A Simple-Units Complex-Structure Neural Network model of the Basal Ganglia to simulate reinforcement learning tasks
In the computation psychiatry field, the reinforcement learning tasks aim at measuring a subject’s sensitivity to rewards and punishments. We aim at providing a mechanistic account of behavioral data of participants undergoing reinforcement learning tasks in Wroclaw Medical University by quantitativ...
Saved in:
Published in | Procedia computer science Vol. 192; pp. 281 - 290 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the computation psychiatry field, the reinforcement learning tasks aim at measuring a subject’s sensitivity to rewards and punishments. We aim at providing a mechanistic account of behavioral data of participants undergoing reinforcement learning tasks in Wroclaw Medical University by quantitatively reproduce the observed tendencies through computer simulations of the developed Simple-Units Complex-Structure Neural Network. The network mimics the core properties of the Basal Ganglia which is a group of subcortical nuclei present in the brain responsible for motor control and learning from rewards and punishments. We demonstrate the performance of the proposed network on three reinforcement learning tasks: probabilistic selection task, probabilistic reversal task, and instructed version of the probabilistic learning task. Our simulations show that the network can express the behavior observed in studies of human subjects performing reinforcement learning tasks. |
---|---|
AbstractList | In the computation psychiatry field, the reinforcement learning tasks aim at measuring a subject’s sensitivity to rewards and punishments. We aim at providing a mechanistic account of behavioral data of participants undergoing reinforcement learning tasks in Wroclaw Medical University by quantitatively reproduce the observed tendencies through computer simulations of the developed Simple-Units Complex-Structure Neural Network. The network mimics the core properties of the Basal Ganglia which is a group of subcortical nuclei present in the brain responsible for motor control and learning from rewards and punishments. We demonstrate the performance of the proposed network on three reinforcement learning tasks: probabilistic selection task, probabilistic reversal task, and instructed version of the probabilistic learning task. Our simulations show that the network can express the behavior observed in studies of human subjects performing reinforcement learning tasks. |
Author | Drapała, Jarosław Frydecka, Dorota Świątek, Jerzy |
Author_xml | – sequence: 1 givenname: Jarosław surname: Drapała fullname: Drapała, Jarosław email: jaroslaw.drapala@pwr.edu.pl organization: Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland – sequence: 2 givenname: Dorota surname: Frydecka fullname: Frydecka, Dorota organization: Department of Psychiatry, Wrocław Medical University, Wyb. L. Pasteura 10, 50-367 Wrocław, Poland – sequence: 3 givenname: Jerzy surname: Świątek fullname: Świątek, Jerzy organization: Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland |
BookMark | eNp9kM9OwzAMhyM0JMbYE3DJC7Q4bdemBw5jgoE0wWHsHKWpO7K1yZSk_Hl7OsaBE778bFmfZX2XZGSsQUKuGcQMWH6ziw_OKh8nkLAYeAxJeUbGjBdFBDMoR3_6CzL1fgdDpZyXrBgTP6dr3R1ajDZGB08X9jh8RuvgehV6h_QZeyfbIcKHdXva2Rpbahsa3pDeST-sltJsWy1psNTrrm9lQOpQm8Y6hR2aQFuUzmizpUH6vb8i541sPU5_c0I2D_evi8do9bJ8WsxXkUpKHqJcyarIUq4k8jypk7Sa8QpkA5lkCWvSpgIoM1kAK7BhZYo11BnkRT4buGQm0wlJT3eVs947bMTB6U66L8FAHNWJnfhRJ47qBHAxqBuo2xOFw2vvGp3wSqNRWGuHKoja6n_5b4FTfC8 |
Cites_doi | 10.1155/2015/187417 10.1007/978-3-319-99996-8_30 10.1162/0898929052880093 10.1523/JNEUROSCI.3486-06.2006 10.1016/j.eurpsy.2016.01.1320 10.1016/j.neunet.2018.10.003 10.1146/annurev.neuro.31.060407.125639 10.1016/j.eurpsy.2016.01.225 10.1016/j.brainres.2009.07.007 10.3758/s13415-014-0250-6 10.1016/j.neunet.2015.03.002 10.1016/S1364-6613(98)01241-8 10.1515/revneuro-2015-0060 10.1523/JNEUROSCI.6486-10.2011 10.1001/archpsyc.1991.01810320088015 10.1016/j.compbiomed.2017.11.004 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2021.08.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 290 |
ExternalDocumentID | 10_1016_j_procs_2021_08_029 S1877050921015167 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c298t-6cab7438cae862d23b58b0af04a121f3fb0094a7017ef193ed0d406765ab725a3 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:04 EDT 2025 Wed May 17 00:07:51 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Go an NoGo learning learning form rewards instructed probabilistic selection task Basal Ganglia model punishments |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-6cab7438cae862d23b58b0af04a121f3fb0094a7017ef193ed0d406765ab725a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050921015167 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2021_08_029 elsevier_sciencedirect_doi_10_1016_j_procs_2021_08_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Doll, Waltz, Cockburn, Brown, Frank, Gold (bib0008) 2014; 14 Baladron, Hamker (bib0001) 2015; 67 Frydecka, Drapała, Kłosińska, Krefft, Misiak (bib00010) 2016; 33 Humphries, Khamassi, Gurney (bib00013) 2012 McGuffin, Farmer, Harvey (bib00015) 1991; 48 doi:10.1155/2015/187417. Frydecka, Drapała, Misiak (bib00011) 2016; 33 Doll, Jacobs, Sanfey, Frank (bib0007) 2009; 1299 Frank (bib0009) 2005; 17 Baston, C., Ursino, M., 2015. A biologically inspired computational model of basal ganglia in action selection. Computational intelligence and neuroscience 2015. URL Doll, Hutchison, Frank (bib0006) 2011; 31 Gerstner, Kistler, Naud, Paninski (bib00012) 2014 Humphries, Stewart, Gurney (bib00014) 2006; 26 Caporale, Dan (bib0003) 2008; 31 Częstochowska, J., Duda, M., Cwojdzińska, K., Drapała, J., Frydecka, D., Świątek, J., 2018. Computational investigation of probabilistic learning task with use of machine learning, in: International Conference on Information Systems Architecture and Technology, Springer. pp. 330–339. Moustafa, Garami, Mahlberg, Golembieski, Keri, Misiak, Frydecka (bib00016) 2016; 27 O’Reilly, Hazy, Herd (bib00018) 2016 Suryanarayana, Kotaleski, Grillner, Gurney (bib00021) 2019; 109 Salimi-Badr, Ebadzadeh, Darlot (bib00020) 2018; 92 O’Reilly, Munakata (bib00019) 2000 Chakravarthy, Moustafa (bib0004) 2018 O’Reilly (bib00017) 1998; 2 Chakravarthy (10.1016/j.procs.2021.08.029_bib0004) 2018 Doll (10.1016/j.procs.2021.08.029_bib0006) 2011; 31 10.1016/j.procs.2021.08.029_bib0005 O’Reilly (10.1016/j.procs.2021.08.029_bib00018) 2016 Frank (10.1016/j.procs.2021.08.029_bib0009) 2005; 17 Baladron (10.1016/j.procs.2021.08.029_bib0001) 2015; 67 Suryanarayana (10.1016/j.procs.2021.08.029_bib00021) 2019; 109 Gerstner (10.1016/j.procs.2021.08.029_bib00012) 2014 Doll (10.1016/j.procs.2021.08.029_bib0008) 2014; 14 Humphries (10.1016/j.procs.2021.08.029_bib00014) 2006; 26 Doll (10.1016/j.procs.2021.08.029_bib0007) 2009; 1299 Frydecka (10.1016/j.procs.2021.08.029_bib00011) 2016; 33 O’Reilly (10.1016/j.procs.2021.08.029_bib00019) 2000 Frydecka (10.1016/j.procs.2021.08.029_bib00010) 2016; 33 Moustafa (10.1016/j.procs.2021.08.029_bib00016) 2016; 27 10.1016/j.procs.2021.08.029_bib0002 Humphries (10.1016/j.procs.2021.08.029_bib00013) 2012 O’Reilly (10.1016/j.procs.2021.08.029_bib00017) 1998; 2 Salimi-Badr (10.1016/j.procs.2021.08.029_bib00020) 2018; 92 Caporale (10.1016/j.procs.2021.08.029_bib0003) 2008; 31 McGuffin (10.1016/j.procs.2021.08.029_bib00015) 1991; 48 |
References_xml | – year: 2014 ident: bib00012 publication-title: Neuronal dynamics: From single neurons to networks and models of cognition – year: 2000 ident: bib00019 publication-title: Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain – volume: 17 start-page: 51 year: 2005 end-page: 72 ident: bib0009 article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism publication-title: Journal of cognitive neuroscience – volume: 109 start-page: 113 year: 2019 end-page: 136 ident: bib00021 article-title: Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia publication-title: Neural Networks – volume: 33 start-page: S368 year: 2016 ident: bib00011 article-title: Instructional influence on learning and decision making with respect to cognitive functioning publication-title: European Psychiatry – volume: 26 start-page: 12921 year: 2006 end-page: 12924 ident: bib00014 article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia publication-title: The Journal of Neuroscience – volume: 48 start-page: 764 year: 1991 end-page: 770 ident: bib00015 article-title: A polydiagnostic application of operational criteria in studies of psychotic illness: development and reliability of the opcrit system publication-title: Archives of general psychiatry – volume: 1299 start-page: 74 year: 2009 end-page: 94 ident: bib0007 article-title: Instructional control of reinforcement learning: a behavioral and neurocomputational investigation publication-title: Brain Research – volume: 31 start-page: 25 year: 2008 end-page: 46 ident: bib0003 article-title: Spike timing–dependent plasticity: a hebbian learning rule publication-title: Annu. Rev. Neurosci. – year: 2018 ident: bib0004 publication-title: Computational Neuroscience Models of the Basal Ganglia – volume: 31 start-page: 6188 year: 2011 end-page: 6198 ident: bib0006 article-title: Dopaminergic genes predict individual differences in susceptibility to confirmation bias publication-title: Journal of Neuroscience – volume: 2 start-page: 455 year: 1998 end-page: 462 ident: bib00017 article-title: Six principles for biologically based computational models of cortical cognition publication-title: Trends in cognitive sciences – reference: , doi:10.1155/2015/187417. – start-page: 91 year: 2016 end-page: 116 ident: bib00018 article-title: The leabra cognitive architecture: How to play 20 principles with nature publication-title: The Oxford Handbook of Cognitive Science – volume: 33 start-page: S138 year: 2016 ident: bib00010 article-title: Computational modeling of reinforcement learning using probabilistic selection task and instructional probabilistic selection task publication-title: European Psychiatry – reference: Baston, C., Ursino, M., 2015. A biologically inspired computational model of basal ganglia in action selection. Computational intelligence and neuroscience 2015. URL: – reference: Częstochowska, J., Duda, M., Cwojdzińska, K., Drapała, J., Frydecka, D., Świątek, J., 2018. Computational investigation of probabilistic learning task with use of machine learning, in: International Conference on Information Systems Architecture and Technology, Springer. pp. 330–339. – volume: 67 start-page: 1 year: 2015 end-page: 13 ident: bib0001 article-title: A spiking neural network based on the basal ganglia functional anatomy publication-title: Neural Networks – start-page: 6 year: 2012 ident: bib00013 article-title: Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia publication-title: Frontiers in neuroscience – volume: 27 start-page: 435 year: 2016 end-page: 448 ident: bib00016 article-title: Cognitive function in schizophrenia: conflicting findings and future directions publication-title: Reviews in the Neurosciences – volume: 92 start-page: 78 year: 2018 end-page: 89 ident: bib00020 article-title: A system-level mathematical model of basal ganglia motor-circuit for kinematic planning of arm movements publication-title: Computers in biology and medicine – volume: 14 start-page: 715 year: 2014 end-page: 728 ident: bib0008 article-title: Reduced susceptibility to confirmation bias in schizophrenia publication-title: Cognitive, Affective, & Behavioral Neuroscience – ident: 10.1016/j.procs.2021.08.029_bib0002 doi: 10.1155/2015/187417 – ident: 10.1016/j.procs.2021.08.029_bib0005 doi: 10.1007/978-3-319-99996-8_30 – volume: 17 start-page: 51 year: 2005 ident: 10.1016/j.procs.2021.08.029_bib0009 article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism publication-title: Journal of cognitive neuroscience doi: 10.1162/0898929052880093 – start-page: 6 year: 2012 ident: 10.1016/j.procs.2021.08.029_bib00013 article-title: Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia publication-title: Frontiers in neuroscience – volume: 26 start-page: 12921 year: 2006 ident: 10.1016/j.procs.2021.08.029_bib00014 article-title: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3486-06.2006 – volume: 33 start-page: S368 year: 2016 ident: 10.1016/j.procs.2021.08.029_bib00011 article-title: Instructional influence on learning and decision making with respect to cognitive functioning publication-title: European Psychiatry doi: 10.1016/j.eurpsy.2016.01.1320 – volume: 109 start-page: 113 year: 2019 ident: 10.1016/j.procs.2021.08.029_bib00021 article-title: Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia publication-title: Neural Networks doi: 10.1016/j.neunet.2018.10.003 – volume: 31 start-page: 25 year: 2008 ident: 10.1016/j.procs.2021.08.029_bib0003 article-title: Spike timing–dependent plasticity: a hebbian learning rule publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.31.060407.125639 – volume: 33 start-page: S138 year: 2016 ident: 10.1016/j.procs.2021.08.029_bib00010 article-title: Computational modeling of reinforcement learning using probabilistic selection task and instructional probabilistic selection task publication-title: European Psychiatry doi: 10.1016/j.eurpsy.2016.01.225 – volume: 1299 start-page: 74 year: 2009 ident: 10.1016/j.procs.2021.08.029_bib0007 article-title: Instructional control of reinforcement learning: a behavioral and neurocomputational investigation publication-title: Brain Research doi: 10.1016/j.brainres.2009.07.007 – volume: 14 start-page: 715 year: 2014 ident: 10.1016/j.procs.2021.08.029_bib0008 article-title: Reduced susceptibility to confirmation bias in schizophrenia publication-title: Cognitive, Affective, & Behavioral Neuroscience doi: 10.3758/s13415-014-0250-6 – start-page: 91 year: 2016 ident: 10.1016/j.procs.2021.08.029_bib00018 article-title: The leabra cognitive architecture: How to play 20 principles with nature – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.procs.2021.08.029_bib0001 article-title: A spiking neural network based on the basal ganglia functional anatomy publication-title: Neural Networks doi: 10.1016/j.neunet.2015.03.002 – year: 2018 ident: 10.1016/j.procs.2021.08.029_bib0004 – volume: 2 start-page: 455 year: 1998 ident: 10.1016/j.procs.2021.08.029_bib00017 article-title: Six principles for biologically based computational models of cortical cognition publication-title: Trends in cognitive sciences doi: 10.1016/S1364-6613(98)01241-8 – year: 2000 ident: 10.1016/j.procs.2021.08.029_bib00019 – volume: 27 start-page: 435 year: 2016 ident: 10.1016/j.procs.2021.08.029_bib00016 article-title: Cognitive function in schizophrenia: conflicting findings and future directions publication-title: Reviews in the Neurosciences doi: 10.1515/revneuro-2015-0060 – year: 2014 ident: 10.1016/j.procs.2021.08.029_bib00012 – volume: 31 start-page: 6188 year: 2011 ident: 10.1016/j.procs.2021.08.029_bib0006 article-title: Dopaminergic genes predict individual differences in susceptibility to confirmation bias publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.6486-10.2011 – volume: 48 start-page: 764 year: 1991 ident: 10.1016/j.procs.2021.08.029_bib00015 article-title: A polydiagnostic application of operational criteria in studies of psychotic illness: development and reliability of the opcrit system publication-title: Archives of general psychiatry doi: 10.1001/archpsyc.1991.01810320088015 – volume: 92 start-page: 78 year: 2018 ident: 10.1016/j.procs.2021.08.029_bib00020 article-title: A system-level mathematical model of basal ganglia motor-circuit for kinematic planning of arm movements publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2017.11.004 |
SSID | ssj0000388917 |
Score | 2.2086139 |
Snippet | In the computation psychiatry field, the reinforcement learning tasks aim at measuring a subject’s sensitivity to rewards and punishments. We aim at providing... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 281 |
SubjectTerms | Basal Ganglia model Go an NoGo learning instructed probabilistic selection task learning form rewards punishments |
Title | A Simple-Units Complex-Structure Neural Network model of the Basal Ganglia to simulate reinforcement learning tasks |
URI | https://dx.doi.org/10.1016/j.procs.2021.08.029 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw4cidamr_S4TYyJiR0YE7tFaZug8timtUj8fOy0RSAhDhzbxlHlNPbn1P5MyGWgoyQKY8WCTBjm61AwALGc-a6TeQJckrF_z--m4Xju3y6CRYsMm1oYTKusbX9l0621ru_0am321nnem7kiipC9BIIWcFshVpR7vrBFfIvB1zkLsp3EtvEujmco0JAP2TQv9BNI280rKk8LNX9xUN-czmiP7NRokfarF9onLb08ILtNJwZab8xDUvTpLEeeX4YYsqA44lV_sJllh33faIokHDDTtMr6prYBDl0ZCviPDlQBj24UVvQqWq5okb9hVy9NN9oSq6b2DJHWHSaeaKmKl-KIzEfXD8Mxq9spsJTHomRhqhLACyJVGsKYjHtJIBJHGcdXLneNZxJMM1QR7FFtANfpzMnA3UdhAHI8UN4xaS9XS31CaJRqJzaZ8VIX4ztfaZgZkBLgF4hwuNshV40O5bpizZBNOtmztCqXqHKJLTB53CFho2f5Y_El2PW_BE__K3hGtvGqOks5J21YDX0B6KJMumSrP7l_nHTtZ_QJfdHPUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFNBwI25cQIe1iXM4KSi4dzm2WZC2C05io-XYRWQR8F38IDNOgkBCFEi0cWxF49G8N874DcBWoGUqw1jxII8M93UYcSSxgvuuk3sRQpKxf88v2mHzyj_tBt0ReK_vwlBZZRX7y5huo3X1pFFZs_HY6zU6biQlqZdg0oKwFcqqsvJMv71g3lbstg5xk7eFOD66PGjyqrUAz0QcDXmYqRSxM8qURkqfCy8NotRRxvGVK1zjmZRK7pREf9UGOY7OnRyhT4YBzhOB8nDdURhH9iEpGrS6-58HOySvEttOv_SBnL6wVjuydWUETKQTLkrtUMttf0DELyh3PANTFT1le6UFZmFE9-dgum79wKpIMA_FHuv0SFiYE2ktGL1xr195x8rRPj9pRqofuFK7LDNntuMOGxiGhJPtqwKHThRdIVZsOGBF74HaiGn2pK2Sa2YPLVnV0uKGDVVxVyzA1b8YeRHG-oO-XgImM-3EJjde5lJC6SuNKyM1Q8KEKZVwl2GntmHyWMp0JHX92m1iTZ6QyRPquSniZQhrOyffvC1BIPlt4spfJ27CRPPy4jw5b7XPVmGSRsqDnDUYw53R60hthumGdSUG1__tux9U4AqF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple-Units+Complex-Structure+Neural+Network+model+of+the+Basal+Ganglia+to+simulate+reinforcement+learning+tasks&rft.jtitle=Procedia+computer+science&rft.au=Drapa%C5%82a%2C+Jaros%C5%82aw&rft.au=Frydecka%2C+Dorota&rft.au=%C5%9Awi%C4%85tek%2C+Jerzy&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=192&rft.spage=281&rft.epage=290&rft_id=info:doi/10.1016%2Fj.procs.2021.08.029&rft.externalDocID=S1877050921015167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |