Estimating the Variance of Estimator of the Latent Factor Linear Mixed Model Using Supplemented Expectation-Maximization Algorithm

This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the mod...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 13; no. 7; p. 1286
Main Authors Angraini, Yenni, Notodiputro, Khairil Anwar, Folmer, Henk, Saefuddin, Asep, Toharudin, Toni
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium.
AbstractList This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium.
Author Saefuddin, Asep
Notodiputro, Khairil Anwar
Toharudin, Toni
Angraini, Yenni
Folmer, Henk
Author_xml – sequence: 1
  givenname: Yenni
  orcidid: 0000-0003-3186-2378
  surname: Angraini
  fullname: Angraini, Yenni
– sequence: 2
  givenname: Khairil Anwar
  surname: Notodiputro
  fullname: Notodiputro, Khairil Anwar
– sequence: 3
  givenname: Henk
  surname: Folmer
  fullname: Folmer, Henk
– sequence: 4
  givenname: Asep
  surname: Saefuddin
  fullname: Saefuddin, Asep
– sequence: 5
  givenname: Toni
  orcidid: 0000-0001-6077-0881
  surname: Toharudin
  fullname: Toharudin, Toni
BookMark eNptkE1PwzAMhiM0JMbHiT8QiSMqJE3bNMdp2gBpEwc-rlWWOlumtilJJg2O_HJSxgEhfImd97Etv6do1NkOELqk5IYxQW79e0sZ4TQtiyM0TglnSSlENvqVn6AL77ckRk7yrCBj9DnzwbQymG6Nwwbwq3RGdgqw1fhHsm4oBnEhA3QBz6UaPhemA-nw0uyhxktbQ4Nf_DDnadf3DbQRjcJs34MKcYHtkqXcm9Z8fBd40qytM2HTnqNjLRsPFz_vGXqZz56n98ni8e5hOlkkKhVlSPhKa56TFBjIopZAKEDBa1rzgslVKeKRIpVUKEmylaaUCc1EnpYgtFaZytgZujrM7Z1924EP1dbuXBdXVmmeZ5wXJSWRuj5QylnvHeiqd9EF915RUg0-V798jjT9QytzODY4aZp_e74AreyEuw
CitedBy_id crossref_primary_10_3390_sym15051103
Cites_doi 10.3390/sym13040657
10.1080/01621459.1991.10475130
10.1080/00273170902794255
10.1348/000711007X249603
10.1177/0013164412465875
10.2307/1386767
10.1093/biomet/81.4.633
10.1093/biomet/80.2.267
10.3390/sym12111877
10.1044/2015_JSLHR-S-14-0095
10.1093/biomet/85.4.755
10.1002/9780470191613
10.1080/00273171.2013.836621
10.1111/j.1467-9574.2007.00378.x
10.1002/9781119013563
10.1002/sim.5825
10.1007/978-3-531-18898-0
10.1525/9780520325883-036
10.1111/j.2517-6161.1977.tb01600.x
10.1002/sim.7347
10.1080/23311908.2017.1279435
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym13071286
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym13071286
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c298t-7bff7502e3ea6dae01ee67d1d763ab8920792a19ca04bf1139f39528e9ffc4c43
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Fri Jul 25 11:48:21 EDT 2025
Tue Jul 01 03:25:37 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-7bff7502e3ea6dae01ee67d1d763ab8920792a19ca04bf1139f39528e9ffc4c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3186-2378
0000-0001-6077-0881
OpenAccessLink https://www.proquest.com/docview/2554776810?pq-origsite=%requestingapplication%
PQID 2554776810
PQPubID 2032326
ParticipantIDs proquest_journals_2554776810
crossref_primary_10_3390_sym13071286
crossref_citationtrail_10_3390_sym13071286
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Meng (ref_25) 1995; 5
Angraini (ref_23) 2014; 49
Wang (ref_3) 2017; 36
Billiet (ref_19) 1995; 34
ref_14
Toharudin (ref_21) 2008; 62
Meng (ref_24) 1993; 80
ref_10
Tian (ref_9) 2012; 73
ref_18
Meng (ref_6) 1991; 86
ref_17
ref_16
ref_15
Cai (ref_7) 2008; 61
Orchard (ref_12) 1972; Volume 1
Liu (ref_28) 1998; 85
Cai (ref_8) 2009; 44
Pritikin (ref_11) 2017; 4
ref_22
ref_20
Kondaurova (ref_2) 2015; 58
Dempster (ref_13) 1977; 39
ref_26
An (ref_1) 2013; 32
Liu (ref_27) 1994; 81
ref_5
ref_4
References_xml – ident: ref_10
  doi: 10.3390/sym13040657
– volume: 86
  start-page: 899
  year: 1991
  ident: ref_6
  article-title: Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1991.10475130
– volume: 44
  start-page: 281
  year: 2009
  ident: ref_8
  article-title: Covariance Structure Model Fit Testing Under Missing Data: An Application of the Supplemented EM Algorithm Covariance Structure Model Fit Testing Under Missing Data: An Application of the Supplemented EM Algorithm
  publication-title: Multivar. Behav. Res.
  doi: 10.1080/00273170902794255
– volume: 61
  start-page: 309
  year: 2008
  ident: ref_7
  article-title: SEM of another flavour: Two new applications of the supplemented EM algorithm
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711007X249603
– volume: 73
  start-page: 412
  year: 2012
  ident: ref_9
  article-title: Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling: An Evaluation and a New Proposal
  publication-title: Educ. Psychol. Meas
  doi: 10.1177/0013164412465875
– volume: 34
  start-page: 224
  year: 1995
  ident: ref_19
  article-title: Church Involvement, Individualism, and Ethnic Prejudice among Flemish Roman Catholics: New Evidence of a Moderating Effect
  publication-title: J. Sci. Study Relig.
  doi: 10.2307/1386767
– volume: 81
  start-page: 633
  year: 1994
  ident: ref_27
  article-title: The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
  doi: 10.1093/biomet/81.4.633
– volume: 80
  start-page: 267
  year: 1993
  ident: ref_24
  article-title: Maximum likelihood estimation via the ECM algorithm: A general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– ident: ref_26
  doi: 10.3390/sym12111877
– volume: 58
  start-page: 590
  year: 2015
  ident: ref_2
  article-title: Affective Properties of Mothers’ Speech to Infants with Hearing Impairment and Cochlear Implants
  publication-title: J. Speech Lang. Hear. Res.
  doi: 10.1044/2015_JSLHR-S-14-0095
– ident: ref_16
– volume: 85
  start-page: 755
  year: 1998
  ident: ref_28
  article-title: Parameter Expansion to Accelerate EM: The PX-EM Algorithm
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.755
– ident: ref_5
  doi: 10.1002/9780470191613
– ident: ref_18
– volume: 49
  start-page: 41
  year: 2014
  ident: ref_23
  article-title: The Relationships between Individualism, Nationalism, Ethnocentrism, and Authoritarianism in Flanders: A Continuous Time-Structural Equation Modeling Approach
  publication-title: Multivar. Behav. Res.
  doi: 10.1080/00273171.2013.836621
– volume: 62
  start-page: 83
  year: 2008
  ident: ref_21
  article-title: Assessing the relationships between Nationalism, Ethnocentrism, and Individualism in Flanders using Bergstrom’s approximate discrete model
  publication-title: Stat. Neerl.
  doi: 10.1111/j.1467-9574.2007.00378.x
– volume: 5
  start-page: 55
  year: 1995
  ident: ref_25
  article-title: Maximum Likelihood Estimation via the ECM Algorithm: Computing The Asymptotic Variance
  publication-title: Stat. Sin.
– ident: ref_4
– ident: ref_14
  doi: 10.1002/9781119013563
– volume: 32
  start-page: 4229
  year: 2013
  ident: ref_1
  article-title: A latent factor linear mixed model for high-dimensional longitudinal data analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.5825
– ident: ref_22
  doi: 10.1007/978-3-531-18898-0
– volume: Volume 1
  start-page: 697
  year: 1972
  ident: ref_12
  article-title: A Missing Information Principle: Theory and Applications
  publication-title: Theory of Statistics
  doi: 10.1525/9780520325883-036
– ident: ref_15
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_13
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm A
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 36
  start-page: 3244
  year: 2017
  ident: ref_3
  article-title: Multidimensional latent trait linear mixed model: An application in clinical studies with multivariate longitudinal outcomes
  publication-title: Stat. Med.
  doi: 10.1002/sim.7347
– ident: ref_17
– volume: 4
  start-page: 1
  year: 2017
  ident: ref_11
  article-title: A comparison of parameter covariance estimation methods for item response models in an expectation-maximization framework
  publication-title: Cogent Psychol.
  doi: 10.1080/23311908.2017.1279435
– ident: ref_20
SSID ssj0000505460
Score 2.1994977
Snippet This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1286
SubjectTerms Algorithms
Dimensional changes
Estimates
Mathematical models
Matrices (mathematics)
Maximization
Normal distribution
Optimization
Regression coefficients
Simulation
Statistical analysis
Variables
Variance
Title Estimating the Variance of Estimator of the Latent Factor Linear Mixed Model Using Supplemented Expectation-Maximization Algorithm
URI https://www.proquest.com/docview/2554776810
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXryI9YGPWnLwoEJwX90kJ6nSKmKLiEpvS54qtFttV6hXf7mTbVoriMcwOWUyk28mM_MhdES1aWprFBERT0kijSZgRYpIrpkCQK4pdd3I3V56_Zjc9Jt9n3Cb-LLKuU8sHbUeKZcjPwPom1Dqpmedv70Txxrlflc9hcYqqoILZqyCqhft3t39IsvieNqSNJg15sUQ359NPofgtmlYdk8vP0W_PXH5vHQ20LrHhbg1U2QNrZh8E9W85U3wsR8PfbKFvtpglQ5n5s8Y0Bt-gmjXqQ6PLPai0dgtnPAWoGRe4E7JqoMh8ISLjbuvU6OxY0Eb4LJkAJfcnmWiEARu-rGa_dCTrpi-Dn2rJm4NnuFEipfhNnrstB8ur4lnUiAq4qwgVFoL0CAysRGpFiYIjUmpDjV4FyEZjwLKIxFyJYJE2hBQoY15M2KGW6sSlcQ7qJKPcrOLsAyb0jFTR0rwJGCWpUrGRnI4aRGzQO-h0_mhZsqPGXdsF4MMwg2ngWxJA3voaLH5bTZd4-9t9bl2Mm9ik-znQuz_Lz5Aa5ErRClrbOuoUow_zCEgiUI20CrrXDX8pYHVVT_8BmYkzxM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoLKtCqUEp9oBKtZJE43jg-VAi1LEvZ5QQVt9RPQNrNUjZV4dofxG9kxkkolSpuHKOJchjP4xtnZj5CNqXzPRe8ZZqrnAnjHQMvsswoV1gA5E5KnEYeHeWDE_HttHc6R267WRhsq-xiYgzUbmrxjnwboK-QErdn7Vz-ZMgahX9XOwqNxiwO_c1vKNlmnw--wvl-4Ly_d_xlwFpWAWa5KmomTQiQJrnPvM6d9knqfS5d6sDTtCkUT6TiOlVWJ8KEFBBSyFSPF16FYIUVGXz3GVkQGWRynEzv79_f6SArnMiTZgwQ5Mn27GYCSUKmcVb7YeL7N-7HZNZ_SRZbFEp3G7NZInO-WiZLrZ_P6Fa7jPrjCvmzBzEAUW11RgEr0u9QW6Oh0GmgrWh6hQ8oHAJwrWrajxw-FMpc0BcdXVx7R5FzbUxjgwKNTKLxWhIEuGvZNv0AbKSvLybtYCjdHZ-B_uvzySty8iQafk3mq2nl3xBq0p5BHmxutRJJEYrcmswbBZrWWZG4VfKpU2pp26XmyK0xLqG4wRMoH5zAKtm8f_my2eXx_9fWu9MpW4eelX_Nb-1x8XvyfHA8GpbDg6PDt-QFxxaY2N27Tubrq1_-HWCY2mxEw6Hkx1Nb6h3m2Qlt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhfjPgRUcR9wERNmmu3vW73wRiUu4BwF2LE8Fb3E0juesjVCK_8Wfx1zLRbxMT4xmMzTR_mY-c325n5AWwI6wbWOxMpLvMo085GGEUm0tIWBgG5FYKmkceTfPsg-3I4OFyCq24WhtoquzOxOajt3NAdeR-hbyYEbc_q-9AWsb81-nj6MyIGKfrT2tFptC6y6y5-Y_m2-LCzhbZ-w_lo-O3zdhQYBiLDZVFHQnuPKZO71KncKhcnzuXCJhajTulC8lhIrhJpVJxpnyBa8qkc8MJJ701mshS_ew-WBVVFPVj-NJzsf7254SGOuCyP26HANJVxf3Exw5QhkmZy-3Ya_DsLNKlt9AgeBkzKNlsnWoElVz2GlRD1C_Y2rKZ-9wQuh3giEMatjhgiR_YdK21yGzb3LIjmZ_RAwj2EsVXNRg2jD8OiFzXGxifnzjJiYJuypl2BNbyizSUlCmjzsmm7A6KxOj-ZhTFRtjk9QgvUx7OncHAnOn4GvWpeuefAdDLQxIrNjZJZXPgiNzp1WqKmVVrEdhXed0otTVhxTkwb0xJLHbJAecsCq7Bx8_Jpu9nj36-tddYpQ3gvyj_O-OL_4tdwH7203NuZ7L6EB5z6YZpW3zXo1We_3CsENLVeD57D4MddO-s1RpgO_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Variance+of+Estimator+of+the+Latent+Factor+Linear+Mixed+Model+Using+Supplemented+Expectation-Maximization+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Angraini%2C+Yenni&rft.au=Khairil+Anwar+Notodiputro&rft.au=Folmer%2C+Henk&rft.au=Saefuddin%2C+Asep&rft.date=2021-07-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=13&rft.issue=7&rft.spage=1286&rft_id=info:doi/10.3390%2Fsym13071286&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon