A machine learning model to predict surgical site infection after surgery of lower extremity fractures

Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. Methods A machine learning analysis was conducted on a dataset comprising 1,579 patients wh...

Full description

Saved in:
Bibliographic Details
Published inInternational orthopaedics Vol. 48; no. 7; pp. 1887 - 1896
Main Authors Gutierrez-Naranjo, Jose M., Moreira, Alvaro, Valero-Moreno, Eduardo, Bullock, Travis S., Ogden, Liliana A., Zelle, Boris A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. Methods A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon’s index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection. Results The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon’s index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively. Conclusion The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.
AbstractList This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.PURPOSEThis study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.METHODSA machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.RESULTSThe final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.CONCLUSIONThe proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.
This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection. The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively. The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.
Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. Methods A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon’s index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection. Results The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon’s index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively. Conclusion The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.
Author Gutierrez-Naranjo, Jose M.
Moreira, Alvaro
Valero-Moreno, Eduardo
Bullock, Travis S.
Ogden, Liliana A.
Zelle, Boris A.
Author_xml – sequence: 1
  givenname: Jose M.
  surname: Gutierrez-Naranjo
  fullname: Gutierrez-Naranjo, Jose M.
  email: jmgutierrezn@gmail.com
  organization: Department of Orthopaedics, UT Health San Antonio
– sequence: 2
  givenname: Alvaro
  surname: Moreira
  fullname: Moreira, Alvaro
  email: moreiraa@uthscsa.edu
  organization: Department of Pediatrics, UT Health San Antonio
– sequence: 3
  givenname: Eduardo
  surname: Valero-Moreno
  fullname: Valero-Moreno, Eduardo
  organization: Department of Orthopaedics, UT Health San Antonio
– sequence: 4
  givenname: Travis S.
  surname: Bullock
  fullname: Bullock, Travis S.
  organization: Department of Orthopaedics, UT Health San Antonio
– sequence: 5
  givenname: Liliana A.
  surname: Ogden
  fullname: Ogden, Liliana A.
  organization: Department of Orthopaedics, UT Health San Antonio
– sequence: 6
  givenname: Boris A.
  surname: Zelle
  fullname: Zelle, Boris A.
  email: zelle@uthscsa.edu
  organization: Department of Orthopaedics, UT Health San Antonio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38700699$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1uFTEQRi0UlNyEvAAFckmzwb_rdRlFBCJFoklqy2uPg6Nd-2J7BfftMbmBkmI00syZT5pzjk5SToDQe0quKCHqUyWEjWIgrNdItRjkG7SjgrNBUi1P0I5wQQc2anmGzmt9JoSqcaKn6IxPipBR6x0K13i17ntMgBewJcX0hNfsYcEt430BH13DdStP0dkF19gAxxTAtZgTtqFBedlCOeAc8JJ_9gH8agXW2A44FOvaVqC-Q2-DXSpcvvYL9Hj7-eHm63D_7cvdzfX94Jie2sC8s-BB-0nPk1QC7DRbwmfHRmL9pGQQ8-hnMYpgBbHMMyW15R1TcmSc8wv08Zi7L_nHBrWZNVYHy2IT5K0aTiTRXKlJdZQdUVdyrQWC2Ze42nIwlJg_fs3Rr-l-zYtfI_vRh9f8bV7B_zv5K7QD_AjUvkrdi3nOW0n95__F_gbjd4mp
Cites_doi 10.3389/fbioe.2018.00075
10.1097/BOT.0000000000002293
10.1016/j.jor.2018.02.009
10.1371/journal.pone.0067167
10.1097/CORR.0000000000000433
10.1097/BOT.0b013e318284704e
10.1016/j.injury.2015.10.026
10.1136/bmj.g7594
10.1016/j.spinee.2019.01.009
10.1097/TA.0b013e318292158d
10.1186/s13037-019-0196-2
10.1086/662016
10.1097/BOT.0000000000002427
10.2196/jmir.5870
10.2106/JBJS.21.00341
10.2106/JBJS.20.01640
10.1016/j.arth.2018.11.022
10.1007/s00590-022-03438-1
10.1016/j.injury.2017.10.011
10.1097/BOT.0000000000001907
10.1097/BOT.0000000000001726
10.1007/s00402-021-04041-5
10.1097/SLA.0000000000002956
10.1016/j.jor.2015.01.026
10.1016/j.jse.2020.05.013
10.3390/jcm10215012
10.1186/s12889-018-5901-z
10.1016/j.ijsu.2018.06.018
10.1177/24715492221075444
10.1097/BOT.0000000000001513
10.1016/j.ijsu.2013.02.018
10.1097/BOT.0000000000002259
10.1186/s13756-019-0638-8
10.1097/BOT.0000000000001063
10.1007/s00402-022-04452-y
10.1097/MD.0000000000009901
10.1177/0300060520907776
10.1016/j.injury.2012.10.032
10.1111/ans.15263
10.1016/j.jamcollsurg.2016.10.029
10.1007/s11999-014-4005-z
10.1097/bot.0000000000002070
10.1016/j.injury.2022.03.037
10.1097/BOT.0b013e3182a22744
10.3928/01477447-20100625-27
10.5435/JAAOSGlobal-D-21-00058
ContentType Journal Article
Copyright The Author(s) under exclusive licence to SICOT aisbl 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s) under exclusive licence to SICOT aisbl.
Copyright_xml – notice: The Author(s) under exclusive licence to SICOT aisbl 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s) under exclusive licence to SICOT aisbl.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1007/s00264-024-06194-5
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-5195
EndPage 1896
ExternalDocumentID 10_1007_s00264_024_06194_5
38700699
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1KJ
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AACDK
AAEOY
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AAKSU
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACUDM
ACVWB
ACWMK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFAFS
AFBBN
AFEXP
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJOOF
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GX1
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P2P
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPM
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TR2
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAYZH
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c298t-2dcaede9d89b8574ea8ba03bc260ad875f4b6db464fa40a2d2759a3ea87562333
IEDL.DBID AGYKE
ISSN 0341-2695
1432-5195
IngestDate Thu Dec 05 23:19:21 EST 2024
Fri Dec 06 02:10:42 EST 2024
Sat Nov 02 12:29:26 EDT 2024
Sat Jun 15 09:01:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Risk score
Postoperative infection
Lower extremity
Machine learning
Language English
License 2024. The Author(s) under exclusive licence to SICOT aisbl.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-2dcaede9d89b8574ea8ba03bc260ad875f4b6db464fa40a2d2759a3ea87562333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38700699
PQID 3050937787
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3050937787
crossref_primary_10_1007_s00264_024_06194_5
pubmed_primary_38700699
springer_journals_10_1007_s00264_024_06194_5
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle International orthopaedics
PublicationTitleAbbrev International Orthopaedics (SICOT)
PublicationTitleAlternate Int Orthop
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Halvachizadeh, Klingebiel, Pfeifer (CR38) 2022; 53
Burrus, Werner, Yarboro (CR41) 2016; 47
Kunze, Polce, Patel (CR17) 2021; 141
Anis, Sodhi, Klika (CR35) 2019; 34
CR39
Arvind, London, Cirino (CR15) 2021; 30
CR34
Morris, Unger, Archer (CR9) 2013; 27
Wilson, Georgiou, Oburu (CR42) 2018; 15
Wise, Connelly, Rocca (CR12) 2019; 33
DelisleNyström, Barnes, Tremblay (CR28) 2018; 18
Ban, Minei, Laronga (CR8) 2017; 224
Molina, Stinner, Fras, Evans (CR5) 2015; 12
Collins, Reitsma, Altman, Moons (CR21) 2015; 350
Pugely, Martin, Gao (CR46) 2014; 28
Friedman (CR29) 1991; 19
Ling, Apisarnthanarak, Abbas (CR11) 2019; 8
Oosterhoff, Gravesteijn, Karhade (CR20) 2022; 104
Yuan, Chen (CR40) 2013; 11
Zelle, Kore (CR7) 2022; 36
Devana, Shah, Lee (CR14) 2022; 6
Reese, Knepper, Young, Mauffrey (CR48) 2017; 48
Thio, Karhade, Ogink (CR16) 2018; 476
Patterson, O’Hara, Scharfstein (CR4) 2022
CR44
Mu, Edwards, Horan (CR45) 2011; 32
Bullock, Ornell, Naranjo (CR3) 2022; 36
Kunze, Karhade, Polce (CR31) 2022
(CR23) 2022; 9
Meinberg, Agel, Roberts (CR24) 2018; 32
Ziran, Soles, Matta (CR43) 2019; 13
Handcox, Gutierrez-Naranjo, Salazar (CR10) 2021; 10
Colman, Wright, Gruen (CR32) 2013; 44
van Walraven, Musselman (CR2) 2013; 8
Paryavi, Stall, Gupta (CR37) 2013; 74
Xu, Yu, Li, Gong (CR36) 2019; 89
(CR13) 2021
Spitler, Hulick, Weldy (CR26) 2020; 34
Basques, Miller, Golinvaux (CR47) 2015; 473
Karhade, Ogink, Thio (CR30) 2019; 19
Sun, Wang, Tang (CR33) 2018; 97
Bertsimas, Dunn, Velmahos, Kaafarani (CR49) 2018; 268
Yang, Zhang, Liang (CR1) 2020; 48
Cabitza, Locoro, Banfi (CR19) 2018; 6
Luo, Phung, Tran (CR22) 2016; 18
Shao, Zhang, Yin (CR6) 2018; 56
Cooke, Tornetta, Firoozabadi (CR27) 2022; 36
Zelle, Johnson, Ryan (CR25) 2021; 35
Kunze, Polce, Clapp (CR18) 2021; 103
AJ Pugely (6194_CR46) 2014; 28
S Halvachizadeh (6194_CR38) 2022; 53
BT Wise (6194_CR12) 2019; 33
HK Anis (6194_CR35) 2019; 34
E Paryavi (6194_CR37) 2013; 74
H Xu (6194_CR36) 2019; 89
National Healthcare Safety Network (6194_CR23) 2022; 9
ML Ling (6194_CR11) 2019; 8
J Shao (6194_CR6) 2018; 56
QCBS Thio (6194_CR16) 2018; 476
KN Kunze (6194_CR17) 2021; 141
JH Friedman (6194_CR29) 1991; 19
K Yuan (6194_CR40) 2013; 11
AV Karhade (6194_CR30) 2019; 19
M Colman (6194_CR32) 2013; 44
KA Ban (6194_CR8) 2017; 224
JHF Oosterhoff (6194_CR20) 2022; 104
V Arvind (6194_CR15) 2021; 30
W Luo (6194_CR22) 2016; 18
N Ziran (6194_CR43) 2019; 13
JT Patterson (6194_CR4) 2022
CA Spitler (6194_CR26) 2020; 34
Investigators, SPRINT The Of Behalf On Consortium Learning Machine (6194_CR13) 2021
BA Zelle (6194_CR7) 2022; 36
SK Devana (6194_CR14) 2022; 6
Y Mu (6194_CR45) 2011; 32
KN Kunze (6194_CR18) 2021; 103
E Meinberg (6194_CR24) 2018; 32
BA Basques (6194_CR47) 2015; 473
SM Reese (6194_CR48) 2017; 48
GS Collins (6194_CR21) 2015; 350
CJ Wilson (6194_CR42) 2018; 15
BA Zelle (6194_CR25) 2021; 35
D Bertsimas (6194_CR49) 2018; 268
MT Burrus (6194_CR41) 2016; 47
6194_CR44
TS Bullock (6194_CR3) 2022; 36
C van Walraven (6194_CR2) 2013; 8
J Yang (6194_CR1) 2020; 48
KN Kunze (6194_CR31) 2022
BJ Morris (6194_CR9) 2013; 27
CS Molina (6194_CR5) 2015; 12
JE Handcox (6194_CR10) 2021; 10
C DelisleNyström (6194_CR28) 2018; 18
Y Sun (6194_CR33) 2018; 97
F Cabitza (6194_CR19) 2018; 6
6194_CR34
6194_CR39
ME Cooke (6194_CR27) 2022; 36
References_xml – volume: 6
  start-page: 75
  year: 2018
  ident: CR19
  article-title: Machine learning in orthopedics: a literature review
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2018.00075
  contributor:
    fullname: Banfi
– volume: 36
  start-page: 43
  year: 2022
  end-page: 48
  ident: CR27
  article-title: Open ankle fractures: what predicts infection? a multicenter study
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002293
  contributor:
    fullname: Firoozabadi
– ident: CR39
– volume: 15
  start-page: 328
  year: 2018
  end-page: 332
  ident: CR42
  article-title: Surgical site infection in overweight and obese Total Knee Arthroplasty patients
  publication-title: J Orthop
  doi: 10.1016/j.jor.2018.02.009
  contributor:
    fullname: Oburu
– volume: 8
  start-page: e67167
  year: 2013
  ident: CR2
  article-title: The Surgical Site Infection Risk Score (SSIRS): A Model to Predict the Risk of Surgical Site Infections
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0067167
  contributor:
    fullname: Musselman
– volume: 476
  start-page: 2040
  year: 2018
  end-page: 2048
  ident: CR16
  article-title: Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma?
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/CORR.0000000000000433
  contributor:
    fullname: Ogink
– volume: 27
  start-page: e196
  year: 2013
  end-page: e200
  ident: CR9
  article-title: Risk factors of infection after orif of bicondylar tibial plateau fractures
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0b013e318284704e
  contributor:
    fullname: Archer
– volume: 47
  start-page: 465
  year: 2016
  end-page: 470
  ident: CR41
  article-title: Obesity is associated with increased postoperative complications after operative management of tibial shaft fractures
  publication-title: Injury
  doi: 10.1016/j.injury.2015.10.026
  contributor:
    fullname: Yarboro
– volume: 350
  start-page: g7594
  year: 2015
  end-page: g7594
  ident: CR21
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
  publication-title: BMJ
  doi: 10.1136/bmj.g7594
  contributor:
    fullname: Moons
– volume: 19
  start-page: 976
  year: 2019
  end-page: 983
  ident: CR30
  article-title: Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion
  publication-title: Spine J
  doi: 10.1016/j.spinee.2019.01.009
  contributor:
    fullname: Thio
– volume: 74
  start-page: 1521
  year: 2013
  end-page: 1527
  ident: CR37
  article-title: Predictive model for surgical site infection risk after surgery for high-energy lower-extremity fractures: Development of the Risk of Infection in Orthopedic Trauma Surgery Score
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e318292158d
  contributor:
    fullname: Gupta
– volume: 9
  start-page: 39
  year: 2022
  ident: CR23
  article-title: Surgical site infection (SSI) event
  publication-title: Centers for Disease Control and Prevention
– volume: 13
  start-page: 16
  year: 2019
  ident: CR43
  article-title: Outcomes after surgical treatment of acetabular fractures: a review
  publication-title: Patient Saf Surg
  doi: 10.1186/s13037-019-0196-2
  contributor:
    fullname: Matta
– volume: 32
  start-page: 970
  year: 2011
  end-page: 986
  ident: CR45
  article-title: Improving risk-adjusted measures of surgical site infection for the national healthcare safely network
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.1086/662016
  contributor:
    fullname: Horan
– volume: 36
  start-page: S31
  year: 2022
  end-page: S35
  ident: CR7
  article-title: How can negative pressure wound therapy pay for itself?—Reducing complications is important
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002427
  contributor:
    fullname: Kore
– volume: 18
  start-page: e323
  year: 2016
  ident: CR22
  article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.5870
  contributor:
    fullname: Tran
– volume: 104
  start-page: 544
  year: 2022
  end-page: 551
  ident: CR20
  article-title: Feasibility of machine learning and logistic regression algorithms to predict outcome in orthopaedic trauma surgery
  publication-title: J Bone Joint Surg
  doi: 10.2106/JBJS.21.00341
  contributor:
    fullname: Karhade
– volume: 103
  start-page: 1055
  year: 2021
  end-page: 1062
  ident: CR18
  article-title: Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes
  publication-title: J Bone Joint Surg
  doi: 10.2106/JBJS.20.01640
  contributor:
    fullname: Clapp
– volume: 34
  start-page: S331
  year: 2019
  end-page: S336
  ident: CR35
  article-title: Is operative time a predictor for post-operative infection in primary total knee arthroplasty?
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2018.11.022
  contributor:
    fullname: Klika
– year: 2022
  ident: CR4
  article-title: Do superficial infections increase the risk of deep infections in tibial plateau and plafond fractures?
  publication-title: Eur J Orthop Surg Traumatol
  doi: 10.1007/s00590-022-03438-1
  contributor:
    fullname: Scharfstein
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: CR29
  article-title: Multivariate adaptive regression splines
  publication-title: Ann Stat
  contributor:
    fullname: Friedman
– volume: 48
  start-page: 2699
  year: 2017
  end-page: 2704
  ident: CR48
  article-title: Development of a surgical site infection prediction model in orthopaedic trauma: The Denver Health Model
  publication-title: Injury-Int J Care Injured
  doi: 10.1016/j.injury.2017.10.011
  contributor:
    fullname: Mauffrey
– volume: 35
  start-page: 154
  year: 2021
  end-page: 159
  ident: CR25
  article-title: Fate of the uninsured ankle fracture: significant delays in treatment result in an increased risk of surgical site infection
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001907
  contributor:
    fullname: Ryan
– volume: 34
  start-page: e189
  year: 2020
  end-page: e194
  ident: CR26
  article-title: What are the risk factors for deep infection in OTA/AO 43C pilon fractures?
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001726
  contributor:
    fullname: Weldy
– volume: 141
  start-page: 2235
  year: 2021
  end-page: 2244
  ident: CR17
  article-title: Validation and performance of a machine-learning derived prediction guide for total knee arthroplasty component sizing
  publication-title: Arch Orthop Trauma Surg
  doi: 10.1007/s00402-021-04041-5
  contributor:
    fullname: Patel
– volume: 268
  start-page: 574
  year: 2018
  end-page: 583
  ident: CR49
  article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002956
  contributor:
    fullname: Kaafarani
– volume: 12
  start-page: S7
  year: 2015
  end-page: S13
  ident: CR5
  article-title: Risk factors of deep infection in operatively treated pilon fractures (AO/OTA: 43)
  publication-title: J Orthop
  doi: 10.1016/j.jor.2015.01.026
  contributor:
    fullname: Evans
– volume: 30
  start-page: e50
  year: 2021
  end-page: e59
  ident: CR15
  article-title: Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/j.jse.2020.05.013
  contributor:
    fullname: Cirino
– volume: 10
  start-page: 5012
  year: 2021
  ident: CR10
  article-title: Nutrition and vitamin deficiencies are common in orthopaedic trauma patients
  publication-title: JCM
  doi: 10.3390/jcm10215012
  contributor:
    fullname: Salazar
– volume: 18
  start-page: 1046
  year: 2018
  ident: CR28
  article-title: An exploratory analysis of missing data from the royal bank of Canada (RBC) learn to play – Canadian assessment of physical literacy (CAPL) project
  publication-title: BMC Public Health
  doi: 10.1186/s12889-018-5901-z
  contributor:
    fullname: Tremblay
– volume: 56
  start-page: 124
  year: 2018
  end-page: 132
  ident: CR6
  article-title: Risk factors for surgical site infection following operative treatment of ankle fractures: A systematic review and meta-analysis
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2018.06.018
  contributor:
    fullname: Yin
– volume: 6
  start-page: 247154922210754
  year: 2022
  ident: CR14
  article-title: Development of a machine learning algorithm for prediction of complications and unplanned readmission following primary anatomic total shoulder replacements
  publication-title: J Shoulder Elbow Arthroplast
  doi: 10.1177/24715492221075444
  contributor:
    fullname: Lee
– volume: 33
  start-page: 506
  year: 2019
  end-page: 513
  ident: CR12
  article-title: A Predictive score for determining risk of surgical site infection after orthopaedic trauma surgery
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001513
  contributor:
    fullname: Rocca
– volume: 11
  start-page: 383
  year: 2013
  end-page: 388
  ident: CR40
  article-title: Obesity and surgical site infections risk in orthopedics: A meta-analysis
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2013.02.018
  contributor:
    fullname: Chen
– volume: 36
  start-page: 111
  year: 2022
  end-page: 117
  ident: CR3
  article-title: Risk of surgical site infections in OTA/AO type C tibial plateau and tibial plafond fractures: a systematic review and meta-analysis
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002259
  contributor:
    fullname: Naranjo
– volume: 8
  start-page: 174
  year: 2019
  ident: CR11
  article-title: APSIC guidelines for the prevention of surgical site infections
  publication-title: Antimicrob Resist Infect Control
  doi: 10.1186/s13756-019-0638-8
  contributor:
    fullname: Abbas
– volume: 32
  start-page: S1
  year: 2018
  end-page: S10
  ident: CR24
  article-title: Fracture and dislocation classification compendium—2018
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001063
  contributor:
    fullname: Roberts
– ident: CR44
– year: 2022
  ident: CR31
  article-title: Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty
  publication-title: Arch Orthop Trauma Surg
  doi: 10.1007/s00402-022-04452-y
  contributor:
    fullname: Polce
– volume: 97
  start-page: e9901
  year: 2018
  ident: CR33
  article-title: Incidence and risk factors for surgical site infection after open reduction and internal fixation of ankle fracture: A retrospective multicenter study
  publication-title: Medicine
  doi: 10.1097/MD.0000000000009901
  contributor:
    fullname: Tang
– volume: 48
  start-page: 030006052090777
  year: 2020
  ident: CR1
  article-title: A retrospective analysis of factors affecting surgical site infection in orthopaedic patients
  publication-title: J Int Med Res
  doi: 10.1177/0300060520907776
  contributor:
    fullname: Liang
– volume: 44
  start-page: 249
  year: 2013
  end-page: 252
  ident: CR32
  article-title: Prolonged operative time increases infection rate in tibial plateau fractures
  publication-title: Injury
  doi: 10.1016/j.injury.2012.10.032
  contributor:
    fullname: Gruen
– volume: 89
  start-page: 723
  year: 2019
  end-page: 728
  ident: CR36
  article-title: Prolonged surgical duration, higher body mass index and current smoking increases risk of surgical site infection after intra-articular fracture of distal femur
  publication-title: ANZ J Surg
  doi: 10.1111/ans.15263
  contributor:
    fullname: Gong
– ident: CR34
– volume: 224
  start-page: 59
  year: 2017
  end-page: 74
  ident: CR8
  article-title: American college of surgeons and surgical infection society: surgical site infection guidelines, 2016 update
  publication-title: J Am Coll Surg
  doi: 10.1016/j.jamcollsurg.2016.10.029
  contributor:
    fullname: Laronga
– volume: 473
  start-page: 1133
  year: 2015
  end-page: 1139
  ident: CR47
  article-title: Morbidity and readmission after open reduction and internal fixation of ankle fractures are associated with preoperative patient characteristics
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-014-4005-z
  contributor:
    fullname: Golinvaux
– year: 2021
  ident: CR13
  article-title: A machine learning algorithm to identify patients at risk of unplanned subsequent surgery after intramedullary nailing for tibial shaft fractures
  publication-title: J Orthop Trauma
  doi: 10.1097/bot.0000000000002070
– volume: 53
  start-page: 1789
  year: 2022
  end-page: 1795
  ident: CR38
  article-title: The local soft tissue status and the prediction of local complications following fractures of the ankle region
  publication-title: Injury
  doi: 10.1016/j.injury.2022.03.037
  contributor:
    fullname: Pfeifer
– volume: 28
  start-page: 63
  year: 2014
  end-page: 69
  ident: CR46
  article-title: A risk calculator for short-term morbidity and mortality after hip fracture surgery
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0b013e3182a22744
  contributor:
    fullname: Gao
– volume: 19
  start-page: 1
  year: 1991
  ident: 6194_CR29
  publication-title: Ann Stat
  contributor:
    fullname: JH Friedman
– volume: 15
  start-page: 328
  year: 2018
  ident: 6194_CR42
  publication-title: J Orthop
  doi: 10.1016/j.jor.2018.02.009
  contributor:
    fullname: CJ Wilson
– volume: 268
  start-page: 574
  year: 2018
  ident: 6194_CR49
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002956
  contributor:
    fullname: D Bertsimas
– volume: 44
  start-page: 249
  year: 2013
  ident: 6194_CR32
  publication-title: Injury
  doi: 10.1016/j.injury.2012.10.032
  contributor:
    fullname: M Colman
– volume: 103
  start-page: 1055
  year: 2021
  ident: 6194_CR18
  publication-title: J Bone Joint Surg
  doi: 10.2106/JBJS.20.01640
  contributor:
    fullname: KN Kunze
– volume: 34
  start-page: e189
  year: 2020
  ident: 6194_CR26
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001726
  contributor:
    fullname: CA Spitler
– volume: 8
  start-page: 174
  year: 2019
  ident: 6194_CR11
  publication-title: Antimicrob Resist Infect Control
  doi: 10.1186/s13756-019-0638-8
  contributor:
    fullname: ML Ling
– volume: 74
  start-page: 1521
  year: 2013
  ident: 6194_CR37
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e318292158d
  contributor:
    fullname: E Paryavi
– volume: 32
  start-page: S1
  year: 2018
  ident: 6194_CR24
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001063
  contributor:
    fullname: E Meinberg
– volume: 473
  start-page: 1133
  year: 2015
  ident: 6194_CR47
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-014-4005-z
  contributor:
    fullname: BA Basques
– ident: 6194_CR34
– volume: 18
  start-page: e323
  year: 2016
  ident: 6194_CR22
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.5870
  contributor:
    fullname: W Luo
– volume: 30
  start-page: e50
  year: 2021
  ident: 6194_CR15
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/j.jse.2020.05.013
  contributor:
    fullname: V Arvind
– volume: 97
  start-page: e9901
  year: 2018
  ident: 6194_CR33
  publication-title: Medicine
  doi: 10.1097/MD.0000000000009901
  contributor:
    fullname: Y Sun
– volume: 10
  start-page: 5012
  year: 2021
  ident: 6194_CR10
  publication-title: JCM
  doi: 10.3390/jcm10215012
  contributor:
    fullname: JE Handcox
– volume: 33
  start-page: 506
  year: 2019
  ident: 6194_CR12
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001513
  contributor:
    fullname: BT Wise
– volume: 104
  start-page: 544
  year: 2022
  ident: 6194_CR20
  publication-title: J Bone Joint Surg
  doi: 10.2106/JBJS.21.00341
  contributor:
    fullname: JHF Oosterhoff
– year: 2022
  ident: 6194_CR4
  publication-title: Eur J Orthop Surg Traumatol
  doi: 10.1007/s00590-022-03438-1
  contributor:
    fullname: JT Patterson
– volume: 89
  start-page: 723
  year: 2019
  ident: 6194_CR36
  publication-title: ANZ J Surg
  doi: 10.1111/ans.15263
  contributor:
    fullname: H Xu
– volume: 19
  start-page: 976
  year: 2019
  ident: 6194_CR30
  publication-title: Spine J
  doi: 10.1016/j.spinee.2019.01.009
  contributor:
    fullname: AV Karhade
– ident: 6194_CR39
  doi: 10.3928/01477447-20100625-27
– volume: 141
  start-page: 2235
  year: 2021
  ident: 6194_CR17
  publication-title: Arch Orthop Trauma Surg
  doi: 10.1007/s00402-021-04041-5
  contributor:
    fullname: KN Kunze
– volume: 53
  start-page: 1789
  year: 2022
  ident: 6194_CR38
  publication-title: Injury
  doi: 10.1016/j.injury.2022.03.037
  contributor:
    fullname: S Halvachizadeh
– volume: 48
  start-page: 030006052090777
  year: 2020
  ident: 6194_CR1
  publication-title: J Int Med Res
  doi: 10.1177/0300060520907776
  contributor:
    fullname: J Yang
– volume: 6
  start-page: 75
  year: 2018
  ident: 6194_CR19
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2018.00075
  contributor:
    fullname: F Cabitza
– volume: 35
  start-page: 154
  year: 2021
  ident: 6194_CR25
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001907
  contributor:
    fullname: BA Zelle
– volume: 36
  start-page: S31
  year: 2022
  ident: 6194_CR7
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002427
  contributor:
    fullname: BA Zelle
– ident: 6194_CR44
  doi: 10.5435/JAAOSGlobal-D-21-00058
– volume: 48
  start-page: 2699
  year: 2017
  ident: 6194_CR48
  publication-title: Injury-Int J Care Injured
  doi: 10.1016/j.injury.2017.10.011
  contributor:
    fullname: SM Reese
– volume: 12
  start-page: S7
  year: 2015
  ident: 6194_CR5
  publication-title: J Orthop
  doi: 10.1016/j.jor.2015.01.026
  contributor:
    fullname: CS Molina
– volume: 8
  start-page: e67167
  year: 2013
  ident: 6194_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0067167
  contributor:
    fullname: C van Walraven
– year: 2021
  ident: 6194_CR13
  publication-title: J Orthop Trauma
  doi: 10.1097/bot.0000000000002070
  contributor:
    fullname: Investigators, SPRINT The Of Behalf On Consortium Learning Machine
– volume: 47
  start-page: 465
  year: 2016
  ident: 6194_CR41
  publication-title: Injury
  doi: 10.1016/j.injury.2015.10.026
  contributor:
    fullname: MT Burrus
– volume: 32
  start-page: 970
  year: 2011
  ident: 6194_CR45
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.1086/662016
  contributor:
    fullname: Y Mu
– volume: 27
  start-page: e196
  year: 2013
  ident: 6194_CR9
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0b013e318284704e
  contributor:
    fullname: BJ Morris
– volume: 18
  start-page: 1046
  year: 2018
  ident: 6194_CR28
  publication-title: BMC Public Health
  doi: 10.1186/s12889-018-5901-z
  contributor:
    fullname: C DelisleNyström
– volume: 6
  start-page: 247154922210754
  year: 2022
  ident: 6194_CR14
  publication-title: J Shoulder Elbow Arthroplast
  doi: 10.1177/24715492221075444
  contributor:
    fullname: SK Devana
– volume: 224
  start-page: 59
  year: 2017
  ident: 6194_CR8
  publication-title: J Am Coll Surg
  doi: 10.1016/j.jamcollsurg.2016.10.029
  contributor:
    fullname: KA Ban
– volume: 13
  start-page: 16
  year: 2019
  ident: 6194_CR43
  publication-title: Patient Saf Surg
  doi: 10.1186/s13037-019-0196-2
  contributor:
    fullname: N Ziran
– volume: 28
  start-page: 63
  year: 2014
  ident: 6194_CR46
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0b013e3182a22744
  contributor:
    fullname: AJ Pugely
– volume: 34
  start-page: S331
  year: 2019
  ident: 6194_CR35
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2018.11.022
  contributor:
    fullname: HK Anis
– volume: 9
  start-page: 39
  year: 2022
  ident: 6194_CR23
  publication-title: Centers for Disease Control and Prevention
  contributor:
    fullname: National Healthcare Safety Network
– volume: 36
  start-page: 111
  year: 2022
  ident: 6194_CR3
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002259
  contributor:
    fullname: TS Bullock
– volume: 11
  start-page: 383
  year: 2013
  ident: 6194_CR40
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2013.02.018
  contributor:
    fullname: K Yuan
– volume: 350
  start-page: g7594
  year: 2015
  ident: 6194_CR21
  publication-title: BMJ
  doi: 10.1136/bmj.g7594
  contributor:
    fullname: GS Collins
– volume: 476
  start-page: 2040
  year: 2018
  ident: 6194_CR16
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/CORR.0000000000000433
  contributor:
    fullname: QCBS Thio
– volume: 36
  start-page: 43
  year: 2022
  ident: 6194_CR27
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000002293
  contributor:
    fullname: ME Cooke
– year: 2022
  ident: 6194_CR31
  publication-title: Arch Orthop Trauma Surg
  doi: 10.1007/s00402-022-04452-y
  contributor:
    fullname: KN Kunze
– volume: 56
  start-page: 124
  year: 2018
  ident: 6194_CR6
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2018.06.018
  contributor:
    fullname: J Shao
SSID ssj0017681
Score 2.441294
Snippet Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site...
This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1887
SubjectTerms Adult
Aged
Algorithms
Female
Fractures, Bone - surgery
Humans
Lower Extremity - injuries
Lower Extremity - surgery
Machine Learning
Male
Medicine
Medicine & Public Health
Middle Aged
Original Paper
Orthopedics
Retrospective Studies
Risk Assessment - methods
Risk Factors
Surgical Wound Infection - diagnosis
Surgical Wound Infection - epidemiology
Surgical Wound Infection - etiology
Surgical Wound Infection - prevention & control
Young Adult
Title A machine learning model to predict surgical site infection after surgery of lower extremity fractures
URI https://link.springer.com/article/10.1007/s00264-024-06194-5
https://www.ncbi.nlm.nih.gov/pubmed/38700699
https://www.proquest.com/docview/3050937787
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH84BfHi98f8IoI3zdiSNG2OQ6ai6MnBPJWmST2onXTtQf96X7J2IhNhlxJoSGle8t7v8T5-AOdpqJhVmaDSMkOF1ZIqxAVUSpX2LFcmSF2988OjvB2Ku1Ew-qnj9snuTUTSK-pZrZvzFgRFk-LICJSgQQtW0Pa427jSv3m-H8yCB4igPVEeKmjKpArqWpm_V_ltj-ZA5lyA1Nud6w14aqp3pukmr52q1J30a76Z4yK_tAnrNQ4l_enB2YIlm2_D6kMdad-BrE_efZ6lJTWxxAvxrDmkHJOPws0ryaQqvOIkLgRNmryunHjicf_WFp9knJE3x8VG0A4U9h1hP8lcbVaFnv4uDK8HT1e3tOZkoClTUUmZSRNrrDKR0lEQCptEOulynaJflBh0fjKhpdFCiiwR3YQZFgYq4TgtdEiL8z1Yzse5PQBiec9YYdCjyVCTOKCKw0imPR0yboRuw0Ujmfhj2nojnjVZ9lsX49bFfuvioA1njfBivCEu7JHkdlxNYu5a3PAQNVMb9qdSna3HUV11pVJtuGxEFNeXePLPxw4Xm34Ea8xL2WX5HsNyWVT2BLFMqU_rs3sKrZtRD59D1v8GIMXrOw
link.rule.ids 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60gnoR39ZnBG8aaJNsdnMsotRHPVnoLWw2WS92W7bbg__eSbpbkIrgbWFDApPJzDfM4wO4yWLFnMoFlY5ZKpyRVCEuoFKqrOu4slHm-50Hb7I_FM-jaFQ3hc2aavcmJRks9bLZzYcLgqJP8WwEStBoHTZQ45TnLRiy3jJ3gAA68OShfaZMqqhulfl9j5_uaAVjruRHg9t53IWdGi-S3uKC92DNFfuwOagz4geQ98g41EM6UhNAfJDAbkOqCZmWfl1FZvMyGDjiU8Wkqb8qSCAID39d-UUmOfn0nGkE7XXpxgjPSe57qOYYkR_C8PHh_b5Pa-4EmjGVVJTZLHXWKZsok0SxcGli0g43GcYvqcUgJRdGWiOkyFPRSZllcaRSjstij4g4P4JWMSncCRDHu9YJi5FHji_eA0r8TGTWNTHjVpg23DYi1NPFiAy9HIYcBK5R4DoIXEdtuG6krFGTfXoiLdxkPtPcj6LhMVqQNhwvxL_cj6NZ6Uil2nDX3IeuH9vsj8NO_7f8Crb674NX_fr09nIG2yzoia_MPYdWVc7dBeKPylwGdfsG4dLQSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gHgR39ZnBG8abJNsdnMsaqmPigcL3sJmk_Wi27LdHvz3TtLdoiiCt4UNCUwmM98wjw_gLIsVcyoXVDpmqXBGUoW4gEqpso7jykaZ73cePMr-UNy9RC9fuvhDtXuTkpz1NPgpTUV1Obb55bzxzYcOgqJ_8cwEStBoEZa9K_KaPmTdeR4BwXTgzENbTZlUUd028_se313TD7z5I1caXFBvHdZq7Ei6s8vegAVXbMLKoM6Ob0HeJe-hNtKRmgzilQSmG1KNyLj06yoymZbB2BGfNiZNLVZBAll4-OvKDzLKyZvnTyNou0v3jlCd5L6faorR-TYMezfPV31a8yjQjKmkosxmqbNO2USZJIqFSxOTtrnJMJZJLQYsuTDSGiFFnop2yiyLI5VyXBZ7dMT5DiwVo8LtAXG8Y52wGIXk-Po9uMTPRGYdEzNuhWnBeSNCPZ6Ny9DzwchB4BoFroPAddSC00bKGrXapyrSwo2mE839WBoeozVpwe5M_PP9OJqYtlSqBRfNfej64U3-OGz_f8tPYOXpuqcfbh_vD2CVBTXxRbqHsFSVU3eEUKQyx0HbPgEdXdSH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+model+to+predict+surgical+site+infection+after+surgery+of+lower+extremity+fractures&rft.jtitle=International+orthopaedics&rft.au=Gutierrez-Naranjo%2C+Jose+M.&rft.au=Moreira%2C+Alvaro&rft.au=Valero-Moreno%2C+Eduardo&rft.au=Bullock%2C+Travis+S.&rft.date=2024-07-01&rft.issn=0341-2695&rft.eissn=1432-5195&rft_id=info:doi/10.1007%2Fs00264-024-06194-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00264_024_06194_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-2695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-2695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-2695&client=summon