyP26HANJVxf3Exw5QhkmZy-3Ya_DsLNKlt9AgeBkzKNlsnWoElVz2GlRD1C_Y2rKZ-9wQuh3giEMatjhgiR_YdK21yGzb3LIjmZ_RAwj2EsVXNRg2jD8OiFzXGxifnzjJiYJuypl2BNbyizSUlCmjzsmm7A6KxOj-ZhTFRtjk9QgvUx7OncHAnOn4GvWpeuefAdDLQxIrNjZJZXPgiNzp1WqKmVVrEdhXed0otTVhxTkwb0xJLHbJAecsCq7Bx8_Jpu9nj36-tddYpQ3gvyj_O-OL_4tdwH7203NuZ7L6EB5z6YZpW3zXo1We_3CsENLVeD57D4MddO-s1RpgO_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Variance+of+Estimator+of+the+Latent+Factor+Linear+Mixed+Model+Using+Supplemented+Expectation-Maximization+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Angraini%2C+Yenni&rft.au=Khairil+Anwar+Notodiputro&rft.au=Folmer%2C+Henk&rft.au=Saefuddin%2C+Asep&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=13&rft.issue=7&rft.spage=1286&rft_id=info:doi/10.3390%2Fsym13071286&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |