Single- and multi-modal molecular probes with second near-infrared activatable optical signals for disease diagnosis and theranostics
Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence....
Saved in:
Published in | Chemical Society reviews Vol. 54; no. 16; pp. 7561 - 769 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
11.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various
in vivo
disease models and
in vitro
tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.
This review highlights the recent advances in single- and multi-modal molecular probes with NIR-II activatable optical signals for disease diagnosis and theranostics. |
---|---|
AbstractList | Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various disease models and tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. This review highlights the recent advances in single- and multi-modal molecular probes with NIR-II activatable optical signals for disease diagnosis and theranostics. |
Author | Bai, Shuaige Wang, Minghui Zhang, Yan |
AuthorAffiliation | National Engineering Research Centre for Nanomedicine Huazhong University of Science and Technology College of Life Science and Technology |
AuthorAffiliation_xml | – name: College of Life Science and Technology – name: National Engineering Research Centre for Nanomedicine – name: Huazhong University of Science and Technology |
Author_xml | – sequence: 1 givenname: Minghui surname: Wang fullname: Wang, Minghui – sequence: 2 givenname: Shuaige surname: Bai fullname: Bai, Shuaige – sequence: 3 givenname: Yan surname: Zhang fullname: Zhang, Yan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40693322$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UFrFTEQB_AgFftavXhXAl5EWM0m2WxyLE-tQsFD9bxkk9nXlGzyzOwqfgC_t3l9tYKnmcAvEyb_M3KScgJCnrfsbcuEeec7h4x1jO8ekU0rFWtkL-UJ2TDBVMNYy0_JGeJt7dpe8SfkVDJlhOB8Q35fh7SL0FCbPJ3XuIRmzt5GOucIbo220H3JIyD9GZYbiuByhQlsaUKaii3gqXVL-GEXO0ageb8EV69j2CUbkU65UB8QLEKtdpcyBrx7bLmBYuuxenxKHk9Vw7P7ek6-ffzwdfupufpy-Xl7cdU4bvTS9Hw0WjHptQYlLONSemtGqbiaoDN8cqKV2pnOGT3aaey9AMOZqmZiBow4J6-Pc-tO31fAZZgDOojRJsgrDoIL3mrGO17pq__obV7LYaeD0rznWh3Uy3u1jjP4YV_CbMuv4e8HV_DmCFzJiAWmB9Ky4ZDe8L7bXt-ld1nxiyMu6B7cv3TFHzUtlvw |
Cites_doi | 10.1021/cr940745l 10.1016/j.biomaterials.2020.120092 10.1038/s41564-018-0295-3 10.1002/smll.202008061 10.1039/D2CS00228K 10.1021/acsabm.1c01139 10.1039/C4CS00044G 10.1002/VIW.20200068 10.1039/D0CS00664E 10.1021/acsnano.4c12894 10.1016/j.bbamem.2009.06.022 10.1038/s41565-025-01877-5 10.1039/C9SC00220K 10.1039/D2CS00799A 10.1002/anie.202216351 10.1016/j.ccr.2023.215258 10.1016/j.ccr.2023.215350 10.1039/C5CS00567A 10.1039/D2SC06710B 10.1002/anie.201911803 10.1039/D1CS00798J 10.1002/adfm.202316646 10.1021/acsami.2c04242 10.1039/C8CS00494C 10.1038/s42254-019-0074-y 10.1002/anie.202302676 10.1002/anie.201913149 10.1038/s41570-017-0041 10.1002/advs.202305308 10.1002/anie.202209512 10.1016/S0140-6736(16)00418-9 10.1039/D1CS00543J 10.1016/j.ccr.2020.213689 10.1021/acs.analchem.4c04848 10.1016/S0140-6736(21)00233-6 10.1002/adma.202002129 10.1039/D4CC04532G 10.1038/s41467-023-37586-7 10.1016/j.talanta.2023.124668 10.1002/anie.202012021 10.1002/agt2.288 10.1021/acs.analchem.2c01738 10.1038/nature22393 10.1039/D3CS00585B 10.1039/D2CS00352J 10.7150/thno.26607 10.1038/s41578-019-0108-1 10.1038/s41571-022-00709-y 10.1002/adfm.202208720 10.31635/ccschem.021.202101332 10.1002/anie.202210285 10.1016/j.ccr.2022.214848 10.1021/acs.analchem.1c00427 10.1021/acs.accounts.9b00340 10.1021/acsmaterialslett.2c00451 10.1038/s41584-020-00570-2 10.1002/anie.202309768 10.1038/312755a0 10.1016/j.cell.2021.09.020 10.1038/s41565-019-0567-y 10.1038/nrd.2016.14 10.1039/D1CS00307K 10.1038/s44222-024-00196-z 10.1016/S0140-6736(16)30173-8 10.1021/acs.chemrev.4c00244 10.1021/acs.analchem.1c04504 10.1016/j.trechm.2022.10.001 10.1002/adfm.202401627 10.1038/nrneurol.2013.22 10.1002/anie.202419988 10.1002/adma.202308217 10.1002/adma.202006532 10.1007/s00259-019-04607-x 10.1038/s41551-021-00773-2 10.1002/anie.202312632 10.1021/acs.nanolett.2c04084 10.1038/nature06917 10.1002/adfm.202301683 10.1039/D2CS00172A 10.1021/acs.analchem.0c00634 10.1016/j.cej.2023.144745 10.1016/j.snb.2023.133457 10.1016/j.ccr.2018.11.014 10.7150/thno.40808 10.1021/acs.analchem.2c04873 10.1007/s11426-024-2361-x 10.1039/D3CS00006K 10.1021/acsmaterialslett.2c01033 10.1021/acsnano.9b04954 10.1016/j.biomaterials.2023.121993 10.1002/adhm.202200467 10.1021/acsnano.3c05410 10.1016/j.dyepig.2022.111072 10.1002/adfm.201901480 10.1016/j.trac.2023.117326 10.1016/j.ccr.2023.215130 10.1038/s41467-021-26380-y 10.1002/adtp.202000207 10.1002/anie.202009986 10.1056/NEJMra0902927 10.1021/acs.chemrev.3c00612 10.1021/acs.chemrev.9b00145 10.1039/D4CC03512G 10.1016/j.ccr.2025.216643 10.1021/jacs.2c10041 10.1016/j.xcrp.2021.100570 10.1038/s41592-024-02396-2 10.1016/j.nantod.2021.101358 10.1016/j.ccr.2021.214356 10.1038/s41565-019-0527-6 10.1039/D4CC05784H 10.1039/c3cs60017c 10.1021/acs.chemrev.3c00892 10.1021/acs.chemrev.3c00776 10.1021/jacs.2c03832 10.1002/anie.202103071 10.1002/adhm.202301230 10.1016/j.biopha.2022.114071 10.1002/anie.202211409 10.1021/acsnano.3c13105 10.1038/s41571-024-00892-0 10.1021/acs.analchem.1c05154 10.1016/j.ccr.2021.213978 10.1021/acsnano.2c08077 10.1038/nature12138 10.1021/acs.chemrev.1c00506 10.1038/s41587-022-01339-6 10.1021/acs.analchem.4c02894 10.1002/anie.202011903 10.1021/acs.analchem.2c01241 10.1039/D4CS00335G 10.1016/j.pdpdt.2022.103098 10.1021/acsnano.2c08098 10.1038/s41467-024-55096-y 10.1016/j.ccr.2020.213212 10.1039/D1CS00403D 10.1038/s43586-024-00301-x 10.34133/research.0286 10.1021/acs.analchem.1c02238 10.1002/anie.201904182 10.1038/s41563-019-0566-2 10.1021/acs.analchem.1c03926 10.1002/adom.202302796 10.1021/jacs.0c08130 10.1016/j.actbio.2024.09.001 10.1016/S0140-6736(22)01694-4 10.1021/acs.analchem.0c01596 10.26599/NBE.2024.9290102 10.3322/caac.21820 10.1021/acsmaterialslett.2c00974 10.1039/D2CC06592D 10.1007/s11426-018-9277-6 10.1002/adma.202420329 10.1021/nn202378b 10.1021/acs.analchem.0c04990 10.1038/s41551-016-0010 10.1002/anie.202418378 10.1002/adhm.202303892 10.1002/adom.202100233 10.1016/j.mtbio.2023.100697 10.1039/D2CS00131D 10.1002/adma.202409661 10.1002/adhm.202100867 10.1002/adom.202201067 10.1016/j.aca.2022.339831 10.1002/advs.202409833 10.1016/j.addr.2023.115158 10.1038/s41568-021-00347-z 10.1002/adfm.202311404 10.1039/C6CS00271D 10.1002/anie.202201541 10.1038/s41565-024-01809-9 10.1002/adma.202420006 10.1002/adfm.202401325 10.1039/C8CS00234G 10.1021/acs.nanolett.1c00548 10.1016/j.ccr.2021.214096 10.1038/nbt.3330 10.1021/acsnano.9b10144 10.31635/ccschem.021.202101444 10.1016/j.cej.2021.133263 10.1039/D1CC03232A 10.1039/D2CC05386A 10.1038/nrneurol.2017.13 10.1021/acsami.3c00956 10.1038/nnano.2007.387 10.1039/D1CS00239B 10.1002/anie.202015650 10.1038/natrevmats.2016.14 10.1021/acs.chemrev.3c00549 10.1039/D2CS01021F 10.1002/adsr.202200075 10.1002/anie.202005899 10.1021/acs.chemrev.3c00506 10.1038/nrm.2017.132 10.1126/sciadv.aaw0672 10.1016/j.ccr.2024.215975 10.1002/adma.201801140 10.1039/D3SC00355H 10.1039/D1CS00525A 10.1002/adhm.202303997 10.1002/advs.202207651 10.1002/smll.202006508 10.1039/C9CS00166B 10.1002/anie.202106730 10.1038/s41551-024-01275-7 10.1021/acs.nanolett.8b02767 10.1039/C6CS00415F 10.1021/acs.chemrev.1c00875 10.1038/s41571-020-0410-2 10.1021/acs.analchem.0c04601 10.1021/acs.nanolett.3c00983 10.1039/D0CS01061H 10.1016/j.isci.2019.06.034 10.1002/anie.202114722 10.1016/j.cej.2023.142767 10.1021/acsami.0c03714 10.1002/adma.201802394 10.1016/j.tips.2015.05.001 10.7150/thno.91394 10.1002/anie.202301696 10.1038/s41577-020-0306-5 10.1021/acs.chemrev.1c00014 10.1039/C9CS00621D 10.1021/acs.chemrev.7b00425 10.1038/nnano.2009.294 10.1172/JCI10613 10.1038/s41578-021-00328-6 10.1038/nm.3623 10.1186/s13046-023-02637-w 10.1002/advs.202308905 10.1039/C6CS00636A 10.1021/acsnano.4c11334 10.1021/acs.chemrev.4c00615 10.1038/nrc3566 10.1016/j.jconrel.2022.08.050 10.1002/anie.202007649 10.26599/NBE.2024.9290061 10.1002/adma.202208097 10.1039/D2CS00928E 10.1016/j.bios.2021.113331 10.1002/adma.202308924 10.1039/C4CC08010F 10.1002/adfm.202200016 10.1002/VIW.20200075 10.1002/anie.202305744 10.1002/adhm.202202208 10.1002/smll.202206053 10.1038/nrd4433 10.1016/j.comptc.2025.115300 10.1016/j.snb.2022.133251 10.1021/acs.chemrev.3c00778 10.1039/D4CS01315H 10.1002/adfm.201807376 10.1016/j.kint.2020.04.044 10.1002/anie.202001783 10.1021/acs.nanolett.8b05148 10.1038/s41551-019-0494-0 10.1002/anie.202315217 10.1021/jacs.3c13851 10.1002/advs.202304104 10.7150/thno.78085 10.1021/acs.nanolett.6b04261 10.1021/acs.analchem.0c00556 10.1016/j.cej.2024.156099 10.1038/s41572-021-00269-y 10.1016/j.bios.2022.114610 10.1002/anie.202209378 10.1002/anie.202200025 10.1038/s41467-022-33837-1 10.1002/anie.201802889 10.1021/acs.nanolett.1c00197 10.1002/anie.202109728 10.1016/j.cell.2006.11.001 10.1038/s41467-024-55503-4 10.1039/D3CS00883E 10.1016/j.nantod.2023.102027 10.1002/adhm.202301584 10.1021/cbmi.3c00030 10.1056/NEJMra1708714 10.1002/anie.202112237 10.1002/anie.202107877 10.1016/j.bios.2024.116906 10.1016/j.biomaterials.2020.120459 10.1002/adma.201904329 10.1002/anie.201712528 10.1039/D2QM01207C 10.1016/j.ccr.2025.216550 10.1002/adfm.202009942 10.1038/s41467-025-57673-1 10.1016/j.addr.2023.114830 10.1039/C9CS00309F 10.1038/s41570-020-0205-0 10.1002/anie.202102097 10.1016/j.biomaterials.2022.121956 10.1002/adfm.202310818 10.1002/adom.202303258 10.1016/j.snb.2021.129718 10.1038/s41566-024-01391-5 10.1021/acs.analchem.4c02629 10.1021/acsnano.0c09799 10.1039/C9CC09158K 10.1002/smll.202202551 10.1038/s41587-019-0040-3 10.1002/anie.202007040 10.1021/acs.chemrev.6b00001 10.1021/acs.accounts.8b00384 10.1002/adma.202415891 10.1021/jacs.2c07443 10.1038/nprot.2011.351 10.1021/acs.chemrev.6b00369 10.1073/pnas.2205186120 10.1021/acs.nanolett.1c04356 10.1016/j.snb.2024.135951 10.1021/acs.analchem.9b00317 10.1002/anie.202209592 10.1016/j.nantod.2022.101378 10.1126/sciadv.ado2037 10.1126/science.1160809 10.1002/adhm.202400715 10.1021/acs.analchem.2c02052 10.1002/smll.202201179 10.1039/C9SC02093D 10.1038/s41563-019-0378-4 10.1002/adma.202001172 10.1016/j.ccr.2025.216746 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d5cs00502g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 769 |
ExternalDocumentID | 40693322 10_1039_D5CS00502G d5cs00502g |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -~X 0-7 0R~ 29B 4.4 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- P2P R56 R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M M4U 7X8 |
ID | FETCH-LOGICAL-c298t-72b98604d88e63a0244da9b4626fe592fc3148c95c98bafb7d3e9206a9bf09e93 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Tue Jul 22 17:01:52 EDT 2025 Mon Aug 11 13:11:06 EDT 2025 Tue Aug 12 01:37:22 EDT 2025 Wed Aug 13 23:50:13 EDT 2025 Mon Aug 11 15:20:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c298t-72b98604d88e63a0244da9b4626fe592fc3148c95c98bafb7d3e9206a9bf09e93 |
Notes | Minghui Wang received his master's degree in Analytical Chemistry from Anhui University, China, in 2024. He is currently pursuing his PhD in Biomedical Engineering under the supervision of Professor Yan Zhang at Huazhong University of Science and Technology. His research focuses on the development of activatable optical probes for disease theranostics. Shuaige Bai received his master's degree in pharmaceutical chemistry from Central South university, China, in 2024. He is currently pursuing his PhD degree in Biomedical Engineering under the supervision of Prof. Yan Zhang at Huazhong University of Science and Technology. His research interests focus on the construction of novel activatable afterglow optical probes for theranostics. Dr Yan Zhang is a professor at the College of Life Science and Technology, Huazhong University of Science and Technology, China. Her current research interests focus on the design of activatable optical and multimodal probes for disease diagnosis and theranostics. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8811-5552 |
PMID | 40693322 |
PQID | 3238272862 |
PQPubID | 2047503 |
PageCount | 49 |
ParticipantIDs | pubmed_primary_40693322 proquest_journals_3238272862 crossref_primary_10_1039_D5CS00502G proquest_miscellaneous_3232180252 rsc_primary_d5cs00502g |
PublicationCentury | 2000 |
PublicationDate | 2025-08-11 |
PublicationDateYYYYMMDD | 2025-08-11 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | 53 Weissleder (D5CS00502G/cit1/1) 2008; 452 Zhang (D5CS00502G/cit75/1) 2018; 61 Zhu (D5CS00502G/cit218/1) 2017; 46 Zhou (D5CS00502G/cit259/1) 2023; 493 Wu (D5CS00502G/cit299/1) 2024; 36 Morris (D5CS00502G/cit305/1) 2018; 14 Zhang (D5CS00502G/cit82/1) 2021; 21 Sun (D5CS00502G/cit122/1) 2024; 96 Wang (D5CS00502G/cit80/1) 2019; 19 Xue (D5CS00502G/cit316/1) 2021; 50 Cheng (D5CS00502G/cit327/1) 2021; 6 Zhang (D5CS00502G/cit308/1) 2025; 539 Ge (D5CS00502G/cit92/1) 2023; 62 Shao (D5CS00502G/cit230/1) 2024; 36 Li (D5CS00502G/cit292/1) 2020; 17 Shen (D5CS00502G/cit206/1) 2022; 144 Fernández (D5CS00502G/cit282/1) 2016; 45 Yang (D5CS00502G/cit109/1) 2023; 379 Zhan (D5CS00502G/cit147/1) 2021; 60 Gong (D5CS00502G/cit269/1) 2024; 499 Sun (D5CS00502G/cit32/1) 2016; 116 Cai (D5CS00502G/cit247/1) 2023; 5 Zhu (D5CS00502G/cit123/1) 2021; 60 Su (D5CS00502G/cit188/1) 2022; 18 He (D5CS00502G/cit228/1) 2022; 61 Dou (D5CS00502G/cit108/1) 2021; 93 Gupta (D5CS00502G/cit260/1) 2006; 127 Sindhwani (D5CS00502G/cit242/1) 2020; 19 Wang (D5CS00502G/cit76/1) 2020; 14 Wang (D5CS00502G/cit111/1) 2021; 93 Simon (D5CS00502G/cit274/1) 2017; 13 Cheng (D5CS00502G/cit20/1) 2024; 53 Qin (D5CS00502G/cit249/1) 2021; 336 Buckley (D5CS00502G/cit264/1) 2021; 17 Pan (D5CS00502G/cit190/1) 2022; 16 Hang (D5CS00502G/cit12/1) 2022; 51 Liu (D5CS00502G/cit113/1) 2024; 18 Zhao (D5CS00502G/cit59/1) 2023; 12 Hu (D5CS00502G/cit43/1) 2022; 10 Liu (D5CS00502G/cit319/1) 2021; 441 Ong (D5CS00502G/cit222/1) 2021; 188 Mu (D5CS00502G/cit23/1) 2022; 61 Zeng (D5CS00502G/cit169/1) 2020; 92 Peer (D5CS00502G/cit238/1) 2007; 2 Gorka (D5CS00502G/cit54/1) 2018; 51 Pandey (D5CS00502G/cit47/1) 2020; 409 Liu (D5CS00502G/cit226/1) 2024; 14 Zhong (D5CS00502G/cit128/1) 2022; 433 Yu (D5CS00502G/cit278/1) 2020; 98 Morad (D5CS00502G/cit297/1) 2021; 184 Yu (D5CS00502G/cit51/1) 2021; 269 Iwakiri (D5CS00502G/cit276/1) 2015; 36 Kasten (D5CS00502G/cit24/1) 2020; 47 Grabowski (D5CS00502G/cit56/1) 2003; 103 Lan (D5CS00502G/cit120/1) 2022; 144 Wu (D5CS00502G/cit72/1) 2023; 10 Zhang (D5CS00502G/cit175/1) 2022; 4 Hu (D5CS00502G/cit39/1) 2024; 34 Liu (D5CS00502G/cit288/1) 2022; 144 Zhang (D5CS00502G/cit318/1) 2016; 116 Xu (D5CS00502G/cit42/1) 2021; 60 Rodriguez-Rios (D5CS00502G/cit235/1) 2022; 51 Deng (D5CS00502G/cit77/1) 2025; 61 Li (D5CS00502G/cit100/1) 2020; 59 Li (D5CS00502G/cit97/1) 2023; 62 Duo (D5CS00502G/cit248/1) 2024; 124 Ning (D5CS00502G/cit155/1) 2019; 10 Lei (D5CS00502G/cit132/1) 2019; 58 Wang (D5CS00502G/cit11/1) 2023; 52 Yang (D5CS00502G/cit166/1) 2020; 59 Zhang (D5CS00502G/cit28/1) 2024; 21 Wang (D5CS00502G/cit89/1) 2019; 10 Huang (D5CS00502G/cit96/1) 2023; 95 Li (D5CS00502G/cit161/1) 2025; 268 Huang (D5CS00502G/cit334/1) 2020; 59 Zeng (D5CS00502G/cit182/1) 2022; 1208 Poronik (D5CS00502G/cit35/1) 2019; 48 Zhou (D5CS00502G/cit289/1) 2016; 45 Tian (D5CS00502G/cit220/1) 2022; 94 Zhao (D5CS00502G/cit156/1) 2020; 32 Xu (D5CS00502G/cit293/1) 2021; 50 Tian (D5CS00502G/cit105/1) 2023; 62 Li (D5CS00502G/cit207/1) 2025; 16 Land (D5CS00502G/cit326/1) 2019; 4 Miao (D5CS00502G/cit67/1) 2023; 62 Li (D5CS00502G/cit193/1) 2022; 94 Chen (D5CS00502G/cit311/1) 2019; 13 Jin (D5CS00502G/cit145/1) 2024; 11 Sun (D5CS00502G/cit209/1) 2021; 4 Hu (D5CS00502G/cit41/1) 2024; 34 Chen (D5CS00502G/cit99/1) 2022; 61 Chen (D5CS00502G/cit118/1) 2023; 62 Liu (D5CS00502G/cit202/1) 2023; 7 Liu (D5CS00502G/cit281/1) 2025; 9 Heikenfeld (D5CS00502G/cit324/1) 2019; 37 Zhang (D5CS00502G/cit154/1) 2023; 5 Kenry (D5CS00502G/cit15/1) 2018; 30 Li (D5CS00502G/cit86/1) 2022; 61 Wang (D5CS00502G/cit181/1) 2024; 12 Chen (D5CS00502G/cit153/1) 2021; 60 Li (D5CS00502G/cit250/1) 2016; 76 Jamaledin (D5CS00502G/cit232/1) 2020; 32 Wang (D5CS00502G/cit57/1) 2021; 50 Warszyńska (D5CS00502G/cit314/1) 2023; 495 Liu (D5CS00502G/cit81/1) 2018; 57 Craven (D5CS00502G/cit268/1) 2016; 387 Cai (D5CS00502G/cit44/1) 2019; 48 Obaid (D5CS00502G/cit290/1) 2024; 2 He (D5CS00502G/cit14/1) 2018; 47 Gonzaga de França Lopes (D5CS00502G/cit313/1) 2021; 445 Chai (D5CS00502G/cit129/1) 2024; 188 Zheng (D5CS00502G/cit189/1) 2021; 17 Mao (D5CS00502G/cit227/1) 2022; 454 Dai (D5CS00502G/cit101/1) 2023; 19 Zhu (D5CS00502G/cit197/1) 2022; 61 Hu (D5CS00502G/cit183/1) 2025; 64 Alexander (D5CS00502G/cit196/1) 2025; 125 Li (D5CS00502G/cit233/1) 2022; 16 Zhu (D5CS00502G/cit195/1) 2022; 61 Li (D5CS00502G/cit302/1) 2024; 34 Deng (D5CS00502G/cit85/1) 2019; 17 Geng (D5CS00502G/cit5/1) 2023; 52 Razansky (D5CS00502G/cit261/1) 2011; 6 Zheng (D5CS00502G/cit46/1) 2021; 431 Liu (D5CS00502G/cit179/1) 2025 Wallace (D5CS00502G/cit309/1) 2015; 14 Kingwell (D5CS00502G/cit317/1) 2016; 15 Bouzigues (D5CS00502G/cit213/1) 2011; 5 Fu (D5CS00502G/cit26/1) 2024; 54 Cao (D5CS00502G/cit34/1) 2019; 119 Ouyang (D5CS00502G/cit174/1) 2020; 59 Fu (D5CS00502G/cit158/1) 2021; 17 Chang (D5CS00502G/cit6/1) 2021; 6 Blanco (D5CS00502G/cit221/1) 2015; 33 Chen (D5CS00502G/cit144/1) 2024; 60 Wang (D5CS00502G/cit303/1) 2019; 29 Tang (D5CS00502G/cit103/1) 2019; 29 Price (D5CS00502G/cit320/1) 2023; 20 Roozenbeek (D5CS00502G/cit273/1) 2013; 9 Nam (D5CS00502G/cit315/1) 2019; 4 Lei (D5CS00502G/cit50/1) 2021; 60 Jiang (D5CS00502G/cit19/1) 2021; 2 Du (D5CS00502G/cit79/1) 2024; 11 She (D5CS00502G/cit172/1) 2022; 58 Qi (D5CS00502G/cit29/1) 2023; 486 Zhang (D5CS00502G/cit4/1) 2022; 51 Wang (D5CS00502G/cit291/1) 2023; 12 Ji (D5CS00502G/cit151/1) 2024; 18 Chen (D5CS00502G/cit164/1) 2025; 16 Li (D5CS00502G/cit236/1) 2009; 1788 Li (D5CS00502G/cit64/1) 2025; 1250 Chen (D5CS00502G/cit185/1) 2022; 3 Ge (D5CS00502G/cit131/1) 2020; 92 Siegel (D5CS00502G/cit252/1) 2024; 74 Huang (D5CS00502G/cit284/1) 2025 Nguyen (D5CS00502G/cit285/1) 2013; 13 Cao (D5CS00502G/cit66/1) 2014; 50 Zhao (D5CS00502G/cit157/1) 2022; 61 Xu (D5CS00502G/cit333/1) 2024; 20 Jeong (D5CS00502G/cit325/1) 2017; 17 Ren (D5CS00502G/cit87/1) 2021; 60 Bertolini (D5CS00502G/cit262/1) 2023; 52 Liu (D5CS00502G/cit332/1) 2024; 205 Hu (D5CS00502G/cit16/1) 2020; 4 Fujita (D5CS00502G/cit27/1) 2024; 124 Li (D5CS00502G/cit159/1) 2024; 63 Waldman (D5CS00502G/cit298/1) 2020; 20 Sobhanan (D5CS00502G/cit83/1) 2023; 197 Zhan (D5CS00502G/cit323/1) 2025; 54 Stride (D5CS00502G/cit312/1) 2019; 1 Pei (D5CS00502G/cit78/1) 2023; 52 Oh (D5CS00502G/cit244/1) 2014; 20 Mei (D5CS00502G/cit204/1) 2020; 251 Lai (D5CS00502G/cit307/1) 2022; 32 Tee (D5CS00502G/cit237/1) 2019; 48 Xu (D5CS00502G/cit22/1) 2019; 381 Zhou (D5CS00502G/cit149/1) 2022; 14 Zhang (D5CS00502G/cit194/1) 2022; 11 Qu (D5CS00502G/cit212/1) 2020; 10 Lin (D5CS00502G/cit205/1) 2025 He (D5CS00502G/cit231/1) 2022; 13 Tang (D5CS00502G/cit229/1) 2023; 17 Yang (D5CS00502G/cit49/1) 2024; 124 Li (D5CS00502G/cit53/1) 2022; 51 Zheng (D5CS00502G/cit184/1) 2022; 18 Lei (D5CS00502G/cit68/1) 2023; 6 Shi (D5CS00502G/cit146/1) 2018; 18 Bai (D5CS00502G/cit90/1) 2021; 93 Yuan (D5CS00502G/cit93/1) 2023; 21 Li (D5CS00502G/cit225/1) 2024; 517 Dou (D5CS00502G/cit141/1) 2021; 4 Chen (D5CS00502G/cit110/1) 2020; 56 Li (D5CS00502G/cit210/1) 2022; 12 Cabello (D5CS00502G/cit48/1) 2024; 124 Bao (D5CS00502G/cit95/1) 2024; 34 Zeng (D5CS00502G/cit177/1) 2023; 15 Dou (D5CS00502G/cit208/1) 2020; 92 Zhu (D5CS00502G/cit217/1) 2025; 533 Sun (D5CS00502G/cit71/1) 2019; 52 Meng (D5CS00502G/cit65/1) 2020; 12 Yang (D5CS00502G/cit9/1) 2022; 51 Chandra (D5CS00502G/cit321/1) 2021; 398 Liao (D5CS00502G/cit112/1) 2021; 60 Wu (D5CS00502G/cit287/1) 2020; 1 Hiam-Galvez (D5CS00502G/cit296/1) 2021; 21 Zhang (D5CS00502G/cit165/1) 2023; 10 Chen (D5CS00502G/cit170/1) 2022; 94 Wang (D5CS00502G/cit61/1) 2023; 14 Li (D5CS00502G/cit142/1) 2023; 14 Wen (D5CS00502G/cit294/1) 2021; 4 Nguyen (D5CS00502G/cit330/1) 2020; 4 Chang (D5CS00502G/cit167/1) 2023; 59 Zhang (D5CS00502G/cit310/1) 2021; 50 Zhou (D5CS00502G/cit162/1) 2021; 33 Hu (D5CS00502G/cit215/1) 2014; 43 Zhang (D5CS00502G/cit55/1) 2021; 60 Tan (D5CS00502G/cit127/1) 2021; 93 Tyler (D5CS00502G/cit271/1) 2018; 379 Sun (D5CS00502G/cit62/1) 2023; 158 Ko (D5CS00502G/cit329/1) 2022; 40 Zeng (D5CS00502G/cit33/1) 2021; 60 Liu (D5CS00502G/cit94/1) 2024; 96 Tang (D5CS00502G/cit257/1) 2025; 16 Smolen (D5CS00502G/cit263/1) 2016; 388 Li (D5CS00502G/cit119/1) 2019; 91 Chen (D5CS00502G/cit280/1) 2021; 60 Nankivell Brian (D5CS00502G/cit283/1) 2010; 363 Wang (D5CS00502G/cit322/1) 2017; 547 Wang (D5CS00502G/cit106/1) 2021; 31 Zhu (D5CS00502G/cit137/1) 2024; 18 Behzadi (D5CS00502G/cit251/1) 2017; 46 Liu (D5CS00502G/cit135/1) 2024; 414 Wang (D5CS00502G/cit21/1) 2022; 61 Sun (D5CS00502G/cit171/1) 2021; 10 Nandanwar (D5CS00502G/cit300/1) 2025; 538 Sass (D5CS00502G/cit277/1) 2001; 107 Ma (D5CS00502G/cit63/1) 2023; 464 Xu (D5CS00502G/cit125/1) 2025; 68 Wang (D5CS00502G/cit30/1) 2024; 124 Huang (D5CS00502G/cit88/1) 2023; 381 Fu (D5CS00502G/cit187/1) 2022; 61 Yu (D5CS00502G/cit115/1) 2022; 22 Commisso (D5CS00502G/cit245/1) 2013; 497 Pan (D5CS00502G/cit73/1) 2021; 93 Luo (D5CS00502G/cit224/1) 2023; 10 Vander Heiden (D5CS00502G/cit255/1) 2009; 324 Liu (D5CS00502G/cit8/1) 2022; 122 Diao (D5CS00502G/cit152/1) 2024 Hong (D5CS00502G/cit219/1) 2017; 1 Neidle (D5CS00502G/cit254/1) 2017; 1 Sharma (D5CS00502G/cit3/1) 2024; 124 Wu (D5CS00502G/cit160/1) 2021; 93 Wilhelm (D5CS00502G/cit240/1) 2016; 1 Chen (D5CS00502G/cit272/1) 2022; 61 Cui (D5CS00502G/cit258/1) 2023; 474 van der Meel (D5CS00502G/cit301/1) 2019; 14 Levine (D5CS00502G/cit223/1) 1984; 312 Guo (D5CS00502G/cit239/1) 2024; 16 Loynachan (D5CS00502G/cit328/1) 2019; 14 Heiss (D5CS00502G/cit331/1) 2021; 121 Sun (D5CS00502G/cit192/1) 2022; 350 Knopman (D5CS00502G/cit270/1) 2021; 7 Wu (D5CS00502G/cit25/1) 2022; 51 Zeng (D5CS00502G/cit38/1) 2023; 52 Liu (D5CS00502G/cit199/1) 2023; 5 Liu (D5CS00502G/cit216/1) 2023; 52 Kaksonen (D5CS00502G/cit243/1) 2018; 19 Li (D5CS00502G/cit114/1) 2022; 94 Liu (D5CS00502G/cit126/1) 2021; 21 Chen (D5CS00502G/cit163/1) 2023; 120 Sun (D5CS00502G/cit253/1) 2023; 168 Dube (D5CS00502G/cit306/1) 2023; 42 Zhang (D5CS00502G/cit104/1) 2023; 14 Wu (D5CS00502G/cit173/1) 2021; 12 Huang (D5CS00502G/cit279/1) 2019; 18 Welsher (D5CS00502G/cit18/1) 2009; 4 Ling (D5CS00502G/cit148/1) 2025; 64 Zhang (D5CS00502G/cit130/1) 2021; 57 Zhang (D5CS00502G/cit17/1) 2022; 40 Dou (D5CS00502G/cit143/1) 2024 Adams (D5CS00502G/cit275/1) 2023; 401 Xu (D5CS00502G/cit136/1) 2018; 57 Zhu (D5CS00502G/cit265/1) 2022; 42 Yuan (D5CS00502G/cit40/1) 2025; 54 Chen (D5CS00502G/cit133/1) 2023; 1 Wang (D5CS00502G/cit28 |
References_xml | – issn: 2016 issue: 76 year: 53 end-page: 38 publication-title: 30th Anniv. Issue doi: Li Zhou Chen Anjum Shahzad Yu – volume: 103 start-page: 3899 year: 2003 ident: D5CS00502G/cit56/1 publication-title: Chem. Rev. doi: 10.1021/cr940745l – volume: 251 start-page: 120092 year: 2020 ident: D5CS00502G/cit204/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120092 – volume: 4 start-page: 46 year: 2019 ident: D5CS00502G/cit326/1 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0295-3 – volume: 17 start-page: 2008061 year: 2021 ident: D5CS00502G/cit158/1 publication-title: Small doi: 10.1002/smll.202008061 – volume: 51 start-page: 8815 year: 2022 ident: D5CS00502G/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00228K – volume: 5 start-page: 711 year: 2022 ident: D5CS00502G/cit116/1 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c01139 – volume: 43 start-page: 4494 year: 2014 ident: D5CS00502G/cit215/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00044G – volume: 1 start-page: 20200068 year: 2020 ident: D5CS00502G/cit287/1 publication-title: View doi: 10.1002/VIW.20200068 – volume: 50 start-page: 1111 year: 2021 ident: D5CS00502G/cit293/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00664E – volume: 18 start-page: 34912 year: 2024 ident: D5CS00502G/cit137/1 publication-title: ACS Nano doi: 10.1021/acsnano.4c12894 – volume: 1788 start-page: 2259 year: 2009 ident: D5CS00502G/cit236/1 publication-title: Biochim. Biophys. Acta, Biomembr. doi: 10.1016/j.bbamem.2009.06.022 – volume: 20 start-page: 672 year: 2025 ident: D5CS00502G/cit241/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-025-01877-5 – volume: 10 start-page: 4227 year: 2019 ident: D5CS00502G/cit155/1 publication-title: Chem. Sci. doi: 10.1039/C9SC00220K – volume: 52 start-page: 5607 year: 2023 ident: D5CS00502G/cit38/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00799A – volume: 62 start-page: e202216351 year: 2023 ident: D5CS00502G/cit67/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202216351 – volume: 493 start-page: 215258 year: 2023 ident: D5CS00502G/cit259/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215258 – volume: 495 start-page: 215350 year: 2023 ident: D5CS00502G/cit314/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215350 – volume: 45 start-page: 1182 year: 2016 ident: D5CS00502G/cit282/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00567A – volume: 14 start-page: 4786 year: 2023 ident: D5CS00502G/cit61/1 publication-title: Chem. Sci. doi: 10.1039/D2SC06710B – volume: 59 start-page: 247 year: 2020 ident: D5CS00502G/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911803 – volume: 51 start-page: 2081 year: 2022 ident: D5CS00502G/cit235/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00798J – volume: 34 start-page: 2316646 year: 2024 ident: D5CS00502G/cit95/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202316646 – volume: 14 start-page: 23206 year: 2022 ident: D5CS00502G/cit149/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c04242 – volume: 48 start-page: 22 year: 2019 ident: D5CS00502G/cit44/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00494C – volume: 1 start-page: 495 year: 2019 ident: D5CS00502G/cit312/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0074-y – volume: 62 start-page: e202302676 year: 2023 ident: D5CS00502G/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202302676 – volume: 59 start-page: 10111 year: 2020 ident: D5CS00502G/cit174/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913149 – volume: 1 start-page: 41 year: 2017 ident: D5CS00502G/cit254/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0041 – volume: 11 start-page: 2305308 year: 2024 ident: D5CS00502G/cit79/1 publication-title: Adv. Sci. doi: 10.1002/advs.202305308 – volume: 61 start-page: e202209512 year: 2022 ident: D5CS00502G/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209512 – volume: 387 start-page: S31 year: 2016 ident: D5CS00502G/cit268/1 publication-title: Lancet doi: 10.1016/S0140-6736(16)00418-9 – volume: 51 start-page: 450 year: 2022 ident: D5CS00502G/cit25/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00543J – volume: 431 start-page: 213689 year: 2021 ident: D5CS00502G/cit46/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213689 – volume: 96 start-page: 20049 year: 2024 ident: D5CS00502G/cit122/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c04848 – volume: 398 start-page: 171 year: 2021 ident: D5CS00502G/cit321/1 publication-title: Lancet doi: 10.1016/S0140-6736(21)00233-6 – volume: 32 start-page: 2002129 year: 2020 ident: D5CS00502G/cit232/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002129 – volume: 61 start-page: 3447 year: 2025 ident: D5CS00502G/cit37/1 publication-title: Chem. Commun. doi: 10.1039/D4CC04532G – volume: 14 start-page: 1843 year: 2023 ident: D5CS00502G/cit142/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37586-7 – volume: 262 start-page: 124668 year: 2023 ident: D5CS00502G/cit91/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124668 – volume: 60 start-page: 5091 year: 2021 ident: D5CS00502G/cit69/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202012021 – volume: 4 start-page: e288 year: 2023 ident: D5CS00502G/cit74/1 publication-title: Aggregate doi: 10.1002/agt2.288 – volume: 94 start-page: 10470 year: 2022 ident: D5CS00502G/cit193/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01738 – volume: 547 start-page: 99 year: 2017 ident: D5CS00502G/cit322/1 publication-title: Nature doi: 10.1038/nature22393 – volume: 54 start-page: 341 year: 2025 ident: D5CS00502G/cit40/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00585B – volume: 52 start-page: 2031 year: 2023 ident: D5CS00502G/cit78/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00352J – volume: 8 start-page: 6025 year: 2018 ident: D5CS00502G/cit186/1 publication-title: Theranostics doi: 10.7150/thno.26607 – volume: 4 start-page: 398 year: 2019 ident: D5CS00502G/cit315/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0108-1 – volume: 20 start-page: 83 year: 2023 ident: D5CS00502G/cit320/1 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-022-00709-y – volume: 32 start-page: 2208720 year: 2022 ident: D5CS00502G/cit176/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208720 – volume: 4 start-page: 476 year: 2021 ident: D5CS00502G/cit209/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101332 – volume: 61 start-page: e202210285 year: 2022 ident: D5CS00502G/cit99/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210285 – volume: 474 start-page: 214848 year: 2023 ident: D5CS00502G/cit258/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214848 – volume: 93 start-page: 9356 year: 2021 ident: D5CS00502G/cit111/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00427 – volume: 52 start-page: 2818 year: 2019 ident: D5CS00502G/cit71/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00340 – volume: 4 start-page: 1493 year: 2022 ident: D5CS00502G/cit175/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00451 – volume: 17 start-page: 195 year: 2021 ident: D5CS00502G/cit264/1 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-020-00570-2 – volume: 62 start-page: e202309768 year: 2023 ident: D5CS00502G/cit105/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202309768 – volume: 312 start-page: 755 year: 1984 ident: D5CS00502G/cit223/1 publication-title: Nature doi: 10.1038/312755a0 – volume: 184 start-page: 5309 year: 2021 ident: D5CS00502G/cit297/1 publication-title: Cell doi: 10.1016/j.cell.2021.09.020 – volume: 14 start-page: 1007 year: 2019 ident: D5CS00502G/cit301/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0567-y – volume: 15 start-page: 84 year: 2016 ident: D5CS00502G/cit317/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd.2016.14 – volume: 51 start-page: 1795 year: 2022 ident: D5CS00502G/cit53/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00307K – volume: 2 start-page: 752 year: 2024 ident: D5CS00502G/cit290/1 publication-title: Nat. Rev. Bioeng. doi: 10.1038/s44222-024-00196-z – volume: 388 start-page: 2023 year: 2016 ident: D5CS00502G/cit263/1 publication-title: Lancet doi: 10.1016/S0140-6736(16)30173-8 – volume: 124 start-page: 11242 year: 2024 ident: D5CS00502G/cit248/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.4c00244 – volume: 93 start-page: 17103 year: 2021 ident: D5CS00502G/cit73/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04504 – volume: 5 start-page: 11 year: 2023 ident: D5CS00502G/cit199/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2022.10.001 – volume: 34 start-page: 2401627 year: 2024 ident: D5CS00502G/cit302/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202401627 – volume: 9 start-page: 231 year: 2013 ident: D5CS00502G/cit273/1 publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2013.22 – volume: 64 start-page: e202419988 year: 2025 ident: D5CS00502G/cit148/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202419988 – volume: 36 start-page: 2308217 year: 2024 ident: D5CS00502G/cit230/1 publication-title: Adv. Mater. doi: 10.1002/adma.202308217 – volume: 33 start-page: 2006532 year: 2021 ident: D5CS00502G/cit162/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006532 – volume: 47 start-page: 1412 year: 2020 ident: D5CS00502G/cit24/1 publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-019-04607-x – volume: 6 start-page: 629 year: 2021 ident: D5CS00502G/cit6/1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00773-2 – volume: 63 start-page: e202312632 year: 2024 ident: D5CS00502G/cit159/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202312632 – volume: 22 start-page: 9732 year: 2022 ident: D5CS00502G/cit115/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c04084 – volume: 452 start-page: 580 year: 2008 ident: D5CS00502G/cit1/1 publication-title: Nature doi: 10.1038/nature06917 – volume: 33 start-page: 2301683 year: 2023 ident: D5CS00502G/cit211/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301683 – volume: 52 start-page: 3873 year: 2023 ident: D5CS00502G/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00172A – volume: 92 start-page: 4177 year: 2020 ident: D5CS00502G/cit208/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00634 – volume: 471 start-page: 144745 year: 2023 ident: D5CS00502G/cit60/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144745 – volume: 381 start-page: 133457 year: 2023 ident: D5CS00502G/cit88/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.133457 – volume: 381 start-page: 104 year: 2019 ident: D5CS00502G/cit22/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.11.014 – start-page: e202419191 year: 2024 ident: D5CS00502G/cit143/1 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2631 year: 2020 ident: D5CS00502G/cit212/1 publication-title: Theranostics doi: 10.7150/thno.40808 – volume: 95 start-page: 3761 year: 2023 ident: D5CS00502G/cit96/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04873 – volume: 68 start-page: 2138 year: 2025 ident: D5CS00502G/cit125/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-024-2361-x – volume: 52 start-page: 4549 year: 2023 ident: D5CS00502G/cit11/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00006K – volume: 5 start-page: 116 year: 2023 ident: D5CS00502G/cit154/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c01033 – volume: 13 start-page: 10887 year: 2019 ident: D5CS00502G/cit311/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04954 – volume: 294 start-page: 121993 year: 2023 ident: D5CS00502G/cit168/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.121993 – volume: 11 start-page: 2200467 year: 2022 ident: D5CS00502G/cit194/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202200467 – volume: 17 start-page: 18299 year: 2023 ident: D5CS00502G/cit229/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c05410 – volume: 211 start-page: 111072 year: 2023 ident: D5CS00502G/cit267/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2022.111072 – volume: 29 start-page: 1901480 year: 2019 ident: D5CS00502G/cit303/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901480 – volume: 168 start-page: 117326 year: 2023 ident: D5CS00502G/cit253/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2023.117326 – volume: 486 start-page: 215130 year: 2023 ident: D5CS00502G/cit29/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215130 – volume: 12 start-page: 6145 year: 2021 ident: D5CS00502G/cit173/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26380-y – volume: 4 start-page: 2000207 year: 2021 ident: D5CS00502G/cit294/1 publication-title: Adv. Ther. doi: 10.1002/adtp.202000207 – volume: 60 start-page: 800 year: 2021 ident: D5CS00502G/cit87/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009986 – volume: 363 start-page: 1451 year: 2010 ident: D5CS00502G/cit283/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0902927 – volume: 124 start-page: 4021 year: 2024 ident: D5CS00502G/cit27/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00612 – volume: 119 start-page: 10403 year: 2019 ident: D5CS00502G/cit34/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00145 – volume: 60 start-page: 9618 year: 2024 ident: D5CS00502G/cit144/1 publication-title: Chem. Commun. doi: 10.1039/D4CC03512G – volume: 538 start-page: 216643 year: 2025 ident: D5CS00502G/cit300/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2025.216643 – volume: 144 start-page: 21010 year: 2022 ident: D5CS00502G/cit120/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c10041 – volume: 3 start-page: 100570 year: 2022 ident: D5CS00502G/cit185/1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100570 – volume: 21 start-page: 1996 year: 2024 ident: D5CS00502G/cit198/1 publication-title: Nat. Methods doi: 10.1038/s41592-024-02396-2 – volume: 42 start-page: 101358 year: 2022 ident: D5CS00502G/cit265/1 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101358 – volume: 454 start-page: 214356 year: 2022 ident: D5CS00502G/cit227/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214356 – volume: 14 start-page: 883 year: 2019 ident: D5CS00502G/cit328/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0527-6 – volume: 61 start-page: 544 year: 2025 ident: D5CS00502G/cit77/1 publication-title: Chem. Commun. doi: 10.1039/D4CC05784H – volume: 42 start-page: 5489 year: 2013 ident: D5CS00502G/cit45/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60017c – volume: 124 start-page: 9225 year: 2024 ident: D5CS00502G/cit48/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00892 – volume: 124 start-page: 7106 year: 2024 ident: D5CS00502G/cit30/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00776 – volume: 144 start-page: 13586 year: 2022 ident: D5CS00502G/cit288/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03832 – volume: 60 start-page: 15809 year: 2021 ident: D5CS00502G/cit280/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103071 – volume: 12 start-page: 2301230 year: 2023 ident: D5CS00502G/cit291/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202301230 – volume: 158 start-page: 114071 year: 2023 ident: D5CS00502G/cit62/1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2022.114071 – volume: 61 start-page: e202211409 year: 2022 ident: D5CS00502G/cit228/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202211409 – volume: 18 start-page: 8437 year: 2024 ident: D5CS00502G/cit113/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c13105 – volume: 21 start-page: 449 year: 2024 ident: D5CS00502G/cit28/1 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-024-00892-0 – volume: 94 start-page: 2641 year: 2022 ident: D5CS00502G/cit114/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05154 – volume: 441 start-page: 213978 year: 2021 ident: D5CS00502G/cit319/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213978 – volume: 16 start-page: 19038 year: 2022 ident: D5CS00502G/cit190/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c08077 – volume: 497 start-page: 633 year: 2013 ident: D5CS00502G/cit245/1 publication-title: Nature doi: 10.1038/nature12138 – volume: 121 start-page: 13086 year: 2021 ident: D5CS00502G/cit10/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00506 – volume: 40 start-page: 1654 year: 2022 ident: D5CS00502G/cit329/1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01339-6 – volume: 96 start-page: 14230 year: 2024 ident: D5CS00502G/cit94/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c02894 – volume: 60 start-page: 2637 year: 2021 ident: D5CS00502G/cit147/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202011903 – volume: 94 start-page: 8449 year: 2022 ident: D5CS00502G/cit170/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01241 – volume: 53 start-page: 10171 year: 2024 ident: D5CS00502G/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D4CS00335G – volume: 40 start-page: 103098 year: 2022 ident: D5CS00502G/cit17/1 publication-title: Photodiagn. Photodyn. Ther. doi: 10.1016/j.pdpdt.2022.103098 – volume: 16 start-page: 17298 year: 2022 ident: D5CS00502G/cit233/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c08098 – volume: 16 start-page: 278 year: 2025 ident: D5CS00502G/cit257/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-55096-y – volume: 409 start-page: 213212 year: 2020 ident: D5CS00502G/cit47/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213212 – volume: 50 start-page: 11227 year: 2021 ident: D5CS00502G/cit310/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00403D – volume: 4 start-page: 1 year: 2024 ident: D5CS00502G/cit13/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-024-00301-x – volume: 6 start-page: 286 year: 2023 ident: D5CS00502G/cit68/1 publication-title: Research doi: 10.34133/research.0286 – volume: 93 start-page: 15279 year: 2021 ident: D5CS00502G/cit90/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02238 – volume: 58 start-page: 8166 year: 2019 ident: D5CS00502G/cit132/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904182 – volume: 19 start-page: 566 year: 2020 ident: D5CS00502G/cit242/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0566-2 – volume: 93 start-page: 16158 year: 2021 ident: D5CS00502G/cit127/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03926 – volume: 12 start-page: 2302796 year: 2024 ident: D5CS00502G/cit181/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202302796 – volume: 142 start-page: 20299 year: 2020 ident: D5CS00502G/cit266/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08130 – volume: 188 start-page: 315 year: 2024 ident: D5CS00502G/cit129/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2024.09.001 – volume: 401 start-page: 390 year: 2023 ident: D5CS00502G/cit275/1 publication-title: Lancet doi: 10.1016/S0140-6736(22)01694-4 – volume: 92 start-page: 9257 year: 2020 ident: D5CS00502G/cit169/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01596 – volume: 17 start-page: 17 year: 2025 ident: D5CS00502G/cit200/1 publication-title: Nano Biomed. Eng. doi: 10.26599/NBE.2024.9290102 – volume: 74 start-page: 12 year: 2024 ident: D5CS00502G/cit252/1 publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.21820 – volume: 5 start-page: 172 year: 2023 ident: D5CS00502G/cit247/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.2c00974 – volume: 59 start-page: 6171 year: 2023 ident: D5CS00502G/cit167/1 publication-title: Chem. Commun. doi: 10.1039/D2CC06592D – volume: 61 start-page: 1088 year: 2018 ident: D5CS00502G/cit75/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-018-9277-6 – volume: 33 start-page: 83 year: 2020 ident: D5CS00502G/cit304/1 publication-title: Cancer Metab. – start-page: 2420329 year: 2025 ident: D5CS00502G/cit284/1 publication-title: Adv. Mater. doi: 10.1002/adma.202420329 – volume: 5 start-page: 8488 year: 2011 ident: D5CS00502G/cit213/1 publication-title: ACS Nano doi: 10.1021/nn202378b – volume: 93 start-page: 4006 year: 2021 ident: D5CS00502G/cit108/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04990 – volume: 1 start-page: 0010 year: 2017 ident: D5CS00502G/cit219/1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0010 – volume: 64 start-page: e202418378 year: 2025 ident: D5CS00502G/cit183/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202418378 – volume: 13 start-page: 2303892 year: 2024 ident: D5CS00502G/cit191/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202303892 – volume: 9 start-page: 2100233 year: 2021 ident: D5CS00502G/cit84/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202100233 – volume: 21 start-page: 100697 year: 2023 ident: D5CS00502G/cit93/1 publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2023.100697 – volume: 51 start-page: 7692 year: 2022 ident: D5CS00502G/cit36/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00131D – start-page: 2409661 year: 2024 ident: D5CS00502G/cit150/1 publication-title: Adv. Mater. doi: 10.1002/adma.202409661 – volume: 10 start-page: 2100867 year: 2021 ident: D5CS00502G/cit171/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202100867 – volume: 10 start-page: 2201067 year: 2022 ident: D5CS00502G/cit43/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202201067 – volume: 1208 start-page: 339831 year: 2022 ident: D5CS00502G/cit182/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.339831 – start-page: 2409833 year: 2024 ident: D5CS00502G/cit152/1 publication-title: Adv. Sci. doi: 10.1002/advs.202409833 – volume: 205 start-page: 115158 year: 2024 ident: D5CS00502G/cit332/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2023.115158 – volume: 21 start-page: 345 year: 2021 ident: D5CS00502G/cit296/1 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00347-z – volume: 34 start-page: 2311404 year: 2024 ident: D5CS00502G/cit58/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202311404 – volume: 45 start-page: 6597 year: 2016 ident: D5CS00502G/cit289/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00271D – volume: 61 start-page: e202201541 year: 2022 ident: D5CS00502G/cit52/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202201541 – volume: 20 start-page: 286 year: 2024 ident: D5CS00502G/cit333/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-024-01809-9 – start-page: 2420006 year: 2025 ident: D5CS00502G/cit179/1 publication-title: Adv. Mater. doi: 10.1002/adma.202420006 – volume: 34 start-page: 2401325 year: 2024 ident: D5CS00502G/cit39/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202401325 – volume: 47 start-page: 4258 year: 2018 ident: D5CS00502G/cit14/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00234G – volume: 21 start-page: 4606 year: 2021 ident: D5CS00502G/cit126/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00548 – volume: 445 start-page: 214096 year: 2021 ident: D5CS00502G/cit313/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214096 – volume: 33 start-page: 941 year: 2015 ident: D5CS00502G/cit221/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 14 start-page: 9585 year: 2020 ident: D5CS00502G/cit76/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b10144 – volume: 4 start-page: 3609 year: 2021 ident: D5CS00502G/cit141/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101444 – volume: 433 start-page: 133263 year: 2022 ident: D5CS00502G/cit128/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133263 – volume: 57 start-page: 8174 year: 2021 ident: D5CS00502G/cit130/1 publication-title: Chem. Commun. doi: 10.1039/D1CC03232A – volume: 58 start-page: 13123 year: 2022 ident: D5CS00502G/cit172/1 publication-title: Chem. Commun. doi: 10.1039/D2CC05386A – volume: 13 start-page: 171 year: 2017 ident: D5CS00502G/cit274/1 publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2017.13 – volume: 15 start-page: 17664 year: 2023 ident: D5CS00502G/cit177/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c00956 – volume: 2 start-page: 751 year: 2007 ident: D5CS00502G/cit238/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 50 start-page: 12656 year: 2021 ident: D5CS00502G/cit57/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00239B – volume: 60 start-page: 8450 year: 2021 ident: D5CS00502G/cit123/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202015650 – volume: 1 start-page: 16014 year: 2016 ident: D5CS00502G/cit240/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.14 – volume: 124 start-page: 6198 year: 2024 ident: D5CS00502G/cit234/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00549 – volume: 52 start-page: 1456 year: 2023 ident: D5CS00502G/cit216/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS01021F – volume: 2 start-page: 2200075 year: 2023 ident: D5CS00502G/cit203/1 publication-title: Adv. Sens. Res. doi: 10.1002/adsr.202200075 – volume: 60 start-page: 7476 year: 2021 ident: D5CS00502G/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005899 – volume: 124 start-page: 554 year: 2024 ident: D5CS00502G/cit49/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00506 – volume: 19 start-page: 313 year: 2018 ident: D5CS00502G/cit243/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.132 – volume: 5 start-page: eaaw0672 year: 2019 ident: D5CS00502G/cit214/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw0672 – volume: 517 start-page: 215975 year: 2024 ident: D5CS00502G/cit225/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215975 – volume: 30 start-page: 1801140 year: 2018 ident: D5CS00502G/cit256/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801140 – volume: 14 start-page: 2928 year: 2023 ident: D5CS00502G/cit104/1 publication-title: Chem. Sci. doi: 10.1039/D3SC00355H – volume: 51 start-page: 566 year: 2022 ident: D5CS00502G/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00525A – volume: 13 start-page: 2303997 year: 2024 ident: D5CS00502G/cit178/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202303997 – volume: 10 start-page: 2207651 year: 2023 ident: D5CS00502G/cit165/1 publication-title: Adv. Sci. doi: 10.1002/advs.202207651 – volume: 17 start-page: 2006508 year: 2021 ident: D5CS00502G/cit189/1 publication-title: Small doi: 10.1002/smll.202006508 – volume: 48 start-page: 5242 year: 2019 ident: D5CS00502G/cit35/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00166B – volume: 60 start-page: 20888 year: 2021 ident: D5CS00502G/cit112/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106730 – volume: 9 start-page: 618 year: 2025 ident: D5CS00502G/cit281/1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-024-01275-7 – volume: 18 start-page: 6411 year: 2018 ident: D5CS00502G/cit146/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02767 – volume: 46 start-page: 1025 year: 2017 ident: D5CS00502G/cit218/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00415F – volume: 122 start-page: 6850 year: 2022 ident: D5CS00502G/cit8/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00875 – volume: 61 start-page: e202210285 year: 2022 ident: D5CS00502G/cit272/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210285 – volume: 17 start-page: 657 year: 2020 ident: D5CS00502G/cit292/1 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0410-2 – volume: 93 start-page: 3189 year: 2021 ident: D5CS00502G/cit160/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04601 – volume: 23 start-page: 4548 year: 2023 ident: D5CS00502G/cit70/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c00983 – volume: 50 start-page: 4872 year: 2021 ident: D5CS00502G/cit316/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01061H – volume: 17 start-page: 217 year: 2019 ident: D5CS00502G/cit85/1 publication-title: iScience doi: 10.1016/j.isci.2019.06.034 – volume: 61 start-page: e202114722 year: 2022 ident: D5CS00502G/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114722 – volume: 464 start-page: 142767 year: 2023 ident: D5CS00502G/cit63/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142767 – volume: 12 start-page: 26842 year: 2020 ident: D5CS00502G/cit65/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03714 – volume: 10 start-page: 31 year: 2023 ident: D5CS00502G/cit224/1 publication-title: Mil. Med. Res. – volume: 30 start-page: 1802394 year: 2018 ident: D5CS00502G/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201802394 – volume: 36 start-page: 524 year: 2015 ident: D5CS00502G/cit276/1 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2015.05.001 – volume: 14 start-page: 2490 year: 2024 ident: D5CS00502G/cit226/1 publication-title: Theranostics doi: 10.7150/thno.91394 – volume: 62 start-page: e202301696 year: 2023 ident: D5CS00502G/cit118/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202301696 – volume: 20 start-page: 651 year: 2020 ident: D5CS00502G/cit298/1 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0306-5 – volume: 121 start-page: 6802 year: 2021 ident: D5CS00502G/cit331/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00014 – volume: 51 start-page: 329 year: 2022 ident: D5CS00502G/cit12/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00621D – volume: 118 start-page: 1770 year: 2018 ident: D5CS00502G/cit7/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00425 – volume: 4 start-page: 773 year: 2009 ident: D5CS00502G/cit18/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.294 – volume: 107 start-page: 439 year: 2001 ident: D5CS00502G/cit277/1 publication-title: J. Clin. Invest. doi: 10.1172/JCI10613 – volume: 6 start-page: 1095 year: 2021 ident: D5CS00502G/cit327/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00328-6 – volume: 20 start-page: 1062 year: 2014 ident: D5CS00502G/cit244/1 publication-title: Nat. Med. doi: 10.1038/nm.3623 – volume: 42 start-page: 78 year: 2023 ident: D5CS00502G/cit306/1 publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-023-02637-w – volume: 11 start-page: 2308905 year: 2024 ident: D5CS00502G/cit145/1 publication-title: Adv. Sci. doi: 10.1002/advs.202308905 – volume: 46 start-page: 4218 year: 2017 ident: D5CS00502G/cit251/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00636A – volume: 18 start-page: 31421 year: 2024 ident: D5CS00502G/cit151/1 publication-title: ACS Nano doi: 10.1021/acsnano.4c11334 – volume: 125 start-page: 2269 year: 2025 ident: D5CS00502G/cit196/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.4c00615 – volume: 13 start-page: 653 year: 2013 ident: D5CS00502G/cit285/1 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3566 – volume: 350 start-page: 525 year: 2022 ident: D5CS00502G/cit192/1 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2022.08.050 – volume: 59 start-page: 18380 year: 2020 ident: D5CS00502G/cit166/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007649 – volume: 16 start-page: 135 year: 2024 ident: D5CS00502G/cit239/1 publication-title: Nano Biomed. Eng. doi: 10.26599/NBE.2024.9290061 – volume: 35 start-page: 2208097 year: 2023 ident: D5CS00502G/cit295/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208097 – volume: 52 start-page: 5352 year: 2023 ident: D5CS00502G/cit262/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00928E – volume: 188 start-page: 113331 year: 2021 ident: D5CS00502G/cit222/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113331 – volume: 36 start-page: 2308924 year: 2024 ident: D5CS00502G/cit299/1 publication-title: Adv. Mater. doi: 10.1002/adma.202308924 – volume: 50 start-page: 15811 year: 2014 ident: D5CS00502G/cit66/1 publication-title: Chem. Commun. doi: 10.1039/C4CC08010F – volume: 32 start-page: 2200016 year: 2022 ident: D5CS00502G/cit307/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200016 – volume: 2 start-page: 20200075 year: 2021 ident: D5CS00502G/cit19/1 publication-title: View doi: 10.1002/VIW.20200075 – volume: 62 start-page: e202305744 year: 2023 ident: D5CS00502G/cit92/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202305744 – volume: 12 start-page: 2202208 year: 2023 ident: D5CS00502G/cit201/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202202208 – volume: 19 start-page: 2206053 year: 2023 ident: D5CS00502G/cit101/1 publication-title: Small doi: 10.1002/smll.202206053 – volume: 14 start-page: 329 year: 2015 ident: D5CS00502G/cit309/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd4433 – volume: 1250 start-page: 115300 year: 2025 ident: D5CS00502G/cit64/1 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2025.115300 – volume: 379 start-page: 133251 year: 2023 ident: D5CS00502G/cit109/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2022.133251 – volume: 124 start-page: 2699 year: 2024 ident: D5CS00502G/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00778 – volume: 54 start-page: 3906 year: 2025 ident: D5CS00502G/cit323/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D4CS01315H – volume: 29 start-page: 1807376 year: 2019 ident: D5CS00502G/cit103/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807376 – volume: 98 start-page: 708 year: 2020 ident: D5CS00502G/cit278/1 publication-title: Kidney Int. doi: 10.1016/j.kint.2020.04.044 – volume: 59 start-page: 11717 year: 2020 ident: D5CS00502G/cit334/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001783 – volume: 19 start-page: 2418 year: 2019 ident: D5CS00502G/cit80/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05148 – volume: 4 start-page: 259 year: 2020 ident: D5CS00502G/cit16/1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0494-0 – volume: 63 start-page: e202315217 year: 2024 ident: D5CS00502G/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202315217 – volume: 146 start-page: 11669 year: 2024 ident: D5CS00502G/cit124/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13851 – volume: 10 start-page: 2304104 year: 2023 ident: D5CS00502G/cit72/1 publication-title: Adv. Sci. doi: 10.1002/advs.202304104 – volume: 12 start-page: 7191 year: 2022 ident: D5CS00502G/cit210/1 publication-title: Theranostics doi: 10.7150/thno.78085 – volume: 17 start-page: 1378 year: 2017 ident: D5CS00502G/cit325/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04261 – volume: 92 start-page: 6111 year: 2020 ident: D5CS00502G/cit131/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00556 – volume: 499 start-page: 156099 year: 2024 ident: D5CS00502G/cit269/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.156099 – volume: 7 start-page: 33 year: 2021 ident: D5CS00502G/cit270/1 publication-title: Nat. Rev. Dis. Primers doi: 10.1038/s41572-021-00269-y – volume: 217 start-page: 114610 year: 2022 ident: D5CS00502G/cit134/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114610 – volume: 61 start-page: e202209378 year: 2022 ident: D5CS00502G/cit195/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209378 – volume: 61 start-page: e202200025 year: 2022 ident: D5CS00502G/cit86/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202200025 – volume: 13 start-page: 6238 year: 2022 ident: D5CS00502G/cit231/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33837-1 – volume: 57 start-page: 7518 year: 2018 ident: D5CS00502G/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802889 – volume: 21 start-page: 2625 year: 2021 ident: D5CS00502G/cit82/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00197 – volume: 60 start-page: 26337 year: 2021 ident: D5CS00502G/cit55/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109728 – volume: 127 start-page: 679 year: 2006 ident: D5CS00502G/cit260/1 publication-title: Cell doi: 10.1016/j.cell.2006.11.001 – volume: 16 start-page: 238 year: 2025 ident: D5CS00502G/cit164/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-55503-4 – volume: 54 start-page: 201 year: 2024 ident: D5CS00502G/cit26/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00883E – volume: 53 start-page: 102027 year: 2023 ident: D5CS00502G/cit98/1 publication-title: Nano Today doi: 10.1016/j.nantod.2023.102027 – volume: 12 start-page: 2301584 year: 2023 ident: D5CS00502G/cit59/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202301584 – volume: 1 start-page: 716 year: 2023 ident: D5CS00502G/cit133/1 publication-title: Chem. Biomed. Imaging doi: 10.1021/cbmi.3c00030 – volume: 379 start-page: 557 year: 2018 ident: D5CS00502G/cit271/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1708714 – volume: 61 start-page: e202112237 year: 2022 ident: D5CS00502G/cit187/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112237 – volume: 60 start-page: 26454 year: 2021 ident: D5CS00502G/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107877 – volume: 268 start-page: 116906 year: 2025 ident: D5CS00502G/cit161/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2024.116906 – volume: 269 start-page: 120459 year: 2021 ident: D5CS00502G/cit51/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120459 – start-page: e202501681 year: 2025 ident: D5CS00502G/cit205/1 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 1904329 year: 2019 ident: D5CS00502G/cit286/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904329 – volume: 57 start-page: 3626 year: 2018 ident: D5CS00502G/cit136/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712528 – volume: 7 start-page: 775 year: 2023 ident: D5CS00502G/cit202/1 publication-title: Mater. Chem. Front. doi: 10.1039/D2QM01207C – volume: 533 start-page: 216550 year: 2025 ident: D5CS00502G/cit217/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2025.216550 – volume: 31 start-page: 2009942 year: 2021 ident: D5CS00502G/cit106/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009942 – volume: 16 start-page: 2471 year: 2025 ident: D5CS00502G/cit207/1 publication-title: Nat. Commun. doi: 10.1038/s41467-025-57673-1 – volume: 197 start-page: 114830 year: 2023 ident: D5CS00502G/cit83/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2023.114830 – volume: 48 start-page: 5381 year: 2019 ident: D5CS00502G/cit237/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00309F – volume: 4 start-page: 476 year: 2020 ident: D5CS00502G/cit330/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0205-0 – volume: 60 start-page: 15006 year: 2021 ident: D5CS00502G/cit153/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102097 – volume: 293 start-page: 121956 year: 2023 ident: D5CS00502G/cit102/1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121956 – volume: 34 start-page: 2310818 year: 2024 ident: D5CS00502G/cit41/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202310818 – volume: 76 start-page: 38 volume-title: 30th Anniv. Issue year: 2016 ident: D5CS00502G/cit250/1 – volume: 12 start-page: 2303258 year: 2024 ident: D5CS00502G/cit138/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202303258 – volume: 336 start-page: 129718 year: 2021 ident: D5CS00502G/cit249/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.129718 – volume: 18 start-page: 535 year: 2024 ident: D5CS00502G/cit2/1 publication-title: Nat. Photonics doi: 10.1038/s41566-024-01391-5 – volume: 96 start-page: 14843 year: 2024 ident: D5CS00502G/cit139/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c02629 – volume: 15 start-page: 3201 year: 2021 ident: D5CS00502G/cit107/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c09799 – volume: 56 start-page: 2731 year: 2020 ident: D5CS00502G/cit110/1 publication-title: Chem. Commun. doi: 10.1039/C9CC09158K – volume: 18 start-page: 2202551 year: 2022 ident: D5CS00502G/cit188/1 publication-title: Small doi: 10.1002/smll.202202551 – volume: 37 start-page: 407 year: 2019 ident: D5CS00502G/cit324/1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0040-3 – volume: 60 start-page: 16294 year: 2021 ident: D5CS00502G/cit50/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007040 – volume: 116 start-page: 7768 year: 2016 ident: D5CS00502G/cit32/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00001 – volume: 51 start-page: 3226 year: 2018 ident: D5CS00502G/cit54/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00384 – start-page: 2415891 year: 2025 ident: D5CS00502G/cit180/1 publication-title: Adv. Mater. doi: 10.1002/adma.202415891 – volume: 144 start-page: 15391 year: 2022 ident: D5CS00502G/cit206/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07443 – volume: 6 start-page: 1121 year: 2011 ident: D5CS00502G/cit261/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.351 – volume: 116 start-page: 12536 year: 2016 ident: D5CS00502G/cit318/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00369 – volume: 120 start-page: e2205186120 year: 2023 ident: D5CS00502G/cit163/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2205186120 – volume: 22 start-page: 783 year: 2022 ident: D5CS00502G/cit117/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04356 – volume: 414 start-page: 135951 year: 2024 ident: D5CS00502G/cit135/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2024.135951 – volume: 61 start-page: e202209378 year: 2022 ident: D5CS00502G/cit197/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209378 – volume: 14 start-page: 323 year: 2018 ident: D5CS00502G/cit305/1 publication-title: Nat. Rev. Endocrinol. – volume: 91 start-page: 4771 year: 2019 ident: D5CS00502G/cit119/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00317 – volume: 61 start-page: e202209592 year: 2022 ident: D5CS00502G/cit157/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209592 – volume: 43 start-page: 101378 year: 2022 ident: D5CS00502G/cit121/1 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101378 – volume: 10 start-page: eado2037 year: 2024 ident: D5CS00502G/cit140/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.ado2037 – volume: 324 start-page: 1029 year: 2009 ident: D5CS00502G/cit255/1 publication-title: Science doi: 10.1126/science.1160809 – volume: 13 start-page: 2400715 year: 2024 ident: D5CS00502G/cit246/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202400715 – volume: 94 start-page: 11321 year: 2022 ident: D5CS00502G/cit220/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c02052 – volume: 18 start-page: 2201179 year: 2022 ident: D5CS00502G/cit184/1 publication-title: Small doi: 10.1002/smll.202201179 – volume: 10 start-page: 7222 year: 2019 ident: D5CS00502G/cit89/1 publication-title: Chem. Sci. doi: 10.1039/C9SC02093D – volume: 18 start-page: 1133 year: 2019 ident: D5CS00502G/cit279/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0378-4 – volume: 32 start-page: 2001172 year: 2020 ident: D5CS00502G/cit156/1 publication-title: Adv. Mater. doi: 10.1002/adma.202001172 – volume: 539 start-page: 216746 year: 2025 ident: D5CS00502G/cit308/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2025.216746 |
SSID | ssj0011762 |
Score | 2.4850593 |
SecondaryResourceType | review_article |
Snippet | Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio... Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7561 |
SubjectTerms | Animals Biological properties Biomarkers Humans Infrared Rays Infrared windows Medical imaging Molecular Probes - chemistry Near infrared radiation Neoplasms - diagnosis Neoplasms - diagnostic imaging Optical Imaging - methods Optical properties Precision medicine Real time Signal to noise ratio Spectroscopy, Near-Infrared Theranostic Nanomedicine - methods |
Title | Single- and multi-modal molecular probes with second near-infrared activatable optical signals for disease diagnosis and theranostics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40693322 https://www.proquest.com/docview/3238272862 https://www.proquest.com/docview/3232180252 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9AAXxFZIKWgQ3JBhOuNtjlUoFES5JJXKKfIsbiNBXCV2D9y58pt5s9olHAoXK3LGGcfv85u3foPQK1lKUjOiE641SVKhZCKUInAAdWkyUVIYR_HkS358mn46y85Go1-DqqWuFW_kj7_2lfyPVOEcyNV0yf6DZOOPwgn4DPKFI0gYjjeS8QzWnW86sQkAWxmYfG-UaQcJe96a8iuhfQfbxvi-6vUKsJ3A7Gtbem76Gq6q1jZQNZcusG1qOgyrsqlA9AkcE6M1JXnLTSi5hDWusRzPQ_M20g-EYlBPdtqH7Z1qOYEbv-iWfRjV1hTMLrpqeR6RFmPZXz2CfXCCZiba6pWnb8oyAQviK6W107FpDqgoHO1jUMKOSTqAbahSi8yxtfvlucgtncK26ifMMKe-y6Yzw2lDP_QLXEjq_7HuxWpEm4dnfNFfewvtUHA76BjtHB7NP36OeamDIvd5Kfe3AuEt42_7q6-bOFt-C1gx67C7jLVi5vfQXe9-4EOHpftopFcP0O1p2PXvIfrpMYVBzHiAKRwxhR2msMEUdpjC1zCFB5jCHlPYYwoDprDHFI6YspMNMfUInb4_mk-PE79VRyIpL9ukoIKXOUlVWeqcVWD4pariIgV3udYZp7Vk4HdLnkleiqoWhWKaU5LDmJpwzdkuGq-alX6CcFnJOleSCKpZykQuCFzLpKKyqLOa6gl6GZ7u4tIxsiy2JThB--HBL_wbu1kwsE9pQcGJn6AX8Wt4wCZJVq1009kx1LAiZjDmsRNYnMZ0iTNYASdoFyQYT6tMbuys53s3uren6E7_ruyjcbvu9DMwbVvx3OPtN4arqGY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-+and+multi-modal+molecular+probes+with+second+near-infrared+activatable+optical+signals+for+disease+diagnosis+and+theranostics&rft.jtitle=Chemical+Society+reviews&rft.au=Wang%2C+Minghui&rft.au=Bai%2C+Shuaige&rft.au=Zhang%2C+Yan&rft.date=2025-08-11&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=54&rft.issue=16&rft.spage=7561&rft.epage=7609&rft_id=info:doi/10.1039%2FD5CS00502G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D5CS00502G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |