A machine learning model to predict surgical site infection after surgery of lower extremity fractures
Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. Methods A machine learning analysis was conducted on a dataset comprising 1,579 patients wh...
Saved in:
Published in | International orthopaedics Vol. 48; no. 7; pp. 1887 - 1896 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.
Methods
A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon’s index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.
Results
The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon’s index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.
Conclusion
The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model. |
---|---|
AbstractList | This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.PURPOSEThis study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.METHODSA machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection.The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.RESULTSThe final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively.The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model.CONCLUSIONThe proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model. This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon's index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection. The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon's index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively. The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model. Purpose This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures. Methods A machine learning analysis was conducted on a dataset comprising 1,579 patients who underwent surgical fixation for lower extremity fractures to create a predictive model for risk stratification of postoperative surgical site infection. We evaluated different clinical and demographic variables to train four machine learning models (neural networks, boosted generalised linear model, naïve bayes, and penalised discriminant analysis). Performance was measured by the area under the curve score, Youdon’s index and Brier score. A multivariate adaptive regression splines (MARS) was used to optimise predictor selection. Results The final model consisted of five predictors. (1) Operating room time, (2) ankle region, (3) open injury, (4) body mass index, and (5) age. The best-performing machine learning algorithm demonstrated a promising predictive performance, with an area under the ROC curve, Youdon’s index, and Brier score of 77.8%, 62.5%, and 5.1%-5.6%, respectively. Conclusion The proposed predictive model not only assists surgeons in determining high-risk factors for surgical site infections but also empowers patients to closely monitor these factors and take proactive measures to prevent complications. Furthermore, by considering the identified predictors, this model can serve as a reference for implementing preventive measures and reducing postoperative complications, ultimately enhancing patient outcomes. However, further investigations involving larger datasets and external validations are required to confirm the reliability and applicability of our model. |
Author | Gutierrez-Naranjo, Jose M. Moreira, Alvaro Valero-Moreno, Eduardo Bullock, Travis S. Ogden, Liliana A. Zelle, Boris A. |
Author_xml | – sequence: 1 givenname: Jose M. surname: Gutierrez-Naranjo fullname: Gutierrez-Naranjo, Jose M. email: jmgutierrezn@gmail.com organization: Department of Orthopaedics, UT Health San Antonio – sequence: 2 givenname: Alvaro surname: Moreira fullname: Moreira, Alvaro email: moreiraa@uthscsa.edu organization: Department of Pediatrics, UT Health San Antonio – sequence: 3 givenname: Eduardo surname: Valero-Moreno fullname: Valero-Moreno, Eduardo organization: Department of Orthopaedics, UT Health San Antonio – sequence: 4 givenname: Travis S. surname: Bullock fullname: Bullock, Travis S. organization: Department of Orthopaedics, UT Health San Antonio – sequence: 5 givenname: Liliana A. surname: Ogden fullname: Ogden, Liliana A. organization: Department of Orthopaedics, UT Health San Antonio – sequence: 6 givenname: Boris A. surname: Zelle fullname: Zelle, Boris A. email: zelle@uthscsa.edu organization: Department of Orthopaedics, UT Health San Antonio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38700699$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kL1uFTEQRi0UlNyEvAAFckmzwb_rdRlFBCJFoklqy2uPg6Nd-2J7BfftMbmBkmI00syZT5pzjk5SToDQe0quKCHqUyWEjWIgrNdItRjkG7SjgrNBUi1P0I5wQQc2anmGzmt9JoSqcaKn6IxPipBR6x0K13i17ntMgBewJcX0hNfsYcEt430BH13DdStP0dkF19gAxxTAtZgTtqFBedlCOeAc8JJ_9gH8agXW2A44FOvaVqC-Q2-DXSpcvvYL9Hj7-eHm63D_7cvdzfX94Jie2sC8s-BB-0nPk1QC7DRbwmfHRmL9pGQQ8-hnMYpgBbHMMyW15R1TcmSc8wv08Zi7L_nHBrWZNVYHy2IT5K0aTiTRXKlJdZQdUVdyrQWC2Ze42nIwlJg_fs3Rr-l-zYtfI_vRh9f8bV7B_zv5K7QD_AjUvkrdi3nOW0n95__F_gbjd4mp |
Cites_doi | 10.3389/fbioe.2018.00075 10.1097/BOT.0000000000002293 10.1016/j.jor.2018.02.009 10.1371/journal.pone.0067167 10.1097/CORR.0000000000000433 10.1097/BOT.0b013e318284704e 10.1016/j.injury.2015.10.026 10.1136/bmj.g7594 10.1016/j.spinee.2019.01.009 10.1097/TA.0b013e318292158d 10.1186/s13037-019-0196-2 10.1086/662016 10.1097/BOT.0000000000002427 10.2196/jmir.5870 10.2106/JBJS.21.00341 10.2106/JBJS.20.01640 10.1016/j.arth.2018.11.022 10.1007/s00590-022-03438-1 10.1016/j.injury.2017.10.011 10.1097/BOT.0000000000001907 10.1097/BOT.0000000000001726 10.1007/s00402-021-04041-5 10.1097/SLA.0000000000002956 10.1016/j.jor.2015.01.026 10.1016/j.jse.2020.05.013 10.3390/jcm10215012 10.1186/s12889-018-5901-z 10.1016/j.ijsu.2018.06.018 10.1177/24715492221075444 10.1097/BOT.0000000000001513 10.1016/j.ijsu.2013.02.018 10.1097/BOT.0000000000002259 10.1186/s13756-019-0638-8 10.1097/BOT.0000000000001063 10.1007/s00402-022-04452-y 10.1097/MD.0000000000009901 10.1177/0300060520907776 10.1016/j.injury.2012.10.032 10.1111/ans.15263 10.1016/j.jamcollsurg.2016.10.029 10.1007/s11999-014-4005-z 10.1097/bot.0000000000002070 10.1016/j.injury.2022.03.037 10.1097/BOT.0b013e3182a22744 10.3928/01477447-20100625-27 10.5435/JAAOSGlobal-D-21-00058 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to SICOT aisbl 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s) under exclusive licence to SICOT aisbl. |
Copyright_xml | – notice: The Author(s) under exclusive licence to SICOT aisbl 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s) under exclusive licence to SICOT aisbl. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s00264-024-06194-5 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-5195 |
EndPage | 1896 |
ExternalDocumentID | 10_1007_s00264_024_06194_5 38700699 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1KJ 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AACDK AAEOY AAFGU AAHNG AAIAL AAJBT AAJKR AAKSU AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACDTI ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACUDM ACVWB ACWMK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFAFS AFBBN AFEXP AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGKHE AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJOOF AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAWUL BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DIK DL5 DNIVK DPUIP DU5 E3Z EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GX1 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HYE HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P2P P9S PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPM RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TR2 TSG TSK TSV TT1 TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7X Z82 Z83 Z87 Z8O Z8V Z8W Z91 ZGI ZMTXR ZOVNA ZXP ~EX AAYZH CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c298t-2dcaede9d89b8574ea8ba03bc260ad875f4b6db464fa40a2d2759a3ea87562333 |
IEDL.DBID | AGYKE |
ISSN | 0341-2695 1432-5195 |
IngestDate | Thu Dec 05 23:19:21 EST 2024 Fri Dec 06 02:10:42 EST 2024 Sat Nov 02 12:29:26 EDT 2024 Sat Jun 15 09:01:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Risk score Postoperative infection Lower extremity Machine learning |
Language | English |
License | 2024. The Author(s) under exclusive licence to SICOT aisbl. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-2dcaede9d89b8574ea8ba03bc260ad875f4b6db464fa40a2d2759a3ea87562333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38700699 |
PQID | 3050937787 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3050937787 crossref_primary_10_1007_s00264_024_06194_5 pubmed_primary_38700699 springer_journals_10_1007_s00264_024_06194_5 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationTitle | International orthopaedics |
PublicationTitleAbbrev | International Orthopaedics (SICOT) |
PublicationTitleAlternate | Int Orthop |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Halvachizadeh, Klingebiel, Pfeifer (CR38) 2022; 53 Burrus, Werner, Yarboro (CR41) 2016; 47 Kunze, Polce, Patel (CR17) 2021; 141 Anis, Sodhi, Klika (CR35) 2019; 34 CR39 Arvind, London, Cirino (CR15) 2021; 30 CR34 Morris, Unger, Archer (CR9) 2013; 27 Wilson, Georgiou, Oburu (CR42) 2018; 15 Wise, Connelly, Rocca (CR12) 2019; 33 DelisleNyström, Barnes, Tremblay (CR28) 2018; 18 Ban, Minei, Laronga (CR8) 2017; 224 Molina, Stinner, Fras, Evans (CR5) 2015; 12 Collins, Reitsma, Altman, Moons (CR21) 2015; 350 Pugely, Martin, Gao (CR46) 2014; 28 Friedman (CR29) 1991; 19 Ling, Apisarnthanarak, Abbas (CR11) 2019; 8 Oosterhoff, Gravesteijn, Karhade (CR20) 2022; 104 Yuan, Chen (CR40) 2013; 11 Zelle, Kore (CR7) 2022; 36 Devana, Shah, Lee (CR14) 2022; 6 Reese, Knepper, Young, Mauffrey (CR48) 2017; 48 Thio, Karhade, Ogink (CR16) 2018; 476 Patterson, O’Hara, Scharfstein (CR4) 2022 CR44 Mu, Edwards, Horan (CR45) 2011; 32 Bullock, Ornell, Naranjo (CR3) 2022; 36 Kunze, Karhade, Polce (CR31) 2022 (CR23) 2022; 9 Meinberg, Agel, Roberts (CR24) 2018; 32 Ziran, Soles, Matta (CR43) 2019; 13 Handcox, Gutierrez-Naranjo, Salazar (CR10) 2021; 10 Colman, Wright, Gruen (CR32) 2013; 44 van Walraven, Musselman (CR2) 2013; 8 Paryavi, Stall, Gupta (CR37) 2013; 74 Xu, Yu, Li, Gong (CR36) 2019; 89 (CR13) 2021 Spitler, Hulick, Weldy (CR26) 2020; 34 Basques, Miller, Golinvaux (CR47) 2015; 473 Karhade, Ogink, Thio (CR30) 2019; 19 Sun, Wang, Tang (CR33) 2018; 97 Bertsimas, Dunn, Velmahos, Kaafarani (CR49) 2018; 268 Yang, Zhang, Liang (CR1) 2020; 48 Cabitza, Locoro, Banfi (CR19) 2018; 6 Luo, Phung, Tran (CR22) 2016; 18 Shao, Zhang, Yin (CR6) 2018; 56 Cooke, Tornetta, Firoozabadi (CR27) 2022; 36 Zelle, Johnson, Ryan (CR25) 2021; 35 Kunze, Polce, Clapp (CR18) 2021; 103 AJ Pugely (6194_CR46) 2014; 28 S Halvachizadeh (6194_CR38) 2022; 53 BT Wise (6194_CR12) 2019; 33 HK Anis (6194_CR35) 2019; 34 E Paryavi (6194_CR37) 2013; 74 H Xu (6194_CR36) 2019; 89 National Healthcare Safety Network (6194_CR23) 2022; 9 ML Ling (6194_CR11) 2019; 8 J Shao (6194_CR6) 2018; 56 QCBS Thio (6194_CR16) 2018; 476 KN Kunze (6194_CR17) 2021; 141 JH Friedman (6194_CR29) 1991; 19 K Yuan (6194_CR40) 2013; 11 AV Karhade (6194_CR30) 2019; 19 M Colman (6194_CR32) 2013; 44 KA Ban (6194_CR8) 2017; 224 JHF Oosterhoff (6194_CR20) 2022; 104 V Arvind (6194_CR15) 2021; 30 W Luo (6194_CR22) 2016; 18 N Ziran (6194_CR43) 2019; 13 JT Patterson (6194_CR4) 2022 CA Spitler (6194_CR26) 2020; 34 Investigators, SPRINT The Of Behalf On Consortium Learning Machine (6194_CR13) 2021 BA Zelle (6194_CR7) 2022; 36 SK Devana (6194_CR14) 2022; 6 Y Mu (6194_CR45) 2011; 32 KN Kunze (6194_CR18) 2021; 103 E Meinberg (6194_CR24) 2018; 32 BA Basques (6194_CR47) 2015; 473 SM Reese (6194_CR48) 2017; 48 GS Collins (6194_CR21) 2015; 350 CJ Wilson (6194_CR42) 2018; 15 BA Zelle (6194_CR25) 2021; 35 D Bertsimas (6194_CR49) 2018; 268 MT Burrus (6194_CR41) 2016; 47 6194_CR44 TS Bullock (6194_CR3) 2022; 36 C van Walraven (6194_CR2) 2013; 8 J Yang (6194_CR1) 2020; 48 KN Kunze (6194_CR31) 2022 BJ Morris (6194_CR9) 2013; 27 CS Molina (6194_CR5) 2015; 12 JE Handcox (6194_CR10) 2021; 10 C DelisleNyström (6194_CR28) 2018; 18 Y Sun (6194_CR33) 2018; 97 F Cabitza (6194_CR19) 2018; 6 6194_CR34 6194_CR39 ME Cooke (6194_CR27) 2022; 36 |
References_xml | – volume: 6 start-page: 75 year: 2018 ident: CR19 article-title: Machine learning in orthopedics: a literature review publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2018.00075 contributor: fullname: Banfi – volume: 36 start-page: 43 year: 2022 end-page: 48 ident: CR27 article-title: Open ankle fractures: what predicts infection? a multicenter study publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002293 contributor: fullname: Firoozabadi – ident: CR39 – volume: 15 start-page: 328 year: 2018 end-page: 332 ident: CR42 article-title: Surgical site infection in overweight and obese Total Knee Arthroplasty patients publication-title: J Orthop doi: 10.1016/j.jor.2018.02.009 contributor: fullname: Oburu – volume: 8 start-page: e67167 year: 2013 ident: CR2 article-title: The Surgical Site Infection Risk Score (SSIRS): A Model to Predict the Risk of Surgical Site Infections publication-title: PLoS ONE doi: 10.1371/journal.pone.0067167 contributor: fullname: Musselman – volume: 476 start-page: 2040 year: 2018 end-page: 2048 ident: CR16 article-title: Can machine-learning techniques be used for 5-year survival prediction of patients with chondrosarcoma? publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000000433 contributor: fullname: Ogink – volume: 27 start-page: e196 year: 2013 end-page: e200 ident: CR9 article-title: Risk factors of infection after orif of bicondylar tibial plateau fractures publication-title: J Orthop Trauma doi: 10.1097/BOT.0b013e318284704e contributor: fullname: Archer – volume: 47 start-page: 465 year: 2016 end-page: 470 ident: CR41 article-title: Obesity is associated with increased postoperative complications after operative management of tibial shaft fractures publication-title: Injury doi: 10.1016/j.injury.2015.10.026 contributor: fullname: Yarboro – volume: 350 start-page: g7594 year: 2015 end-page: g7594 ident: CR21 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement publication-title: BMJ doi: 10.1136/bmj.g7594 contributor: fullname: Moons – volume: 19 start-page: 976 year: 2019 end-page: 983 ident: CR30 article-title: Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion publication-title: Spine J doi: 10.1016/j.spinee.2019.01.009 contributor: fullname: Thio – volume: 74 start-page: 1521 year: 2013 end-page: 1527 ident: CR37 article-title: Predictive model for surgical site infection risk after surgery for high-energy lower-extremity fractures: Development of the Risk of Infection in Orthopedic Trauma Surgery Score publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e318292158d contributor: fullname: Gupta – volume: 9 start-page: 39 year: 2022 ident: CR23 article-title: Surgical site infection (SSI) event publication-title: Centers for Disease Control and Prevention – volume: 13 start-page: 16 year: 2019 ident: CR43 article-title: Outcomes after surgical treatment of acetabular fractures: a review publication-title: Patient Saf Surg doi: 10.1186/s13037-019-0196-2 contributor: fullname: Matta – volume: 32 start-page: 970 year: 2011 end-page: 986 ident: CR45 article-title: Improving risk-adjusted measures of surgical site infection for the national healthcare safely network publication-title: Infect Control Hosp Epidemiol doi: 10.1086/662016 contributor: fullname: Horan – volume: 36 start-page: S31 year: 2022 end-page: S35 ident: CR7 article-title: How can negative pressure wound therapy pay for itself?—Reducing complications is important publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002427 contributor: fullname: Kore – volume: 18 start-page: e323 year: 2016 ident: CR22 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J Med Internet Res doi: 10.2196/jmir.5870 contributor: fullname: Tran – volume: 104 start-page: 544 year: 2022 end-page: 551 ident: CR20 article-title: Feasibility of machine learning and logistic regression algorithms to predict outcome in orthopaedic trauma surgery publication-title: J Bone Joint Surg doi: 10.2106/JBJS.21.00341 contributor: fullname: Karhade – volume: 103 start-page: 1055 year: 2021 end-page: 1062 ident: CR18 article-title: Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes publication-title: J Bone Joint Surg doi: 10.2106/JBJS.20.01640 contributor: fullname: Clapp – volume: 34 start-page: S331 year: 2019 end-page: S336 ident: CR35 article-title: Is operative time a predictor for post-operative infection in primary total knee arthroplasty? publication-title: J Arthroplasty doi: 10.1016/j.arth.2018.11.022 contributor: fullname: Klika – year: 2022 ident: CR4 article-title: Do superficial infections increase the risk of deep infections in tibial plateau and plafond fractures? publication-title: Eur J Orthop Surg Traumatol doi: 10.1007/s00590-022-03438-1 contributor: fullname: Scharfstein – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: CR29 article-title: Multivariate adaptive regression splines publication-title: Ann Stat contributor: fullname: Friedman – volume: 48 start-page: 2699 year: 2017 end-page: 2704 ident: CR48 article-title: Development of a surgical site infection prediction model in orthopaedic trauma: The Denver Health Model publication-title: Injury-Int J Care Injured doi: 10.1016/j.injury.2017.10.011 contributor: fullname: Mauffrey – volume: 35 start-page: 154 year: 2021 end-page: 159 ident: CR25 article-title: Fate of the uninsured ankle fracture: significant delays in treatment result in an increased risk of surgical site infection publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001907 contributor: fullname: Ryan – volume: 34 start-page: e189 year: 2020 end-page: e194 ident: CR26 article-title: What are the risk factors for deep infection in OTA/AO 43C pilon fractures? publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001726 contributor: fullname: Weldy – volume: 141 start-page: 2235 year: 2021 end-page: 2244 ident: CR17 article-title: Validation and performance of a machine-learning derived prediction guide for total knee arthroplasty component sizing publication-title: Arch Orthop Trauma Surg doi: 10.1007/s00402-021-04041-5 contributor: fullname: Patel – volume: 268 start-page: 574 year: 2018 end-page: 583 ident: CR49 article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator publication-title: Ann Surg doi: 10.1097/SLA.0000000000002956 contributor: fullname: Kaafarani – volume: 12 start-page: S7 year: 2015 end-page: S13 ident: CR5 article-title: Risk factors of deep infection in operatively treated pilon fractures (AO/OTA: 43) publication-title: J Orthop doi: 10.1016/j.jor.2015.01.026 contributor: fullname: Evans – volume: 30 start-page: e50 year: 2021 end-page: e59 ident: CR15 article-title: Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty publication-title: J Shoulder Elbow Surg doi: 10.1016/j.jse.2020.05.013 contributor: fullname: Cirino – volume: 10 start-page: 5012 year: 2021 ident: CR10 article-title: Nutrition and vitamin deficiencies are common in orthopaedic trauma patients publication-title: JCM doi: 10.3390/jcm10215012 contributor: fullname: Salazar – volume: 18 start-page: 1046 year: 2018 ident: CR28 article-title: An exploratory analysis of missing data from the royal bank of Canada (RBC) learn to play – Canadian assessment of physical literacy (CAPL) project publication-title: BMC Public Health doi: 10.1186/s12889-018-5901-z contributor: fullname: Tremblay – volume: 56 start-page: 124 year: 2018 end-page: 132 ident: CR6 article-title: Risk factors for surgical site infection following operative treatment of ankle fractures: A systematic review and meta-analysis publication-title: Int J Surg doi: 10.1016/j.ijsu.2018.06.018 contributor: fullname: Yin – volume: 6 start-page: 247154922210754 year: 2022 ident: CR14 article-title: Development of a machine learning algorithm for prediction of complications and unplanned readmission following primary anatomic total shoulder replacements publication-title: J Shoulder Elbow Arthroplast doi: 10.1177/24715492221075444 contributor: fullname: Lee – volume: 33 start-page: 506 year: 2019 end-page: 513 ident: CR12 article-title: A Predictive score for determining risk of surgical site infection after orthopaedic trauma surgery publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001513 contributor: fullname: Rocca – volume: 11 start-page: 383 year: 2013 end-page: 388 ident: CR40 article-title: Obesity and surgical site infections risk in orthopedics: A meta-analysis publication-title: Int J Surg doi: 10.1016/j.ijsu.2013.02.018 contributor: fullname: Chen – volume: 36 start-page: 111 year: 2022 end-page: 117 ident: CR3 article-title: Risk of surgical site infections in OTA/AO type C tibial plateau and tibial plafond fractures: a systematic review and meta-analysis publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002259 contributor: fullname: Naranjo – volume: 8 start-page: 174 year: 2019 ident: CR11 article-title: APSIC guidelines for the prevention of surgical site infections publication-title: Antimicrob Resist Infect Control doi: 10.1186/s13756-019-0638-8 contributor: fullname: Abbas – volume: 32 start-page: S1 year: 2018 end-page: S10 ident: CR24 article-title: Fracture and dislocation classification compendium—2018 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001063 contributor: fullname: Roberts – ident: CR44 – year: 2022 ident: CR31 article-title: Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty publication-title: Arch Orthop Trauma Surg doi: 10.1007/s00402-022-04452-y contributor: fullname: Polce – volume: 97 start-page: e9901 year: 2018 ident: CR33 article-title: Incidence and risk factors for surgical site infection after open reduction and internal fixation of ankle fracture: A retrospective multicenter study publication-title: Medicine doi: 10.1097/MD.0000000000009901 contributor: fullname: Tang – volume: 48 start-page: 030006052090777 year: 2020 ident: CR1 article-title: A retrospective analysis of factors affecting surgical site infection in orthopaedic patients publication-title: J Int Med Res doi: 10.1177/0300060520907776 contributor: fullname: Liang – volume: 44 start-page: 249 year: 2013 end-page: 252 ident: CR32 article-title: Prolonged operative time increases infection rate in tibial plateau fractures publication-title: Injury doi: 10.1016/j.injury.2012.10.032 contributor: fullname: Gruen – volume: 89 start-page: 723 year: 2019 end-page: 728 ident: CR36 article-title: Prolonged surgical duration, higher body mass index and current smoking increases risk of surgical site infection after intra-articular fracture of distal femur publication-title: ANZ J Surg doi: 10.1111/ans.15263 contributor: fullname: Gong – ident: CR34 – volume: 224 start-page: 59 year: 2017 end-page: 74 ident: CR8 article-title: American college of surgeons and surgical infection society: surgical site infection guidelines, 2016 update publication-title: J Am Coll Surg doi: 10.1016/j.jamcollsurg.2016.10.029 contributor: fullname: Laronga – volume: 473 start-page: 1133 year: 2015 end-page: 1139 ident: CR47 article-title: Morbidity and readmission after open reduction and internal fixation of ankle fractures are associated with preoperative patient characteristics publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-014-4005-z contributor: fullname: Golinvaux – year: 2021 ident: CR13 article-title: A machine learning algorithm to identify patients at risk of unplanned subsequent surgery after intramedullary nailing for tibial shaft fractures publication-title: J Orthop Trauma doi: 10.1097/bot.0000000000002070 – volume: 53 start-page: 1789 year: 2022 end-page: 1795 ident: CR38 article-title: The local soft tissue status and the prediction of local complications following fractures of the ankle region publication-title: Injury doi: 10.1016/j.injury.2022.03.037 contributor: fullname: Pfeifer – volume: 28 start-page: 63 year: 2014 end-page: 69 ident: CR46 article-title: A risk calculator for short-term morbidity and mortality after hip fracture surgery publication-title: J Orthop Trauma doi: 10.1097/BOT.0b013e3182a22744 contributor: fullname: Gao – volume: 19 start-page: 1 year: 1991 ident: 6194_CR29 publication-title: Ann Stat contributor: fullname: JH Friedman – volume: 15 start-page: 328 year: 2018 ident: 6194_CR42 publication-title: J Orthop doi: 10.1016/j.jor.2018.02.009 contributor: fullname: CJ Wilson – volume: 268 start-page: 574 year: 2018 ident: 6194_CR49 publication-title: Ann Surg doi: 10.1097/SLA.0000000000002956 contributor: fullname: D Bertsimas – volume: 44 start-page: 249 year: 2013 ident: 6194_CR32 publication-title: Injury doi: 10.1016/j.injury.2012.10.032 contributor: fullname: M Colman – volume: 103 start-page: 1055 year: 2021 ident: 6194_CR18 publication-title: J Bone Joint Surg doi: 10.2106/JBJS.20.01640 contributor: fullname: KN Kunze – volume: 34 start-page: e189 year: 2020 ident: 6194_CR26 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001726 contributor: fullname: CA Spitler – volume: 8 start-page: 174 year: 2019 ident: 6194_CR11 publication-title: Antimicrob Resist Infect Control doi: 10.1186/s13756-019-0638-8 contributor: fullname: ML Ling – volume: 74 start-page: 1521 year: 2013 ident: 6194_CR37 publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e318292158d contributor: fullname: E Paryavi – volume: 32 start-page: S1 year: 2018 ident: 6194_CR24 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001063 contributor: fullname: E Meinberg – volume: 473 start-page: 1133 year: 2015 ident: 6194_CR47 publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-014-4005-z contributor: fullname: BA Basques – ident: 6194_CR34 – volume: 18 start-page: e323 year: 2016 ident: 6194_CR22 publication-title: J Med Internet Res doi: 10.2196/jmir.5870 contributor: fullname: W Luo – volume: 30 start-page: e50 year: 2021 ident: 6194_CR15 publication-title: J Shoulder Elbow Surg doi: 10.1016/j.jse.2020.05.013 contributor: fullname: V Arvind – volume: 97 start-page: e9901 year: 2018 ident: 6194_CR33 publication-title: Medicine doi: 10.1097/MD.0000000000009901 contributor: fullname: Y Sun – volume: 10 start-page: 5012 year: 2021 ident: 6194_CR10 publication-title: JCM doi: 10.3390/jcm10215012 contributor: fullname: JE Handcox – volume: 33 start-page: 506 year: 2019 ident: 6194_CR12 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001513 contributor: fullname: BT Wise – volume: 104 start-page: 544 year: 2022 ident: 6194_CR20 publication-title: J Bone Joint Surg doi: 10.2106/JBJS.21.00341 contributor: fullname: JHF Oosterhoff – year: 2022 ident: 6194_CR4 publication-title: Eur J Orthop Surg Traumatol doi: 10.1007/s00590-022-03438-1 contributor: fullname: JT Patterson – volume: 89 start-page: 723 year: 2019 ident: 6194_CR36 publication-title: ANZ J Surg doi: 10.1111/ans.15263 contributor: fullname: H Xu – volume: 19 start-page: 976 year: 2019 ident: 6194_CR30 publication-title: Spine J doi: 10.1016/j.spinee.2019.01.009 contributor: fullname: AV Karhade – ident: 6194_CR39 doi: 10.3928/01477447-20100625-27 – volume: 141 start-page: 2235 year: 2021 ident: 6194_CR17 publication-title: Arch Orthop Trauma Surg doi: 10.1007/s00402-021-04041-5 contributor: fullname: KN Kunze – volume: 53 start-page: 1789 year: 2022 ident: 6194_CR38 publication-title: Injury doi: 10.1016/j.injury.2022.03.037 contributor: fullname: S Halvachizadeh – volume: 48 start-page: 030006052090777 year: 2020 ident: 6194_CR1 publication-title: J Int Med Res doi: 10.1177/0300060520907776 contributor: fullname: J Yang – volume: 6 start-page: 75 year: 2018 ident: 6194_CR19 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2018.00075 contributor: fullname: F Cabitza – volume: 35 start-page: 154 year: 2021 ident: 6194_CR25 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000001907 contributor: fullname: BA Zelle – volume: 36 start-page: S31 year: 2022 ident: 6194_CR7 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002427 contributor: fullname: BA Zelle – ident: 6194_CR44 doi: 10.5435/JAAOSGlobal-D-21-00058 – volume: 48 start-page: 2699 year: 2017 ident: 6194_CR48 publication-title: Injury-Int J Care Injured doi: 10.1016/j.injury.2017.10.011 contributor: fullname: SM Reese – volume: 12 start-page: S7 year: 2015 ident: 6194_CR5 publication-title: J Orthop doi: 10.1016/j.jor.2015.01.026 contributor: fullname: CS Molina – volume: 8 start-page: e67167 year: 2013 ident: 6194_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0067167 contributor: fullname: C van Walraven – year: 2021 ident: 6194_CR13 publication-title: J Orthop Trauma doi: 10.1097/bot.0000000000002070 contributor: fullname: Investigators, SPRINT The Of Behalf On Consortium Learning Machine – volume: 47 start-page: 465 year: 2016 ident: 6194_CR41 publication-title: Injury doi: 10.1016/j.injury.2015.10.026 contributor: fullname: MT Burrus – volume: 32 start-page: 970 year: 2011 ident: 6194_CR45 publication-title: Infect Control Hosp Epidemiol doi: 10.1086/662016 contributor: fullname: Y Mu – volume: 27 start-page: e196 year: 2013 ident: 6194_CR9 publication-title: J Orthop Trauma doi: 10.1097/BOT.0b013e318284704e contributor: fullname: BJ Morris – volume: 18 start-page: 1046 year: 2018 ident: 6194_CR28 publication-title: BMC Public Health doi: 10.1186/s12889-018-5901-z contributor: fullname: C DelisleNyström – volume: 6 start-page: 247154922210754 year: 2022 ident: 6194_CR14 publication-title: J Shoulder Elbow Arthroplast doi: 10.1177/24715492221075444 contributor: fullname: SK Devana – volume: 224 start-page: 59 year: 2017 ident: 6194_CR8 publication-title: J Am Coll Surg doi: 10.1016/j.jamcollsurg.2016.10.029 contributor: fullname: KA Ban – volume: 13 start-page: 16 year: 2019 ident: 6194_CR43 publication-title: Patient Saf Surg doi: 10.1186/s13037-019-0196-2 contributor: fullname: N Ziran – volume: 28 start-page: 63 year: 2014 ident: 6194_CR46 publication-title: J Orthop Trauma doi: 10.1097/BOT.0b013e3182a22744 contributor: fullname: AJ Pugely – volume: 34 start-page: S331 year: 2019 ident: 6194_CR35 publication-title: J Arthroplasty doi: 10.1016/j.arth.2018.11.022 contributor: fullname: HK Anis – volume: 9 start-page: 39 year: 2022 ident: 6194_CR23 publication-title: Centers for Disease Control and Prevention contributor: fullname: National Healthcare Safety Network – volume: 36 start-page: 111 year: 2022 ident: 6194_CR3 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002259 contributor: fullname: TS Bullock – volume: 11 start-page: 383 year: 2013 ident: 6194_CR40 publication-title: Int J Surg doi: 10.1016/j.ijsu.2013.02.018 contributor: fullname: K Yuan – volume: 350 start-page: g7594 year: 2015 ident: 6194_CR21 publication-title: BMJ doi: 10.1136/bmj.g7594 contributor: fullname: GS Collins – volume: 476 start-page: 2040 year: 2018 ident: 6194_CR16 publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000000433 contributor: fullname: QCBS Thio – volume: 36 start-page: 43 year: 2022 ident: 6194_CR27 publication-title: J Orthop Trauma doi: 10.1097/BOT.0000000000002293 contributor: fullname: ME Cooke – year: 2022 ident: 6194_CR31 publication-title: Arch Orthop Trauma Surg doi: 10.1007/s00402-022-04452-y contributor: fullname: KN Kunze – volume: 56 start-page: 124 year: 2018 ident: 6194_CR6 publication-title: Int J Surg doi: 10.1016/j.ijsu.2018.06.018 contributor: fullname: J Shao |
SSID | ssj0017681 |
Score | 2.441294 |
Snippet | Purpose
This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site... This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1887 |
SubjectTerms | Adult Aged Algorithms Female Fractures, Bone - surgery Humans Lower Extremity - injuries Lower Extremity - surgery Machine Learning Male Medicine Medicine & Public Health Middle Aged Original Paper Orthopedics Retrospective Studies Risk Assessment - methods Risk Factors Surgical Wound Infection - diagnosis Surgical Wound Infection - epidemiology Surgical Wound Infection - etiology Surgical Wound Infection - prevention & control Young Adult |
Title | A machine learning model to predict surgical site infection after surgery of lower extremity fractures |
URI | https://link.springer.com/article/10.1007/s00264-024-06194-5 https://www.ncbi.nlm.nih.gov/pubmed/38700699 https://www.proquest.com/docview/3050937787 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH84BfHi98f8IoI3zdiSNG2OQ6ai6MnBPJWmST2onXTtQf96X7J2IhNhlxJoSGle8t7v8T5-AOdpqJhVmaDSMkOF1ZIqxAVUSpX2LFcmSF2988OjvB2Ku1Ew-qnj9snuTUTSK-pZrZvzFgRFk-LICJSgQQtW0Pa427jSv3m-H8yCB4igPVEeKmjKpArqWpm_V_ltj-ZA5lyA1Nud6w14aqp3pukmr52q1J30a76Z4yK_tAnrNQ4l_enB2YIlm2_D6kMdad-BrE_efZ6lJTWxxAvxrDmkHJOPws0ryaQqvOIkLgRNmryunHjicf_WFp9knJE3x8VG0A4U9h1hP8lcbVaFnv4uDK8HT1e3tOZkoClTUUmZSRNrrDKR0lEQCptEOulynaJflBh0fjKhpdFCiiwR3YQZFgYq4TgtdEiL8z1Yzse5PQBiec9YYdCjyVCTOKCKw0imPR0yboRuw0Ujmfhj2nojnjVZ9lsX49bFfuvioA1njfBivCEu7JHkdlxNYu5a3PAQNVMb9qdSna3HUV11pVJtuGxEFNeXePLPxw4Xm34Ea8xL2WX5HsNyWVT2BLFMqU_rs3sKrZtRD59D1v8GIMXrOw |
link.rule.ids | 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60gnoR39ZnBG8aaJNsdnMsotRHPVnoLWw2WS92W7bbg__eSbpbkIrgbWFDApPJzDfM4wO4yWLFnMoFlY5ZKpyRVCEuoFKqrOu4slHm-50Hb7I_FM-jaFQ3hc2aavcmJRks9bLZzYcLgqJP8WwEStBoHTZQ45TnLRiy3jJ3gAA68OShfaZMqqhulfl9j5_uaAVjruRHg9t53IWdGi-S3uKC92DNFfuwOagz4geQ98g41EM6UhNAfJDAbkOqCZmWfl1FZvMyGDjiU8Wkqb8qSCAID39d-UUmOfn0nGkE7XXpxgjPSe57qOYYkR_C8PHh_b5Pa-4EmjGVVJTZLHXWKZsok0SxcGli0g43GcYvqcUgJRdGWiOkyFPRSZllcaRSjstij4g4P4JWMSncCRDHu9YJi5FHji_eA0r8TGTWNTHjVpg23DYi1NPFiAy9HIYcBK5R4DoIXEdtuG6krFGTfXoiLdxkPtPcj6LhMVqQNhwvxL_cj6NZ6Uil2nDX3IeuH9vsj8NO_7f8Crb674NX_fr09nIG2yzoia_MPYdWVc7dBeKPylwGdfsG4dLQSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gHgR39ZnBG8abJNsdnMsaqmPigcL3sJmk_Wi27LdHvz3TtLdoiiCt4UNCUwmM98wjw_gLIsVcyoXVDpmqXBGUoW4gEqpso7jykaZ73cePMr-UNy9RC9fuvhDtXuTkpz1NPgpTUV1Obb55bzxzYcOgqJ_8cwEStBoEZa9K_KaPmTdeR4BwXTgzENbTZlUUd028_se313TD7z5I1caXFBvHdZq7Ei6s8vegAVXbMLKoM6Ob0HeJe-hNtKRmgzilQSmG1KNyLj06yoymZbB2BGfNiZNLVZBAll4-OvKDzLKyZvnTyNou0v3jlCd5L6faorR-TYMezfPV31a8yjQjKmkosxmqbNO2USZJIqFSxOTtrnJMJZJLQYsuTDSGiFFnop2yiyLI5VyXBZ7dMT5DiwVo8LtAXG8Y52wGIXk-Po9uMTPRGYdEzNuhWnBeSNCPZ6Ny9DzwchB4BoFroPAddSC00bKGrXapyrSwo2mE839WBoeozVpwe5M_PP9OJqYtlSqBRfNfej64U3-OGz_f8tPYOXpuqcfbh_vD2CVBTXxRbqHsFSVU3eEUKQyx0HbPgEdXdSH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+model+to+predict+surgical+site+infection+after+surgery+of+lower+extremity+fractures&rft.jtitle=International+orthopaedics&rft.au=Gutierrez-Naranjo%2C+Jose+M.&rft.au=Moreira%2C+Alvaro&rft.au=Valero-Moreno%2C+Eduardo&rft.au=Bullock%2C+Travis+S.&rft.date=2024-07-01&rft.issn=0341-2695&rft.eissn=1432-5195&rft_id=info:doi/10.1007%2Fs00264-024-06194-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00264_024_06194_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-2695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-2695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-2695&client=summon |