Single- and multi-modal molecular probes with second near-infrared activatable optical signals for disease diagnosis and theranostics

Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence....

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 54; no. 16; pp. 7561 - 769
Main Authors Wang, Minghui, Bai, Shuaige, Zhang, Yan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 11.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. This review highlights the recent advances in single- and multi-modal molecular probes with NIR-II activatable optical signals for disease diagnosis and theranostics.
AbstractList Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.
Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700-1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional "always-on" probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various disease models and tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.
Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field.
Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio than that enabled by visible and first NIR (NIR-I, 700–1000 nm) imaging owing to reduced tissue scattering and lower tissue autofluorescence. Its imaging capability can be further enhanced by integrating other imaging modalities, providing complementary biological information in living subjects. In parallel, activatable molecular probes have been designed to change signals only in the presence of biomarkers of interest, offering higher detection sensitivity and specificity than traditional “always-on” probes. These probes can also act as delivery vehicles for therapeutics, providing opportunities for precise imaging-guided therapy. This review highlights the recent advances in the development of single- and multi-modal molecular probes with NIR-II activatable optical signals for disease detection and theranostics. We begin by introducing the probe's design strategies, focusing on molecular mechanisms that enable activatable NIR-II optical signal output and biomarker specificity. Next, strategies to optimize the probe's performance in terms of improving its optical properties and overcoming biological barriers are discussed. Subsequently, the diagnostic and theranostic applications of these probes are detailed with representative examples across various in vivo disease models and in vitro tissue biopsy. Finally, we discuss the challenges and future perspectives for improving their diagnostic accuracy and precision theranostic capabilities in this emerging field. This review highlights the recent advances in single- and multi-modal molecular probes with NIR-II activatable optical signals for disease diagnosis and theranostics.
Author Bai, Shuaige
Wang, Minghui
Zhang, Yan
AuthorAffiliation National Engineering Research Centre for Nanomedicine
Huazhong University of Science and Technology
College of Life Science and Technology
AuthorAffiliation_xml – name: College of Life Science and Technology
– name: National Engineering Research Centre for Nanomedicine
– name: Huazhong University of Science and Technology
Author_xml – sequence: 1
  givenname: Minghui
  surname: Wang
  fullname: Wang, Minghui
– sequence: 2
  givenname: Shuaige
  surname: Bai
  fullname: Bai, Shuaige
– sequence: 3
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40693322$$D View this record in MEDLINE/PubMed
BookMark eNpd0UFrFTEQB_AgFftavXhXAl5EWM0m2WxyLE-tQsFD9bxkk9nXlGzyzOwqfgC_t3l9tYKnmcAvEyb_M3KScgJCnrfsbcuEeec7h4x1jO8ekU0rFWtkL-UJ2TDBVMNYy0_JGeJt7dpe8SfkVDJlhOB8Q35fh7SL0FCbPJ3XuIRmzt5GOucIbo220H3JIyD9GZYbiuByhQlsaUKaii3gqXVL-GEXO0ageb8EV69j2CUbkU65UB8QLEKtdpcyBrx7bLmBYuuxenxKHk9Vw7P7ek6-ffzwdfupufpy-Xl7cdU4bvTS9Hw0WjHptQYlLONSemtGqbiaoDN8cqKV2pnOGT3aaey9AMOZqmZiBow4J6-Pc-tO31fAZZgDOojRJsgrDoIL3mrGO17pq__obV7LYaeD0rznWh3Uy3u1jjP4YV_CbMuv4e8HV_DmCFzJiAWmB9Ky4ZDe8L7bXt-ld1nxiyMu6B7cv3TFHzUtlvw
Cites_doi 10.1021/cr940745l
10.1016/j.biomaterials.2020.120092
10.1038/s41564-018-0295-3
10.1002/smll.202008061
10.1039/D2CS00228K
10.1021/acsabm.1c01139
10.1039/C4CS00044G
10.1002/VIW.20200068
10.1039/D0CS00664E
10.1021/acsnano.4c12894
10.1016/j.bbamem.2009.06.022
10.1038/s41565-025-01877-5
10.1039/C9SC00220K
10.1039/D2CS00799A
10.1002/anie.202216351
10.1016/j.ccr.2023.215258
10.1016/j.ccr.2023.215350
10.1039/C5CS00567A
10.1039/D2SC06710B
10.1002/anie.201911803
10.1039/D1CS00798J
10.1002/adfm.202316646
10.1021/acsami.2c04242
10.1039/C8CS00494C
10.1038/s42254-019-0074-y
10.1002/anie.202302676
10.1002/anie.201913149
10.1038/s41570-017-0041
10.1002/advs.202305308
10.1002/anie.202209512
10.1016/S0140-6736(16)00418-9
10.1039/D1CS00543J
10.1016/j.ccr.2020.213689
10.1021/acs.analchem.4c04848
10.1016/S0140-6736(21)00233-6
10.1002/adma.202002129
10.1039/D4CC04532G
10.1038/s41467-023-37586-7
10.1016/j.talanta.2023.124668
10.1002/anie.202012021
10.1002/agt2.288
10.1021/acs.analchem.2c01738
10.1038/nature22393
10.1039/D3CS00585B
10.1039/D2CS00352J
10.7150/thno.26607
10.1038/s41578-019-0108-1
10.1038/s41571-022-00709-y
10.1002/adfm.202208720
10.31635/ccschem.021.202101332
10.1002/anie.202210285
10.1016/j.ccr.2022.214848
10.1021/acs.analchem.1c00427
10.1021/acs.accounts.9b00340
10.1021/acsmaterialslett.2c00451
10.1038/s41584-020-00570-2
10.1002/anie.202309768
10.1038/312755a0
10.1016/j.cell.2021.09.020
10.1038/s41565-019-0567-y
10.1038/nrd.2016.14
10.1039/D1CS00307K
10.1038/s44222-024-00196-z
10.1016/S0140-6736(16)30173-8
10.1021/acs.chemrev.4c00244
10.1021/acs.analchem.1c04504
10.1016/j.trechm.2022.10.001
10.1002/adfm.202401627
10.1038/nrneurol.2013.22
10.1002/anie.202419988
10.1002/adma.202308217
10.1002/adma.202006532
10.1007/s00259-019-04607-x
10.1038/s41551-021-00773-2
10.1002/anie.202312632
10.1021/acs.nanolett.2c04084
10.1038/nature06917
10.1002/adfm.202301683
10.1039/D2CS00172A
10.1021/acs.analchem.0c00634
10.1016/j.cej.2023.144745
10.1016/j.snb.2023.133457
10.1016/j.ccr.2018.11.014
10.7150/thno.40808
10.1021/acs.analchem.2c04873
10.1007/s11426-024-2361-x
10.1039/D3CS00006K
10.1021/acsmaterialslett.2c01033
10.1021/acsnano.9b04954
10.1016/j.biomaterials.2023.121993
10.1002/adhm.202200467
10.1021/acsnano.3c05410
10.1016/j.dyepig.2022.111072
10.1002/adfm.201901480
10.1016/j.trac.2023.117326
10.1016/j.ccr.2023.215130
10.1038/s41467-021-26380-y
10.1002/adtp.202000207
10.1002/anie.202009986
10.1056/NEJMra0902927
10.1021/acs.chemrev.3c00612
10.1021/acs.chemrev.9b00145
10.1039/D4CC03512G
10.1016/j.ccr.2025.216643
10.1021/jacs.2c10041
10.1016/j.xcrp.2021.100570
10.1038/s41592-024-02396-2
10.1016/j.nantod.2021.101358
10.1016/j.ccr.2021.214356
10.1038/s41565-019-0527-6
10.1039/D4CC05784H
10.1039/c3cs60017c
10.1021/acs.chemrev.3c00892
10.1021/acs.chemrev.3c00776
10.1021/jacs.2c03832
10.1002/anie.202103071
10.1002/adhm.202301230
10.1016/j.biopha.2022.114071
10.1002/anie.202211409
10.1021/acsnano.3c13105
10.1038/s41571-024-00892-0
10.1021/acs.analchem.1c05154
10.1016/j.ccr.2021.213978
10.1021/acsnano.2c08077
10.1038/nature12138
10.1021/acs.chemrev.1c00506
10.1038/s41587-022-01339-6
10.1021/acs.analchem.4c02894
10.1002/anie.202011903
10.1021/acs.analchem.2c01241
10.1039/D4CS00335G
10.1016/j.pdpdt.2022.103098
10.1021/acsnano.2c08098
10.1038/s41467-024-55096-y
10.1016/j.ccr.2020.213212
10.1039/D1CS00403D
10.1038/s43586-024-00301-x
10.34133/research.0286
10.1021/acs.analchem.1c02238
10.1002/anie.201904182
10.1038/s41563-019-0566-2
10.1021/acs.analchem.1c03926
10.1002/adom.202302796
10.1021/jacs.0c08130
10.1016/j.actbio.2024.09.001
10.1016/S0140-6736(22)01694-4
10.1021/acs.analchem.0c01596
10.26599/NBE.2024.9290102
10.3322/caac.21820
10.1021/acsmaterialslett.2c00974
10.1039/D2CC06592D
10.1007/s11426-018-9277-6
10.1002/adma.202420329
10.1021/nn202378b
10.1021/acs.analchem.0c04990
10.1038/s41551-016-0010
10.1002/anie.202418378
10.1002/adhm.202303892
10.1002/adom.202100233
10.1016/j.mtbio.2023.100697
10.1039/D2CS00131D
10.1002/adma.202409661
10.1002/adhm.202100867
10.1002/adom.202201067
10.1016/j.aca.2022.339831
10.1002/advs.202409833
10.1016/j.addr.2023.115158
10.1038/s41568-021-00347-z
10.1002/adfm.202311404
10.1039/C6CS00271D
10.1002/anie.202201541
10.1038/s41565-024-01809-9
10.1002/adma.202420006
10.1002/adfm.202401325
10.1039/C8CS00234G
10.1021/acs.nanolett.1c00548
10.1016/j.ccr.2021.214096
10.1038/nbt.3330
10.1021/acsnano.9b10144
10.31635/ccschem.021.202101444
10.1016/j.cej.2021.133263
10.1039/D1CC03232A
10.1039/D2CC05386A
10.1038/nrneurol.2017.13
10.1021/acsami.3c00956
10.1038/nnano.2007.387
10.1039/D1CS00239B
10.1002/anie.202015650
10.1038/natrevmats.2016.14
10.1021/acs.chemrev.3c00549
10.1039/D2CS01021F
10.1002/adsr.202200075
10.1002/anie.202005899
10.1021/acs.chemrev.3c00506
10.1038/nrm.2017.132
10.1126/sciadv.aaw0672
10.1016/j.ccr.2024.215975
10.1002/adma.201801140
10.1039/D3SC00355H
10.1039/D1CS00525A
10.1002/adhm.202303997
10.1002/advs.202207651
10.1002/smll.202006508
10.1039/C9CS00166B
10.1002/anie.202106730
10.1038/s41551-024-01275-7
10.1021/acs.nanolett.8b02767
10.1039/C6CS00415F
10.1021/acs.chemrev.1c00875
10.1038/s41571-020-0410-2
10.1021/acs.analchem.0c04601
10.1021/acs.nanolett.3c00983
10.1039/D0CS01061H
10.1016/j.isci.2019.06.034
10.1002/anie.202114722
10.1016/j.cej.2023.142767
10.1021/acsami.0c03714
10.1002/adma.201802394
10.1016/j.tips.2015.05.001
10.7150/thno.91394
10.1002/anie.202301696
10.1038/s41577-020-0306-5
10.1021/acs.chemrev.1c00014
10.1039/C9CS00621D
10.1021/acs.chemrev.7b00425
10.1038/nnano.2009.294
10.1172/JCI10613
10.1038/s41578-021-00328-6
10.1038/nm.3623
10.1186/s13046-023-02637-w
10.1002/advs.202308905
10.1039/C6CS00636A
10.1021/acsnano.4c11334
10.1021/acs.chemrev.4c00615
10.1038/nrc3566
10.1016/j.jconrel.2022.08.050
10.1002/anie.202007649
10.26599/NBE.2024.9290061
10.1002/adma.202208097
10.1039/D2CS00928E
10.1016/j.bios.2021.113331
10.1002/adma.202308924
10.1039/C4CC08010F
10.1002/adfm.202200016
10.1002/VIW.20200075
10.1002/anie.202305744
10.1002/adhm.202202208
10.1002/smll.202206053
10.1038/nrd4433
10.1016/j.comptc.2025.115300
10.1016/j.snb.2022.133251
10.1021/acs.chemrev.3c00778
10.1039/D4CS01315H
10.1002/adfm.201807376
10.1016/j.kint.2020.04.044
10.1002/anie.202001783
10.1021/acs.nanolett.8b05148
10.1038/s41551-019-0494-0
10.1002/anie.202315217
10.1021/jacs.3c13851
10.1002/advs.202304104
10.7150/thno.78085
10.1021/acs.nanolett.6b04261
10.1021/acs.analchem.0c00556
10.1016/j.cej.2024.156099
10.1038/s41572-021-00269-y
10.1016/j.bios.2022.114610
10.1002/anie.202209378
10.1002/anie.202200025
10.1038/s41467-022-33837-1
10.1002/anie.201802889
10.1021/acs.nanolett.1c00197
10.1002/anie.202109728
10.1016/j.cell.2006.11.001
10.1038/s41467-024-55503-4
10.1039/D3CS00883E
10.1016/j.nantod.2023.102027
10.1002/adhm.202301584
10.1021/cbmi.3c00030
10.1056/NEJMra1708714
10.1002/anie.202112237
10.1002/anie.202107877
10.1016/j.bios.2024.116906
10.1016/j.biomaterials.2020.120459
10.1002/adma.201904329
10.1002/anie.201712528
10.1039/D2QM01207C
10.1016/j.ccr.2025.216550
10.1002/adfm.202009942
10.1038/s41467-025-57673-1
10.1016/j.addr.2023.114830
10.1039/C9CS00309F
10.1038/s41570-020-0205-0
10.1002/anie.202102097
10.1016/j.biomaterials.2022.121956
10.1002/adfm.202310818
10.1002/adom.202303258
10.1016/j.snb.2021.129718
10.1038/s41566-024-01391-5
10.1021/acs.analchem.4c02629
10.1021/acsnano.0c09799
10.1039/C9CC09158K
10.1002/smll.202202551
10.1038/s41587-019-0040-3
10.1002/anie.202007040
10.1021/acs.chemrev.6b00001
10.1021/acs.accounts.8b00384
10.1002/adma.202415891
10.1021/jacs.2c07443
10.1038/nprot.2011.351
10.1021/acs.chemrev.6b00369
10.1073/pnas.2205186120
10.1021/acs.nanolett.1c04356
10.1016/j.snb.2024.135951
10.1021/acs.analchem.9b00317
10.1002/anie.202209592
10.1016/j.nantod.2022.101378
10.1126/sciadv.ado2037
10.1126/science.1160809
10.1002/adhm.202400715
10.1021/acs.analchem.2c02052
10.1002/smll.202201179
10.1039/C9SC02093D
10.1038/s41563-019-0378-4
10.1002/adma.202001172
10.1016/j.ccr.2025.216746
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d5cs00502g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 769
ExternalDocumentID 40693322
10_1039_D5CS00502G
d5cs00502g
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
4.4
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
P2P
R56
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
M4U
7X8
ID FETCH-LOGICAL-c298t-72b98604d88e63a0244da9b4626fe592fc3148c95c98bafb7d3e9206a9bf09e93
ISSN 0306-0012
1460-4744
IngestDate Tue Jul 22 17:01:52 EDT 2025
Mon Aug 11 13:11:06 EDT 2025
Tue Aug 12 01:37:22 EDT 2025
Wed Aug 13 23:50:13 EDT 2025
Mon Aug 11 15:20:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-72b98604d88e63a0244da9b4626fe592fc3148c95c98bafb7d3e9206a9bf09e93
Notes Minghui Wang received his master's degree in Analytical Chemistry from Anhui University, China, in 2024. He is currently pursuing his PhD in Biomedical Engineering under the supervision of Professor Yan Zhang at Huazhong University of Science and Technology. His research focuses on the development of activatable optical probes for disease theranostics.
Shuaige Bai received his master's degree in pharmaceutical chemistry from Central South university, China, in 2024. He is currently pursuing his PhD degree in Biomedical Engineering under the supervision of Prof. Yan Zhang at Huazhong University of Science and Technology. His research interests focus on the construction of novel activatable afterglow optical probes for theranostics.
Dr Yan Zhang is a professor at the College of Life Science and Technology, Huazhong University of Science and Technology, China. Her current research interests focus on the design of activatable optical and multimodal probes for disease diagnosis and theranostics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8811-5552
PMID 40693322
PQID 3238272862
PQPubID 2047503
PageCount 49
ParticipantIDs pubmed_primary_40693322
proquest_journals_3238272862
crossref_primary_10_1039_D5CS00502G
proquest_miscellaneous_3232180252
rsc_primary_d5cs00502g
PublicationCentury 2000
PublicationDate 2025-08-11
PublicationDateYYYYMMDD 2025-08-11
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 53
Weissleder (D5CS00502G/cit1/1) 2008; 452
Zhang (D5CS00502G/cit75/1) 2018; 61
Zhu (D5CS00502G/cit218/1) 2017; 46
Zhou (D5CS00502G/cit259/1) 2023; 493
Wu (D5CS00502G/cit299/1) 2024; 36
Morris (D5CS00502G/cit305/1) 2018; 14
Zhang (D5CS00502G/cit82/1) 2021; 21
Sun (D5CS00502G/cit122/1) 2024; 96
Wang (D5CS00502G/cit80/1) 2019; 19
Xue (D5CS00502G/cit316/1) 2021; 50
Cheng (D5CS00502G/cit327/1) 2021; 6
Zhang (D5CS00502G/cit308/1) 2025; 539
Ge (D5CS00502G/cit92/1) 2023; 62
Shao (D5CS00502G/cit230/1) 2024; 36
Li (D5CS00502G/cit292/1) 2020; 17
Shen (D5CS00502G/cit206/1) 2022; 144
Fernández (D5CS00502G/cit282/1) 2016; 45
Yang (D5CS00502G/cit109/1) 2023; 379
Zhan (D5CS00502G/cit147/1) 2021; 60
Gong (D5CS00502G/cit269/1) 2024; 499
Sun (D5CS00502G/cit32/1) 2016; 116
Cai (D5CS00502G/cit247/1) 2023; 5
Zhu (D5CS00502G/cit123/1) 2021; 60
Su (D5CS00502G/cit188/1) 2022; 18
He (D5CS00502G/cit228/1) 2022; 61
Dou (D5CS00502G/cit108/1) 2021; 93
Gupta (D5CS00502G/cit260/1) 2006; 127
Sindhwani (D5CS00502G/cit242/1) 2020; 19
Wang (D5CS00502G/cit76/1) 2020; 14
Wang (D5CS00502G/cit111/1) 2021; 93
Simon (D5CS00502G/cit274/1) 2017; 13
Cheng (D5CS00502G/cit20/1) 2024; 53
Qin (D5CS00502G/cit249/1) 2021; 336
Buckley (D5CS00502G/cit264/1) 2021; 17
Pan (D5CS00502G/cit190/1) 2022; 16
Hang (D5CS00502G/cit12/1) 2022; 51
Liu (D5CS00502G/cit113/1) 2024; 18
Zhao (D5CS00502G/cit59/1) 2023; 12
Hu (D5CS00502G/cit43/1) 2022; 10
Liu (D5CS00502G/cit319/1) 2021; 441
Ong (D5CS00502G/cit222/1) 2021; 188
Mu (D5CS00502G/cit23/1) 2022; 61
Zeng (D5CS00502G/cit169/1) 2020; 92
Peer (D5CS00502G/cit238/1) 2007; 2
Gorka (D5CS00502G/cit54/1) 2018; 51
Pandey (D5CS00502G/cit47/1) 2020; 409
Liu (D5CS00502G/cit226/1) 2024; 14
Zhong (D5CS00502G/cit128/1) 2022; 433
Yu (D5CS00502G/cit278/1) 2020; 98
Morad (D5CS00502G/cit297/1) 2021; 184
Yu (D5CS00502G/cit51/1) 2021; 269
Iwakiri (D5CS00502G/cit276/1) 2015; 36
Kasten (D5CS00502G/cit24/1) 2020; 47
Grabowski (D5CS00502G/cit56/1) 2003; 103
Lan (D5CS00502G/cit120/1) 2022; 144
Wu (D5CS00502G/cit72/1) 2023; 10
Zhang (D5CS00502G/cit175/1) 2022; 4
Hu (D5CS00502G/cit39/1) 2024; 34
Liu (D5CS00502G/cit288/1) 2022; 144
Zhang (D5CS00502G/cit318/1) 2016; 116
Xu (D5CS00502G/cit42/1) 2021; 60
Rodriguez-Rios (D5CS00502G/cit235/1) 2022; 51
Deng (D5CS00502G/cit77/1) 2025; 61
Li (D5CS00502G/cit100/1) 2020; 59
Li (D5CS00502G/cit97/1) 2023; 62
Duo (D5CS00502G/cit248/1) 2024; 124
Ning (D5CS00502G/cit155/1) 2019; 10
Lei (D5CS00502G/cit132/1) 2019; 58
Wang (D5CS00502G/cit11/1) 2023; 52
Yang (D5CS00502G/cit166/1) 2020; 59
Zhang (D5CS00502G/cit28/1) 2024; 21
Wang (D5CS00502G/cit89/1) 2019; 10
Huang (D5CS00502G/cit96/1) 2023; 95
Li (D5CS00502G/cit161/1) 2025; 268
Huang (D5CS00502G/cit334/1) 2020; 59
Zeng (D5CS00502G/cit182/1) 2022; 1208
Poronik (D5CS00502G/cit35/1) 2019; 48
Zhou (D5CS00502G/cit289/1) 2016; 45
Tian (D5CS00502G/cit220/1) 2022; 94
Zhao (D5CS00502G/cit156/1) 2020; 32
Xu (D5CS00502G/cit293/1) 2021; 50
Tian (D5CS00502G/cit105/1) 2023; 62
Li (D5CS00502G/cit207/1) 2025; 16
Land (D5CS00502G/cit326/1) 2019; 4
Miao (D5CS00502G/cit67/1) 2023; 62
Li (D5CS00502G/cit193/1) 2022; 94
Chen (D5CS00502G/cit311/1) 2019; 13
Jin (D5CS00502G/cit145/1) 2024; 11
Sun (D5CS00502G/cit209/1) 2021; 4
Hu (D5CS00502G/cit41/1) 2024; 34
Chen (D5CS00502G/cit99/1) 2022; 61
Chen (D5CS00502G/cit118/1) 2023; 62
Liu (D5CS00502G/cit202/1) 2023; 7
Liu (D5CS00502G/cit281/1) 2025; 9
Heikenfeld (D5CS00502G/cit324/1) 2019; 37
Zhang (D5CS00502G/cit154/1) 2023; 5
Kenry (D5CS00502G/cit15/1) 2018; 30
Li (D5CS00502G/cit86/1) 2022; 61
Wang (D5CS00502G/cit181/1) 2024; 12
Chen (D5CS00502G/cit153/1) 2021; 60
Li (D5CS00502G/cit250/1) 2016; 76
Jamaledin (D5CS00502G/cit232/1) 2020; 32
Wang (D5CS00502G/cit57/1) 2021; 50
Warszyńska (D5CS00502G/cit314/1) 2023; 495
Liu (D5CS00502G/cit81/1) 2018; 57
Craven (D5CS00502G/cit268/1) 2016; 387
Cai (D5CS00502G/cit44/1) 2019; 48
Obaid (D5CS00502G/cit290/1) 2024; 2
He (D5CS00502G/cit14/1) 2018; 47
Gonzaga de França Lopes (D5CS00502G/cit313/1) 2021; 445
Chai (D5CS00502G/cit129/1) 2024; 188
Zheng (D5CS00502G/cit189/1) 2021; 17
Mao (D5CS00502G/cit227/1) 2022; 454
Dai (D5CS00502G/cit101/1) 2023; 19
Zhu (D5CS00502G/cit197/1) 2022; 61
Hu (D5CS00502G/cit183/1) 2025; 64
Alexander (D5CS00502G/cit196/1) 2025; 125
Li (D5CS00502G/cit233/1) 2022; 16
Zhu (D5CS00502G/cit195/1) 2022; 61
Li (D5CS00502G/cit302/1) 2024; 34
Deng (D5CS00502G/cit85/1) 2019; 17
Geng (D5CS00502G/cit5/1) 2023; 52
Razansky (D5CS00502G/cit261/1) 2011; 6
Zheng (D5CS00502G/cit46/1) 2021; 431
Liu (D5CS00502G/cit179/1) 2025
Wallace (D5CS00502G/cit309/1) 2015; 14
Kingwell (D5CS00502G/cit317/1) 2016; 15
Bouzigues (D5CS00502G/cit213/1) 2011; 5
Fu (D5CS00502G/cit26/1) 2024; 54
Cao (D5CS00502G/cit34/1) 2019; 119
Ouyang (D5CS00502G/cit174/1) 2020; 59
Fu (D5CS00502G/cit158/1) 2021; 17
Chang (D5CS00502G/cit6/1) 2021; 6
Blanco (D5CS00502G/cit221/1) 2015; 33
Chen (D5CS00502G/cit144/1) 2024; 60
Wang (D5CS00502G/cit303/1) 2019; 29
Tang (D5CS00502G/cit103/1) 2019; 29
Price (D5CS00502G/cit320/1) 2023; 20
Roozenbeek (D5CS00502G/cit273/1) 2013; 9
Nam (D5CS00502G/cit315/1) 2019; 4
Lei (D5CS00502G/cit50/1) 2021; 60
Jiang (D5CS00502G/cit19/1) 2021; 2
Du (D5CS00502G/cit79/1) 2024; 11
She (D5CS00502G/cit172/1) 2022; 58
Qi (D5CS00502G/cit29/1) 2023; 486
Zhang (D5CS00502G/cit4/1) 2022; 51
Wang (D5CS00502G/cit291/1) 2023; 12
Ji (D5CS00502G/cit151/1) 2024; 18
Chen (D5CS00502G/cit164/1) 2025; 16
Li (D5CS00502G/cit236/1) 2009; 1788
Li (D5CS00502G/cit64/1) 2025; 1250
Chen (D5CS00502G/cit185/1) 2022; 3
Ge (D5CS00502G/cit131/1) 2020; 92
Siegel (D5CS00502G/cit252/1) 2024; 74
Huang (D5CS00502G/cit284/1) 2025
Nguyen (D5CS00502G/cit285/1) 2013; 13
Cao (D5CS00502G/cit66/1) 2014; 50
Zhao (D5CS00502G/cit157/1) 2022; 61
Xu (D5CS00502G/cit333/1) 2024; 20
Jeong (D5CS00502G/cit325/1) 2017; 17
Ren (D5CS00502G/cit87/1) 2021; 60
Bertolini (D5CS00502G/cit262/1) 2023; 52
Liu (D5CS00502G/cit332/1) 2024; 205
Hu (D5CS00502G/cit16/1) 2020; 4
Fujita (D5CS00502G/cit27/1) 2024; 124
Li (D5CS00502G/cit159/1) 2024; 63
Waldman (D5CS00502G/cit298/1) 2020; 20
Sobhanan (D5CS00502G/cit83/1) 2023; 197
Zhan (D5CS00502G/cit323/1) 2025; 54
Stride (D5CS00502G/cit312/1) 2019; 1
Pei (D5CS00502G/cit78/1) 2023; 52
Oh (D5CS00502G/cit244/1) 2014; 20
Mei (D5CS00502G/cit204/1) 2020; 251
Lai (D5CS00502G/cit307/1) 2022; 32
Tee (D5CS00502G/cit237/1) 2019; 48
Xu (D5CS00502G/cit22/1) 2019; 381
Zhou (D5CS00502G/cit149/1) 2022; 14
Zhang (D5CS00502G/cit194/1) 2022; 11
Qu (D5CS00502G/cit212/1) 2020; 10
Lin (D5CS00502G/cit205/1) 2025
He (D5CS00502G/cit231/1) 2022; 13
Tang (D5CS00502G/cit229/1) 2023; 17
Yang (D5CS00502G/cit49/1) 2024; 124
Li (D5CS00502G/cit53/1) 2022; 51
Zheng (D5CS00502G/cit184/1) 2022; 18
Lei (D5CS00502G/cit68/1) 2023; 6
Shi (D5CS00502G/cit146/1) 2018; 18
Bai (D5CS00502G/cit90/1) 2021; 93
Yuan (D5CS00502G/cit93/1) 2023; 21
Li (D5CS00502G/cit225/1) 2024; 517
Dou (D5CS00502G/cit141/1) 2021; 4
Chen (D5CS00502G/cit110/1) 2020; 56
Li (D5CS00502G/cit210/1) 2022; 12
Cabello (D5CS00502G/cit48/1) 2024; 124
Bao (D5CS00502G/cit95/1) 2024; 34
Zeng (D5CS00502G/cit177/1) 2023; 15
Dou (D5CS00502G/cit208/1) 2020; 92
Zhu (D5CS00502G/cit217/1) 2025; 533
Sun (D5CS00502G/cit71/1) 2019; 52
Meng (D5CS00502G/cit65/1) 2020; 12
Yang (D5CS00502G/cit9/1) 2022; 51
Chandra (D5CS00502G/cit321/1) 2021; 398
Liao (D5CS00502G/cit112/1) 2021; 60
Wu (D5CS00502G/cit287/1) 2020; 1
Hiam-Galvez (D5CS00502G/cit296/1) 2021; 21
Zhang (D5CS00502G/cit165/1) 2023; 10
Chen (D5CS00502G/cit170/1) 2022; 94
Wang (D5CS00502G/cit61/1) 2023; 14
Li (D5CS00502G/cit142/1) 2023; 14
Wen (D5CS00502G/cit294/1) 2021; 4
Nguyen (D5CS00502G/cit330/1) 2020; 4
Chang (D5CS00502G/cit167/1) 2023; 59
Zhang (D5CS00502G/cit310/1) 2021; 50
Zhou (D5CS00502G/cit162/1) 2021; 33
Hu (D5CS00502G/cit215/1) 2014; 43
Zhang (D5CS00502G/cit55/1) 2021; 60
Tan (D5CS00502G/cit127/1) 2021; 93
Tyler (D5CS00502G/cit271/1) 2018; 379
Sun (D5CS00502G/cit62/1) 2023; 158
Ko (D5CS00502G/cit329/1) 2022; 40
Zeng (D5CS00502G/cit33/1) 2021; 60
Liu (D5CS00502G/cit94/1) 2024; 96
Tang (D5CS00502G/cit257/1) 2025; 16
Smolen (D5CS00502G/cit263/1) 2016; 388
Li (D5CS00502G/cit119/1) 2019; 91
Chen (D5CS00502G/cit280/1) 2021; 60
Nankivell Brian (D5CS00502G/cit283/1) 2010; 363
Wang (D5CS00502G/cit322/1) 2017; 547
Wang (D5CS00502G/cit106/1) 2021; 31
Zhu (D5CS00502G/cit137/1) 2024; 18
Behzadi (D5CS00502G/cit251/1) 2017; 46
Liu (D5CS00502G/cit135/1) 2024; 414
Wang (D5CS00502G/cit21/1) 2022; 61
Sun (D5CS00502G/cit171/1) 2021; 10
Nandanwar (D5CS00502G/cit300/1) 2025; 538
Sass (D5CS00502G/cit277/1) 2001; 107
Ma (D5CS00502G/cit63/1) 2023; 464
Xu (D5CS00502G/cit125/1) 2025; 68
Wang (D5CS00502G/cit30/1) 2024; 124
Huang (D5CS00502G/cit88/1) 2023; 381
Fu (D5CS00502G/cit187/1) 2022; 61
Yu (D5CS00502G/cit115/1) 2022; 22
Commisso (D5CS00502G/cit245/1) 2013; 497
Pan (D5CS00502G/cit73/1) 2021; 93
Luo (D5CS00502G/cit224/1) 2023; 10
Vander Heiden (D5CS00502G/cit255/1) 2009; 324
Liu (D5CS00502G/cit8/1) 2022; 122
Diao (D5CS00502G/cit152/1) 2024
Hong (D5CS00502G/cit219/1) 2017; 1
Neidle (D5CS00502G/cit254/1) 2017; 1
Sharma (D5CS00502G/cit3/1) 2024; 124
Wu (D5CS00502G/cit160/1) 2021; 93
Wilhelm (D5CS00502G/cit240/1) 2016; 1
Chen (D5CS00502G/cit272/1) 2022; 61
Cui (D5CS00502G/cit258/1) 2023; 474
van der Meel (D5CS00502G/cit301/1) 2019; 14
Levine (D5CS00502G/cit223/1) 1984; 312
Guo (D5CS00502G/cit239/1) 2024; 16
Loynachan (D5CS00502G/cit328/1) 2019; 14
Heiss (D5CS00502G/cit331/1) 2021; 121
Sun (D5CS00502G/cit192/1) 2022; 350
Knopman (D5CS00502G/cit270/1) 2021; 7
Wu (D5CS00502G/cit25/1) 2022; 51
Zeng (D5CS00502G/cit38/1) 2023; 52
Liu (D5CS00502G/cit199/1) 2023; 5
Liu (D5CS00502G/cit216/1) 2023; 52
Kaksonen (D5CS00502G/cit243/1) 2018; 19
Li (D5CS00502G/cit114/1) 2022; 94
Liu (D5CS00502G/cit126/1) 2021; 21
Chen (D5CS00502G/cit163/1) 2023; 120
Sun (D5CS00502G/cit253/1) 2023; 168
Dube (D5CS00502G/cit306/1) 2023; 42
Zhang (D5CS00502G/cit104/1) 2023; 14
Wu (D5CS00502G/cit173/1) 2021; 12
Huang (D5CS00502G/cit279/1) 2019; 18
Welsher (D5CS00502G/cit18/1) 2009; 4
Ling (D5CS00502G/cit148/1) 2025; 64
Zhang (D5CS00502G/cit130/1) 2021; 57
Zhang (D5CS00502G/cit17/1) 2022; 40
Dou (D5CS00502G/cit143/1) 2024
Adams (D5CS00502G/cit275/1) 2023; 401
Xu (D5CS00502G/cit136/1) 2018; 57
Zhu (D5CS00502G/cit265/1) 2022; 42
Yuan (D5CS00502G/cit40/1) 2025; 54
Chen (D5CS00502G/cit133/1) 2023; 1
Wang (D5CS00502G/cit28
References_xml – issn: 2016
  issue: 76
  year: 53
  end-page: 38
  publication-title: 30th Anniv. Issue
  doi: Li Zhou Chen Anjum Shahzad Yu
– volume: 103
  start-page: 3899
  year: 2003
  ident: D5CS00502G/cit56/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr940745l
– volume: 251
  start-page: 120092
  year: 2020
  ident: D5CS00502G/cit204/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120092
– volume: 4
  start-page: 46
  year: 2019
  ident: D5CS00502G/cit326/1
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0295-3
– volume: 17
  start-page: 2008061
  year: 2021
  ident: D5CS00502G/cit158/1
  publication-title: Small
  doi: 10.1002/smll.202008061
– volume: 51
  start-page: 8815
  year: 2022
  ident: D5CS00502G/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00228K
– volume: 5
  start-page: 711
  year: 2022
  ident: D5CS00502G/cit116/1
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.1c01139
– volume: 43
  start-page: 4494
  year: 2014
  ident: D5CS00502G/cit215/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00044G
– volume: 1
  start-page: 20200068
  year: 2020
  ident: D5CS00502G/cit287/1
  publication-title: View
  doi: 10.1002/VIW.20200068
– volume: 50
  start-page: 1111
  year: 2021
  ident: D5CS00502G/cit293/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00664E
– volume: 18
  start-page: 34912
  year: 2024
  ident: D5CS00502G/cit137/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c12894
– volume: 1788
  start-page: 2259
  year: 2009
  ident: D5CS00502G/cit236/1
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2009.06.022
– volume: 20
  start-page: 672
  year: 2025
  ident: D5CS00502G/cit241/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-025-01877-5
– volume: 10
  start-page: 4227
  year: 2019
  ident: D5CS00502G/cit155/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00220K
– volume: 52
  start-page: 5607
  year: 2023
  ident: D5CS00502G/cit38/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00799A
– volume: 62
  start-page: e202216351
  year: 2023
  ident: D5CS00502G/cit67/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202216351
– volume: 493
  start-page: 215258
  year: 2023
  ident: D5CS00502G/cit259/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215258
– volume: 495
  start-page: 215350
  year: 2023
  ident: D5CS00502G/cit314/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215350
– volume: 45
  start-page: 1182
  year: 2016
  ident: D5CS00502G/cit282/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00567A
– volume: 14
  start-page: 4786
  year: 2023
  ident: D5CS00502G/cit61/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC06710B
– volume: 59
  start-page: 247
  year: 2020
  ident: D5CS00502G/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911803
– volume: 51
  start-page: 2081
  year: 2022
  ident: D5CS00502G/cit235/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00798J
– volume: 34
  start-page: 2316646
  year: 2024
  ident: D5CS00502G/cit95/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202316646
– volume: 14
  start-page: 23206
  year: 2022
  ident: D5CS00502G/cit149/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c04242
– volume: 48
  start-page: 22
  year: 2019
  ident: D5CS00502G/cit44/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00494C
– volume: 1
  start-page: 495
  year: 2019
  ident: D5CS00502G/cit312/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0074-y
– volume: 62
  start-page: e202302676
  year: 2023
  ident: D5CS00502G/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202302676
– volume: 59
  start-page: 10111
  year: 2020
  ident: D5CS00502G/cit174/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913149
– volume: 1
  start-page: 41
  year: 2017
  ident: D5CS00502G/cit254/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0041
– volume: 11
  start-page: 2305308
  year: 2024
  ident: D5CS00502G/cit79/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202305308
– volume: 61
  start-page: e202209512
  year: 2022
  ident: D5CS00502G/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209512
– volume: 387
  start-page: S31
  year: 2016
  ident: D5CS00502G/cit268/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00418-9
– volume: 51
  start-page: 450
  year: 2022
  ident: D5CS00502G/cit25/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00543J
– volume: 431
  start-page: 213689
  year: 2021
  ident: D5CS00502G/cit46/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213689
– volume: 96
  start-page: 20049
  year: 2024
  ident: D5CS00502G/cit122/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c04848
– volume: 398
  start-page: 171
  year: 2021
  ident: D5CS00502G/cit321/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00233-6
– volume: 32
  start-page: 2002129
  year: 2020
  ident: D5CS00502G/cit232/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002129
– volume: 61
  start-page: 3447
  year: 2025
  ident: D5CS00502G/cit37/1
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC04532G
– volume: 14
  start-page: 1843
  year: 2023
  ident: D5CS00502G/cit142/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37586-7
– volume: 262
  start-page: 124668
  year: 2023
  ident: D5CS00502G/cit91/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124668
– volume: 60
  start-page: 5091
  year: 2021
  ident: D5CS00502G/cit69/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202012021
– volume: 4
  start-page: e288
  year: 2023
  ident: D5CS00502G/cit74/1
  publication-title: Aggregate
  doi: 10.1002/agt2.288
– volume: 94
  start-page: 10470
  year: 2022
  ident: D5CS00502G/cit193/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01738
– volume: 547
  start-page: 99
  year: 2017
  ident: D5CS00502G/cit322/1
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 54
  start-page: 341
  year: 2025
  ident: D5CS00502G/cit40/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00585B
– volume: 52
  start-page: 2031
  year: 2023
  ident: D5CS00502G/cit78/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00352J
– volume: 8
  start-page: 6025
  year: 2018
  ident: D5CS00502G/cit186/1
  publication-title: Theranostics
  doi: 10.7150/thno.26607
– volume: 4
  start-page: 398
  year: 2019
  ident: D5CS00502G/cit315/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0108-1
– volume: 20
  start-page: 83
  year: 2023
  ident: D5CS00502G/cit320/1
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-022-00709-y
– volume: 32
  start-page: 2208720
  year: 2022
  ident: D5CS00502G/cit176/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208720
– volume: 4
  start-page: 476
  year: 2021
  ident: D5CS00502G/cit209/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101332
– volume: 61
  start-page: e202210285
  year: 2022
  ident: D5CS00502G/cit99/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210285
– volume: 474
  start-page: 214848
  year: 2023
  ident: D5CS00502G/cit258/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214848
– volume: 93
  start-page: 9356
  year: 2021
  ident: D5CS00502G/cit111/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00427
– volume: 52
  start-page: 2818
  year: 2019
  ident: D5CS00502G/cit71/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00340
– volume: 4
  start-page: 1493
  year: 2022
  ident: D5CS00502G/cit175/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00451
– volume: 17
  start-page: 195
  year: 2021
  ident: D5CS00502G/cit264/1
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-020-00570-2
– volume: 62
  start-page: e202309768
  year: 2023
  ident: D5CS00502G/cit105/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202309768
– volume: 312
  start-page: 755
  year: 1984
  ident: D5CS00502G/cit223/1
  publication-title: Nature
  doi: 10.1038/312755a0
– volume: 184
  start-page: 5309
  year: 2021
  ident: D5CS00502G/cit297/1
  publication-title: Cell
  doi: 10.1016/j.cell.2021.09.020
– volume: 14
  start-page: 1007
  year: 2019
  ident: D5CS00502G/cit301/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0567-y
– volume: 15
  start-page: 84
  year: 2016
  ident: D5CS00502G/cit317/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd.2016.14
– volume: 51
  start-page: 1795
  year: 2022
  ident: D5CS00502G/cit53/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00307K
– volume: 2
  start-page: 752
  year: 2024
  ident: D5CS00502G/cit290/1
  publication-title: Nat. Rev. Bioeng.
  doi: 10.1038/s44222-024-00196-z
– volume: 388
  start-page: 2023
  year: 2016
  ident: D5CS00502G/cit263/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30173-8
– volume: 124
  start-page: 11242
  year: 2024
  ident: D5CS00502G/cit248/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.4c00244
– volume: 93
  start-page: 17103
  year: 2021
  ident: D5CS00502G/cit73/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04504
– volume: 5
  start-page: 11
  year: 2023
  ident: D5CS00502G/cit199/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2022.10.001
– volume: 34
  start-page: 2401627
  year: 2024
  ident: D5CS00502G/cit302/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202401627
– volume: 9
  start-page: 231
  year: 2013
  ident: D5CS00502G/cit273/1
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2013.22
– volume: 64
  start-page: e202419988
  year: 2025
  ident: D5CS00502G/cit148/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202419988
– volume: 36
  start-page: 2308217
  year: 2024
  ident: D5CS00502G/cit230/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308217
– volume: 33
  start-page: 2006532
  year: 2021
  ident: D5CS00502G/cit162/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006532
– volume: 47
  start-page: 1412
  year: 2020
  ident: D5CS00502G/cit24/1
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-019-04607-x
– volume: 6
  start-page: 629
  year: 2021
  ident: D5CS00502G/cit6/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00773-2
– volume: 63
  start-page: e202312632
  year: 2024
  ident: D5CS00502G/cit159/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202312632
– volume: 22
  start-page: 9732
  year: 2022
  ident: D5CS00502G/cit115/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c04084
– volume: 452
  start-page: 580
  year: 2008
  ident: D5CS00502G/cit1/1
  publication-title: Nature
  doi: 10.1038/nature06917
– volume: 33
  start-page: 2301683
  year: 2023
  ident: D5CS00502G/cit211/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301683
– volume: 52
  start-page: 3873
  year: 2023
  ident: D5CS00502G/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00172A
– volume: 92
  start-page: 4177
  year: 2020
  ident: D5CS00502G/cit208/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c00634
– volume: 471
  start-page: 144745
  year: 2023
  ident: D5CS00502G/cit60/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144745
– volume: 381
  start-page: 133457
  year: 2023
  ident: D5CS00502G/cit88/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.133457
– volume: 381
  start-page: 104
  year: 2019
  ident: D5CS00502G/cit22/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.11.014
– start-page: e202419191
  year: 2024
  ident: D5CS00502G/cit143/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2631
  year: 2020
  ident: D5CS00502G/cit212/1
  publication-title: Theranostics
  doi: 10.7150/thno.40808
– volume: 95
  start-page: 3761
  year: 2023
  ident: D5CS00502G/cit96/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04873
– volume: 68
  start-page: 2138
  year: 2025
  ident: D5CS00502G/cit125/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-024-2361-x
– volume: 52
  start-page: 4549
  year: 2023
  ident: D5CS00502G/cit11/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00006K
– volume: 5
  start-page: 116
  year: 2023
  ident: D5CS00502G/cit154/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c01033
– volume: 13
  start-page: 10887
  year: 2019
  ident: D5CS00502G/cit311/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04954
– volume: 294
  start-page: 121993
  year: 2023
  ident: D5CS00502G/cit168/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2023.121993
– volume: 11
  start-page: 2200467
  year: 2022
  ident: D5CS00502G/cit194/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202200467
– volume: 17
  start-page: 18299
  year: 2023
  ident: D5CS00502G/cit229/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05410
– volume: 211
  start-page: 111072
  year: 2023
  ident: D5CS00502G/cit267/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2022.111072
– volume: 29
  start-page: 1901480
  year: 2019
  ident: D5CS00502G/cit303/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901480
– volume: 168
  start-page: 117326
  year: 2023
  ident: D5CS00502G/cit253/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2023.117326
– volume: 486
  start-page: 215130
  year: 2023
  ident: D5CS00502G/cit29/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215130
– volume: 12
  start-page: 6145
  year: 2021
  ident: D5CS00502G/cit173/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26380-y
– volume: 4
  start-page: 2000207
  year: 2021
  ident: D5CS00502G/cit294/1
  publication-title: Adv. Ther.
  doi: 10.1002/adtp.202000207
– volume: 60
  start-page: 800
  year: 2021
  ident: D5CS00502G/cit87/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009986
– volume: 363
  start-page: 1451
  year: 2010
  ident: D5CS00502G/cit283/1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0902927
– volume: 124
  start-page: 4021
  year: 2024
  ident: D5CS00502G/cit27/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00612
– volume: 119
  start-page: 10403
  year: 2019
  ident: D5CS00502G/cit34/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00145
– volume: 60
  start-page: 9618
  year: 2024
  ident: D5CS00502G/cit144/1
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC03512G
– volume: 538
  start-page: 216643
  year: 2025
  ident: D5CS00502G/cit300/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2025.216643
– volume: 144
  start-page: 21010
  year: 2022
  ident: D5CS00502G/cit120/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c10041
– volume: 3
  start-page: 100570
  year: 2022
  ident: D5CS00502G/cit185/1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100570
– volume: 21
  start-page: 1996
  year: 2024
  ident: D5CS00502G/cit198/1
  publication-title: Nat. Methods
  doi: 10.1038/s41592-024-02396-2
– volume: 42
  start-page: 101358
  year: 2022
  ident: D5CS00502G/cit265/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101358
– volume: 454
  start-page: 214356
  year: 2022
  ident: D5CS00502G/cit227/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214356
– volume: 14
  start-page: 883
  year: 2019
  ident: D5CS00502G/cit328/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0527-6
– volume: 61
  start-page: 544
  year: 2025
  ident: D5CS00502G/cit77/1
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC05784H
– volume: 42
  start-page: 5489
  year: 2013
  ident: D5CS00502G/cit45/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60017c
– volume: 124
  start-page: 9225
  year: 2024
  ident: D5CS00502G/cit48/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00892
– volume: 124
  start-page: 7106
  year: 2024
  ident: D5CS00502G/cit30/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00776
– volume: 144
  start-page: 13586
  year: 2022
  ident: D5CS00502G/cit288/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03832
– volume: 60
  start-page: 15809
  year: 2021
  ident: D5CS00502G/cit280/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103071
– volume: 12
  start-page: 2301230
  year: 2023
  ident: D5CS00502G/cit291/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202301230
– volume: 158
  start-page: 114071
  year: 2023
  ident: D5CS00502G/cit62/1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2022.114071
– volume: 61
  start-page: e202211409
  year: 2022
  ident: D5CS00502G/cit228/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202211409
– volume: 18
  start-page: 8437
  year: 2024
  ident: D5CS00502G/cit113/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c13105
– volume: 21
  start-page: 449
  year: 2024
  ident: D5CS00502G/cit28/1
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-024-00892-0
– volume: 94
  start-page: 2641
  year: 2022
  ident: D5CS00502G/cit114/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c05154
– volume: 441
  start-page: 213978
  year: 2021
  ident: D5CS00502G/cit319/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213978
– volume: 16
  start-page: 19038
  year: 2022
  ident: D5CS00502G/cit190/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08077
– volume: 497
  start-page: 633
  year: 2013
  ident: D5CS00502G/cit245/1
  publication-title: Nature
  doi: 10.1038/nature12138
– volume: 121
  start-page: 13086
  year: 2021
  ident: D5CS00502G/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00506
– volume: 40
  start-page: 1654
  year: 2022
  ident: D5CS00502G/cit329/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01339-6
– volume: 96
  start-page: 14230
  year: 2024
  ident: D5CS00502G/cit94/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c02894
– volume: 60
  start-page: 2637
  year: 2021
  ident: D5CS00502G/cit147/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202011903
– volume: 94
  start-page: 8449
  year: 2022
  ident: D5CS00502G/cit170/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01241
– volume: 53
  start-page: 10171
  year: 2024
  ident: D5CS00502G/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D4CS00335G
– volume: 40
  start-page: 103098
  year: 2022
  ident: D5CS00502G/cit17/1
  publication-title: Photodiagn. Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2022.103098
– volume: 16
  start-page: 17298
  year: 2022
  ident: D5CS00502G/cit233/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08098
– volume: 16
  start-page: 278
  year: 2025
  ident: D5CS00502G/cit257/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-55096-y
– volume: 409
  start-page: 213212
  year: 2020
  ident: D5CS00502G/cit47/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213212
– volume: 50
  start-page: 11227
  year: 2021
  ident: D5CS00502G/cit310/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00403D
– volume: 4
  start-page: 1
  year: 2024
  ident: D5CS00502G/cit13/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-024-00301-x
– volume: 6
  start-page: 286
  year: 2023
  ident: D5CS00502G/cit68/1
  publication-title: Research
  doi: 10.34133/research.0286
– volume: 93
  start-page: 15279
  year: 2021
  ident: D5CS00502G/cit90/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c02238
– volume: 58
  start-page: 8166
  year: 2019
  ident: D5CS00502G/cit132/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904182
– volume: 19
  start-page: 566
  year: 2020
  ident: D5CS00502G/cit242/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0566-2
– volume: 93
  start-page: 16158
  year: 2021
  ident: D5CS00502G/cit127/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03926
– volume: 12
  start-page: 2302796
  year: 2024
  ident: D5CS00502G/cit181/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202302796
– volume: 142
  start-page: 20299
  year: 2020
  ident: D5CS00502G/cit266/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08130
– volume: 188
  start-page: 315
  year: 2024
  ident: D5CS00502G/cit129/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2024.09.001
– volume: 401
  start-page: 390
  year: 2023
  ident: D5CS00502G/cit275/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)01694-4
– volume: 92
  start-page: 9257
  year: 2020
  ident: D5CS00502G/cit169/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c01596
– volume: 17
  start-page: 17
  year: 2025
  ident: D5CS00502G/cit200/1
  publication-title: Nano Biomed. Eng.
  doi: 10.26599/NBE.2024.9290102
– volume: 74
  start-page: 12
  year: 2024
  ident: D5CS00502G/cit252/1
  publication-title: Ca-Cancer J. Clin.
  doi: 10.3322/caac.21820
– volume: 5
  start-page: 172
  year: 2023
  ident: D5CS00502G/cit247/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00974
– volume: 59
  start-page: 6171
  year: 2023
  ident: D5CS00502G/cit167/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06592D
– volume: 61
  start-page: 1088
  year: 2018
  ident: D5CS00502G/cit75/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-018-9277-6
– volume: 33
  start-page: 83
  year: 2020
  ident: D5CS00502G/cit304/1
  publication-title: Cancer Metab.
– start-page: 2420329
  year: 2025
  ident: D5CS00502G/cit284/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202420329
– volume: 5
  start-page: 8488
  year: 2011
  ident: D5CS00502G/cit213/1
  publication-title: ACS Nano
  doi: 10.1021/nn202378b
– volume: 93
  start-page: 4006
  year: 2021
  ident: D5CS00502G/cit108/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04990
– volume: 1
  start-page: 0010
  year: 2017
  ident: D5CS00502G/cit219/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0010
– volume: 64
  start-page: e202418378
  year: 2025
  ident: D5CS00502G/cit183/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202418378
– volume: 13
  start-page: 2303892
  year: 2024
  ident: D5CS00502G/cit191/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202303892
– volume: 9
  start-page: 2100233
  year: 2021
  ident: D5CS00502G/cit84/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202100233
– volume: 21
  start-page: 100697
  year: 2023
  ident: D5CS00502G/cit93/1
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2023.100697
– volume: 51
  start-page: 7692
  year: 2022
  ident: D5CS00502G/cit36/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00131D
– start-page: 2409661
  year: 2024
  ident: D5CS00502G/cit150/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202409661
– volume: 10
  start-page: 2100867
  year: 2021
  ident: D5CS00502G/cit171/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202100867
– volume: 10
  start-page: 2201067
  year: 2022
  ident: D5CS00502G/cit43/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202201067
– volume: 1208
  start-page: 339831
  year: 2022
  ident: D5CS00502G/cit182/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.339831
– start-page: 2409833
  year: 2024
  ident: D5CS00502G/cit152/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202409833
– volume: 205
  start-page: 115158
  year: 2024
  ident: D5CS00502G/cit332/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2023.115158
– volume: 21
  start-page: 345
  year: 2021
  ident: D5CS00502G/cit296/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00347-z
– volume: 34
  start-page: 2311404
  year: 2024
  ident: D5CS00502G/cit58/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202311404
– volume: 45
  start-page: 6597
  year: 2016
  ident: D5CS00502G/cit289/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00271D
– volume: 61
  start-page: e202201541
  year: 2022
  ident: D5CS00502G/cit52/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202201541
– volume: 20
  start-page: 286
  year: 2024
  ident: D5CS00502G/cit333/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-024-01809-9
– start-page: 2420006
  year: 2025
  ident: D5CS00502G/cit179/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202420006
– volume: 34
  start-page: 2401325
  year: 2024
  ident: D5CS00502G/cit39/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202401325
– volume: 47
  start-page: 4258
  year: 2018
  ident: D5CS00502G/cit14/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00234G
– volume: 21
  start-page: 4606
  year: 2021
  ident: D5CS00502G/cit126/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00548
– volume: 445
  start-page: 214096
  year: 2021
  ident: D5CS00502G/cit313/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214096
– volume: 33
  start-page: 941
  year: 2015
  ident: D5CS00502G/cit221/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 14
  start-page: 9585
  year: 2020
  ident: D5CS00502G/cit76/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b10144
– volume: 4
  start-page: 3609
  year: 2021
  ident: D5CS00502G/cit141/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101444
– volume: 433
  start-page: 133263
  year: 2022
  ident: D5CS00502G/cit128/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133263
– volume: 57
  start-page: 8174
  year: 2021
  ident: D5CS00502G/cit130/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC03232A
– volume: 58
  start-page: 13123
  year: 2022
  ident: D5CS00502G/cit172/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC05386A
– volume: 13
  start-page: 171
  year: 2017
  ident: D5CS00502G/cit274/1
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2017.13
– volume: 15
  start-page: 17664
  year: 2023
  ident: D5CS00502G/cit177/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c00956
– volume: 2
  start-page: 751
  year: 2007
  ident: D5CS00502G/cit238/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 50
  start-page: 12656
  year: 2021
  ident: D5CS00502G/cit57/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00239B
– volume: 60
  start-page: 8450
  year: 2021
  ident: D5CS00502G/cit123/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202015650
– volume: 1
  start-page: 16014
  year: 2016
  ident: D5CS00502G/cit240/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.14
– volume: 124
  start-page: 6198
  year: 2024
  ident: D5CS00502G/cit234/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00549
– volume: 52
  start-page: 1456
  year: 2023
  ident: D5CS00502G/cit216/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS01021F
– volume: 2
  start-page: 2200075
  year: 2023
  ident: D5CS00502G/cit203/1
  publication-title: Adv. Sens. Res.
  doi: 10.1002/adsr.202200075
– volume: 60
  start-page: 7476
  year: 2021
  ident: D5CS00502G/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005899
– volume: 124
  start-page: 554
  year: 2024
  ident: D5CS00502G/cit49/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00506
– volume: 19
  start-page: 313
  year: 2018
  ident: D5CS00502G/cit243/1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.132
– volume: 5
  start-page: eaaw0672
  year: 2019
  ident: D5CS00502G/cit214/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0672
– volume: 517
  start-page: 215975
  year: 2024
  ident: D5CS00502G/cit225/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215975
– volume: 30
  start-page: 1801140
  year: 2018
  ident: D5CS00502G/cit256/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801140
– volume: 14
  start-page: 2928
  year: 2023
  ident: D5CS00502G/cit104/1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC00355H
– volume: 51
  start-page: 566
  year: 2022
  ident: D5CS00502G/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00525A
– volume: 13
  start-page: 2303997
  year: 2024
  ident: D5CS00502G/cit178/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202303997
– volume: 10
  start-page: 2207651
  year: 2023
  ident: D5CS00502G/cit165/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202207651
– volume: 17
  start-page: 2006508
  year: 2021
  ident: D5CS00502G/cit189/1
  publication-title: Small
  doi: 10.1002/smll.202006508
– volume: 48
  start-page: 5242
  year: 2019
  ident: D5CS00502G/cit35/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00166B
– volume: 60
  start-page: 20888
  year: 2021
  ident: D5CS00502G/cit112/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106730
– volume: 9
  start-page: 618
  year: 2025
  ident: D5CS00502G/cit281/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-024-01275-7
– volume: 18
  start-page: 6411
  year: 2018
  ident: D5CS00502G/cit146/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02767
– volume: 46
  start-page: 1025
  year: 2017
  ident: D5CS00502G/cit218/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00415F
– volume: 122
  start-page: 6850
  year: 2022
  ident: D5CS00502G/cit8/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00875
– volume: 61
  start-page: e202210285
  year: 2022
  ident: D5CS00502G/cit272/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210285
– volume: 17
  start-page: 657
  year: 2020
  ident: D5CS00502G/cit292/1
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-0410-2
– volume: 93
  start-page: 3189
  year: 2021
  ident: D5CS00502G/cit160/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04601
– volume: 23
  start-page: 4548
  year: 2023
  ident: D5CS00502G/cit70/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c00983
– volume: 50
  start-page: 4872
  year: 2021
  ident: D5CS00502G/cit316/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01061H
– volume: 17
  start-page: 217
  year: 2019
  ident: D5CS00502G/cit85/1
  publication-title: iScience
  doi: 10.1016/j.isci.2019.06.034
– volume: 61
  start-page: e202114722
  year: 2022
  ident: D5CS00502G/cit23/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114722
– volume: 464
  start-page: 142767
  year: 2023
  ident: D5CS00502G/cit63/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142767
– volume: 12
  start-page: 26842
  year: 2020
  ident: D5CS00502G/cit65/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03714
– volume: 10
  start-page: 31
  year: 2023
  ident: D5CS00502G/cit224/1
  publication-title: Mil. Med. Res.
– volume: 30
  start-page: 1802394
  year: 2018
  ident: D5CS00502G/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802394
– volume: 36
  start-page: 524
  year: 2015
  ident: D5CS00502G/cit276/1
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2015.05.001
– volume: 14
  start-page: 2490
  year: 2024
  ident: D5CS00502G/cit226/1
  publication-title: Theranostics
  doi: 10.7150/thno.91394
– volume: 62
  start-page: e202301696
  year: 2023
  ident: D5CS00502G/cit118/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202301696
– volume: 20
  start-page: 651
  year: 2020
  ident: D5CS00502G/cit298/1
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0306-5
– volume: 121
  start-page: 6802
  year: 2021
  ident: D5CS00502G/cit331/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00014
– volume: 51
  start-page: 329
  year: 2022
  ident: D5CS00502G/cit12/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00621D
– volume: 118
  start-page: 1770
  year: 2018
  ident: D5CS00502G/cit7/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00425
– volume: 4
  start-page: 773
  year: 2009
  ident: D5CS00502G/cit18/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.294
– volume: 107
  start-page: 439
  year: 2001
  ident: D5CS00502G/cit277/1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI10613
– volume: 6
  start-page: 1095
  year: 2021
  ident: D5CS00502G/cit327/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00328-6
– volume: 20
  start-page: 1062
  year: 2014
  ident: D5CS00502G/cit244/1
  publication-title: Nat. Med.
  doi: 10.1038/nm.3623
– volume: 42
  start-page: 78
  year: 2023
  ident: D5CS00502G/cit306/1
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-023-02637-w
– volume: 11
  start-page: 2308905
  year: 2024
  ident: D5CS00502G/cit145/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202308905
– volume: 46
  start-page: 4218
  year: 2017
  ident: D5CS00502G/cit251/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00636A
– volume: 18
  start-page: 31421
  year: 2024
  ident: D5CS00502G/cit151/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c11334
– volume: 125
  start-page: 2269
  year: 2025
  ident: D5CS00502G/cit196/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.4c00615
– volume: 13
  start-page: 653
  year: 2013
  ident: D5CS00502G/cit285/1
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3566
– volume: 350
  start-page: 525
  year: 2022
  ident: D5CS00502G/cit192/1
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2022.08.050
– volume: 59
  start-page: 18380
  year: 2020
  ident: D5CS00502G/cit166/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007649
– volume: 16
  start-page: 135
  year: 2024
  ident: D5CS00502G/cit239/1
  publication-title: Nano Biomed. Eng.
  doi: 10.26599/NBE.2024.9290061
– volume: 35
  start-page: 2208097
  year: 2023
  ident: D5CS00502G/cit295/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208097
– volume: 52
  start-page: 5352
  year: 2023
  ident: D5CS00502G/cit262/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00928E
– volume: 188
  start-page: 113331
  year: 2021
  ident: D5CS00502G/cit222/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113331
– volume: 36
  start-page: 2308924
  year: 2024
  ident: D5CS00502G/cit299/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308924
– volume: 50
  start-page: 15811
  year: 2014
  ident: D5CS00502G/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08010F
– volume: 32
  start-page: 2200016
  year: 2022
  ident: D5CS00502G/cit307/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200016
– volume: 2
  start-page: 20200075
  year: 2021
  ident: D5CS00502G/cit19/1
  publication-title: View
  doi: 10.1002/VIW.20200075
– volume: 62
  start-page: e202305744
  year: 2023
  ident: D5CS00502G/cit92/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202305744
– volume: 12
  start-page: 2202208
  year: 2023
  ident: D5CS00502G/cit201/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202202208
– volume: 19
  start-page: 2206053
  year: 2023
  ident: D5CS00502G/cit101/1
  publication-title: Small
  doi: 10.1002/smll.202206053
– volume: 14
  start-page: 329
  year: 2015
  ident: D5CS00502G/cit309/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd4433
– volume: 1250
  start-page: 115300
  year: 2025
  ident: D5CS00502G/cit64/1
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2025.115300
– volume: 379
  start-page: 133251
  year: 2023
  ident: D5CS00502G/cit109/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2022.133251
– volume: 124
  start-page: 2699
  year: 2024
  ident: D5CS00502G/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00778
– volume: 54
  start-page: 3906
  year: 2025
  ident: D5CS00502G/cit323/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D4CS01315H
– volume: 29
  start-page: 1807376
  year: 2019
  ident: D5CS00502G/cit103/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807376
– volume: 98
  start-page: 708
  year: 2020
  ident: D5CS00502G/cit278/1
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2020.04.044
– volume: 59
  start-page: 11717
  year: 2020
  ident: D5CS00502G/cit334/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202001783
– volume: 19
  start-page: 2418
  year: 2019
  ident: D5CS00502G/cit80/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05148
– volume: 4
  start-page: 259
  year: 2020
  ident: D5CS00502G/cit16/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0494-0
– volume: 63
  start-page: e202315217
  year: 2024
  ident: D5CS00502G/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202315217
– volume: 146
  start-page: 11669
  year: 2024
  ident: D5CS00502G/cit124/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13851
– volume: 10
  start-page: 2304104
  year: 2023
  ident: D5CS00502G/cit72/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304104
– volume: 12
  start-page: 7191
  year: 2022
  ident: D5CS00502G/cit210/1
  publication-title: Theranostics
  doi: 10.7150/thno.78085
– volume: 17
  start-page: 1378
  year: 2017
  ident: D5CS00502G/cit325/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04261
– volume: 92
  start-page: 6111
  year: 2020
  ident: D5CS00502G/cit131/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c00556
– volume: 499
  start-page: 156099
  year: 2024
  ident: D5CS00502G/cit269/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.156099
– volume: 7
  start-page: 33
  year: 2021
  ident: D5CS00502G/cit270/1
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/s41572-021-00269-y
– volume: 217
  start-page: 114610
  year: 2022
  ident: D5CS00502G/cit134/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114610
– volume: 61
  start-page: e202209378
  year: 2022
  ident: D5CS00502G/cit195/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209378
– volume: 61
  start-page: e202200025
  year: 2022
  ident: D5CS00502G/cit86/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202200025
– volume: 13
  start-page: 6238
  year: 2022
  ident: D5CS00502G/cit231/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33837-1
– volume: 57
  start-page: 7518
  year: 2018
  ident: D5CS00502G/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802889
– volume: 21
  start-page: 2625
  year: 2021
  ident: D5CS00502G/cit82/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00197
– volume: 60
  start-page: 26337
  year: 2021
  ident: D5CS00502G/cit55/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109728
– volume: 127
  start-page: 679
  year: 2006
  ident: D5CS00502G/cit260/1
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.001
– volume: 16
  start-page: 238
  year: 2025
  ident: D5CS00502G/cit164/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-55503-4
– volume: 54
  start-page: 201
  year: 2024
  ident: D5CS00502G/cit26/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00883E
– volume: 53
  start-page: 102027
  year: 2023
  ident: D5CS00502G/cit98/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2023.102027
– volume: 12
  start-page: 2301584
  year: 2023
  ident: D5CS00502G/cit59/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202301584
– volume: 1
  start-page: 716
  year: 2023
  ident: D5CS00502G/cit133/1
  publication-title: Chem. Biomed. Imaging
  doi: 10.1021/cbmi.3c00030
– volume: 379
  start-page: 557
  year: 2018
  ident: D5CS00502G/cit271/1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1708714
– volume: 61
  start-page: e202112237
  year: 2022
  ident: D5CS00502G/cit187/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112237
– volume: 60
  start-page: 26454
  year: 2021
  ident: D5CS00502G/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107877
– volume: 268
  start-page: 116906
  year: 2025
  ident: D5CS00502G/cit161/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2024.116906
– volume: 269
  start-page: 120459
  year: 2021
  ident: D5CS00502G/cit51/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120459
– start-page: e202501681
  year: 2025
  ident: D5CS00502G/cit205/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 1904329
  year: 2019
  ident: D5CS00502G/cit286/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904329
– volume: 57
  start-page: 3626
  year: 2018
  ident: D5CS00502G/cit136/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712528
– volume: 7
  start-page: 775
  year: 2023
  ident: D5CS00502G/cit202/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D2QM01207C
– volume: 533
  start-page: 216550
  year: 2025
  ident: D5CS00502G/cit217/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2025.216550
– volume: 31
  start-page: 2009942
  year: 2021
  ident: D5CS00502G/cit106/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009942
– volume: 16
  start-page: 2471
  year: 2025
  ident: D5CS00502G/cit207/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-57673-1
– volume: 197
  start-page: 114830
  year: 2023
  ident: D5CS00502G/cit83/1
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2023.114830
– volume: 48
  start-page: 5381
  year: 2019
  ident: D5CS00502G/cit237/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00309F
– volume: 4
  start-page: 476
  year: 2020
  ident: D5CS00502G/cit330/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0205-0
– volume: 60
  start-page: 15006
  year: 2021
  ident: D5CS00502G/cit153/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102097
– volume: 293
  start-page: 121956
  year: 2023
  ident: D5CS00502G/cit102/1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121956
– volume: 34
  start-page: 2310818
  year: 2024
  ident: D5CS00502G/cit41/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202310818
– volume: 76
  start-page: 38
  volume-title: 30th Anniv. Issue
  year: 2016
  ident: D5CS00502G/cit250/1
– volume: 12
  start-page: 2303258
  year: 2024
  ident: D5CS00502G/cit138/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202303258
– volume: 336
  start-page: 129718
  year: 2021
  ident: D5CS00502G/cit249/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.129718
– volume: 18
  start-page: 535
  year: 2024
  ident: D5CS00502G/cit2/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-024-01391-5
– volume: 96
  start-page: 14843
  year: 2024
  ident: D5CS00502G/cit139/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c02629
– volume: 15
  start-page: 3201
  year: 2021
  ident: D5CS00502G/cit107/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09799
– volume: 56
  start-page: 2731
  year: 2020
  ident: D5CS00502G/cit110/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC09158K
– volume: 18
  start-page: 2202551
  year: 2022
  ident: D5CS00502G/cit188/1
  publication-title: Small
  doi: 10.1002/smll.202202551
– volume: 37
  start-page: 407
  year: 2019
  ident: D5CS00502G/cit324/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0040-3
– volume: 60
  start-page: 16294
  year: 2021
  ident: D5CS00502G/cit50/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007040
– volume: 116
  start-page: 7768
  year: 2016
  ident: D5CS00502G/cit32/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00001
– volume: 51
  start-page: 3226
  year: 2018
  ident: D5CS00502G/cit54/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00384
– start-page: 2415891
  year: 2025
  ident: D5CS00502G/cit180/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202415891
– volume: 144
  start-page: 15391
  year: 2022
  ident: D5CS00502G/cit206/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07443
– volume: 6
  start-page: 1121
  year: 2011
  ident: D5CS00502G/cit261/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.351
– volume: 116
  start-page: 12536
  year: 2016
  ident: D5CS00502G/cit318/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00369
– volume: 120
  start-page: e2205186120
  year: 2023
  ident: D5CS00502G/cit163/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2205186120
– volume: 22
  start-page: 783
  year: 2022
  ident: D5CS00502G/cit117/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04356
– volume: 414
  start-page: 135951
  year: 2024
  ident: D5CS00502G/cit135/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2024.135951
– volume: 61
  start-page: e202209378
  year: 2022
  ident: D5CS00502G/cit197/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209378
– volume: 14
  start-page: 323
  year: 2018
  ident: D5CS00502G/cit305/1
  publication-title: Nat. Rev. Endocrinol.
– volume: 91
  start-page: 4771
  year: 2019
  ident: D5CS00502G/cit119/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00317
– volume: 61
  start-page: e202209592
  year: 2022
  ident: D5CS00502G/cit157/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209592
– volume: 43
  start-page: 101378
  year: 2022
  ident: D5CS00502G/cit121/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101378
– volume: 10
  start-page: eado2037
  year: 2024
  ident: D5CS00502G/cit140/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.ado2037
– volume: 324
  start-page: 1029
  year: 2009
  ident: D5CS00502G/cit255/1
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 13
  start-page: 2400715
  year: 2024
  ident: D5CS00502G/cit246/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202400715
– volume: 94
  start-page: 11321
  year: 2022
  ident: D5CS00502G/cit220/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c02052
– volume: 18
  start-page: 2201179
  year: 2022
  ident: D5CS00502G/cit184/1
  publication-title: Small
  doi: 10.1002/smll.202201179
– volume: 10
  start-page: 7222
  year: 2019
  ident: D5CS00502G/cit89/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02093D
– volume: 18
  start-page: 1133
  year: 2019
  ident: D5CS00502G/cit279/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0378-4
– volume: 32
  start-page: 2001172
  year: 2020
  ident: D5CS00502G/cit156/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001172
– volume: 539
  start-page: 216746
  year: 2025
  ident: D5CS00502G/cit308/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2025.216746
SSID ssj0011762
Score 2.4850593
SecondaryResourceType review_article
Snippet Optical imaging in the second near-infrared window (NIR-II, 1000–1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio...
Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) enables real-time visualization of deep tissues with a higher signal-to-noise ratio...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 7561
SubjectTerms Animals
Biological properties
Biomarkers
Humans
Infrared Rays
Infrared windows
Medical imaging
Molecular Probes - chemistry
Near infrared radiation
Neoplasms - diagnosis
Neoplasms - diagnostic imaging
Optical Imaging - methods
Optical properties
Precision medicine
Real time
Signal to noise ratio
Spectroscopy, Near-Infrared
Theranostic Nanomedicine - methods
Title Single- and multi-modal molecular probes with second near-infrared activatable optical signals for disease diagnosis and theranostics
URI https://www.ncbi.nlm.nih.gov/pubmed/40693322
https://www.proquest.com/docview/3238272862
https://www.proquest.com/docview/3232180252
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9AAXxFZIKWgQ3JBhOuNtjlUoFES5JJXKKfIsbiNBXCV2D9y58pt5s9olHAoXK3LGGcfv85u3foPQK1lKUjOiE641SVKhZCKUInAAdWkyUVIYR_HkS358mn46y85Go1-DqqWuFW_kj7_2lfyPVOEcyNV0yf6DZOOPwgn4DPKFI0gYjjeS8QzWnW86sQkAWxmYfG-UaQcJe96a8iuhfQfbxvi-6vUKsJ3A7Gtbem76Gq6q1jZQNZcusG1qOgyrsqlA9AkcE6M1JXnLTSi5hDWusRzPQ_M20g-EYlBPdtqH7Z1qOYEbv-iWfRjV1hTMLrpqeR6RFmPZXz2CfXCCZiba6pWnb8oyAQviK6W107FpDqgoHO1jUMKOSTqAbahSi8yxtfvlucgtncK26ifMMKe-y6Yzw2lDP_QLXEjq_7HuxWpEm4dnfNFfewvtUHA76BjtHB7NP36OeamDIvd5Kfe3AuEt42_7q6-bOFt-C1gx67C7jLVi5vfQXe9-4EOHpftopFcP0O1p2PXvIfrpMYVBzHiAKRwxhR2msMEUdpjC1zCFB5jCHlPYYwoDprDHFI6YspMNMfUInb4_mk-PE79VRyIpL9ukoIKXOUlVWeqcVWD4pariIgV3udYZp7Vk4HdLnkleiqoWhWKaU5LDmJpwzdkuGq-alX6CcFnJOleSCKpZykQuCFzLpKKyqLOa6gl6GZ7u4tIxsiy2JThB--HBL_wbu1kwsE9pQcGJn6AX8Wt4wCZJVq1009kx1LAiZjDmsRNYnMZ0iTNYASdoFyQYT6tMbuys53s3uren6E7_ruyjcbvu9DMwbVvx3OPtN4arqGY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-+and+multi-modal+molecular+probes+with+second+near-infrared+activatable+optical+signals+for+disease+diagnosis+and+theranostics&rft.jtitle=Chemical+Society+reviews&rft.au=Wang%2C+Minghui&rft.au=Bai%2C+Shuaige&rft.au=Zhang%2C+Yan&rft.date=2025-08-11&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=54&rft.issue=16&rft.spage=7561&rft.epage=7609&rft_id=info:doi/10.1039%2FD5CS00502G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D5CS00502G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon