A new supramolecular tecton: the crucial impact of the polycation charge and geometry of H-bonds on the structure and properties of halometallates in the solid state

A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counter...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 54; no. 17; pp. 6983 - 6992
Main Authors Shestimerova, Tatiana A, Medved'ko, Aleksei V, Bykov, Mikhail A, Kalinin, Mikhail A, Metlin, Mikhail T, Taydakov, Ilya V, Gontcharenko, Victoria E, Wei, Zheng, Dikarev, Evgeny V, Vatsadze, Sergey Z, Shevelkov, Andrei V
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI 6 ] 3− anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions. A new supramolecular tecton is designed that has the unique potential of assembling well-ordered supramolecular complexes by forming five directional hydrogen bonds at a time. It ensures an ordered distribution of inorganic halometallate anions.
AbstractList A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a “three-way connector”, allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI6]3− anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions.
A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI6]3- anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions.A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI6]3- anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions.
A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a “three-way connector”, allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI 6 ] 3− anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions.
A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI 6 ] 3− anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions. A new supramolecular tecton is designed that has the unique potential of assembling well-ordered supramolecular complexes by forming five directional hydrogen bonds at a time. It ensures an ordered distribution of inorganic halometallate anions.
A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a "three-way connector", allows assembling infinite supramolecular sheets and nets upon interaction with appropriate inorganic counterpart complex anions. In this work, triprotonated 6-amino-5,7-dimethyl-1,3-diazaadamantane, comprising two secondary and one primary nitrogen atoms, is used as a trication to form hybrid compounds with iodometallate anions by forming five hydrogen bonds at a time. It is shown that the bulky cation works simultaneously as a spacer and a connector, such that the positions of inorganic [MI ] anions (M = Sb or Bi) in the crystal structures are defined by five hydrogen bonds and are well-separated from each other. The latter is considered as a prerequisite for the hybrid compounds to exhibit optical properties originating from the undisturbed electronic structure of individual inorganic anions.
Author Kalinin, Mikhail A
Gontcharenko, Victoria E
Bykov, Mikhail A
Wei, Zheng
Dikarev, Evgeny V
Shevelkov, Andrei V
Medved'ko, Aleksei V
Shestimerova, Tatiana A
Metlin, Mikhail T
Vatsadze, Sergey Z
Taydakov, Ilya V
AuthorAffiliation Department of Chemistry
P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Lomonosov Moscow State University
N.D. Zelinsky Institute of Organic Chemistry RAS
University at Albany SUNY
AuthorAffiliation_xml – name: N.D. Zelinsky Institute of Organic Chemistry RAS
– name: Department of Chemistry
– name: University at Albany SUNY
– name: Lomonosov Moscow State University
– name: P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Author_xml – sequence: 1
  givenname: Tatiana A
  surname: Shestimerova
  fullname: Shestimerova, Tatiana A
– sequence: 2
  givenname: Aleksei V
  surname: Medved'ko
  fullname: Medved'ko, Aleksei V
– sequence: 3
  givenname: Mikhail A
  surname: Bykov
  fullname: Bykov, Mikhail A
– sequence: 4
  givenname: Mikhail A
  surname: Kalinin
  fullname: Kalinin, Mikhail A
– sequence: 5
  givenname: Mikhail T
  surname: Metlin
  fullname: Metlin, Mikhail T
– sequence: 6
  givenname: Ilya V
  surname: Taydakov
  fullname: Taydakov, Ilya V
– sequence: 7
  givenname: Victoria E
  surname: Gontcharenko
  fullname: Gontcharenko, Victoria E
– sequence: 8
  givenname: Zheng
  surname: Wei
  fullname: Wei, Zheng
– sequence: 9
  givenname: Evgeny V
  surname: Dikarev
  fullname: Dikarev, Evgeny V
– sequence: 10
  givenname: Sergey Z
  surname: Vatsadze
  fullname: Vatsadze, Sergey Z
– sequence: 11
  givenname: Andrei V
  surname: Shevelkov
  fullname: Shevelkov, Andrei V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40181647$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9rFDEUB_AgFduuXrwrAS8ijGbyYybprbRqxYKXeh4yyZvu1EwyJhlk_yD_TzPddQUPIeHxeY9HvufoxAcPCL2syfuaMPXBCpsJYbX88QSd1bxtK0UZPzm-aXOKzlN6IIRSIugzdMpJLeuGt2fo9yX28AunZY56Cg7M4nTEGUwO_gLnLWATFzNqh8dp1ibjMDxW5-B2RucxeGy2Ot4D1t7iewgT5Lhb1U3VB28TLmJtSLnMyUvcwzmGGWIeIa10q93ap53TuVTGQ0dwoy19pfYcPR20S_DicG_Q908f765uqttvn79cXd5WhiqZK2oHKpVQjEvJiFKW9w20vW6ZHYBK0MwAM7pRlFPTSrCDtERwq5nshW0p26C3-7llv58LpNxNYzJQ9vIQltSVP26YYOvZoDf_0YewRF-2K0oJ0TRcNUW9Pqiln8B2cxwnHXfd3wAKeLcHJoaUIgxHUpNuTbe7Ftd3j-l-LfjVHsdkju5f-uwPj2Wi5w
Cites_doi 10.1002/ange.202216819
10.1107/S1600576714022985
10.1039/D0CE01730B
10.1134/S0036024417030256
10.1021/acs.cgd.2c01005
10.1016/j.jssc.2011.10.004
10.1039/C9CC03485D
10.1021/acs.inorgchem.5b02729
10.1002/adma.202007355
10.1007/s10876-018-1397-z
10.1021/acs.inorgchem.0c03699
10.1039/C9DT00575G
10.1007/s11172-023-3721-5
10.1021/acs.jpcc.5b03923
10.1002/anie.202216720
10.1039/c3dt50599e
10.1039/D0DT00265H
10.1002/adma.201505480
10.1021/acs.chemmater.7b01184
10.1107/S2053229614024218
10.1021/acs.jpclett.8b02892
10.1039/D4DT02751E
10.31635/ccschem.022.202202158
10.1002/anie.201308719
10.1016/j.bmcl.2017.08.062
10.1016/j.jallcom.2023.173054
10.1002/poc.2909
10.1007/s11172-019-2586-0
10.1002/adma.201703800
10.1107/S0108270106017720
10.3390/molecules25122765
10.1021/acs.inorgchem.4c00445
10.1021/acs.chemmater.2c01434
10.1002/anie.202404100
10.1021/acs.chemmater.3c02304
10.1039/C6SE00061D
10.3390/inorganics10110181
10.1039/D3DT02867D
10.1021/acs.joc.3c00514
10.1021/acs.inorgchem.1c02445
10.1021/acs.cgd.9b00636
10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G
10.1002/anie.202005966
10.1107/S0021889808042726
10.3390/ijms24032201
10.1021/acs.inorgchem.4c00980
10.1002/adma.202209417
10.1021/acs.inorgchem.8b00265
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d5dt00318k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 6992
ExternalDocumentID 40181647
10_1039_D5DT00318K
d5dt00318k
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UPT
VH6
WH7
AAYXX
CITATION
H13
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c298t-2df2895934883099d4b6e7ba73dfe28ea3ce3ca69242c78edf8d054da38b5d723
ISSN 1477-9226
1477-9234
IngestDate Wed Jul 02 05:07:09 EDT 2025
Mon Jul 07 12:41:07 EDT 2025
Mon Jul 21 05:56:37 EDT 2025
Wed Aug 20 07:47:40 EDT 2025
Tue May 27 12:22:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-2df2895934883099d4b6e7ba73dfe28ea3ce3ca69242c78edf8d054da38b5d723
Notes CCDC
1
For ESI and crystallographic data in CIF or other electronic format see DOI
Electronic supplementary information (ESI) available: TGA curves, IR spectra, XRD patterns, and crystallographic data for compounds
2
and
and luminescence decay fitting parameters for compound
2363792
https://doi.org/10.1039/d5dt00318k
2346041
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4782-021X
0000-0001-7884-8579
0000-0002-0056-4813
0000-0003-3284-5019
0000-0001-9860-4141
0000-0002-8316-3280
PMID 40181647
PQID 3195566496
PQPubID 2047498
PageCount 1
ParticipantIDs proquest_miscellaneous_3186353635
crossref_primary_10_1039_D5DT00318K
rsc_primary_d5dt00318k
proquest_journals_3195566496
pubmed_primary_40181647
PublicationCentury 2000
PublicationDate 2025-04-28
PublicationDateYYYYMMDD 2025-04-28
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D5DT00318K/cit36/1) 2024; 976
Li (D5DT00318K/cit19/1) 2017; 1
Shestimerova (D5DT00318K/cit25/1) 2020; 25
Yelovik (D5DT00318K/cit45/1) 2016; 55
Fedeli (D5DT00318K/cit51/1) 2015; 119
Hou (D5DT00318K/cit9/1) 2023; 35
Kalinin (D5DT00318K/cit18/1) 2023; 88
Alvarez (D5DT00318K/cit23/1) 2013; 42
Bykov (D5DT00318K/cit26/1) 2022; 10
Dehnhardt (D5DT00318K/cit34/1) 2019; 48
Morad (D5DT00318K/cit39/1) 2021; 33
Shi (D5DT00318K/cit2/1) 2023; 5
Wen (D5DT00318K/cit29/1) 2024; 53
Bykov (D5DT00318K/cit28/1) 2023; 24
Bykov (D5DT00318K/cit16/1) 2025; 54
Kazim (D5DT00318K/cit8/1) 2014; 53
Peng (D5DT00318K/cit32/1) 2021; 60
Prins (D5DT00318K/cit1/1) 2001; 40
Liu (D5DT00318K/cit10/1) 2023; 35
Shestimerova (D5DT00318K/cit20/1) 2019; 68
Li (D5DT00318K/cit37/1) 2024; 63
Sedakova (D5DT00318K/cit41/1) 2017; 91
Chernyshov (D5DT00318K/cit24/1) 2020; 21
Bykov (D5DT00318K/cit27/1) 2023; 72
Li (D5DT00318K/cit3/1) 2023; 135
Krause (D5DT00318K/cit47/1) 2015; 48
Dolomanov (D5DT00318K/cit48/1) 2009; 42
Parmar (D5DT00318K/cit42/1) 2019; 55
Usoltsev (D5DT00318K/cit31/1) 2021; 60
Sun (D5DT00318K/cit11/1) 2023; 62
Makuła (D5DT00318K/cit50/1) 2018; 9
Li (D5DT00318K/cit40/1) 2022; 34
Kundu (D5DT00318K/cit14/1) 2020; 59
Shestimerova (D5DT00318K/cit12/1) 2018; 57
Nesterova (D5DT00318K/cit22/1) 2006; 62
McCall (D5DT00318K/cit13/1) 2017; 29
Sheldrick (D5DT00318K/cit49/1) 2015; 71
Mezentsev-Cherkes (D5DT00318K/cit4/1) 2021; 23
Shestimerova (D5DT00318K/cit5/1) 2020; 20
Hrizi (D5DT00318K/cit21/1) 2011; 184
Zhang (D5DT00318K/cit38/1) 2018; 29
Leong (D5DT00318K/cit7/1) 2016; 28
Suslov (D5DT00318K/cit44/1) 2017; 27
Liao (D5DT00318K/cit15/1) 2024; 63
Zhu (D5DT00318K/cit6/1) 2018; 30
Sorg (D5DT00318K/cit33/1) 2020; 49
Li (D5DT00318K/cit30/1) 2022; 61
Chen (D5DT00318K/cit35/1) 2024; 63
Cui (D5DT00318K/cit17/1) 2012; 25
Romagnoli (D5DT00318K/cit43/1) 2022; 22
References_xml – issn: 1997
  publication-title: SMART (Control) and SAINT (Integration) Software
  doi: Bruker Corporation
– volume: 135
  start-page: e202216819
  issue: 13
  year: 2023
  ident: D5DT00318K/cit3/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202216819
– volume: 48
  start-page: 3
  issue: 1
  year: 2015
  ident: D5DT00318K/cit47/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714022985
– volume: 23
  start-page: 2324
  issue: 12
  year: 2021
  ident: D5DT00318K/cit4/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01730B
– volume: 91
  start-page: 791
  issue: 4
  year: 2017
  ident: D5DT00318K/cit41/1
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024417030256
– volume: 22
  start-page: 7426
  issue: 12
  year: 2022
  ident: D5DT00318K/cit43/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.2c01005
– volume: 184
  start-page: 3336
  issue: 12
  year: 2011
  ident: D5DT00318K/cit21/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.10.004
– volume: 55
  start-page: 7562
  issue: 52
  year: 2019
  ident: D5DT00318K/cit42/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03485D
– volume: 55
  start-page: 4132
  issue: 9
  year: 2016
  ident: D5DT00318K/cit45/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02729
– volume: 33
  start-page: 2007355
  issue: 9
  year: 2021
  ident: D5DT00318K/cit39/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007355
– volume: 29
  start-page: 725
  issue: 4
  year: 2018
  ident: D5DT00318K/cit38/1
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-018-1397-z
– volume: 60
  start-page: 17837
  issue: 4
  year: 2021
  ident: D5DT00318K/cit31/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03699
– volume: 48
  start-page: 5222
  issue: 16
  year: 2019
  ident: D5DT00318K/cit34/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00575G
– volume: 61
  start-page: e202208881
  issue: 49
  year: 2022
  ident: D5DT00318K/cit30/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 72
  start-page: 161
  issue: 1
  year: 2023
  ident: D5DT00318K/cit27/1
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/s11172-023-3721-5
– volume: 119
  start-page: 21304
  issue: 37
  year: 2015
  ident: D5DT00318K/cit51/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03923
– volume: 62
  start-page: e202216720
  issue: 10
  year: 2023
  ident: D5DT00318K/cit11/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202216720
– volume: 42
  start-page: 8617
  issue: 24
  year: 2013
  ident: D5DT00318K/cit23/1
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt50599e
– volume: 21
  start-page: 307
  issue: 5
  year: 2020
  ident: D5DT00318K/cit24/1
  publication-title: ChemPhysChem
– volume: 49
  start-page: 4904
  issue: 15
  year: 2020
  ident: D5DT00318K/cit33/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT00265H
– volume: 28
  start-page: 2439
  issue: 12
  year: 2016
  ident: D5DT00318K/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505480
– volume: 29
  start-page: 4129
  issue: 9
  year: 2017
  ident: D5DT00318K/cit13/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01184
– volume: 71
  start-page: 3
  issue: 1
  year: 2015
  ident: D5DT00318K/cit49/1
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 9
  start-page: 6814
  issue: 23
  year: 2018
  ident: D5DT00318K/cit50/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02892
– volume: 54
  start-page: 1541
  issue: 4
  year: 2025
  ident: D5DT00318K/cit16/1
  publication-title: Dalton Trans.
  doi: 10.1039/D4DT02751E
– volume: 5
  start-page: 1422
  issue: 6
  year: 2023
  ident: D5DT00318K/cit2/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.022.202202158
– volume: 53
  start-page: 2812
  issue: 11
  year: 2014
  ident: D5DT00318K/cit8/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308719
– volume: 27
  start-page: 4531
  issue: 19
  year: 2017
  ident: D5DT00318K/cit44/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2017.08.062
– volume: 976
  start-page: 173054
  year: 2024
  ident: D5DT00318K/cit36/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.173054
– volume: 25
  start-page: 814
  issue: 10
  year: 2012
  ident: D5DT00318K/cit17/1
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.2909
– volume: 68
  start-page: 1520
  issue: 8
  year: 2019
  ident: D5DT00318K/cit20/1
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/s11172-019-2586-0
– volume: 30
  start-page: 1703800
  issue: 6
  year: 2018
  ident: D5DT00318K/cit6/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703800
– volume: 62
  start-page: 281
  year: 2006
  ident: D5DT00318K/cit22/1
  publication-title: Acta Crystallogr., Sect. C:Cryst. Struct. Commun.
  doi: 10.1107/S0108270106017720
– volume: 25
  start-page: 2765
  issue: 12
  year: 2020
  ident: D5DT00318K/cit25/1
  publication-title: Molecules
  doi: 10.3390/molecules25122765
– volume: 63
  start-page: 10481
  issue: 23
  year: 2024
  ident: D5DT00318K/cit37/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00445
– volume: 34
  start-page: 6985
  issue: 15
  year: 2022
  ident: D5DT00318K/cit40/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c01434
– volume: 63
  start-page: e202404100
  issue: 24
  year: 2024
  ident: D5DT00318K/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202404100
– volume: 35
  start-page: 10635
  issue: 24
  year: 2023
  ident: D5DT00318K/cit9/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.3c02304
– volume: 1
  start-page: 308
  issue: 2
  year: 2017
  ident: D5DT00318K/cit19/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C6SE00061D
– volume: 10
  start-page: 181
  issue: 11
  year: 2022
  ident: D5DT00318K/cit26/1
  publication-title: Inorganics
  doi: 10.3390/inorganics10110181
– volume: 53
  start-page: 260
  issue: 1
  year: 2024
  ident: D5DT00318K/cit29/1
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT02867D
– volume: 88
  start-page: 814
  issue: 11
  year: 2023
  ident: D5DT00318K/cit18/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.3c00514
– volume: 60
  start-page: 2797
  issue: 23
  year: 2021
  ident: D5DT00318K/cit32/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02445
– volume: 20
  start-page: 87
  issue: 1
  year: 2020
  ident: D5DT00318K/cit5/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00636
– volume: 40
  start-page: 2382
  issue: 13
  year: 2001
  ident: D5DT00318K/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G
– volume: 59
  start-page: 13093
  issue: 31
  year: 2020
  ident: D5DT00318K/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005966
– volume: 42
  start-page: 339
  issue: 2
  year: 2009
  ident: D5DT00318K/cit48/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808042726
– volume: 24
  start-page: 2201
  issue: 3
  year: 2023
  ident: D5DT00318K/cit28/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24032201
– volume: 63
  start-page: 10304
  issue: 22
  year: 2024
  ident: D5DT00318K/cit35/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c00980
– volume: 35
  start-page: 2209417
  issue: 9
  year: 2023
  ident: D5DT00318K/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209417
– volume: 57
  start-page: 4077
  issue: 7
  year: 2018
  ident: D5DT00318K/cit12/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00265
SSID ssj0022052
Score 2.4660966
Snippet A new tricationic organic supramolecular tecton has been designed and synthesized. Contrary to known mono- and dicationic species, this new molecule, being a...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 6983
SubjectTerms Anions
Electronic structure
Hydrogen bonds
Nitrogen atoms
Optical properties
Polyelectrolytes
Title A new supramolecular tecton: the crucial impact of the polycation charge and geometry of H-bonds on the structure and properties of halometallates in the solid state
URI https://www.ncbi.nlm.nih.gov/pubmed/40181647
https://www.proquest.com/docview/3195566496
https://www.proquest.com/docview/3186353635
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZmOcAFsQ10GJAR3KpAmz3cCu2oMJ3hkkpzi2zHgaptUnWThv_D_-Q9L0mrIgQcGlWOnUR5X_z29wh5GyFP8MMCdBMWO77guQN8J3G6SSS6IgQUqJL51zfhcOx_uQ1uj47Pd6KWNmv-Tvz4bV7J_1AVxoCumCX7D5StLwoD8B_oC0egMBz_isY9bAjeXm0WSza3bW7b6BVo4jUE0E715aizIVVuVDW707a6tiqVpH0I32Q1l2vtcx86vMJgWe1LaOsys9bZsEAL_hJLsSpZk81wHVrk1yq8S6-oZpO8rfKVdgXgPsM21tiZwrYpXymrBCtV5YrGOLlX0kL3nhLwsKY9XW0YwnZfk7lcVlslBacMdyzWWGivZb5Fe240tfk805WcNKG9H--m1VbnD0y_s8msWXnFMGm0PDxnbCRugO4ek3Oug6vQEmPDYFWYy-7T6p3fR1-265q63Ltjxtpq2IWueW0_i2hn8w8T3ZPHCBJhorv8HTCpjoc1XvMgX6stddqwYht-cPM1uxyPRlk6uE2PyakLKhDs4ae9Qfp5VJsT3I7qJ1U_uC2-6yXvm2vvi1sHOhRIVEvb6UZJVOlD8sCoQrSncf2IHMnyMblXv7Qn5GePAr7pPr6pxvcHCiCjBt1Uo5tWhRpt0E01uimAllp04yyDbgozcEGNbjWxQTdO3Uc3nZgViG6q0P2UjC8H6aehY9qKOMJN4rXj5oUbYz1u4F0eKEi5z0MZcRZ5eSHdWDJPSE-wMAHpVUSxzIs4B8UmZ17MgxwocUZOyqqUzwkVTPocw8SBT_rdgsVBEPKO7PCIu1zwoEXe2LefLXT1mExFfXhJ1g_6qaLRVYtcWMJk5uNaZcAa4WKhn4Qt8ro-DQRAhx4rZbXBOTHoCx78WuSZJmh9Gx8r8YV-1CJnQOF6uEHG-Z_v-oLcb76kC3IChJAvQf5e81cGiL8Ae13lxQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+supramolecular+tecton%3A+the+crucial+impact+of+the+polycation+charge+and+geometry+of+H-bonds+on+the+structure+and+properties+of+halometallates+in+the+solid+state&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Shestimerova%2C+Tatiana+A&rft.au=Medved%27ko%2C+Aleksei+V&rft.au=Bykov%2C+Mikhail+A&rft.au=Kalinin%2C+Mikhail+A&rft.date=2025-04-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=54&rft.issue=17&rft.spage=6983&rft.epage=6992&rft_id=info:doi/10.1039%2Fd5dt00318k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon